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Abstract. Motivated by the fact that empirical time series
of earthquakes exhibit long-range correlations in space and
time and the Gutenberg-Richter distribution of magnitudes,
we propose a simple fault model that can account for these
types of scale-invariance. It is an avalanching process that
displays power-laws in the event sizes, in the epicenter dis-
tances as well as in the waiting-time distributions, and also
aftershock rates obeying a generalized Omori law. We thus
confirm that there is a relation between temporal and spatial
clustering of the activity in this kind of models. The fluctu-
ating boundaries of possible slipping areas show that the size
of the largest possible earthquake is not always maximal, and
the average correlation length is a fraction of the system size.
This suggests that there is a concrete alternative to the ex-
treme interpretation of self-organized criticality as a process
in which every small event can cascade to an arbitrary large
one: the new picture includes fluctuating domains of coher-
ent stress field as part of the global self-organization. More-
over, this picture can be more easily compared with other
scenarios discussing fluctuating correlations lengths in seis-
micity.

1 Introduction

At the moment there is not a comprehensive explanation of
the mechanisms giving rise to the complex phenomenology
of earthquakes. The magnitude of each earthquake is charac-
terized by the Gutenberg-Richter (GR) law (Gutenberg and
Richter, 1944), which is in fact a scale-invariant distribution
of energy release. Earthquakes are also long-range correlated
with each other. It is indeed known that events are clustered
in space and time (Turcotte, 1997; Scholz, 2002) and take
place in complex fault patterns (Bonnet et al., 2001). The
Omori law of aftershocks rate (Utsu et al., 1995) is an exam-
ple of the temporal clustering of earthquakes, with a decay
given by a scale-invariant law. The phenomenology of the
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distance between subsequent epicenters is also characterized
by power-law distributions (Davidsen and Paczuski, 2005;
Corral, 2006). Moreover, the values of magnitudes, waiting
times and locations of earthquakes are part of a single scaling
picture (Bak et al., 2002; Corral, 2003, 2004, 2005). Other
examples are given byMega et al.(2003) andDavidsen et al.
(2006). Since seismicity is one of the most outstanding ex-
amples of a class of phenomena involving a wide range of
energetic, spatial, and and temporal scales, it is expected that
its modeling is problematic.

It is possible to build models based upon the phenomenol-
ogy of earthquakes. For example, aftershock-sequence mod-
els require an assumed law of off-spring generation per
event (Ogata, 1988; Helmstetter and Sornette, 2002; Turcotte
et al., 2007; Lippiello et al., 2007). These models can yield
realistic time-series, but by construction they use rather than
explain laws like the GR one.

The scale-invariant distribution of earthquake sizes is re-
produced by processes based on avalanches of stress redis-
tribution, following the idea that there is self-organized crit-
icality (SOC) (Bak, 1996; Sornette, 2000). The precursor of
this concept in geophysics has been the slider-block model
by Burridge and Knopoff(1967). It is evident from many
models that the mechanism of avalanches of relaxations ro-
bustly leads to size-frequency power-laws. This behavior
emerges from the collective organization of units that co-
operate with very nonlinear rules, redistributing stress and
typically dissipating it from open boundaries.

However, it has become also clear during the last years
that the simplest SOC models cannot reproduce other impor-
tant features of critical phenomena, usually involving cor-
relations between events. Models incorporating correlated
events (Olami et al., 1992; Hainzl et al., 1999, 2000; Her-
garten and Neugebauer, 2002; Zöller et al., 2005; Huang
et al., 1998; Lippiello et al., 2005; Baiesi and Maes, 2006;
Lippiello et al., 2006; Abaimov et al., 2007) are a minority
within the literature on SOC. These few scattered results un-
fortunately have not constituted a large enough body for ap-
propriately raising the issue of temporal organization to the
attention of the scientific community.
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In this paper we show that earthquakes phenomenology
can guide us to build self-organized models with the appro-
priate features. In particular, we stress the importance of
clustering events in space and time, an aspect leading us to
develop a fault model that displays a full spectrum of power-
law statistics (GR law, Omori law, waiting times and epicen-
ter distances with broad distributions), not observed in pre-
vious models. Hence, the very basic idea of SOC is in fact
achievable. In particular, the process self-organizes the epi-
center locations, clustering them rather than spreading them
randomly in space, as it is frequently imposed in other simple
models.

A novel feature distinguishing the model we propose from
previous ones is is the possibility to infer maximal areas of
events from its configuration. It turns out that this model does
not conform to the common picture associated with SOC in
geophysics (Nature debate, 1999; Geller et al., 1997). The
idea is that every tremor can in principle cascade in a large
event, depending on minor details of the stress field. It is
possible that the paradigm of sandpiles has been much influ-
ential in the consolidation of this view. Up to date, this in-
terpretation has been a speculation, without any quantitative
assessment of its validity. Below we show that we instead
observe a mean correlation length limited to a given fraction
of the whole fault, and a rich dynamical regime leading to
complex patterns of possible slipping areas. The domains
where avalanches can occur are not always maximal. There-
fore, it is clear that in this model it is not possible to have
a large earthquake at all times. We will come back to this
point in the section “Discussion”. The next section contains
the description of the model, while the numerical results are
shown in Sect.3.

2 Model

The following model describes a one-dimensional fault with
L units and with periodic boundary conditions. Each uniti

represents the displacementhi of a plate with respect to a
second one. Plates are sliding with respect to each other and
thus the displacementhi corresponds to a slip accumulated
with time. An external fieldσi characterizes the speed of the
strain accumulation in the unit: At each time step a uniti,
chosen with probabilitypi∼exp(βσi), slips:

hi → hi + 1 . (1)

If hi forms a high gradient with one of its neighborsj , in
our casehi-hj ≥ 4, a local elastic instability occurs. This
is relaxed by allowing the two nearest-neighbor units to get
closer,

hi → hi − 2 and hj → hj + 2 . (2)

If this process leads to the formation of new unstable cou-
ples(i, j), they are listed and processed into a random order

until the list is empty, filling at the same time another list
with eventual new unstable pairs. The new list is then pro-
cessed, and so on. The iteration of this rule leads to a final
state in which all bonds between units are stable again. The
whole avalanche of relaxations represents an earthquake and
is characterized by its size (the number of single relaxations,
corresponding to the seismic moment), by its slipping area
(the number of sites involved at least once), and by its epi-
center (the unit where the avalanche started). It takes place
by definition in one time step. The waiting time between
avalanches is then measured by the number of time steps sep-
arating them.

The aim of the fieldσi is to reproduce some “external”
tectonic loading, which should be originated by the crust por-
tions that meet at the fault. Somewhatσ replaces the loading
calculated explicitly with the laws of elasticity in other mod-
els (see for exampleBen-Zion, 1996; Ben-Zion et al., 2003).
Since earthquakes play the main role in reshaping the stress
field in the crust, we let eachσi evolve with a rule that cou-
ples it with the activity in the system: Every time that a re-
distribution (2) occurs, the two corresponding fields are set
equal to their averageσ ij=(σi+σj )/2 plus a noise termδ
drawn at random (for each site) from the interval[−1, 1]

1:

σi → σ ij+δi and σj → σ ij+δj . (3)

The evolution of the system is thus stochastic in many as-
pects. At the level of single redistributions involving (2) and
(3), one has an update ofσ ’s with randomδ’s. At the step
(1) of forcing the system, the choice ofi according to a prob-
ability pi is also stochastic. One can interpret the set ofσi

as an array of local rates. Indeed, a micro-slip (hi→hi+1)
takes place with a rate proportional to exp(βσi).

A non-trivial regime emerges as long asβ is sufficiently
large to lead to a persistence of the earthquake activity in
areas of the system. Forβ→∞ one finds a choice of the po-
sition to apply (1) that corresponds to the site with the largest
σ . This resembles an extremal dynamics for the fieldσi . We
rather choseβ large but finite, such that many parts of the
fault are likely to be active at the same time (if they are share
similar values ofσi). The evolution of theσi guarantee a
migration of active areas as well.

Despite the stochastic character of some of the micro-
scopic updates, a rich phenomenology arises, with scale-free
avalanches and with realistic interoccurrence statistics.

3 Results

We show results obtained by fixingβ=4, which is large
enough to lead to clustering of epicenters. A preliminary
check has shown qualitatively similar results in the range
2≤β≤6. For eachL, initial configurations for simplicity

1The choice of this interval just fixes the scale of fluctuations of
theσi ’s.
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Fig. 1. Example of a time series for a system withL=2048 sites:
(a) size vs. time and(b) location of rupture areas versus time.
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Fig. 2. (a) Profileshi corresponding to the configuration at time
t=0 of Fig. 1 (black line) and at timet=50 000 (red line), and
some intermediate stages (thin gray lines). To all curves we have
subtracted the averageh at time t=0. (b) Difference of the same
profiles with respect the initial one,hi(t=0), to better visualize the
regions where activity was concentrated in this example.

havehi=0 andσi=0. To be confident that the stationary
regime has been reached, we first run a long transient of
≈108

÷109 time steps without collecting statistics. From
time step t=0 we then collect time series composed by
2 ÷ 3×108 time steps. This constitutes a satisfactory statis-
tics only if a large number of different profiles is sampled,
which is the case for systems with.2000 units. We can thus
collect data in a reasonable time for systems up to this size.

A first glance at the behavior of the model is proposed in
Fig.1, where we plot a sample of size and location of rupture
areas as a function of time. One can see that the activity is an
alternation of earthquakes of several sizes, with a persistence
in active areas. This is confirmed by a plot of the increment
of hi with respect to the values at timet=0: Fig.2(b) shows
that the increments are concentrated in the active areas.
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Fig. 3. Gutenberg-Richter law in systems withL=1024 and
L=2048.

The statistics of several quantities turn out to be deter-
mined by power-laws. In order to display the frequency-size
statistics, we adopt the following definition of magnitude:

m= log10 s

Note that the usual prefactor 2/3 (Scholz, 2002) in the con-
version from seismic moment to magnitude is not suitable for
a one-dimensional model because the area of events is in fact
a length. In Fig.3 one can see that the number of events with
magnitude≥m, denoted byN>(m), seems to follow a GR
law, N>(m)∼10−b m, with b=1.1±0.1, though this distribu-
tion is most likely multiscaling, as it is often the case in one-
dimensional automata (Kadanoff et al., 1989). We postpone
the exact characterization of this distribution to future work.
The distribution of slipping areasa instead has a clearer scal-
ing: it develops a power-law tail∼a−τa for increasingL,
with τa=1.5 (Fig4), and obeys to standard finite-size scaling

P(a) ' a−τaF
( a

LD

)
(4)

with D=1 and whereF is a scaling function, see inset of
Fig. 4.

In addition to the avalanche size and area, in this model we
can also measure metric properties characterizing the state of
the system between two avalanches: one is the length of do-
mains of units having constant sign in the slope ofhi . Each
profilehi is indeed an alternation of domains with increasing
h and domains of decreasingh, forming in general a non-
trivial landscape, see Fig.2(a). This is also a result of the
self-organization of the process, which includes the evolution
of theσi . Also domain lengths̀ have a power-law distribu-
tion∼`−τ` with τ`'1.9, see Fig.5, which displays finite-size
scaling

P(`) ' `−τ`G

(
`

LD

)
(5)
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Fig. 4. Distributions of the area of avalanches, forL=128, 256,
512, 1024, and 2048. Their power-law tail∼a−1.5 is highlighted
by the dashed line. Inset: data collapse ofP(a) aτa vs.a/L.
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Fig. 5. Distribution of domain lengths̀ (sameL’s of Fig. 4). The
dashed line represents a power-law`−1.9. Inset: data collapse of
P(`)`τ` vs. `/L. Data for the shortestL=128 are not included in
the collapse.

also withD=1 (inset of Fig.5). Sinceτa<τ`, there is more
chance to observe large areas than large domains. On the
other hand, avalanches take place within domains. This
suggests that avalanches are repetitive and appear more fre-
quently in long domains.

Connected with the scale-invariance of domains, there
is also a scaling of the correlation length of the stress
fi=hi+1−hi with the system size. The correlation length
can be read from the shape of the correlation function

CL(r)=
〈fi+rfi〉−〈fi〉

2

〈fifi〉−〈fi〉
2

=
〈fi+rfi〉

〈fifi〉
(6)

where〈. . .〉 means a statistical average over the sites and con-
figurations2 It turns out thatCL(r) conforms to a scaling
function CL(r)'C(r/L), with C(. . .) independent onL, as

2The periodic boundary conditions imply〈fi〉=〈fi+r 〉=0.
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Fig. 6. Correlation functionCL(r) of the stressfi for L=256, 512,
1024, and 2048, plotted as a function of(a) r and(b) r/L.
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Fig. 7. Distribution of the jumps (distances between subsequent
activities) for the sameL’s of Fig. 4. Their power-law tails have an
exponent converging roughly to≈1 for largeL.

shown in Fig.6. Hence, if we define the correlation length
as the range whereCL(r)>0.1, we see (Fig.6) that it has a
value≈10%L that diverges linearly withL, as one expects
in critical systems. We will come back to this point in the
Discussion.

Another quantity of interest is the jump between the po-
sition of grain addition at timet and the subsequent posi-
tion of grain addition att+1. The jump distributions have
also power-law tails, with exponent converging to≈−1, see
Fig. 7. This distribution is thus similar to that of distances
between subsequent earthquakes (Davidsen and Paczuski,
2005; Corral, 2006). Also the crossover to a background
level for long jumps takes place at a length that is a fixed
fraction the size of the catalogue (Davidsen and Paczuski,
2005; Corral, 2006).
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3.1 Temporal correlations

During the last years part of the scientific debate on earth-
quake correlations has been focusing on the statistics of wait-
ing times between events, see (Baiesi and Maes, 2006) for
an overview. An issue was whether SOC models can have
avalanches correlated with each other. Some models have
waiting times between avalanches with an exponential distri-
bution, suggesting that their events are completely uncorre-
lated. Clearly this is an unwanted feature in models of earth-
quakes. RecentlyBak et al.(2002) andCorral (2003, 2004,
2005) have shown that waiting times have in general a non-
trivial scaling form in their distributions.

In Fig. 8 we plot some waiting time distributions that we
observe in our model, forL=2048 and for several minimum
thresholdss of the size. These distributions have a shape with
a double power-law form for high thresholds, as observed in
catalogs of regional seismicity byCorral (2003) and in an
aftershock-sequence model byLippiello et al.(2007).

In Fig. 9 there is an attempt to collapse some of these dis-
tributions on a single curve, by rescaling the waiting times
to scales in which their average value is 1, that is, by multi-
plying their values by the rate of events larger than the cor-
responding minimum thresholds. This procedure revealed an
interesting scaling form for real earthquakes (Corral, 2003,
2004, 2005) (and also for solar flares, seeBaiesi et al., 2006):
in that case one observes a nice data collapse, with distribu-
tions being described by a single scaling function. The data
collapse for this model is only approximate. We can con-
clude that the power-law tails in the distributions are a clear
indication of a non-trivial organization and clustering in time
of the avalanches, with some missing scale-invariance evi-
denced by the thresholding procedure.

It is also not trivial to observe aftershocks in simple mod-
els of seismicity. Indeed, one does not always observe Omori
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Fig. 9. Rescaled distribution of waiting times.〈tw〉 is the mean
waiting time between events (it depends on the thresholds).

decay of aftershocks in synthetic catalogs. However, this
is a salient feature of seismicity, characterizing the occur-
rence of correlated events even for years (Utsu et al., 1995;
Shcherbakov et al., 2004; Baiesi and Paczuski, 2004, 2005;
Zaliapin et al., 2008). Our model does not yield time se-
ries with patterns clearly identifiable with aftershocks se-
quences, intended in the usual seismological sense. Nev-
ertheless, an Omori-like decay can be detected, confirming
the temporal clustering evidenced by waiting time statistics.
To visualize the Omori decay, we use a simple definition of
aftershocks, leaving more complicated spatio-temporal anal-
ysis (Shcherbakov et al., 2004; Baiesi and Paczuski, 2004,
2005; Baiesi, 2006; Zaliapin et al., 2008) for future works.
Let us consider events with sizesM as main shocks (to im-
prove the statistics, we actually consider events in a range
[0.9sM , 1.1sM

]). Each of these events collects aftershocks
in a time-window following its occurrence timetM and in-
cluding only events of smaller size. This time windowt−tM

thus ends if a new event of size at least 0.9sM occurs. The
averaged statistics of the rater(t−tM) of avalanches after an
main event of sizesM is shown in Fig.10 as a function of
the time lagt−tM from the main shock, for several values of
sM .

One can see that the aftershock decays depend onsM and
follow a generalized Omori decay

r(t) ∼
A

[1+(t−tM)/t∗]p
(7)

where A is a constant,t∗ is a characteristic time, andp
is the exponent of the generalized decay (usually one ob-
servesp≈1). As in real seismicity (Baiesi and Paczuski,
2004, 2005), the onset of the power-law decay takes place
at times t∗ that increase with the size of the main event.
The same is true for the end of the Omori decay: data in
Fig. 10have an exponential decay after the Omori regime, as
it was found for aftershocks (Baiesi and Paczuski, 2005). The
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exponentp takes values ranging from≈1.3 for sM
=300, to

≈0.5 for sM
=10 000. Its variability somewhat reflects the

same lack of invariance for increasing thresholds manifested
by waiting-time distributions.

4 Discussion

Some previous SOC models with realistic phenomenology
are based on the mechanism of extremal dynamics (Olami
et al., 1992; Hainzl et al., 1999, 2000; Hergarten and Neuge-
bauer, 2002; Zöller et al., 2005; Lippiello et al., 2005), in
which an earthquake starts always from the weakest unit. Our
stochastic model shows a more general mechanisms giving
rise to correlated events within SOC, which involves activity
suitably clustered in space and time, together with scale-free
redistributions of energy in the form of avalanches. The ran-
dom aspect cannot be excessive3: a load completely random
in space has been for years the standard in several SOC cel-
lular automata, maybe because it is the simplest protocol. In
the field of seismicity this choice is not supported by phe-
nomenological observations, as we know that epicenters are
correlated and clustered. When a random load was imposed,
avalanches were found to be uncorrelated (Baiesi and Maes,
2006). We thus argue that a (correct) clustering in space of
events cannot be disentangled from the temporal clustering
of events, both aspects being part of the same global organi-
zation in critical systems.

Regardless of the lack of dissipation from open bound-
aries, our process reaches a stationary critical regime. The
reason is that its loading is not homogeneous and the evolu-
tion via avalanches generates the domains over which further

3In our model, the activity spreads randomly in space with lowβ

values. In this limit, domains shrink to exponentially short regions
and the system loses scale-free avalanches.

large avalanches can occur. In the periodic system we have
described, the minima of the accumulated slip profile are
places where eventually avalanches must stop. These min-
ima are not fixed but dynamic.

It is important to note that the dynamics of the accumu-
lated slip profile, with domains that evolve in time, has non-
trivial consequences. Each domain seems to represent what
is normally observed in canonical SOC systems with open
boundaries (Bak, 1996), the so called “sandpiles”, which
have a profile with a single slope, from the maximum at
a closed boundary to a minimum at an open (dissipating)
boundary. Eventually the whole process somewhat resem-
bles a collection of smaller homogeneous SOC systems,
whose number and position fluctuates in time. For each con-
figuration, the maximum correlation length should be close
to the length of the longest domain. Interestingly, this do-
main length is not always close to its possible maximum,
which means that the system is often in a state incompati-
ble with an earthquake spanning the whole fault. Moreover,
we have seen that the range of the average correlation length
is a fraction of the system size. On the one side, this says that
we have to reconsider the typical value of correlation ranges
upon change of scale of the whole system. Provided that we
can meaningfully isolate an area from the rest of the crust,
on the other hand, we can expect a finite mean correlation
length within it.

Hence, our model does not reproduce a popular picture
associated with SOC, invoking a continuous state of “maxi-
mal” criticality in the crust due to an eventual infinite correla-
tion length (Nature debate, 1999). According to this picture,
earthquakes are inherently unpredictable in size, space and
time because their cascade to large events depends on minor
details of the stress field. This point has been used, for exam-
ple, byGeller et al.(1997) to infer that earthquakes cannot be
predicted. The validity of their argument can be limited by
the lack of discussion about non-minor details. These major
details in our models are those that are macroscopically visi-
ble when looking at the profile of the slip fieldhi , namely the
different domains. Unfortunately patterns like these are not
accessible in real measurements. Bak pointed out (Nature
debate, 1999) that an earthquake does not “know how large
it will become”. This is not incompatible with our point that
an earthquake “knows how large it cannot become”. Perhaps
both aspects should be taken into account in studies on earth-
quake prediction (Keilis-Borok, 2002).

Therefore, according to our results, the following scenario
is possible: The process of self-organization in seismicity,
due to the slow load of the crust and its fast relaxation via
earthquakes, converges to a dynamical SOC regime, with rise
and fall of patterns of strongly correlated stress. These pat-
terns may be associated with (local) fluctuating correlation
lengths.

One could also have coexistence of SOC and other
mechanisms (Sammis and Sornette, 2002). A previous SOC
model with a heterogeneous fixed pattern of faults (Huang
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et al., 1998) has a behavior consistent with the hypothe-
sis that the approach to large earthquakes is described by
a critical-point picture (Jauḿe and Sykes, 1999; Sammis
and Sornette, 2002), with a finite-time singularity of Benioff
strain release and a divergence of a correlation length (Zöller
and Hainzl, 2002; Zaliapin et al., 2002). We have not in-
vestigated this point in our model yet, though it seems that
its dynamics does not break all the correlations after a large
earthquake. Indeed, a large slip along a domain lowers the
total energy stored in the system, and eventually shifts the
domain range of some units, but the domain itself should be
ready for similar earthquakes without too much effort. How-
ever, an eventual merging with other coherent domains might
lead to an increase of the correlation length in the area, with a
possible connection with previous studies (Jauḿe and Sykes,
1999; Sammis and Sornette, 2002; Zöller and Hainzl, 2002;
Zaliapin et al., 2002). In any case, the stationary regime
of our model appears to be different from that of intermit-
tent criticality (Ben-Zion et al., 2003; Bowman and Sammis,
2004), in which every large event drives the system far from
criticality, which is then slowly restored by the dynamics.

5 Conclusions

We have shown that it is possible to build stochastic pro-
cesses with self-organized criticality that reproduce several
power-laws found in earthquake statistics, like the GR law,
the generalized Omori laws, the waiting-time distributions,
and the distributions of distances between subsequent events.
The robust scale-invariant statistics generated by avalanches
is the leading principle of the study. We have stressed that
it is important that the process generates activity clustered in
space for eventually obtaining a clustering in time of events.
In our model, contrary to previous examples, the clustering
takes place even if the system is stochastic, showing that
a moderate degree of randomness can be tolerated in SOC
models with spatio-temporal correlation.

Our findings are contrary to a constant complete unpre-
dictability of event sizes, even if SOC is one of the main
mechanisms acting to generate the complexity of seismic-
ity. The point is that every SOC system can have a finite
size. We have described a system displaying domains that
resemble a fluctuating collection of canonical SOC cellular
automata. Interestingly, domains limit each other and their
boundaries constitute the points where avalanches eventually
must stop. The size of each domain quantifies locally the cor-
relation length, which is thus a quantity fluctuating in space
and time. As a result, the mean correlation length diverges
with the system size, as expected, but it occupies only a fi-
nite fraction of the system. We have been able to visualize
these features thanks to the simplicity of the one-dimensional
model.

The oversimplified process that we have discussed is in-
spired by the phenomenology of earthquakes and tries to en-

capsulate it, but clearly it is a geophysical model in an em-
bryonic stage. Hopefully the results and discussion we have
presented provide new ideas that will be useful for build-
ing models grounded on laws of geophysics and elasticity
of solids, which still preserve the ability to reproduce earth-
quakes phenomenology.

With models of this kind, for example, it would be inter-
esting to see if creeping sections of faults can play the role of
domain boundaries in the sense discussed in this paper.
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