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We report on the properties of ferroelectric Pb(Zr,Tips)O3 (PZT) thin films grown epitaxially on (001) silicon and on the perfor-
mance of such heterostructures for microfabricated piezoelectric energy harvesters. In the first part of the paper, we investigate the
epitaxial stacks through transmission electron microscopy and piezoelectric force microscopy studies to characterize in detail their
crystalline structure. In the second part of the paper, we present the electrical characteristics of piezoelectric cantilevers based on
these epitaxial PZT films. The performance of such cantilevers as vibration energy transducers is compared with other piezoelectric
harvesters and indicates the potential of the epitaxial approach in the field of energy harvesting devices.

1. Introduction

In the last decade, studies on epitaxial ferroelectric thin films
have led to many interesting results and exciting discoveries
[1]. The possibility of tailoring or even enhancing some phy-
sical parameters via epitaxial strain engineering [2—4] has
suggested the idea of the exploitation of such thin films
for several technological applications [5]. Nevertheless, the
benefits of the epitaxial approach on the performances of
ferroelectric thin film-based devices have to compensate the
hurdles related to the epitaxial growth on industrial sub-
strates such as silicon, the modern technological platform.
It is in fact well known that the basic requirements for the
epitaxy, that is, a good lattice match between substrate and
film and a reciprocal chemical stability, are not easily fulfilled
in the case of oxide growth on silicon. Beside the difference
in lattice parameters and thermal expansion coefficients, the
main problem is the surface reactivity of silicon to oxygen,

with the formation of an amorphous layer of silicon dioxide
that hints any further epitaxy. Moreover, the cations of most
ferroelectric compounds interdiffuse into the silicon subs-
trate, forming spurious extra phases at the interface [6]. In
order to overcome such difficulties, a suitable buffer layer
is needed that acts as a barrier for cations migration and
as a structural template for the growth of the ferroelectric
epitaxial film [7-9].

PZT is one of the most investigated ferroelectric materi-
als, due to its high values of remnant polarization and piezo-
electric coefficients. In the bulk form, it displays a complex
phase diagram versus the Ti/Zr content: for the stoichiom-
etry of our choice, that is, Pb(Zro,Tips)O3 (PZT 20/80), it
is ferroelectric with a tetragonal structure up to a transition
temperature of 460°C [10]. It is worth stressing that for
ferroelectric materials the mechanical boundary conditions
may affect substantially the ferroelectric properties because
of the strong strain-polarization coupling present in these



compounds [11-13]. Thus, the epitaxial strain often makes
the properties of ferroelectric thin films substantially differ-
ent from the bulk counterpart.

2. Heterostructure Growth
and Characterization

The investigated epitaxial heterostructure is composed of a
ferroelectric PZT layer grown on top of a metallic SrRuOs
(SRO) film, used as bottom electrode. This bilayer is depo-
sited onto a thin SrTiOs (STO) film epitaxially grown on a 2-
inch (001) silicon wafer. The choice of STO as buffer layer is
determined by the fact that it has the same crystalline struc-
ture (perovskite) and a good lattice match with SRO and
PZT. STO also acts as a barrier for Pb diffusion into the
silicon wafer [14-16]. The STO layer can reach a very high
degree of crystalline perfection on silicon when the growth
is performed by molecular beam epitaxy through a complex
multistep process, where fixed amounts of the elemental
materials have to be carefully deposited at specific condi-
tions of substrate temperature and pressure. The deposition
process we used is detailed in [17, 18]. In situ Reflection
High Energy Electron Diffraction (RHEED) is the key tool
in order to monitor and control the whole deposition pro-
cedure, since every step of the deposition corresponds to
a specific diffraction pattern linked to a particular surface
reconstruction. Figure 1 shows the evolution of the RHEED
pattern during the growth of a STO film on silicon.

The SRO and PZT layers are subsequently grown by
rf magnetron sputtering as described in [19]. In the fol-
lowing, a detailed investigation of the crystalline struc-
ture of a PZT(100nm)/SRO(30 nm)/STO(6 nm)/Si stack
is given. X-ray structural characterization of the het-
erostructure has been performed with a high-resolution
PANalytical X’Pert diffractometer, equipped with a four-
bounce asymmetric Ge(220) monochromator for Cu K,
radiation. Through 6-20 and ¢-scan diffractograms, the
following out-of-plane orientation and cube-on-cube arran-
gement of the oxides stack on silicon have been deter-
mined: PZT[001]//SRO[001]//STO[001]//§i[001] and PZT
[100]//SRO[100]//STO[100]//Si[110] (see also [13]).

Transmission electron microscopy (TEM) characteriza-
tion, performed on a JEOL JEM2010 microscope, shows at
the silicon-STO interface the presence of an amorphous layer
of SiO,, which clearly did not affect the epitaxy of the oxides
multilayer (Figure 2).

Most likely then, the formation of this SiO; layer occurs
after the growth of the STO/Si interface template through
oxygen diffusion, thus not hindering the epitaxy [20-22].

Interestingly, the TEM investigation also revealed the
presence in the PZT layer of crystallographic domains with
the c-axis aligned in the plane of the film, so-called a-do-
mains. Figure 3 shows that their width is about 20 nm. We
note that the overlap of the more intense (00I) SRO reflec-
tions with the diffraction peaks of the PZT a-domains most
probably prevents their detection in the X-ray 0-20 scans.
The origin of the formation of these domains can be related
to the strain arising from the lattice and thermal mismatch
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of the film with the substrate during the cool-down across
the ferroelectric transition [23, 24]. Figure 3(a) shows a pat-
tern of domains in the PZT layer: they repeat periodically
every ~105nm. The domain wall between a and ¢ domains
runs along the diagonal of the tetragonal unit cell and the
difference between the a and ¢ axis (¢/a = 1.046) [13] gives
rise to a distortion of the neighboring lattices on each side of
a 90° domain wall. The misalignment of the growth planes
between a and ¢ domains is clearly visible in Figure 3(c) and
can be estimated to be ~3°, in good agreement with the
calculated value of ~2.6°.

Due to the different polarization orientations of the ¢
and a domains, respectively, perpendicular and parallel to
the film-substrate interface, we can detect their presence by
piezoelectric force microscopy (PFM). In PFM, a conducting
tip is scanned in contact with the surface while an ac voltage,
lower than the coercive field of the material, is applied bet-
ween the tip and the sample. From the detection of the in-
phase and out-of-phase deformation signals in the vertical
(V) and lateral (L) PFM modes [25], it is possible to map the
presence of a and ¢ domains.

Figure 4(a) shows a topography scan of a PZT surface,
revealing a nRMS roughness of 5nm. The V-PFM scan
shown in the middle panel is sensitive to the polarization
direction of the c-domains of the film, here shown as reddish
area, while the yellowish lines correspond to a-domains,
with zero contrast. Conversely, through L-PFM it is possible
to detect the piezoelectric response of a-domains, with the
restriction that domains parallel to the scan direction cannot
be detected, as clearly shown in Figure 4(c). Combining the
V-PEM and L-PFM measurements, the PZT film appears to
be a very dense network of small a-domains embedded in a
matrix of c-axis domains. As can be seen, the phase response
detected in the V-PFM and L-PFM is unrelated to the topo-
graphic features detected simultaneously by the AFM scan.
Figure 5 shows a detail of the PZT a-domains network, on a
1 X 1 ym? area.

According to some reports, applying an electric field
induces a lateral motion of thin a-domains [26-33]. Even
though some of these results are still under debate, such a
motion would give rise to an extrinsic contribution to the
piezoelectric response of the material and an enhancement
of the conversion coefficients. a-domains switching would
indirectly enhance the strain state in the film and its piezo-
electric response. Indeed, while the estimation of the PZT
ds3 coefficient by PEM measurement yields a value of about
50 pm/V (in agreement with the data reported for bulk PZT
20/80), the indirect estimation of d3; from the deflection of a
microfabricated piezoelectric cantilever gives a higher value
(details in the next section).

We investigated the ferroelectric behavior of these epi-
taxial films grown on silicon through a series of polarization
hysteresis measurements, performed by a TF analyzer 2000.
To perform the measurements, Cr/Au top electrodes were
prepared with a size of 100 x 100 ym?. The polarization ver-
sus voltage loop, shown in Figure 6(a), reveals a remnant
polarization of about 70 uC cm™2 and no significant leakage
current up to 16 V. Figure 6(b) displays the measurement of
the capacitance versus applied bias, revealing the dielectric
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FiGure 1: Evolution of RHEED pattern during the growth of a STO layer. The patterns shown are taken with the electron beam along the
[100] direction. (a) As-received Si wafer (001), the diffuse background indicates the presence of a native amorphous layer of SiO,; (b)
crystalline Si surface after a thermal treatment in vacuum: the appearance of fractional spots (0,1/2) due to Si dimers indicates the complete
removal of SiO», (¢) 2X surface reconstruction corresponding to the deposition of half monolayer (ML) of Sr in vacuum at high temperature,
(d) 3x reconstruction corresponding to the deposition of half ML of Sr in vacuum at low temperature, (¢) 1 ML of SrO, (f) 3 ML of crystalline

STO.

FIGURE 2: Cross-sectional TEM image, revealing the presence of
4.5 nm of amorphous SiO; located between the silicon substrate and
the epitaxial oxide stack.

tunability of our epitaxial PZT. In the approximation of a
plane capacitor, we estimate a dielectric constant at zero field
to be about 150.

3. Energy Harvesting Devices

The development of transducers allowing energy from
mechanical vibrations to be generated has advanced rapidly
during the past few years. Several review articles [34, 35]
discuss the principles and advantages of each conversion
method. Among these, piezoelectricity based devices have
received large attention due to their high power density and

c-domain

a-domain c-domain

c-domain

(b)

FIGURE 3: (a) Cross-sectional TEM image, revealing the presence of
periodic a-domains, (b) HRTEM of a single a-domain surrounded
by a c-axis oriented regions. (¢) Details of the 90° domain wall.

ease of integration compared to other transduction tech-
niques [36-38]. Several piezoelectric silicon micromachined
energy scavengers have been proposed so far, most of these
devices being based on polycrystalline PZT (poly-PZT) or
aluminum nitride (AIN) films. Energy harvesting devices
involving epitaxial PZT thin films are however less common
[39-41]. In this study we report on the characteristics of
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FIGURE 4: (a) Topography scan on a 20 X 20 um? area, (b) V-PFM and (c) L-PFM: phase response of the vertical and lateral PFM measure-
ments on the same area and schematic of the corresponding detected domains.

(pm)

FIGURE 5: V-PFM scan on a 1 X 1 um? area: zoom of the a-domains
network.

MEMS based vibrations energy scavengers made of an epi-
taxial PZT film on silicon cantilevers.

A typical device is shown in Figure 7: it is based on a
cantilever fabricated using micropatterning techniques opti-
mized for the oxide layers deposited on silicon. The details of
the microfabrication process are presented in [19].

The d3; piezoelectric coefficient has been estimated from
the displacement at the free end of a cantilever. The deflec-
tion of this cantilever, coated with 100 nm thick epi-PZT
films, has been measured as a function of dc voltage using
an interferometric profiler (Wyko NT110). The piezoelectric

coefficient value is estimated to be 135.4 + 7.1 pm/V [19].
For a PZT thickness of about 500 nm, we measure a residual
stress after the film growth of about 60 MPa, according to
stress measurement performed using a Tencor FLX-2320A
system. In order to evaluate the performance of our device,
the cantilever’s resonant frequency has been determined
using a Polytec MVS-400 laser Doppler vibrometer, obtain-
ing a value of 2.3 + 0.1 kHz. The power generation perfor-
mance of the device has been investigated with a shaker
(Bruel and Kjaer type 4811) driven by a vibration exciter
control (type 1050) and a power amplifier (type 2712) by
applying an acceleration as a mechanical input. The device
is connected with various resistive loads (Ry) and the current
generated under different acceleration levels is recorded with
a multimeter (Agilent 34411A). The corresponding average
power is calculated by the relation: P,y = IZ, R;. The output
current, average power, and voltage as a function of resistive
loads are shown in Figure 8.

In order to compare this performance with other MEMS
energy harvesters, these output data are normalized as fol-
lowing: the output power per square acceleration (g2), the
current and voltage per acceleration (g). From a single device
with an optimal resistive load of 4.7 kQ), a maximum output
power of 14 yW/g? with 60 yA/g output current is obtained,
thus resulting in an output voltage of 0.28 V/g. The max-
imum power density is as high as 105uW/(g? mm?). As
shown in details in [41], the comparison of the electrical
output characteristics between this epitaxial-PZT energy har-
vester and other piezo-harvesting devices based on poly-
PZT and AIN films [42-46] shows that the former provides
higher current at smaller resistive load. Usually, energy har-
vesting devices with a low optimal load resistance are highly
desirable because they can generate high output current,
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FIGURE 6: (a) Polarization versus applied voltage (PE loop) (full red
circle) and corresponding switching current (empty blue circle). (b)
Plot of the capacitance versus applied bias. The difference in the
coercive field in the PE loop measurement and in the capacitance
cycle is due to a different electrical configuration, top-top contacts
for PE loos while top-bottom for the capacitance.

FIGURE 7: Optical image of an epi-PZT cantilever (1000 x 2500 X
7 ym?®) with a Si proof mass (1000 x 500 x 230 ym?). The inset
shows the Si proof mass on the back side of the cantilever. The
effective volume of the final device is 0.1325 mm?.
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FIGURE 8: (a) Average power, (b) output current, and (c) corre-
sponding output voltage of an epi-PZT harvester versus resistive
load.

and also because their impedance can be easily matched to
standard electronic devices. Energy harvesting devices based
on poly-PZT and AIN films demonstrated useful power gen-
eration, but their high impedance limits the output current.
Moreover, even though the power generated by the epi-PZT
is similar to that of AIN, the epi-PZT harvester exhibits
the highest power density, which is of high interest when
realizing miniaturized devices. Unlike the polycrystalline film
based devices, the device reported here can generate high
power and current with usable voltage, while maintaining
low optimal resistive load. For piezoelectric energy harves-
ters, the expressions for the figure of merit for the power,
voltage and current are, respectively: Pr = egl) f/er, Vi =
es1,f/€r, Ip = egl’ Iz where e3¢ is the effective piezoelectric
coefficient. From the measured piezoelectric coefficient ds;,
it is possible to estimate a value of 18.2 + 0.9Cm™2 [47], a
value which is significantly higher than what has been re-
ported in the past [48]. Such large piezoelectric coefficient



together with a low dielectric constant is among the key para-
meters to realize high performance piezoelectric energy har-
vesters.

4. Conclusions

This paper reports on the structural and physical properties
of epitaxial PZT thin films deposited on silicon and on the
electrical performance of cantilevers microfabricated from
such heterostructures. We have shown that the PZT thin
films exhibit excellent ferroelectric characteristics with a
remnant polarization of 70 uC cm™2. The structural micro-
scopic investigation by TEM and PFM has revealed the pre-
sence of a-domains embedded in a mostly oriented c-axis
film. This coexistence of domains with different crystal-
lographic orientation could be at the origin of the large
piezoelectric response estimated from the electromechanical
behavior of the cantilevers. The performances of our epitax-
ial piezo-transducers fabricated for energy harvesting indi-
cate that these generate higher power and current with usable
voltage requiring lower optimal resistive load as compared to
piezoelectric harvesters realized with polycrystalline PZT or
AIN films.
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