brought to you by CORE

viii

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	i
	SUPERVISOR VERIFICATION	ii
	DEDICATION	IV
	ACKNOWLEDGEMENTS	V
	ABSTRACT	Vi
	ABSTRAK	Vii
	TABLE OF CONTENTS	Viii
	LIST OF TABLES	Xi
	LIST OF FIGURES	Xii
	LIST OF ABBREVIATIONS	Xv
	LIST OF APPENDICES	Xvi
I	INTRODUCTION	1
	1.1 Aluminium Oxide, Al ₂ O ₃	1
	1.2 Research Background and Problem Statement	4
	1.3 Significance of Research	5
	1.4 Research Objectives	5
	1.5 Scope of Study	6
	1.6 Outline of the dissertation	6

II LITERATURE REVIEW

	0.1		0
	2.1	Background Information	9
	2.2	Biopolymer	10
	2.3	Mesoporous alumina	11
	2.4	Synthesis of Mesoporous Alumina, Al ₂ O ₃	13
	2.5	Catalyst	15
	2.6	Alumina as Catalyst and Catalyst Supports	15
	2.7	Mesoporous alumina in catalytic application	16
	2.8	Knoevenagel Condensation Reactions	18
III	EX	PERIMENTAL	21
	3.1	Introduction	21
	3.2	Chemicals and Reagents	21
	3.3	Synthesis of Agarose Gel	22
	3.4	Solvent Exchange	22
	3.5	Synthesis of Alumina	22
	3.6	Characterization of Synthesized Alumina	23
		3.6.1 Powder X-Ray Diffraction (XRD)	24
		3.6.2 Fourier Transformed Infrared Spectroscopy	24
		(FTIR)	
		3.6.3 Nitrogen Adsorption Measurements	25
		3.6.4 Field Emission Scanning Electron Microscopy	25
		(FESEM)	
		3.6.5 Transmission Electron Microscopy (TEM)	26
		3.6.6 Surface Acidity Measurement	26
	3.7	Catalytic Testing	27
		3.7.1 Reactivity of Alumina in Knoevenagel Reaction	27
		3.7.2 Reaction of Benzaldehyde with Dimethyl Malonate over alumina	27

9

	3.7.3 Reaction of Benzaldehyde with Methyl Cyanoacetate	28
	over alumina	
	3.7.4 Identification of the Knoevenagel Reaction	29
	product	
IV	RESULTS AND DISCUSSION	32
	4.1 Introduction	32
	4.2 Characterization of Alumina	34
	4.2.1 Powder X-Ray Diffraction (XRD)	34
	4.2.2 Fourier Transformed Infrared Spectroscopy	36
	(FTIR)	
	4.2.3 Nitrogen Adsorption Measurements	37
	4.2.4 Field Emission Scanning Electron Microscopy	42
	(FESEM)	
	4.2.5 Transmission Electron Microscopy (TEM)	47
	4.2.6 Surface Acidity Measurement	50
	4.3 Catalytic Testing	52
	4.3.1 Reaction of Benzaldehyde with Dimethyl Malonate sover alumina	53
	4.3.2 Reaction of Benzaldehyde with Methyl Cyanoacetate sover alumina	55
	4.3.3 Mechanism of Knoevenagel Condensation Reaction	57
V	CONCLUSION AND RECOMMENDATIONS	61
	5.1 Conclusion	52
	5.2 Recommendations	63
	REFERENCES	65
	APPENDICES	72

LIST OF TABLES

TABLE NO	TITLE	PAGE
4.1	Significant FTIR spectral bands of Alumina	37
4.2	Comparison of the surface area and porosity of sample	
	prepared using four different amount of agarose	42
4.3	Assignments of FTIR bands of pyridine adsorption-	52
	desorption	
4.4	Percentage conversion of reactant, selectivity and yield of	54
	product	
4.5	Percentage conversion of reactant, selectivity and yield of	56
	product	

LIST OF FIGURES

FIGURE NO

TITLE

PAGE

1.1	Molecular structure of alumina	1
1.2	Acidic and basic site in alumina surface	3
1.3	Flowchart of the research design	8
2.1	Unit Structure of Agarose	11
2.2	The basic of the Knoevenagel condensation reaction	19
3.1	Synthesis route of Alumina	23
3.2	Equation of Knoevenagel reaction between benzaldehyde and dimethyl malonate	28
3.3	Equation of Knoevenagel reaction between benzaldehyde	
	and methyl cyanoacetate	29
3.4	The diagram of gas chromatoghraphy	30
4.1	Schematic diagram mechanism of manufacture alumina	32
4.2	A schematic of the gelling process of agarose	33
4.3	XRD diffractogram of γ -alumina calcined at 450°C, (a)	
	Al ₂ O ₃ -0.5, (b) Al ₂ O ₃ -1.0, (c) Al ₂ O ₃ -2.0	35
4.4	FTIR spectral of (a) Al_2O_3 -0.5, (b) Al_2O_3 -1.0, (c) Al_2O_3 -	
	2.0, and (d) Al_2O_3 -4.0.	37
4.5	N_2 adsorption-desorption isotherms and their	
	corresponding pore size distribution curve (inset) of	38
	Al ₂ O ₃ -0.5.	
4.6	N_2 adsorption-desorption isotherms and their	
	corresponding pore size distribution curve (inset) of	39
	Al ₂ O ₃ -1.0.	
47	N	

4.7 N₂ adsorption-desorption isotherms and their

	corresponding pore size distribution curve (inset) of	39
	Al ₂ O ₃ -2.0.	
4.8	N_2 adsorption-desorption isotherms and their	
	corresponding pore size distribution curve (inset) of	40
	Al ₂ O ₃ -4.0.	
4.9	The change in pore size with increasing amount of	41
	agarose.	
4.10	SEM images of 0.5 wt% dried template (a) agarose	43
	powder, (b) agarose gel at 2500x and 5000x	
	magnifications	
4.11	FESEM micrograph of titania-1.0	44
4.12	FESEM micrograph of Al ₂ O ₃ -0.5	45
4.13	FESEM micrograph of Al ₂ O ₃ -1.0	45
4.14	FESEM micrograph of Al ₂ O ₃ -2.0	46
4.15	FESEM micrograph of Al ₂ O ₃ -4.0	46
4.16	TEM micrograph of Al ₂ O ₃ -0.5	48
4.17	TEM micrograph of Al ₂ O ₃ -1.0	48
4.18	TEM micrograph of Al ₂ O ₃ -2.0	49
4.19	TEM micrograph of Al ₂ O ₃ -4.0	49
4.20	Schematic representative of mesoporous alumina particles	50
4.21	FTIR spectra of of (a) $Al_2O_3-0.5$, (b) $Al_2O_3-1.0$, (c)	
	Al_2O_3 -2.0, and (d) Al_2O_3 -4.0, obtained after pyridine	
	desorption at 150°C	51
4.22	Acidic and basic site in alumina surface	52
4.23	Knoevenagel reaction between benzaldehyde and	53
	dimethyl malonate	
4.24	GC Chromatogram of Knoevenagel condensation reaction	
	catalyzed by Al ₂ O ₃ -2.0	54
4.25	Knoevenagel reaction between benzaldehyde and methyl	
	cyanoacetate	55
4.26	GC Chromatogram of Knoevenagel condensation reaction	56
	catalyzed by Al ₂ O ₃ -2.0	

4.27	Mechanism	for	Knoevenagel	condensation	reaction	
	between benza	aldeł	yde and dimeth	nyl malonate		59
4.28	Mechanism	for	Knoevenagel	condensation	reaction	
	between benza	aldeł	yde and methy	l cyanoacetate		61

LIST OF ABBREVIATIONS

FTIR	-	Fourierr transform infrared
FESEM	-	Field emission scanning electron microscopy
TEM	-	Transmission electron microscopy
GC	-	Gas chromatoghraphy
XRD	-	X-ray diffraction
Wt%	-	Weight percent
R _T	-	Retention time
FID	-	Flame ionization detector
IUPAC	-	International Union of Pure and Applied Chemistry
BET	-	Brunauer, Emmett and Teller
P/P _O	-	Relative pressure; obtained by forming the ratio of the
		equilibrium Pressure and the vapor pressure $P_{\rm O}$ of the
		adsorbate at the Temperature where the isotherm is measured

LIST OF APPENDICES

APPENDICES NO	TITLE	PAGE
1	Equation of Percentage conversion, selectivity and yield of product	72
2	XRD diffractogram of prepared alumina and	
	reference	73
3	Infrared Spectra of prepared alumina,	74
4	Pyridine adsorption-desorption Infrared spectra	75
5	GC Chromatogram of Knoevenagel	
	condensation reaction	76
6	GC Chromatogram of Knoevenagel	
	condensation reaction	77
7	GC-MS spectrum of a) dimethyl 2-	
	benzylidenemalonate, b) standard	78