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The paper considers a production facility that might deteriorate suddenly at some point during the production run time; after
deterioration, nonconforming items are produced in a greater rate compared to the rate before deterioration. Moreover, the
production facility may ultimately break down; consequently, the production lot is aborted before completion. If breakdown
happens, corrective action is started immediately; otherwise, the production lot is completed and preventive repair is implemented
at the end of the production cycle to enhance system reliability. The mathematical model is formulated under general distributions
of failure, corrective, and repair times, while the numerical examples are solved under exponential failure and uniform repair
times. The formulated model successfully determines the optimal lot size in addition to the optimal process parameters (mean and
standard deviation) simultaneously.

1. Introduction

In real-life situations, most production systems are unreliable
to a significant degree, and process deterioration occurs at
some point in the production run time. A process shift
from in-control state to out-of-control state will cause the
production of more nonconforming items. This process
may go worse and ultimately machine breakdown happens
causing production interruption, and consequently plans
for meeting demand are severely affected. Building on the
previous argument, the need for more realistic modeling
of EMQ (Economic Manufacturing Quantity) is rising in
the manufacturing field; such modeling should take into
consideration system variables which affect performance in
a random manner; some of those variables include the
following.

(1) Time to shift from in-control state to out-of control
state.

(2) Time to breakdown.

(3) Corrective maintenance time.

(4) Preventive maintenance time.

(5) Rate of producing nonconforming items before and
after process shift; this can be handled in various
ways.

(a) Assuming nonconforming items are produced
only after deterioration and they are produced
at constant rate.

(b) Assuming nonconforming items are produced
before and after a sudden deterioration; accord-
ingly, the process mean shifts to a new value
and stays unchanged. The rate of produc-
ing nonconforming items is obviously greater
after deterioration, and in both cases, the rate
depends on the value of the process mean.

(c) Or deterioration might be considered to happen
gradually following a specific pattern (e.g.,
linear, quadratic, or exponential).

(6) Usual costs related to maintenance, production, and
inventory such as corrective and preventive repair
costs, inventory holding cost, shortage penalty cost,
cost of producing nonconforming items, and set-up
cost.
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Obviously, the two factors that have a great influence on
EMQ decisions are process deterioration and machine
breakdown. During the last few years, researchers from all
over the world have done a tremendous amount of work
investigating those two issues and their effect on EMQ.

Dagpunar [1] examined the lot-sizing problem with
machine time to failure following a Weibull distribution; the
machine is minimally repaired until the interrupted lot is
completed; at the end of the production cycle, the machine
is restored to as-good-as-new condition and new cycle is
started. Kuhn [2] suggested a stochastic dynamic program-
ming model to determine the optimal lot sizing decision
where the equipment is subject to stochastic breakdowns.
The analysis considered two cases; first it is assumed that,
after the machine breakdown, the setup is totally lost and
new setup cost is incurred; the second case considers the
situation in which the cost of resuming the production run
after a failure might be substantially lower than the pro-
duction set-up cost. Ben-Daya [3] dealt with an integrated
model for the joint determination of economic production
quantity and preventive maintenance (PM) level for an
imperfect process having a general deterioration distribution
with increasing hazard rate; the effect of PM activities on
the deterioration pattern of the process is modeled using the
imperfect maintenance concept. Chung [4] showed that the
long-run average cost function per unit of time for the case of
exponential breakdowns is unimodal but neither convex nor
concave, and he obtained an approximation for lower and
upper bounds on lot sizing under this condition.

Giri and Dohi [5] considered the net present value
(NPV) approach to determine the economic manufacturing
quantities for an unreliable production system over an
infinite planning horizon. The NPV of the expected total
cost was obtained under general breakdown time and general
repair time. The criteria for the existence and uniqueness of
the optimal production time (lot size) were derived under
exponential breakdown and constant/zero repair time.

Giri and Yun [6] considered an economic manufacturing
quantity problem for an unreliable manufacturing system
where the machine is subject to random breakdown and at
most two failures can occur in a production cycle. Upon first
failure, the repair action is started immediately and the
demand is met first from the on-hand inventory. The short-
ages, if they occur due to longer repair time, are backlogged
partially by resuming the production run after machine
repair. While backlogging, if failure occurs again then the
accumulated shortages until completion of the second repair
are assumed to be lost. The model was formulated under
general breakdown and general repair time distributions.

Hsieh and Lee [7] considered two economic manufac-
turing quantity models with unrepairable and repairable
standby key modules. They determined the economic pro-
duction run length and the economic number of standbys
in a deteriorating production process. Jaber [8] investigated
the lot-sizing problem for reduction in setups, with reworks,
and interruptions to restore process quality after process
deterioration takes place. He assumed the rate of producing
defectives to benefit from any changes for eliminating the
defects and thus reduces with each quality restoration action.

Chiu et al. [9] studied the optimal lot-sizing decision
for a production system with rework, random scrap rate
and service level constraint. El-Ferik [10] studied the joint
determination of both economic production quantity and
preventive maintenance (PM) schedules under the realistic
assumption that the production facility is subject to random
breakdown and the maintenance is imperfect. The manufac-
turing system was assumed to deteriorate while in operation,
with an increasing failure rate. The system undergoes PM
either upon failure or after having reached a predetermined
age, whichever of them occurs first. Chelbi et al. [11]
proposed an integrated production-maintenance model for
unreliable production system producing conforming and
nonconforming items. The model is designed to simultane-
ously determine the optimal values of the lot size and the age
at which preventive maintenance must be performed in order
to minimize the total cost.

Chakraborty et al. [12] developed integrated production,
inventory, and maintenance models for a deteriorating
production system in which the production facility may
shift from an “in-control” state to an “out-of-control” state
and break down at any random point in time during a
production run. In case of machine breakdown, production
of the interrupted lot is aborted and a new production
lot is started when the on-hand inventory is depleted and
after corrective repair is completed. The process is inspected
during each production run to examine the state of the
production process.

Pentico et al. [13] investigated EOQ with partial and
full backordering production systems. Hu and Zong [14]
proposed an extended product inspection policy for a
deteriorating production system. Based on their model,
they showed that there exists a production run time and
a corresponding unique inspection policy such that the
expected total cost per item per cycle is minimized.

Up to our knowledge, no one has considered process
targeting and production lot sizing simultaneously under
process deterioration and machine breakdown conditions. In
this paper we are going to study the joint effect of process
deterioration, machine breakdown, and random repair times
(corrective and preventive) on the optimal lot-sizing deci-
sions in addition to process parameters (mean and standard
deviation). We will consider process deterioration to happen
suddenly, meaning that the process mean immediately shifts
from original value μI to a new value μO.

While determining the EMQ (or production run time)
is important for production planning, one can question the
economic benefits that can be drawn from a model that aims
to find the optimal values of the process parameters: mean
and standard deviation. For a quality characteristic, the per-
formance of the process is quantified using the specification
limits, lower specification limit (LSL) and upper specification
limit (USL). The cost of producing items within the accepted
range, LSL < x < USL, is evaluated by the Taguchi loss func-
tion which is dependent on the process mean. Also the
cost associated with producing items out of the specification
limits is entirely affected by the process mean. Process
targeting problems are found in practical situations such
as filling problems where one has to control the overfilling



Modelling and Simulation in Engineering 3

and underfilling costs by finding the optimal process mean
which lies within the specification limits. On the other
hand, the process standard deviation reflects the machine’s
accuracy and precision. A lower standard deviation means
more expensive machines with higher accuracy levels. Hence,
finding the optimal value for the standard deviation which
can achieve the lowest cost is essential in minimizing the
overall cost of the process.

2. Model Formulation

The model under consideration is describing a production
facility which may shift from in-control-state to out-of-
control state at any random time during a production run; in
both states, nonconforming items are produced in different
rates depending on the process mean value. The production
facility may also break down at any time during a production
cycle. Once a shift to the out-of-control state has occurred, it
is assumed that the production process will stay in that state
until the whole lot has been produced or machine breakdown
occurs. If the machine breakdown happens during the
production run, then the interrupted lot is aborted and a new
lot is started after corrective maintenance when all available
inventory is depleted (no resumption—NR—policy).

Assuming that the production process starts in an “in-
control” state at time t = 0 to produce an amount Q, if the
machine breakdown does not occur until the time to = Q/p,
then preventive maintenance (PM) is carried out to bring
the machine to the as-good-as-new condition before the start
of the next production run. However, if the machine breaks
down before producing the required quantity Q, then the
corrective repair action is started immediately. During the
machine repair (corrective and preventive), the demand is
met first from the accumulated on-hand inventory. Shortages
may occur due to longer corrective/preventive repair times.
If shortages occur, they are not delivered after the machine
repair.

Figures 1–4 show all possible scenarios during a produc-
tion cycle. In Figure 1, machine failure happens at time t < t0;
consequently, the production lot is aborted and corrective
repair is started immediately and completed before inventory
is totally depleted causing no shortages. Figure 2 shows the
case where machine failure happens at time t < t0, and short-
ages occur due to long corrective repair time. In Figures 3 and
4, no machine failure happens, accordingly preventive repair
started immediately at the end of the production cycle, and
again shortages may occur due to longer repair times.

2.1. Lot Sizing and Targeting Process Mean. When deteriora-
tion happens after time τ, process mean immediately shifts
from μI to μO. The in-control and out-of-control process
means are assumed to be related as in the following equation:

μO = γμI , γ > 0. (1)

The probability density functions for the quality charac-
teristic X before and after process shift are q(x,μI) and
q(x,μO), respectively, and they are assumed to be normal
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Figure 1: Breakdown/no shortage.
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Figure 2: Breakdown/shortage.
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Figure 3: No Breakdown/no shortage.

with known and constant standard deviation σ . The fraction
nonconforming before and after the process shift is given by:

α = α1 + α2 =
∫ x=LSL

x=0
q
(
x,μI

)
dx +

∫ x=∞

x=USL
q
(
x,μI

)
dx,

β = β1 + β2 =
∫ x=LSL

x=0
q
(
x,μO

)
dx +

∫ x=∞

x=USL
q
(
x,μO

)
dx.

(2)
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Figure 4: No Breakdown/shortage.

The expected time while the process is in-control is given by

Tin =
∫ to

t=0

∫ t

τ=0
τ · h(τ) · f (t) · dτ · dt

+
∫∞
t=to

∫ to

τ=0
τ · h(τ) · f (t) · dτ · dt.

(3)

The expected time while the process is out-of-control is given
by

Tout =
∫ to

t=0

∫ t

τ=0
(t − τ) · h(τ) · f (t) · dτ · dt

+
∫∞
t=to

∫ to

τ=0
(to − τ) · h(τ) · f (t) · dτ · dt.

(4)

The total cost of nonconforming items in a production cycle
is given by

CN = p · Tin · [cLα1 + cUα2] + p · Tout ·
[
cLβ1 + cUβ2

]
.

(5)

We quantify the impact of imprecision on the quality
characteristic X by using Taguchi loss function:

L(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cL
(
x − μI

)2

(
LSL− μI

)2 , if LSL ≤ x ≤ μI ,

cU
(
x − μI

)2

(
USL− μI

)2 , if μI ≤ x ≤ USL.

(6)

The total loss cost in a production cycle is given by

CLoss = p · Tin ·
[∫ μI

x=LSL
L(x) · q(x,μI

) · dx

+
∫ USL

x=μI
L(x) · q(x,μI

) · dx
]

+ p · Tout ·
[∫ μI

x=LSL
L(x) · q(x,μO

) · dx

+
∫ USL

x=μI
L(x) · q(x,μO

) · dx
]
.

(7)

The total expected cost per production-inventory cycle
is composed of setup cost, repair costs (corrective and

preventive), inventory holding cost, shortage cost [15], cost
of nonconforming items, and the loss cost; it is given by

Ccycle

= co + c1 ·
∫ to

t=0

∫∞
l1=0

l1 · g1(l1) · f (t) · dl1 · dt

+ c2 ·
∫∞
t=to

∫∞
l2=0

l2 · g2(l2) · f (t) · dl2 · dt

+
ci p
(
p − d

)
2d

·
[∫ to

t=0
t2· f (t)·dt + t2

o ·
∫∞
t=to

f (t)·dt
]

+ csd ·
∫ to

t=0

∫∞
l1=(p−d)t/d

{
l1 −

(
p − d

)
t

d

}

· g1(l1) · f (t) · dl1 · dt

+ csd ·
∫∞
t=to

∫∞
l2=(p−d)to/d

{
l2 −

(
p − d

)
to

d

}

· g2(l2) · f (t) · dl2 · dt
+ p · Tin · [cLα1 + cUα2] + p · Tout ·

[
cLβ1 + cUβ2

]

+ p · Tin ·
[∫ μI

x=LSL
L(x)·q(x,μI

)·dx

+
∫ USL

x=μI
L(x)·q(x,μI

)·dx
]

+ p · Tout ·
[∫ μI

x=LSL
L(x) · q(x,μO

) · dx

+
∫ USL

x=μI
L(x) · q(x,μO

) · dx
]
.

(8)

And the expected length of a production-inventory cycle [15]
is given by

Tcycle =
∫ to

t=0

∫ (p−d)t/d

l1=0

(
pt

d

)
· g1(l1) · f (t) · dl1 · dt

+
∫ to

t=0

∫∞
l1=(p−d)t/d

(t + l1) · g1(l1) · f (t) · dl1 · dt

+
∫∞
t=to

∫ (p−d)to/d

l2=0

(
pto
d

)
· g2(l2) · f (t) · dl2 · dt

+
∫∞
t=to

∫∞
l2=(p−d)to/d

(to + l2) · g2(l2) · f (t). · dl2 · dt.
(9)

From the renewal reward theorem, the average cost per unit
time is given by

AC
(
to,μI

) = Ccycle
(
to,μI

)
Tcycle(to)

. (10)

Our objective is to determine the optimal production run
time t∗o and the optimal process mean μ∗I simultaneously.

Example 1. Now we solve an example by assuming the
following.

Time to shift from in-control to out-of-control state is
following a uniform distribution;

h(τ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
t

, t ≤ to,

1
to

, t ≥ to.
(11)
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In order to avoid mathematical intractability, we assume
exponential time to failure with failure rate λ:

f (t) = λe−λt. (12)

Assuming exponential time to failure can be justified by
noticing that in the proposed model we implement either
corrective or preventive maintenance after each production
run, and we assume that machine is restored to as-good-
as-new condition; accordingly aging effect is minimized
and process can be considered as “memory less” with time
independent hazard rate λ.

Also we assume the corrective and preventive repair times
to follow uniform distribution functions:

g1(l1) = 1
b1

, 0 ≤ l1 ≤ b1,

g2(l2) = 1
b2

, 0 ≤ l2 ≤ b2.
(13)

And we restrict the decision variable to to assume values
within the following interval;

0 ≤ to ≤ 4. (14)

We use the following values: p = 130, d = 100, co = 300,
c1 = 1000, c2 = 200, b1 = 3, b2 = 1, ci = 8, cs = 40, cL =
30, cU = 20, LSL = 250, USL = 260, σ = 2, with different
combinations of failure rate λ and deterioration factor γ.

From the results shown in Table 1, we notice that, under
a fixed value of failure rate λ, the optimal production run
time t∗o decreases when deterioration factor γ increases in
order to reduce the out-of-control interval and hence reduce
the number of nonconforming products, while the optimal
process mean μ∗I decreases and then starts to increase after
a specific value of γ which reflects the conflict between the
different terms in the cost function.

On the other hand, under a fixed value of deterioration
factor γ, the optimal production run time t∗o increases
when failure rate λ increases which is quite strange but
can be explained by noticing that not all terms in the cost
function have the same preference regarding the length of
the production run time under higher failure rates. For
example, from a corrective repair cost perspective, it is better
to have shorter run times, while from a preventive repair
cost perspective, it is better to have longer run times; and
hence it is a matter of conflict resolution between the cost
function terms, and accordingly the optimal run time is
highly sensitive to model parameters, for example, c1, c2, ci
and cs.

And we notice reasonably that the average cost per unit
time increases when any of the two parameters (λ and γ) is
increased.

2.2. Lot Sizing, Targeting Process Mean and Standard Devi-
ation. In what follows we consider a model to determine
the optimal production run time t∗o , the optimal process
mean μI

∗, and the optimal standard deviation σ∗ simul-
taneously. Lowering the standard deviation incurs additional
cost because it requires more accurate machines which are
expensive.

Table 1: Dependent of the optimal policy (t∗o & μ∗I ) on parameters
λ and γ.

γ to∗ μI
∗ AC (to∗, μI

∗)

λ = 0.04

1.005 2.626 254.496 1013.53

1.01 2.612 253.715 1109

1.02 2.558 252.72 1428.28

1.03 2.501 254.141 1730.86

1.04 2.495 255.399 1759.87

λ = 0.06

1.005 2.654 254.496 1083.91

1.01 2.638 253.715 1178.08

1.02 2.582 252.72 1492.01

1.03 2.522 254.141 1789.71

1.04 2.515 255.399 1818.25

λ = 0.08

1.005 2.682 254.496 1152.19

1.01 2.665 253.715 1244.87

1.02 2.606 252.72 1553.82

1.03 2.542 254.141 1846.79

1.04 2.536 255.399 1874.88

Here we are assuming that process mean is not machine-
related characteristic while the standard deviation is machine
related. Moreover we assume that we have a wide range of
machines available in the market varying in their accuracy
(standard deviation); we need to determine the one with the
optimal standard deviation which will minimize the total
cost. Also we assume that all available machines are sharing
the same breakdown distribution since they are all new and
provided by qualified suppliers and they only differ in their
accuracy. For instance, two identical CNC machines can
differ in their accuracy due to different toolkits used.

The number of production cycles the new machine can
serve is given by

N = Lm
to

, (15)

where Lm is the expected life of the machine. The standard
deviation cost in a production cycle can be expressed as

Cσ = Ke(σmax−σ)

N
= Ktoe(σmax−σ)

Lm
. (16)

Here, K is the cost incurred to reduce σ by one unit, and σmax

is the maximum allowed value for σ .
The total cost in this case is given by

Ccycle

= co + c1 ·
∫ to

t=0

∫∞
l1=0

l1 · g1(l1) · f (t) · dl1 · dt

+ c2 ·
∫∞
t=to

∫∞
l2=0

l2 · g2(l2) · f (t) · dl2 · dt

+
ci p
(
p − d

)
2d

·
[∫ to

t=0
t2 · f (t) · dt + t2

o ·
∫∞
t=to

f (t) · dt
]
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+ csd ·
∫ to

t=0

∫∞
l1=(p−d)t/d

{
l1 −

(
p − d

)
t

d

}
· g1(l1) · f (t)

· dl1 · dt

+ csd ·
∫∞
t=to

∫∞
l2=(p−d)to/d

{
l2 −

(
p − d

)
to

d

}
· g2(l2) · f (t)

· dl2 · dt
+ p · Tin · [cLα1 + cUα2] + p · Tout ·

[
cLβ1 + cUβ2

]

+ p · Tin ·
[∫ μI

x=LSL
L(x)·q(x,μI

)·dx

+
∫ USL

x=μI
L(x)·q(x,μI

)·dx
]

+ p · Tout ·
[∫ μI

x=LSL
L(x) · q(x,μO

) · dx

+
∫ USL

x=μI
L(x) · q(x,μO

) · dx
]

+
Ktoe(σmax−σ)

Lm
.

(17)

And the cycle length is given by (9).
And again by the renewal theory, the average cost per unit

time is given by

AC
(
to,μI , σ

) = Ccycle
(
to,μI , σ

)
Tcycle(to)

. (18)

Example 2. Now we solve an example to find the optimal
production cycle length, the optimal process mean, and
the optimal process standard deviation simultaneously. We
set K = 5000, Lm = 500, σmax = 3 with different
combinations of failure rate λ and deterioration factor γ,
and the other parameters are same as in Example 1. And
we restrict the decision variables to and σ to assume values
within the following intervals: 0 ≤ to ≤ 4, 0 ≤ σ ≤ σmax.

From the results shown in Table 2, we notice that, under
a fixed value of λ,

(a) t∗o decreases when γ is increased in order to reduce
nonconformities by reducing the out of control
period;

(b) μ∗I decreases then starts to increase after a specific
value of γ due to the conflict between the terms in
the cost function;

(c) σ∗ increases then starts to decrease after a specific
value of γ.

On the other hand, under a fixed value of γ we notice the
following:

(a) t∗o increases when λ is increased;

(b) μ∗I almost does not change when λ is increased;

(c) σ∗ increases when λ is increased.

And finally we notice that the average cost per unit time
increases when any of the two parameters (λ and γ) is
increased.

Table 2: Dependent of the optimal policy (t∗o , μ∗I , σ∗) on parame-
ters λ and γ.

γ t∗o μI
∗ σ∗ AC (t∗o , μ∗I , σ∗)

λ = 0.04

1.005 2.575 254.254 1.464 1119.39

1.01 2.558 253.476 1.483 1226.58

1.02 2.499 252.537 1.581 1574.04

1.03 2.454 254.031 2.319 1880.18

1.04 2.440 255.392 1.941 1914.69

λ = 0.06

1.005 2.581 254.263 1.480 1194.87

1.01 2.563 253.486 1.502 1300.15

1.02 2.503 252.558 1.625 1641.17

1.03 2.464 254.02 2.347 1939.33

1.04 2.444 255.395 1.961 1974.51

λ = 0.08

1.005 2.584 254.272 1.496 1268.16

1.01 2.566 253.496 1.521 1371.57

1.02 2.507 252.578 1.668 1706.18

1.03 2.473 254.008 2.375 1996.69

1.04 2.448 255.397 1.982 2032.53

3. Conclusion

In this paper, we have investigated the joint effect of process
deterioration and machine breakdown on production lot-
sizing and process-targeting decisions. The model is formu-
lated under general failure and corrective repair times, while
numerical examples are solved under exponential failure
time and uniform repair (preventive and corrective) time
distributions. We have considered two models: the first one
for determining the optimal production cycle length t∗o and
the optimal process mean μ∗I simultaneously, while in the
second model we introduce a new cost Cσ resulting from
lowering the process standard deviation σ ; accordingly we
determine the optimal standard deviation σ∗ in addition
to t∗o and μ∗I . In future research, deterioration can be
considered to happen gradually following some pattern (e.g.,
linear or exponential) rather than being sudden.

Notations

t: Nonenegative random variable denoting
time to machine breakdown

f (t): Time to breakdown probability density
function pdf

λ: Failure rate (parameter for f (t)) when it’s
exponentially distributed

τ: Random variable denoting the time taken by
the machine to shift from “in-control” state
to “out-of-control” state

h(τ): p.d.f. of the shift time (from in-control to
out-of-control state)

to: Production cycle length
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l1: Nonenegative random variable denoting
corrective repair time

g1(l1): Corrective repair time probability density
function p.d.f.

b1: The upper bound on l1 when it is uniformly
distributed

l2: None-negative random variable denoting
preventive repair time

g2(l2): Preventive repair time probability density
function p.d.f.

b2: The upper bound on l2 when it’s uniformly
distributed

Tin: The expected time while process is in-control
Tout: The expected time while process is out

of control
d(> 0): Demand rate
p(> d): Production rate
c0(> 0): Set up cost for each production run
c1(> 0): Corrective repair cost per unit time
c2(< c1): Preventive repair cost per unit time
ci(> 0): Inventory holding cost per unit product per

unit time
cs(> 0): Shortage penalty cost per unit product
cL(> 0): Cost incurred due to production of a

nonconforming item with X ≤ LSL
cU(> 0): Cost incurred due to production of a

nonconforming item with X ≥ USL
CN : Total cost of nonconforming items per cycle
L(x): Taguchi loss function
CLoss: Total loss cost per cycle
Ccycle: Expected total cost per production-inventory

cycle
Tcycle: Expected length of a production-inventory

cycle
AC: The average cost per unit time
Cσ : Cost of process standard deviation σ
N : Expected number of production cycles a new

machine can serve
Lm: Expected life of the machine
K : The cost incurred to reduce σ by one unit
σmax: The maximum allowed value for σ
X : Random variable denoting the quality

characteristic of process under consideration
q(x,μ): p.d.f. of the quality characteristic X
μI : In-control process mean
μO: Out-of-control process mean
γ: Process deterioration factor
σ : Process standard deviation
LSL: Lower specification limit on quality

characteristic X
USL: Upper specification limit on quality

characteristic X
α1: Proportion of nonconforming while process

is in-control with X ≤ LSL
α2 Proportion of nonconforming while process

is in-control with X ≥ USL
β1: Proportion of nonconforming while process

is out-of-control with X ≤ LSL

β2: Proportion of nonconforming while process
is out-of-control with X ≥ USL.
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