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Abstract — Markov chain Monte Carlo (MCMC) methods have been proposed to overcome
computational problems in linkage and segregation analyses. This approach involves sampling
genotypes at the marker and trait loci. Scalar-Gibbs is easy to implement, and it is widely used
in genetics. However, the Markov chain that corresponds to scalar-Gibbs may not be irreducible
when the marker locus has more than two alleles, and even when the chain is irreducible, mixing
has been observed to be slow. These problems do not arise if the genotypes are sampled jointly
from the entire pedigree. This paper proposes a method to jointly sample genotypes. The method
combines the Elston-Stewart algorithm and iterative peeling, and is called the ESIP sampler.
For a hypothetical pedigree, genotype probabilities are estimated from samples obtained using
ESIP and also scalar-Gibbs. Approximate probabilities were also obtained by iterative peel-
ing. Comparisons of these with exact genotypic probabilities obtained by the Elston-Stewart
algorithm showed that ESIP and iterative peeling yielded genotypic probabilities that were very
close to the exact values. Nevertheless, estimated probabilities from scalar-Gibbs with a chain
of length 235000, including a burn-in of 200000 steps, were less accurate than probabilities
estimated using ESIP with a chain of length 10000, with a burn-in of 5 000 steps. The effective
chain size (ECS) was estimated from the last 25000 elements of the chain of length 125 000.
For one of the ESIP samplers, the ECS ranged from 21 579 to 22 741, while for the scalar-Gibbs
sampler, the ECS ranged from 64 to 671. Genotype probabilities were also estimated for a large
real pedigree consisting of 3 223 individuals. For this pedigree, it is not feasible to obtain exact
genotype probabilities by the Elston-Stewart algorithm. ESIP and iterative peeling yielded very
similar results. However, results from scalar-Gibbs were less accurate.
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1. INTRODUCTION

Probability functions such as likelihood functions and genotype probabilities
play an important role in the analysis of genetic data. For example, likelihoods
given genotypic and phenotypic data are needed in segregation and linkage
analyses. In genetic evaluations, conditional genotype probabilities are used to
compute conditional means of genotypic values. These conditional means are
then used to rank individuals for selection. Conditional genotype probabilities
are also used in genetic counseling. For example, in the case of recessive
disease traits it is important to know which individuals in a population are
probable carriers of a deleterious allele.

When inheritance is monogenic and the pedigree has no loops, the likelihood
can be computed efficiently using the Elston-Stewart algorithm [3], which is
also called “peeling.” For small pedigrees (about 100 members) with loops,
extensions of the Elston-Stewart algorithm have been developed for evaluating
the likelihood [2,24,25,28,29]. These methods were developed in human
genetics. In livestock, pedigrees are usually much larger and contain many
more loops. Thus, the application of computer-intensive methods developed
for humans will often be difficult or inappropriate in livestock data.

Van Arendonk et al. [36] presented an iterative algorithm to calculate gen-
otype probabilities for all members in an animal pedigree. Some limitations
in their algorithm were removed by Janss et al. [21]. Their method can be
used to approximate the likelihood for large and complex pedigrees with loops.
Stricker et al. [27] also proposed a method to approximate the likelihood in
pedigrees with loops. This method is based on an algorithm that cuts the loops.
In 1996, Wang et al. proposed a new approximation to the likelihood of a
pedigree with loops by cutting all loops and extending the pedigree at the cuts.
This method makes use of iterative peeling. They showed that the likelihood
computed by iterative peeling is equivalent to the likelihood computed from a
cut and extended pedigree.

It is not straightforward to calculate the exact pedigree likelihood under
mixed inheritance [1,7,13,14]. The reason is that phenotypic values of pedigree
members cannot be assumed to be conditionally independent, given only the
major genotypes of the pedigree members, because the phenotypic value is
also influenced by the polygenic loci. Alternative models have been adopted
to overcome this problem [1,7]. Bonney [1] proposed a regressive model
where conditional covariances between relatives, given the major genotypes,
are modeled directly through the phenotypes. Thus, this model is not suitable
for pedigrees with a large proportion of missing phenotypic values. Fernando
et al. [7] presented a finite polygenic mixed model that has the advantage that
its likelihood can be calculated using efficient algorithms developed for oli-
gogenic models. A disadvantage of this approach is that it cannot accommodate
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nongenetic covariances among relatives. Hasstedt [13,14] has used approx-
imations for computing the likelihood. The approximation proposed in 1991
accommodates a completely general structure for the nongenetic residual cov-
ariances. But under this approach, the phenotypic covariance matrix must
be inverted to compute the likelihood. This makes the approximation very
inefficient for large pedigrees. Furthermore, the accuracy of the method cannot
be determined when it is implemented in large pedigrees.

Markov chain Monte Carlo (MCMC) methods have been proposed to over-
come these problems. These MCMC methods can be used to obtain estimates
to any desired level of accuracy. As Thomas and Cortessis [30] observed, the
genotypes in a pedigree are sampled according to a Markovian process, because
a neighborhood system can be defined on a pedigree such that the genotype of
an individual, conditional on the neighbors (or relatives), is independent of the
remaining pedigree members. This local dependency makes MCMC methods,
such as the Gibbs sampler, very easy to implement and provides a strategy
to sample genotypes from the joint posterior distribution of genotypes [26].
The samples are used either in maximum likelihood [12,31,32] or Bayesian
methods [17-20,30,35] for segregation or linkage analysis.

When using the Gibbs sampler, however, mixing can be very slow due to
the “vertical dependence” between genotypes of parents and progeny [20].
The larger the progeny groups, the stronger the dependence, and thus the
Gibbs chains do not move. Poor mixing has also been encountered due to the
“horizontal dependence” between genotypes at tightly linked loci [34]. When
this happens it is said that the chains are reducible “in practice.”

The problem of poor mixing due to vertical dependence can be reduced by
jointly sampling blocks of genotypes at a single locus [20,23]. In this approach,
the blocks are typically formed by subfamilies in the pedigree. The efficiency
of blocking depends on the pedigree structure and the way those blocks are
built. Further, the scalar-Gibbs chains may not be irreducible when sampling
genotypes at marker loci with more than two alleles [26,30]. By blocking
Gibbs, this problem is expected to be reduced, but is not guaranteed to be
eliminated [22]. The problem of poor mixing due to horizontal dependence
can be reduced by sampling blocks of the tightly linked genotypes jointly within
an individual [33,34]. However, with extended pedigrees poor mixing may still
be a problem, and further, this sampler is not guaranteed to be irreducible when
sampling genotypes at multi-allelic loci.

It has been proposed to extend the idea of blocking Gibbs to sample gen-
otypes jointly at a single locus from the entire pedigree in such a way that
irreducibility is guaranteed [S]. The proposed sampler is based on the Elston-
Stewart algorithm and iterative peeling, and so it will be referred to as the ESIP
sampler. To study the mixing performance of the ESIP sampler at a single locus,
it was first applied to the relatively simple problem of sampling genotypes at a
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biallelic disease locus. This paper documents the results from this study. The
mixing performance of ESIP for sampling genotypes at tightly linked loci has
not been examined yet. Given the positive results that were obtained in this
study, the performance of the sampler is currently being evaluated for sampling
missing genotypes at a marker locus with more than two alleles. A manuscript
with a detailed proof of the irreducibility of the sampler and results from the
second study is under preparation.

In brief, genotypes are jointly sampled as follows. When there are no loops
or when the pedigree contains only “simple” loops, we first peel the entire
pedigree using the Elston-Stewart algorithm (exact peeling). Then, genotypes
are sampled by “reverse peeling” [16,20,23]. When the loops are complex and
exact peeling cannot be undertaken efficiently, we obtain a joint sample from a
pedigree that is modified to make peeling efficient. This sample is used in the
Metropolis-Hastings algorithm to obtain draws from the unmodified pedigree.
The modification that we use involves cutting some of the loops as in Stricker
etal. and extending the pedigree at the cuts as in Wang et al. [37]. The “cutting”
and “extension” of the pedigree is not done explicitly but is done instead by
“iterative peeling.”

On the one hand, although exact peeling of pedigrees with loops is not
new in human genetics, it is relatively new in livestock applications. On
the other hand, iterative peeling was introduced in livestock applications to
obtain approximate probabilities for complex pedigrees. In this paper, these
two approaches are combined for sampling genotypes in complex pedigrees.
Therefore, for completeness, in Section 2, we explain how genotypes can be
sampled efficiently by exact peeling for a pedigree with simple loops. In
Section 3, we explain how genotypes can be sampled efficiently by iterative
peeling for a pedigree with complex loops. In Section 4, we describe how exact
and iterative peeling can be combined to improve the efficiency of the sampler.

Finally, in Section 5, the ESIP sampler is evaluated by computing genotype
probabilities for a monogenic trait in a small hypothetical pedigree and in
a large real pedigree. This section also includes the evaluation of iterative
peeling.

2. EXACT PEELING TO SAMPLE GENOTYPES

Consider the pedigree shown in Figure 1. We introduce some notation, and
show how exact peeling can be used to sample genotypes in this pedigree. Let
g be the vector of genotypes and y be the vector of phenotypes in this pedigree.

To obtain a random sample from f(g|y), we can use a rejection sampler [9]
based on f(g|y), but this may be very inefficient.

Instead, we sample individuals sequentially as described below. To obtain
a sample from f(g1, g2, €3, &4, &5, &6, &7]y) in Figure 1, we first sample the
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Figure 1. Simple two-generational pedigree with loop.

genotype for individual 1 from f(g,]y). Next we sample g, from f(g2/g1,Y), &3

from f(g3|g1, &2, y), and so on. To compute f(g;|y) we use peeling [2,3]. The

first step in computing f(g;|y) is to compute the likelihood of the pedigree.
The likelihood for the pedigree in Figure 1 can be written as

L x Z Z E Zh(gl)h(gZ)h(gl’ 82, 83)h(g1, g2, 84)h(g3, 84, &5)

81 & 87

x h(g3, 84, 86)h(g3, g4, 87) (1)

where h(g;)) = P(g)f(yjlg), f(yjlg)) is the probability that an individual
with genotype g; has phenotype y; (penetrance function), P(g;) is the mar-
ginal probability that an individual has genotype g; (founder probability),
h(gm, &, &) = P(gjlgm, &)f (yjlgj), gm and g are the genotypes for the mother
and father of individual j, and P(g;|g., &) is the probability that an individual
has genotype g; given parental genotypes g,, and gy (transition probability).

Suppose each g; can take on one of three values (AA, Aa, and aa). Then L as
given in (1) is the sum of 37 terms, and the number of computations is exponen-
tial in the number of individuals in the expression. Thus, directly computing
the likelihood as given in (1) is feasible only for small pedigrees. The Elston-
Stewart algorithm [3], however, provides an efficient method to compute (1)
for pedigrees without loops, and generalizations of this algorithm [2,24,25]
provide strategies to compute the likelihood efficiently for general pedigrees
with simple loops.

Consider the summation over g7;. In (1) this summation is done for all
combinations of values of g1, g2, g3, 84, &5, and g¢. However, the only function
involving g7, is h(gs, g4, g7), which depends only on two other individual
genotypes (g3 and g4). In the Elston-Stewart algorithm the summation over g7
is done only for all combinations of values of g3 and g4. The results from this
summation are stored in a two-dimensional table, c¢7(g3, g4), called a cutset:

c7(23,84) = Y _ (g3, 84, 87).

87
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After summing out g7 and reordering equation (1), the likelihood is written as

Loc) > h(g)h(g) Y h(gi, 82.83) Y (g1, 82, 84)c7(23, 84)

81 & 83 84
X D h(gs, 84.85) Y h(gs. 84 86). ()
85 86

Now, we can sum out g¢. The only function involving g in (2) is h(g3, g4, g6),
which also depends on the genotypes of individuals 3 and 4. Thus, the
summation is done for all combinations of values of g5 and g4 and the results
are stored in ce(g3, g4):

Co(23,84) = ) _ (g3, 84, g6).

86

This process is continued until all individuals have been summed out. Comput-
ing L sequentially as described above is referred to as peeling. In the first step,
g7 was peeled, and a simpler expression was obtained that did not involve g5.
Similarly, after peeling g¢, L becomes free of gs. To compute L efficiently, the
order of peeling is critical. For example, consider peeling g, as the first step,
so the likelihood can be written as

Loc) Y o> h(g2)h(gs, g4, 85)h(g3, 84 86)h(g3, 84, 81)C1(82, 83, 84)

8 83 87

where
c1(82, 83 84) = Y h(g)h(g1, g2, 83)h(g1, 82, 84).

81

The result, ¢, (g2, g3, g4), from peeling g; is a cutset of size 3, and its computa-
tion involves summing over g; for all genotype combinations of g,, g3, and g4.
Computing c7(g3, g4) has lower storage and computational requirements than
computing c;(g», g3, g4). The storage and computational requirements would
be similar for peeling g5 and g¢ in the first step. Peeling g3 or g4 in the first
step would be even more costly, in terms of computational requirements, than
peeling g; or g, first.

Thus, to evaluate the likelihood for this pedigree we first need to determine
the peeling order. Following [24], the peeling order is determined by the
algorithm described below.

1. List all the individuals in the pedigree that need to be peeled.
2. For each individual determine the size of the resulting cutset after peeling
that individual.
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3. Peel the individual with the smallest cutset.
4. Repeat steps 2 and 3 until all individuals are peeled.

In this case, an efficient peeling order is: 7, 6, 5,4, 3,2, and 1.

Determining an optimal peeling order is related to the problem of solving
systems of symmetric sparse linear equations [4]. When Gaussian elimination
is used to solve such equations, some coefficients that were initially zero
become nonzero, i.e., get “filled in”. The number of coefficients that get filled in
depends on the order of elimination. Much research has been conducted in this
area, and sophisticated algorithms have been developed to determine the order
to minimize the number of coefficients that get filled in at each step. It can be
shown that determining an optimal peeling order is equivalent to determining
an optimal order of elimination in sparse system of linear equations. Thus
algorithms that have been developed to determine the order of elimination in
sparse linear systems can also be used to determine peeling order [4]. Once
we establish a peeling order, we can represent the operations involved in the
peeling process as shown in Table I. The first column in this table gives the
peeling sequence. The subsequent columns give the factors in the likelihood
at different stages of peeling.

Before peeling any individuals, the seven factors in the likelihood (1) are
represented in the second column of Table I. For example, (3, 4, 7) in the first
row represents the factor i(gs, g4, g7) in equation (1), and (2) in the 6th row of
Table I represents 4(g,) in equation (1). In this table, cutsets are represented
as {.,.}.

After peeling 7, a cutset involving genotypes of individuals 3 and 4 is
generated, c7(g3, g4), and it is represented as {3,4} in the third column of
Table I. Any cutset that results from peeling an individual becomes a factor in
the row of the first individual in the cutset to be peeled. Thus, in this example,
cutset {3,4} becomes a factor in the row of individual 4, since 4 is peeled
before 3.

Next, when we peel 6, the cutset ce(g3, g4) is generated, and it becomes
a new factor in the row of individual 4. Thus, it is represented in the fourth
column of Table I as a second set {3,4}.

When we peel 5, c5(g3, g4) is generated, and it is represented as {3,4} in the
row of individual 4 (fifth column of Table I). Next, we peel 4, and c4(g1, g2, g3)
is generated. This cutset becomes a factor in the row of individual 3 (sixth
column of Table I). Next, we peel 3, and c3(g;, g2) becomes a factor in the
row of individual 2 (seventh column of Table I). When we peel 2, c2(g;) is
generated, and it is represented as {1} in the row corresponding to individual
1 in the last column of Table I.

Peeling 1 results in the likelihood (L). Now, we sample genotypes in the
reverse order in which they were peeled (reverse peeling; Heath [16]). In this
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example, after peeling individual 1 we compute the marginal probability for 1 as

h
Flaly) = (gl)zz(gl)_

Note that to compute /(g ]y) we are using the factors represented in the last row
and column of Table I, i.e., the numerator of this equation is the product of the
factors in the 7th row of Table I. Once f(g;|y) has been obtained, we sample
g1 using the inverse cumulative probability function. Next, we compute

h(g2)c3(g1, &2)
Yo, h(g2)ea(gr, g2)

and then we sample g, from f(g2|g1,y). Again, the factors involved in the
computation of f(g2|g1,y) are represented in the 6th row of Table 1. Thus, the
factors needed to sample g; are those used in peeling .

By applying this sampling procedure, we eventually generate a sample from
the joint distribution of all genotypes for the entire pedigree. The sampling
sequence in this case is:
sample g from f(g1y),
sample g» from f(g2[y, g1),
sample g3 from f(g3y, g1, 82),
sample g4 from f(galy, g1, g2, 83)»
sample gs from f(gs|y, g1, g2, 83, §4)»
sample g¢ from f(gely, g1, 82, 83+ 84> &5)>

sample g7 from f(g71y, 81, 82, 83 84 &5 86)-
In pedigrees with complex loops, peeling methods as described above are not

feasible. The reason is that the cutsets generated after peeling some individuals
become too large when there are complex loops in the pedigree.

f(glgy) =

3.ITERATIVE PEELING TO SAMPLE GENOTYPES

Exact peeling methods cannot be applied when pedigrees are large and have
complex loops. Iterative peeling [6,21,36,37], however can be used to get
approximate results. To describe iterative peeling we use a small pedigree with
a simple loop, which is presented as a directed graph (Fig. 2(a)).

Before peeling, the graph contains individual nodes and mating nodes.
Each individual node is indicated by the individual identification number;
they correspond to the penetrance functions, and in the case of founders, also
include the founder probability function. Each mating node is indicated by an
oval, which corresponds to the transition probability function. The edges in
the graph connect the mating nodes with the parents and with the offspring.

Before proceeding with iterative peeling we modify the graph by merging
mating nodes into nuclear-family nodes. The resulting graph with the merged
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Figure 2. Graph representation of a two-generational pedigree with loops.

mating nodes is shown in Figure 2(b). Here, the nuclear-family nodes are
represented by rectangles. There are eight edges: S11, S21, S31, S32, Sa1, Saz,
S50, and S in this graph. The first subindex of § indicates the individual
number, and the second subindex indicates the nuclear-family node number;
for example S3; is the edge that connects individual 3 with nuclear-family
node 1.

The edge between a parent and a nuclear-family has been called a “posterior”
probability, and the edge between an offspring and a nuclear-family has been
called an “anterior” probability [6,37]. In the next section, iterative peeling
will be combined with exact peeling of pedigrees with loops. Then, there will
be edges between individuals and cutsets. In this section, iterative peeling is
reformulated such that, in the next section, it can be extended to accommodate
edges between individuals and cutsets. We use this small example to explain
iterative peeling and present general expressions for the algorithm later.

Suppose we want to sample the genotype for individual 1 from f(g]y). We
first obtain an estimate for the edge probability S1;, connecting individual 1 to
the rest of the pedigree through nuclear family 1. Once S;; is computed, the
genotype probabilities are computed as

JOlgDP@)S
2o S1lgNPENSH

Below we describe how to iteratively compute Sy;.
We first initialize all the edge probabilities. In general, all edge probabilities
are initialized to 1. For this example, however, it is convenient to set Sy

fgily) =

3)
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Figure 3. Nuclear families.

4

equal to the founder genotype probabilities. Once the edges are initialized,
we iteratively update edge probabilities using the phenotypes and the current
values of the appropriate edges (explained below) of all the individuals in the
corresponding nuclear family. Thus, we update Sy, as

Su =
XD £ (0ale)P(82)f (y3183)P(gslg1, g2)f (4lg4)P(galg1, 82)S52Sua-

82 83 84

At this stage, S;; is the conditional probability f(y,, v3, y4|g1). The value
of f(y2,y3,v4lg1) is the conditional probability of the phenotypic values of
individuals 2, 3 and 4 given the genotypic value of 1 in the pedigree shown in
Figure 3(a). Note that the edges that contributed to updating S, are those that
connect the members of nuclear family 1 to other nuclear families.

Similarly, S,; is updated as

So1 =
Z Z Zf(yl 181)P(g1)f (y3183)P (83181, 82)f (y4|84)P(84l81, 82)S32542.

g1 8 &
and is the conditional probability f(yi, 3, y4|g2). Next, we update S3; as

=YYy

81 82 84

X f(y1180) P (¥2182)P(g2)P (83181, 82)f (4lg4) P (4181, 82)Sa2

which is the joint probability f(y1, ¥2, y4, g3). Next, we update S3; as,
Sz = P , P , S
=YY > f(slgs)P(gs|gs, ga)f (yslge)P(gelgs, ga)f (yalga) Su

84 85 86 P(g4)
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Figure 4. Cut and extended graphs.

which is the conditional probability f( y4, ys, ys|g3) in the pedigree shown in
Figure 3(b). Note that in these three cases, initial values of edge probabilities
were used.

Next, we update S4; as

=YYy

g1 & 8
X f(y118)P(g)f (y2182)P(82)f (¥3183)P (83181, 82)P (84181, 82)  Sn
F(y4.y5.Y6183)
In this case, the edge probability S3, was already updated once. Thus, the value
of S41 = f(y1, 2, ¥3, Y4+, ¥s, Vs, &4) 18 the joint probability of the genotype of
individual 4 and of all the phenotypic values connected to 4 through nuclear

family 1 in the cut-extended pedigree shown in Figure 4(a).
Next, we update Sy, as

E E Ef(yslgs)P(gslgs,g4)f(y6|g6)P(g6|g3,g4)f(y3|g3) S31
——

& & & F(y1.y2.4.83)

Again, in this case we use an edge probability that was already updated, and thus
Su =f(y1, Y2, Y3, Y4, Vs, Y6|84), which is the conditional probability of all the
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phenotypic values connected to 4 through nuclear family 2 in the cut-extended
pedigree shown in Figure 4(b), given the genotype of individual 4.

Each subsequent iteration results in further extensions to a cut pedigree.
After a sufficient number of iterations we sample genotypes as follows from
the iteratively peeled pedigree. First we sample the genotype of individual 1
from f(g1]y), which is computed using S1; as described above. Next, to sample
the genotype of 2, we update S,; to reflect the sampled value for the genotype
of 1 as

S =Y > F(nlg)P@)f (y31g3)P(gsg1, 82)f (124 P(galg1, 2)S3Sa

83 &4

where g; is the sampled value for the genotype of 1. Using this updated value
for S»1, f(g2ly, g1) is computed as

f(gly, g1) = J(¥2182)P(g2)S21
BT S F(nlg)P(g)Sn

and g, is sampled. This process is continued until all individuals are sampled.

We now provide the general expressions for updating edge probabilities in
iterative peeling and an algorithm for sampling genotypes. The edges between
individuals and a nuclear family are updated taking advantage of the conditional
independence of the offspring given their parents. The summations are done
for all the individuals in the nuclear family except individual j. If individual j
is a parent, the factors included in the summation are: the penetrance functions
of all offspring and the spouse of individual j, the transition probabilities of
all offspring of individual j, the founder probability of the spouse of j (if the
spouse of individual j is a founder), and all the edges connecting all offspring
and the spouse of j with other nodes. If individual j is an offspring, the factors
included in the summation are: the penetrance function of all the siblings and
parents of individual j, the founder probabilities of the parents (if the parents are
founders), the transition probabilities of all the offspring in the nuclear family
(but the summation is not done for individual j), and the edges connecting all
the siblings and parents of j with other nodes.

Let Sj; be an edge between individual j and nuclear-family node s. If j is a
parent in the nuclear family, S, is computed iteratively as

Sjs = ZRA\'p 1_[ |:Z Pr(gklgj’ gp)kaj| )

8p keCs 8k
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where p is the other parent in the nuclear family, and C; is the set of children
in nuclear family s,

Ry = f(vilgnP(g) ( ]‘[S,e> 5)
eck;
e#s

for | = k or p, E, is the set of edges for individual /, f(y;|g;) is the penetrance
function, P(g;) is the founder probability if / is a founder, and P(g;) = 1 if [ is
not a founder. If j is a child in the nuclear family, Sj, is computed iteratively as

Siv = Pr(gjlgm &) Y RmRy [ | [Z Pr(gilgm, gf)Rsk] ©)

8m-8f kkifv 8k
J

where m and f are the parents in the nuclear-family node. These definitions
of edge probabilities are equivalent to the definitions of anterior and posterior
probabilities used in Fernando et al., 1993 [6]. For a pedigree without loops,
these formulas converge to the exact probabilities.

All edge probabilities are iteratively updated using (4) and (6). After a
sufficient number of iterations, we sample genotypes for all individuals in the
pedigree. We start from an arbitrary individual and sample its genotype using
the marginal probability function

(il Pg) I, Sis
2o S (3ilgNP ) [ 1 Sis

fglyy) = (7

where the product of S, is over all edges for j. Then we sample a neighbor
conditional on the sampled genotypes as follows. A neighbor is defined as
any individual who is also a member of any nuclear-family node to which the
sampled individual belongs. First, all edges of the individual to be sampled
are updated to reflect the already sampled genotypes. To update edges, we
use (4) and (6), but the summations are only over the unsampled genotypes.
Now to sample the genotype conditional on the already sampled genotypes we
use (7) with the edges that were updated for the sampled genotypes. After all
genotypes are sampled, the Metropolis-Hastings step is used to accept or reject
those sampled genotypes.

The Metropolis-Hastings acceptance probability [11] is

» = min <1’ 7(8e)q(gprev|8ge) > ®
T(gprev)q(8c|&prev)
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where 7 is the target distribution, ¢ is the proposal distribution, gy, is the
accepted draw from the previous round, and g, is the sampled candidate from
the present round. The candidate sample g. is accepted with probability n. We
consider the special case of independence sampling: instead of g(gc|gprev) and
q(prev|gc), We use q(gprev) and g(gc). Thus

n = min (1’ JT(gc)CI(gprev)) . (9)
7T(8prev)q(&e)

The independence sampler can be used here because the proposal distribution
is very close to the target, and thus the sampler can move far away from the
neighborhood of the previous sample without increasing the rejection rate. We
use the following expression to obtain 7(.) on the true pedigree,

m(g o [ [hg) [ eilg em) (10)

J=1 J=ni+1

where gy, g,,; are the genotypes of the parents of individual j, and n; is the
number of founders. In this example, 7(g) is

m(g) o h(g1)h(g2)h(g1, &2, g3)h(g1, &2, 84)N (g3, g4, &5)N (g3, 84 &6)-

To compute g(.) we multiply the probabilities that were used in the sampling
process described above. For example, for this pedigree g(g) is

q(g) = f(g1ly)f (g21y, &1) - - - f (86181, 825 &35 845 &5, Y)-

4. COMBINING EXACT AND ITERATIVE PEELING
TO IMPROVE EFFICIENCY OF THE SAMPLER

When exact peeling is used to sample genotypes, the samples are independent
and are drawn from the joint posterior distribution. Thus, there is no need to use
the Metropolis-Hastings algorithm. On the other hand, when iterative peeling
is used, the samples are not obtained from the joint posterior distribution,
and the Metropolis-Hastings algorithm has to be used to accept the proposal.
Although the candidate draws obtained by iterative peeling are independent,
the Metropolis-Hastings algorithm causes the samples to be dependent when
candidates are rejected. The resulting loss in efficiency may be minimized by
combining exact and iterative peeling [37]. Exact peeling is used as long as the
cutset size is not too large for efficient computations. Then, iterative peeling is
used on the remaining part of the pedigree as described below.

To illustrate how exact peeling is combined with iterative peeling, consider
the small pedigree shown in Figure 2. We peel individual 5 exactly and apply
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Figure 5. Two-generational pedigree after peeling out individual 5.

iterative peeling to the remaining part of the pedigree. Peeling individual five
results in a cutset c5(g3, g4, g¢) of size three. This cutset is represented by a
square in Figure 5.

After exact peeling has been used, the graph contains three types of nodes:
individual, nuclear-family, and cutset nodes. Further, it contains two types
of edges: edges between individuals and nuclear-family nodes and between
individuals and cutset nodes.

In iterative peeling, both types of edges need to be updated. The edges
between individuals and nuclear-family nodes are updated as described in
Section 3. The edges between individuals and cutset nodes are updated as

Sis = ¢(8sr--280) [ [Ru (a1

lecy

I#j
where the summation is over the genotypes gy, to g, of the individuals included
in cutset c;, except for the genotype of individual j, and sy, ..., s, are the
individuals in cutset c;.

After a sufficient number of iterations, we sample genotypes for all
“unpeeled” individuals in the pedigree as described in Section 3. Note that
in addition to updating the nuclear-family nodes, cutset nodes also need to be
updated. To update cutset nodes, (11) is used, but the summation is only over
the unsampled genotypes. However, a neighbor of individual j is now defined
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as any individual who is also a member of any node to which individual j
belongs. Once genotypes for all “unpeeled” individuals are sampled, we
sample genotypes of the “peeled” individuals in the inverse order of peeling
as in Section 2. For example, in Figure 5, iterative peeling is used to sample
genotypes of the individuals that were not peeled out exactly (individuals 1, 2,
3,4, and 6). Once these individuals are sampled, the genotype for 5 is sampled
from f(gs|y, g3, g4, &6), Which is computed as

f(yslgs)es(g3, ga, 86)
f(gsly, 83, 84, 86) = .
> oS (¥5lgs)es (g3, gas &6)

5. EVALUATION OF THE SAMPLER

One possible approach to computing genotype probabilities is exact peeling.
But this approach is extremely inefficient in large pedigrees because peeling
must be done for every genotype and for every individual. Furthermore, if
the pedigree has large and complex loops, exact peeling cannot be performed.
Iterative peeling can be used to approximate the calculations in large pedigrees
with complex loops [6,21,36,37]. Thus, approximate probabilities computed
by iterative peeling were used to compare with the estimates obtained from
different versions of the ESIP sampler. In one of these samplers, exact peeling is
applied to the entire pedigree, and samples are obtained directly from the target
distribution by reverse peeling. This version is called the Direct sampler. Note
that, contrary to exact peeling, the Direct sampler is very efficient because the
entire pedigree is peeled only once, and then genotypes are sampled. However,
the Direct sampler cannot be used with complex pedigrees, as the cutset sizes
become too large for efficient computation. Let m be the size of the largest
cutset when exact peeling is applied to the entire pedigree. When m is too large
for exact peeling of the entire pedigree, exact peeling is applied until the cutset
size is k (k < m), and then iterative peeling is applied to the remainder. This
is called the ESIP-k sampler. Note that ESIP-m is the Direct sampler. For the
ESIP samplers and iterative peeling we used five iterations to update edges.
Results from the scalar-Gibbs sampler were also obtained for comparison.

After convergence is reached, the different versions of ESIP yield samples
from the target distribution. However, the Direct sampler does not require
a burn-in period, and its samples are independent; thus the effective chain
size [10] is equal to the actual sample size. For ESIP-k samplers, as k
approaches m, the required burn-in period approaches zero, and the effective
chain size approaches the actual chain size. The ESIP-2 sampler is expected to
require the longest burn-in period and have the smallest effective chain size.
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Table II. Ranges, means, and standard deviations (S.D.) of the absolute differences
between genotype probabilities obtained by the PAP program and iterative peeling.

Range Mean S.D.

P(AA) 0t032x1072 1.0x1072 6.7x1073
P(Aa) 0to5.1x1072  23x1072 1.7x1073
P(aa) 0to4.2x1072  14x1072 1.3x1073

5.1. Assessing performance of algorithm using a hypothetical pedigree

To assess the performance of the algorithm, we considered inheritance at
a single biallelic disease locus in a hypothetical pedigree with loops. The
pedigree is shown in Figure 6. This pedigree consists of two affected and
75 unaffected individuals from four generations. Further, each nuclear family
has five or more offspring. The assumed gene frequencies were 0.75 for the
good allele A and 0.25 for the bad allele a. Genotypes were sampled for the
75 individuals with missing genotypes using the ESIP-2, ESIP-3, and ESIP-
4 = Direct samplers. Genotype probabilities were estimated from the samples.
Genotype probabilities were also estimated using the scalar-Gibbs sampler.

In this small pedigree we can compute genotype probabilities by exact
peeling. These exact calculations were verified with the results from the
Package for Pedigree Analyses (PAP) [15]. The probabilities obtained by
PAP are considered as the true results. The absolute differences between
probabilities obtained by our algorithm using exact peeling and those from
PAP are at most 4.9 x 107>, These small differences are due to rounding
errors.

Approximate genotype probabilities were also computed by iterative peel-
ing [6,21,36,37] and are compared with PAP results (Tab. IT). For this pedigree,
iterative peeling seems to provide a fairly good approximation.

Results from PAP were also compared with estimates from the ESIP-2,
ESIP-3, ESIP-4 = Direct, and the scalar-Gibbs samplers (Tab. III). The length
of the chain was 10000 including a burn-in period of 5000 for the ESIP-2,
ESIP-3, and one of the scalar-Gibbs samplers. Thus the genotype probabilities
were estimated from the second half of the chain. The length of the chain for
the Direct sampler was 5 000 with no burn-in period.

Probabilities obtained from ESIP-2, ESIP-3, and Direct samplers are close
to those obtained by PAP. However, the differences between PAP and the ESIP
samplers are larger than 4.9 x 107>, This is because in addition to rounding
differences, probabilities estimated from samples contain sampling errors. The
differences due to sampling can be reduced by increasing the length of the
chain.
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Figure 6. Hypothetical pedigree of 77 individuals. Individuals 36 and 74 are affected.
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Table III. Ranges, means, and standard deviations (S.D.) of the absolute differences
between genotype probabilities obtained by the PAP program and the ESIP-2, ESIP-3,
ESIP-4, and scalar-Gibbs samplers.

Comparison Range Mean S.D.
PAP-ESIP-2 (D

P(AA) 0t02.0x1072 7.0x1073 52x1073
P(Aa) 0t02.9x1072 8.2x1073 6.9%1073
P(aa) 0to3.0x1072 7.0x1073 7.0x1073
PAP-ESIP-3 ()

P(AA) 0to2.0x1072 3.9%x1073 3.9%x1073
P(Aa) 0to 1.9x1072 5.6x1073 3.9x1073
P(aa) 0to 1.6x1072 5.6x1073 3.8x1073
PAP-ESIP-4 @

P(AA) 0to 1.3x1072 3.9x1073 3.2x1073
P(Aa) 0t02.3x1072 6.9%1073 4.9x1073
P(aa) 0to 1.7x1072 53%x1073 3.7x1073
PAP-Scalar-Gibbs V)

P(AA) 2.0x107* t0 0.385 0.1159753 0.0936219
P(Aa) 1.7x1073 t0 0.714 0.1225597 0.1259900
P(aa) 2.0x107* t0 0.801 0.1657766 0.1640349
PAP-Scalar-Gibbs @

P(AA) 0to7.9x1072 2.2%x1072 1.7x1072
P(Aa) 0to7.2x1072 2.0x1072 1.7x1072
P(aa) 0t0 0.1011140 2.2x1072 1.6x1072

(D' Chain length = 10000 including a burn-in period of 5 000.
@ Chain length = 5000 with no burn-in period.
3 Chain length =235 000 including a burn-in period of 200 000.

In contrast to the probabilities obtained from the ESIP samplers, those from a
scalar-Gibbs sampler of the same length are very different from the PAP results
(Tab. III). For the ESIP samplers, the mean difference with PAP probabilities is
5.5x 1073, and the largest difference is 2.5 x 10~2. For scalar-Gibbs, however,
the mean difference with PAP probabilities is 0.13, and the largest difference
is 0.8.

Genotype probabilities were also obtained using the scalar-Gibbs sampler
with longer chains. Even with a chain of 235000 including a burn-in period
of 200 000, the differences with PAP probabilities are larger than those for the
ESIP samplers (Tab. III).
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Table IV. Effective Chain Size for three versions of the ESIP and scalar-Gibbs
samplers.

Indiv. ESIP-2 ESIP-3 Direct Scalar-Gibbs

1 11380 22617 24507 129
2 11222 21579 24008 71
3 11522 21717 24678 64
4 11465 21891 24697 209
5 11796 21987 24067 117
6 11791 22354 24532 582
7 12150 22606 25233 227
8 13597 22716 24148 89
9 10524 22741 24819 385
10 11059 22683 23274 129
11 8313 22728 24 857 671

We also compare the performance of the ESIP sampler to scalar-Gibbs by
estimating the effective chain size (ECS) [10]. ECS is the size of a chain with
independent elements that has the same information content as the actual chain.

To estimate ECS, a chain length of 125000 was obtained for each sampler.
ECS was estimated for 11 individuals chosen at random using the last 25 000
elements of the chain, i.e., ECS was calculated using the elements of the chain
after burn-in. The results are shown in Table IV.

Here, we observe that there is a large difference in ECS for the ESIP samplers
and scalar-Gibbs; the ESIP samplers result in larger ECS values than the Gibbs
sampler. This shows that the Gibbs chain is more correlated. Among the three
versions of the ESIP sampler, the Direct sampler has the largest ECS values.
This is expected, because with the Direct sampler, elements in the chain are
independent. Thus, the ECS value for the Direct sampler should be equal to
the size of the chain used for estimation. The observed difference is due to
sampling. ECS values for the ESIP-3 sampler are lower than but quite close
to those for the Direct sampler. This indicates that the proposal distribution in
ESIP-3 is a good approximation of the target distribution. ECS values for the
ESIP-2 sampler are much lower than those for the Direct and ESIP-3 samplers.
This indicates that the proposal distribution in ESIP-2 is not as close to the
target distribution as it is in ESIP-3.

5.2. Application of the algorithm to a real pedigree

A pedigree that consists of 3223 dogs (Labrador Retrievers) from “The
Seeing Eye, Inc.” was used to test the algorithm. The trait of interest for this
pedigree is a disease called progressive retinal atrophy (PRA). This disease is
transmitted by arecessive allele, and the dog is affected when it has the recessive
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homozygous genotype. The gene frequencies reported by “The Seeing Eye,
Inc.” were 0.75 for the good allele A, and 0.25 for the bad allele a. Of the
3223 dogs in the pedigree, the eyes of 1 114 dogs have been tested either by
an electro-retinalgram (ERG) exam at 18 months of age or older, or by an
ophthalmic exam at five years of age or older. Among the 1114 tested dogs,
35 have the disease, and thus these 35 dogs are known to have the recessive
homozygous genotype. For the remaining 1079 dogs that were tested and
found not affected, the genotype could be homozygous dominant (noncarriers)
or heterozygous (carriers). The 2 109 dogs that were not tested could have any
of the three genotypes. Thus, it is of interest to estimate genotype probabilities
to identify dogs that have a high risk of transmitting the PRA gene to their
offspring, i.e., dogs that have a high probability of being either heterozygous
or homozygous recessive.

Exact peeling methods cannot be used for this pedigree because it has
782 loops, and the size of the largest cutset is 27 when the peeling order
was determined as described in Section 2. Thus, the ESIP-7 sampler with
a chain length of 125000 including burn-in period of 100000 is used as the
standard for comparisons. The results from this sampler are compared with
those from ESIP-2, ESIP-5, and from scalar-Gibbs samplers using the same
chain length and burn-in period as in the ESIP-7 sampler above. Further, to
examine the effect of chain length and burn-in period, genotype probabilities
were estimated using ESIP-7 with a chain length of 25 000 and with no burn-in
period (ESIP-7*). Finally, approximate probabilities were also obtained by
iterative peeling.

It is well known that the scalar-Gibbs sampler requires an initial genotypic
configuration that is consistent with the observed data. To obtain an initial
sample for a founder, the genotype was sampled conditional on its phenotype,
and for a nonfounder, the genotype was sampled conditional on its parent
genotypes and its phenotype. However, this often resulted in inconsistent
samples, because the parents are not sampled conditional on their offspring,
and thus some unaffected parents of affected offspring were not sampled as
carriers. Thus, the strategy to obtain an initial sample was modified by assigning
a heterozygous genotype to these parents.

When the chain length was 125 000, the rejection rates for ESIP-2, ESIP-5,
and ESIP-7 were 55.85%, 29.43%, and 22.84%, respectively. In ESIP-7 more
individuals are peeled out exactly, and therefore the proposal is closer to the
target distribution. This explains why the rejection rate is lower for the ESIP-7
sampler. The computing times, for a Pentium Pro 200, were 36 h 43 min,
42 h 13 min, and 55 h 40 min for ESIP-2, ESIP-5, and ESIP-7, respectively.
For each genotype, the range, mean, and standard deviation of the absolute
differences of genotype probabilities between ESIP-7 and ESIP-2, ESIP-5, and
iterative peeling are given in Table V.
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Table V. Ranges, means, and standard deviations (S.D.) of the absolute differences
between probabilities obtained by ESIP-7 and ESIP-2, ESIP-5, and iterative peeling.

Comparison Range Mean S.D.
ESIP-7 W_ESTP-2 (D

P(AA) 0t03.7x10~2 6.6x10-3 5.7x10°3
P(Aa) 0t03.7x1072 6.8x1073 5.8x1073
P(aa) 0t02.4x1072 1.3x1073 2.6x1073
ESIP-7 W_ESTP-5 (D

P(AA) 0t02.0x102 41%1073 3.5x1073
P(Aa) 0t02.2x1072 4.1x1073 3.5x1073
P(aa) 0to 1.4x1072 9.1x10™* 1.7x1073
ESIP-7 M Iterative peeling

P(AA) 0to7.9x1072 6.2x1073 9.5x1073
P(Aa) 0t08.0x102 5.8x1072 8.7x1073
P(aa) 0to4.7x1072 1.6x1073 3.9x1073
ESIP-7 (D_ESIP-7* ®

P(AA) 01t02.2x1072 40x1073 3.5%1073
P(Aa) 0t02.2x1072 4.1x1073 3.5x1073
P(aa) 0to 1.5x1072 8.9x10~* 1.6x1073
ESIP-7 (V—Scalar-Gibbs V)

P(AA) Oto1 0.2569 0.2218
P(Aa) Oto1 0.2061 0.1885
Plaa) Oto 1 0.0663 0.1072

(D' Chain length = 125 000 including a burn-in period of 100 000.
2 Chain length = 25 000 with no burn-in period.

The largest absolute difference in Table V between the ESIP samplers is
3.7x 1072, thusitis clear that the three ESIP samplers gave similar probabilities.
It is more efficient time-wise to use the ESIP-2 sampler, but the rejection rate
is almost two times larger than the rejection rate in ESIP-7.

In Table V, the approximate probabilities obtained by iterative peeling are
also compared with those estimated using ESIP-7. Here, the mean absolute
difference is 0.004, and the largest absolute difference is 0.08. The computing
time for iterative peeling was 85 s. To further examine the accuracy of the
iterative peeling probabilities, a histogram of the absolute differences between
these probabilities and those obtained using ESIP-7 is presented in Figure 7.

The histogram shows that the vast majority of the absolute differences are
between 0 and 0.02. These results indicate that iterative peeling is a very good
approximation for marginal genotype probabilities.
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Figure 7. Histogram of the absolute differences between probabilities obtained using
the ESIP-7 sampler and iterative peeling.

The probabilities estimated by the two versions of the ESIP-7 sampler are
compared in Table V. The means and standard deviations of the absolute
differences in this table are very similar to those between ESIP-7 and ESIP-5,
both with a chain length of 125 000. This shows that the ESIP-7* sampler is as
close to ESIP-7 as the ESIP-5 sampler is to ESIP-7. However, the computation
time for the ESIP-7* sampler was 9 h 13 min.
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Table VI. Effective chain size for different versions of the ESIP sampler and scalar-
Gibbs sampler.

Indiv. ESIP-2 ESIP-5 ESIP-7 ESIP-8 ESIP-9 Scalar-Gibbs

1 2645 10048 10571 13918 12718 24548
2 4319 10422 13035 13434 13213 24525
3 3068 9954 14417 13882 13185 24915
4 3554 9367 12380 14218 11358 24842
5 1447 5882 7379 11722 12336 24 647
6 4640 12129 13667 14172 14114 24518

Finally, in Table V, the probabilities estimated by scalar-Gibbs are compared
to those estimated using ESIP-7. For all three genotypes, the smallest values of
the ranges were zero. These result from the probabilities of the 35 individuals
that were affected and for which the genotype could be determined without
error from the phenotype. Moreover, for each genotype, the largest values
of the ranges were one. This is because for some individuals, ESIP-7 and
scalar-Gibbs get an estimate of probability one for different genotypes. The
mean absolute difference between probabilities obtained by scalar-Gibbs and
ESIP-71is 0.156. This is about 40 times larger than the mean absolute difference
between probabilities obtained by iterative peeling and the ESIP-7 sampler.

A histogram of these differences is presented in Figure 8. It is clear that
the results obtained by the scalar-Gibbs sampler are very different from those
obtained by the ESIP-7, which gave results that are in very good agreement with
those from the other samplers and iterative peeling. This lack of agreement
between the results from the scalar-Gibbs sampler and those from the other
approaches may be due to failure of the scalar-Gibbs to converge or due to slow
mixing after convergence. To examine if mixing was slow, the effective chain
size (ECS) was computed for six individuals using the last 25000 elements
of the chain for the scalar-Gibbs sampler and the first 25 000 elements of the
chain for the ESIP-k samplers (Tab. VI).

ECS was much larger for scalar-Gibbs than for the ESIP-k samplers.
Although this seems to indicate that mixing was not a problem, the genotype
probabilities estimated from the sample of genotypes obtained by scalar-Gibbs
greatly differ from those obtained by iterative peeling and the ESIP sampler.
This indicates that the sample obtained from scalar-Gibbs was not representat-
ive of the posterior distribution of the genotypes. This shows that it is possible
to have a large value for ECS without the chain yielding a representative
sample from the target distribution. The above can happen when the chain
moves freely among the sampled genotypes but stays within a local area of
the target distribution. It is easy to construct a pedigree where the above can
be observed. For example, consider the following pedigree consisting of one
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Figure 8. Histogram of the absolute differences between probabilities obtained using
the ESIP-7 and scalar-Gibbs samplers.

big nuclear family with 35 offspring. The genotype for 34 of the offspring is
known: 17 are heterozygous (Aa) and 17 are homozygous (AA). The genotype
for the parents and one offspring is unknown. It is assumed that the frequency
of allele A is 0.75. Scalar-Gibbs and ESIP samplers were used to sample the
missing genotypes. ECS was computed based on a chain length of 10000
for both samplers. For the ESIP sampler, ECS values were 9893 and 9934
for the parents, and 9934 for the offspring. For scalar-Gibbs, ECS values
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Table VII. Marginal posterior probabilities of missing genotypes in a large nuclear
family. Genotype probabilities were calculated exactly by peeling and estimated from
10000 samples obtained by ESIP and scalar-Gibbs.

Individual Method AA Aa aa
Parent 1 Exact 0.5 0.5 0
ESIP 0.4931 0.5069 0
Scalar-Gibbs 1 0 0
Parent 2 Exact 0.5 0.5 0
ESIP 0.5069 0.4931 0
Scalar-Gibbs 0 1 0
Offspring Exact 0.5 0.5 0
ESIP 0.4957 0.5043 0
Scalar-Gibbs 0.4856 0.5144 0

were not defined for the parents, because in all samples the genotypes for the
parents were AA and Aa. However, the ECS value for the offspring was 9 998.
The marginal posterior genotype probabilities for the three individuals with
missing genotypes are presented in Table VII. From this table it is clear that
the scalar-Gibbs sampler did not yield a representative sample from the target
distribution, even though the ECS was large for the offspring.

6. COMPUTING TIME OF THE ESIP SAMPLER

The computing time of the ESIP sampler can be split into two components:
the time involved in peeling and the time involved in sampling. Peeling time
increases exponentially with cutset size k, but because peeling is done only
once, for small values of &, the time for peeling is negligible compared with
the time for obtaining many samples. As explained below, sampling genotypes
of individuals that were iteratively peeled may be more time consuming than
sampling genotypes of individuals that were exactly peeled. Before sampling
genotypes of an individual that was iteratively peeled, all its edges must be
updated to reflect the already sampled individuals. Some of these edges may
be between the individual and cutset nodes of high dimension. Updating these
edges can be very time consuming if only a few individuals in the cutset have
been sampled. This updating step is not present when sampling genotypes of
individuals that were peeled exactly.

To illustrate these concepts, computing times were recorded. The computing
times for the hypothetical pedigree were 7, 6 and 1 s for the ESIP-2, ESIP-3, and
ESIP-4 samplers, respectively. In all cases the chain length was 2 000. Thus,
it is evident that the computing time is minimum when the entire pedigree is
exactly peeled (ESIP-4 = Direct sampler), and therefore sampling is efficient.
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Table VIII. Exact peeling and sampling times for the dog pedigree using different
cutset sizes (chain length = 100).

Cutset size  Peeling time (s) Sampling time (s) Total

ESIP-2 3 36 39
ESIP-3 3 36 39
ESIP-4 3 33 36
ESIP-5 4 34 38
ESIP-6 5 38 43
ESIP-7 9 48 57
ESIP-8 34 106 140
ESIP-9 70 203 273

Computing times for the dog pedigree using different cutset sizes are presen-
ted in Table VIII. The chain length in this case was 100.

Table VIII shows that computing times do not differ between the ESIP-2
sampler and the ESIP-7 sampler, but for £ > 7 the computing time increases
rapidly. With k£ = 9, 59 individuals were peeled iteratively. In sampling the
genotypes of these 59 individuals some edges connected to cutsets of high
dimension are updated. Therefore, sampling genotypes of these individuals is
time consuming. For this pedigree, if m had been nine, the computing time
would have been dramatically reduced.

7. SUMMARY AND CONCLUSIONS

The scalar-Gibbs sampler is known to have slow mixing when the pedigree
contains large progeny groups, and it may not be irreducible when sampling
genotypes at marker loci with more than two alleles [26,30]. Blocking Gibbs
has been proposed to solve the problem of slow mixing and reduce the problem
of reducibility [20]. As will be shown in a subsequent paper, the ESIP sampler
is guaranteed to produce an irreducible chain. This paper gives a detailed
description of this sampler.

A small hypothetical pedigree was used to validate the ESIP-k sampler.
For this pedigree, exact probabilities were obtained by peeling and compared
with those estimated by the ESIP-k samplers. The comparisons indicate that
probabilities estimated by the ESIP-k samplers (k = 2, 3,4) using a chain
length of 10000, including a burn-in of 5000, were accurate. Besides, we
observe that increasing cutset size k dramatically increased the ECS. For
this small pedigree the computing time was optimal for the ESIP-4 = Direct
sampler. Thus, considering both ECS and computing time, the most efficient
sampler was the Direct sampler, i.e., when the samples were obtained directly
from the joint posterior distribution.



Sampling genotypes in large pedigrees 365

A real pedigree was also used to test the algorithm. Estimates of the
genotype probabilities obtained from different ESIP-k samplers were very
similar. Furthermore, genotype probabilities computed by iterative peeling
were similar to those estimates obtained by the ESIP-k samplers, indicating
that iterative peeling provides a very good approximation for marginal genotype
probabilities. On the other hand, estimates of genotype probabilities obtained
by the scalar-Gibbs sampler were very different from those estimated by the
ESIP-k samplers and probabilities computed by iterative peeling. Thus, we
conclude that the scalar-Gibbs sampler failed to converge.

For the ESIP-k samplers, as expected, computing time increased exponen-
tially with cutset size and so did ECS. However, for ESIP-k samplers with
k < 7 the computing time was about the same. Thus, for the dog pedigree we
found that the ESIP-7 sampler was most efficient, because with k = 7, the ECS
per unit of time was maximum.

In conclusion, the ESIP sampler described in this paper can be used to
sample genotypes from complex pedigrees where the scalar-Gibbs sampler
has very poor mixing. These samples can be used to estimate genotype
probabilities, however, the approximate probabilities from iterative peeling
seem to be equally accurate. Furthermore, genotype samples can be used to
overcome the computational problems in extended models, where in addition
to the effect of the “major” locus, the model includes non-genetic fixed and
random effects, and random polygenic effects. In these extended models, in
addition to samples of genotypes at the major locus, samples are also needed
for the other fixed and random effects in the model. Using the scalar-Gibbs
to obtain these samples may also result in poor mixing. Fortunately, Garcia-
Cortés and Sorensen [8] have described an efficient method to jointly sample
the random and fixed effects in a linear model.
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