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Abstract. This paper is concerned with the spatial structure
and temporal evolution of the azimuthally small scale Alfvén
wave generated by a sudden impulse concentrated on a given
magnetic shell. At the outset, both poloidal and toroidal com-
ponents are present in the wave’s magnetic field. The oscil-
lation in the poloidal component on a given magnetic shell
is a superposition of two monochromatic oscillations, one
with the local resonance frequency on this shell, and the other
with the frequency corresponding to the resonance frequency
on the source surface. The superposition of these two oscil-
lations leads to beating. Due to phase mixing, the poloidal
component of the oscillation decreases with time down to
zero, transferring its energy to the toroidal component. Beat-
ing in the toroidal component is less pronounced. As time
elapses, energy concentration near the source magnetic shell
occurs with the frequency of the oscillation corresponding
to the Alfvénic resonance frequency on this surface. Out-
side this thin region wave amplitudes become rather small at
oscillation frequencies corresponding to the local resonance
frequency of the respective magnetic shell.

Keywords. Magnetospheric physics (MHD waves and in-
stabilities)

1 Introduction

A general framework for the interpretation of ultra-low fre-
quency (ULF) wave phenomena in planetary magnetospheres
is the concept of the field line resonance: a fast magne-
tosonic wave is generated on the magnetopause and prop-
agates into the inhomogeneous magnetosphere generating
an Alfvén mode on a surface where the wave frequency

equals the local Alfvén frequency (for a more comprehen-
sive overview seeGlassmeier et al., 1999). As a result, the
toroidal Pc5 Alfvén wave is observed in the magnetosphere
and on the ground (e.g.Agapitov et al., 2009). This pro-
cess is effective only in the case of the low-m initial per-
turbation (wherem is the azimuthal wave number), since in
the opposite case the magnetosphere is opaque for the fast
magnetosonic wave. The initial fast mode can be generated
by a process on the surface of the magnetosphere, e.g. by
Kelvin-Helmholtz or Kruskal-Schwarzschild instability (e.g.
Mishin, 1993; Fujita et al., 1996; Plaschke and Glassmeier,
2011; Mazur and Chuiko, 2011).

Surface perturbations on the magnetopause are also sup-
posed to generate traveling convection vortices in the iono-
sphere (Kivelson and Southwood, 1991; Glassmeier, 1992;
Chi et al., 2006). In this case the perturbation is highly local-
ized in the azimuthal direction, which means that it mainly
consists of the high-m harmonics. Therefore, this kind of
perturbations must have Alfvénic character, being mostly the
parallel current disturbances (Glassmeier, 1992). Neverthe-
less, a compressional magnetic field perturbation can appear
due to finite plasma pressure and field line curvature effects
(e.g.Mager and Klimushkin, 2002).

This picture was initially established for a monochromatic
driving wave, which is not a realistic case, since all wave phe-
nomena in the magnetosphere are related to finite-duration
processes. Several theoretical studies (Chen and Hasegawa,
1974; Radoski, 1974; Mann and Wright, 1995; Leonovich
and Mazur, 1998; Klimushkin and Mager, 2004; Klimushkin
et al., 2007) addressed the problem of the spatio-temporal
evolution of such an initial finite-duration disturbance across
magnetic shells. It was shown that in the course of the
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evolution the wave field structure is governed by a phe-
nomenon known as phase mixing. At the initial onset of the
perturbation, all field lines oscillate with the same phase and
the wave field is characterized by a predominantly poloidal
polarization. However, since each field line oscillates with
its own eigenfrequency, the oscillations on neighboring mag-
netic shells rapidly acquire significant phase differences. As
a consequence, the wave acquires a very small spatial scale
across magnetic field shells and, hence, becomes toroidally
polarized to preserve the source-free nature of the magnetic
field.

However, since the initial disturbance is often viewed as
a surface wave on the magnetopause, it is of interest to con-
sider a case when the Alfvén wave is excited by an impulsive
source concentrated on a specific magnetic shell. For this
special case,Hasegawa et al.(1983) found features similar
to those of the case with a source widely distributed across
L-shells. In our present study, we reexamine the problem as
the solution obtained byHasegawa et al.(1983) does not take
into account surface wave features.

In Sect. 2 we formulate an equation describing the spatio-
temporal structure of a high-m wave generated by a sudden
impulse concentrated on a given magnetic shell. In Sect. 3 we
perform a Fourier-transform of the equation over time obtain-
ing as a result an integral solution for a spatial structure of a
harmonic with a definite frequency. In Sect. 4 we perform an
inverse Fourier-transform, that is, we integrate the obtained
monochromatic solution over frequency. In Sect. 5 we apply
a saddle-point method to the integral found in the previous
section which allows us to find an asymptotic solution of our
problem. In Sect. 6 we discuss some consequences of our
solution. Section 7 presents the principal results of the paper.

2 Initial equations

In this study the magnetosphere is approximated and repre-
sented as a rectangular box. A field-aligned Cartesian coor-
dinate system is used: the z-coordinate is directed along the
field lines, the x-coordinate is directed across the magnetic
field lines and takes the role of the radial coordinate in the
magnetosphere, and the y-coordinate is directed both across
field lines and magnetic shells, completing the triad and tak-
ing the role of the azimuthal coordinate. Plasma parameters
are assumed to vary only in the x-direction; thus, all per-
turbed quantities on the azimuthal and longitudinal coordi-
nates vary aseikyy+ikzz.

The equilibrium values of the magnetic field and plasma
density are designated asB andρ, respectively;ξ denotes
the displacement of plasma from its equilibrium position,E,
b andj are the electric field, magnetic field, and electric cur-
rent density of the wave, respectively.

The wave is assumed to be excited by a sudden impulse of
an azimuthal current densityJ = (0,Jy,0) with

Jy = J0δ(x − x0)δ(t − t0) (1)

with t0 denoting the onset time at the surface with radial co-
ordinatex0. FollowingAkhiezer et al.(1975), this driving ex-
ternal currentJ should be considered as an additional term
in Ampere’s law:

∇ × b =
4π

c
j +

4π

c
J . (2)

The linearized equation of motion for small oscillations takes
the form

ρ
∂2ξ

∂t2
−

1

c
j × B = 0 (3)

where

∇ ×E = −
1

c

∂b

∂t
(4)

and

E =
1

c

∂ξ

∂t
× B. (5)

Using these equations, one obtains the equation for the wave
electric fieldE(x, t):

1

A2

∂2E

∂t2
− ∇ × ∇ ×E = −

4π

c2

∂J

∂t
, (6)

whereA = B/
√

4πρ is the Alfvén speed.
Let us suppose that the region under investigation lies in

the opaque region for the fast mode. For example, it is pos-
sible when a high-m perturbation is considered. Then the
only propagating wave mode is the Alfvén mode. Assuming
an infinite plasma conductivity in the magnetic field direc-
tion, the parallel electric field component may be neglected;
thus, the wave’s electric field lies on surfaces orthogonal to
the field lines. According to the Helmholtz theorem (Morse
and Feshbach, 1953), an arbitrary vector field can split into
the sum of potential and vortical components. By applying
this theorem to the two-dimensional fieldE, we use the rep-
resentationE = −∇⊥8 + ∇⊥ × e||9, wheree|| = B/B and
∇⊥ is the transverse nabla-operator. The “potentials”8 and
9 represent the electric field of the Alfvén wave and fast
mode, respectively (Klimushkin, 1994; Fedorov et al., 1998).
As we are considering a region lying deep within the fast
mode opaque region, the fast mode contribution9 can be ne-
glected, and the electric field of the wave can be represented
in the form

E = −∇⊥8. (7)

Let us substitute Eq. (7) into Eq. (6) and apply the opera-
tor ∇⊥ on the expression obtained by this substitution. As a
result, we find the equation

∂

∂x

[
−

1

A2

∂2

∂t2
− k2

z

]
∂8

∂x
− k2

y

[
−

1

A2

∂2

∂t2
− k2

z

]
8

= −
4πiky

c2

∂Jy

∂t
. (8)

Ann. Geophys., 30, 1099–1106, 2012 www.ann-geophys.net/30/1099/2012/



D. Yu. Klimushkin et al.: Alfvén waves excited by a sudden impulse on L-shell 1101

Fig. 1. A surface wave with superposed field line resonance. Here
w is the wave energy density.

As a boundary condition for the solution of this partial dif-
ferential equation we use the condition

8|x→±∞ = 0. (9)

3 Solution for a single Fourier-harmonic

Performing a Fourier-transform over time, we have

∂

∂x

[
ω2

A2
− k2

z

]
∂8ω

∂x
− k2

y

[
ω2

A2
− k2

z

]
8ω

= qδ(x − x0)ωeiωt0, (10)

where8ω is a Fourier-transformed8(t) value, and

q = −4πJ0ky/c.

This is a differential equation describing a monochromatic
Alfvén oscillation generated by the external current in the ap-
proximation when the fast mode can be neglected. The same
equation can be obtained as an exact one by assuming the
plasma to be an incompressible fluid (Hasegawa and Uberoi,
1982).

Let us introduce the resonance (toroidal) eigenfrequency
as �(x) = kzA(x). Then the resonance surfacexT can be
determined as a surface where the equalityω = �(x) holds.
Assuming the linear profile for the resonance frequency,

� = �0 ·
l − x

l
,

the coordinate of the resonance surface is

xT (ω) = l ·
�0 − ω

�0
. (11)

Near this surface, an approximate equalityω2
− �2

≈

2ω(ω − �) holds, and Eq. (10) can be rewritten in the form

∂

∂x
[x − xT (ω)]

∂8ω

∂x
− k2

y[x − xT (ω)]8ω

= q
l

2�0
eiωt0δ(x − x0).

The solution of this equation can be written in the integral
form

8ω = q
l

2�0
eiωt0

+∞∫
−∞

dk
eik(x−xT )√

k2
y + k2

k∫
−∞

dk′
eik′(xT −x0)√

k2
y + k

′2
(12)

(Leonovich and Mazur, 1999). This expression describes a
surface wave exponentially decreasing from the surface of
the sourcex0 with a field line resonance superposed on this
background (Fig.1). It should be noticed that it is a differ-
ent kind surface wave than considered by, e.g.Hasegawa and
Chen(1974), DeKeyser et al.(1999), or Plaschke and Glass-
meier(2011), since it is not related to a sharp inhomogeneity
in the medium where wave propagation is considered; how-
ever, this surface wave is due to the highly localized source
described by the azimuthal current densityJ = (0,Jy,0).
In cases where perturbations are caused by magnetospheric
buffeting (e.g.Kivelson and Southwood, 1991; Glassmeier,
1992), the localized source would be located right at the mag-
netopause.

4 Inverse Fourier-transform over time

Performing the inverse Fourier-transform of Eq. (12) over
time, we find a solution in the form

8(x, t) =
lq

2�0

∞∫
−∞

dωe−iω(t−t0)

∞∫
−∞

dk
eik[x−xT (ω)]√

k2
y + k2

·

k∫
−∞

dk′
eik′

[xT (ω)−x0)]√
k2

y + k
′2

.

Taking into account the linearxT (ω) dependence of Eq. (11),
this expression can be rewritten as

8 =
lq

2�0

∞∫
−∞

dk
eik(x−l)√
k2

y + k2

k∫
−∞

dk′
e−ik′(x0−l)√

k2
y + k

′2

·

∞∫
−∞

dωe
−iω[(t−t0)−

l
�0

(k−k′)]
.

Noting that the integral overω here is an integral representa-
tion of the delta-function,

∞∫
−∞

dωe
−iω[(t−t0)−

l
�0

(k−k′)]
= 2πδ[(t − t0) −

l

�0
(k − k′)],

the integration overk′ can be easily performed. Finally, we
obtain the following solution:

8(x, t) = qπ2(t − t0)e
i(t−t0)

�0
l

(x0−l)I, (13)

www.ann-geophys.net/30/1099/2012/ Ann. Geophys., 30, 1099–1106, 2012



1102 D. Yu. Klimushkin et al.: Alfvén waves excited by a sudden impulse on L-shell

where

I =

∞∫
−∞

dk
eik(x−l)−ik(x0−l)√

k2
y + k2

√
k2

y + [k −
�0
l

(t − t0)]2
. (14)

Thus, only the integration overk has yet to be performed.

5 Asymptotic solution

Let us represent the integral in Eq. (14) in the form

I =

∞∫
−∞

dk eS(k)

where the “phase” is

S = ik(x−x0)−
1

2
ln(k2

y + k2)−
1

2
ln [k2

y + (k −
�0

l
(t − t0))

2
].

To find an asymptotic solution atky|x0 − x| � 1, we can use
the saddle-point method. The saddle-point is determined as a
point where the derivativedS/dk vanishes:

dS

dk
= i(x − x0) −

k

k2
y + k2

−
k −

�0
l

(t − t0)

k2
y + [k −

�0
l

(t − t0)]2
= 0.

A large value ofky|x − x0| implies that the denominator of
either the second or the third term is small. That is, there are
four saddle-points,

k1 ≈ +iky

k2 ≈ −iky

k3 ≈ +iky +
�0

l
(t − t0)

k4 ≈ −iky +
�0

l
(t − t0)

If we are searching the solution in the regionx < x0, then the
path of the integration should go though the pointsk2 andk4.
Correcting for a finiteky|x − x0| value yields

k2 = −iky +
i

2(x0 − x)

and

k4 = −iky +
�0

l
(t − t0) +

i

2(x0 − x)
.

In the vicinity of these two points, the “phase” can be ap-
proximated as

S ≈ S(k2,4) +
1

2

d2S(k2,4)

dk2
(k − k2,4)

2,

where

S(k2) = −ky(x0 − x) − ln

√
ky

x0 − x

− ln

√
�2

0

l2
(t − t0)2 + 2iky

�0

l
(t − t0),

S(k4) = −ky(x0 − x) + i
�0

l
(t − t0)(x − x0) − ln

√
ky

x0 − x

− ln

√
�2

0

l2
(t − t0)2 − 2iky

�0

l
(t − t0),

and

d2S(k2)

dk2
=

d2S(k4)

dk2
= −2(x − x0)

2.

Now the integralI can be approximately represented as a
sum of two integrals near the two saddle-points,

I = I2 + I4

with

I2,4 =

∞∫
−∞

d(k − k2,4)e
S(k2,4)−(x−x0)

2(k−k2,4)
2

=

√
π√

ky(x0 − x)

e−ky(x0−x)√
�2

0
l2

(t − t0)2 ± 2iky
�0
l

(t − t0)

.

Finally, we have for the wave electric field potential

8(x, t) = qπ3/22(t − t0)
e−ky(x0−x)√
ky(x0 − x)

[Fx(t) + F0(t)] ,

(15)

where

Fx(t) =
e−i�(x)(t−t0)√

�2
0

l2
(t − t0)2 − 2iky

�0
l

(t − t0)

,

F0(t) =
e−i�(x0)(t−t0)√

�2
0

l2
(t − t0)2 + 2iky

�0
l

(t − t0)

,

and�(x) and�(x0) are the resonance frequencies on the
given magnetic shell (x) and on the magnetic shell of the
source (x0), respectively.
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6 Analysis of the solution

The factor exp[−ky(x0 − x)] in Eq. (15) shows that the so-
lution possesses the features of a surface wave localized on
the magnetic shell of the sourcex0. On this “background”
surface wave an additional spatial oscillation is imposed de-
scribed by the factor exp[−i�(x)(t − t0)] in the termFx(t).
This spatial modulation is displayed in Fig.2, representing
the result of a numerical determination of the integral (14).

The characteristic radial wave vector can be determined as

kx =
∂�(x)

∂x
(t − t0).

The increase of the radial wave vector with time (which can
also be inferred from Fig.2) implies a transformation from a
predominantly poloidal Alfvén mode (largeEy component)
into a toroidally polarized Alfvén mode (largeEx compo-
nent) since the wave the electric fields components are deter-
mined byEy = −iky8 andEx = −∂8/∂x. The decrease of
the radial wave length as well as the polarization change is
due to the phase mixing and is required to keep the magnetic
field perturbation source-free.

Let us consider the temporal evolution of the wave field in
more detail. For this we calculate the azimuthal electric field
of the wave:

Ey = −ikyqπ3/22(t − t0)
e−ky(x0−x)√
ky(x0 − x)

[Fx(t) + F0(t)] .

(16)

The first term in this expression,Fx(t), corresponds to the os-
cillation with the local resonance frequency, as in the theory
of the wave excited by the impulse widely distributed across
magnetic shells (below, this theory is referred to as the wide
impulse theory). However, there is the second term,F0(t),
describing the oscillation with a frequency corresponding to
the resonance frequency on the source surface, which does
not have an analogy in the wide impulse theory. As both,
the local resonance frequency and the resonance frequency
of the source surface are different, beating occurs as seen in
Fig. 3. Due to the presence of the square roots in the denom-
inators ofFx(t) andF0(t), the amplitude of the oscillation
in theEy component decreases with time, which is also ev-
ident from Fig.4, where the wave electric field energy den-
sity wy = |Ey|

2/8π is displayed as a function of time. The
poloidal mode wave energy decreases much as in the case of
the wide impulse situation.

The spatio-temporal behaviour of the radial electric field
component,Ex, is given by the expression

Ex = qπ3/22(t − t0)e
−ky(x0−x)

·

{√
ky(x0 − x) [Fx(t) + F0(t)]

+
i(t − t0)√
ky(x0 − x)

d�(x)

dx
Fx(t)

}
(17)

Fig. 2.Spatial structure of the wave at two times:�0(t − t0) = 100
(top panel) and�0(t − t0) = 200 (bottom panel).

(Fig. 5). There are two contributions inEx. The first is
Fx(t) + F0(t) which behaves similar to theEy component:
beating with decaying amplitude. The second one is propor-
tional toFx(t). It represents the oscillation with the local fre-
quency�(x) on the given magnetic shell and grows with
time as the square root of time. The amplitude of theEx tends
to some constant value, as is seen also from Fig.4, where
the temporal evolution of the toroidal mode electric field en-
ergy densitywx = |Ex|

2/8π is shown. We conclude that the
energy is transferred from the azimuthal component of the
electric field to the radial component, or from poloidal field
line oscillations into toroidal ones. This behaviour is similar
to the wide impulse situation treated earlier by e.g.Hasegawa
et al.(1983). However, contrary to that theory, the initialEx
value is not zero: at the outset, the amplitudes ofEx andEy
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Fig. 3. Temporal evolution of Ey far from the source,
(x0 − x)/ l = 0.1.

Fig. 4. Temporal evolution of wave energy density,w, and its com-
ponents,wx andwy, far from the source,(x0 − x)/ l = 0.1.

are equal to each other. This implies that the newborn wave
exhibits a mixed polarization, poloidal and toroidal.

Another difference in comparison with the wide impulse
theory is the total energy density,w = wx + wy on the given
magnetic shell is not constant (see Fig.4). However, if the en-
ergy density decreases somewhere, it must grow somewhere
else. Numerical calculations show that this happens on the
surface of the impulsex0; the energy increase is shown in
Fig. 6. Because of this the total electric energy integrated
over the whole plasma volume,

Fig. 5. Temporal evolution of Ex far from the source,
(x0 − x)/ l = 0.1.

Fig. 6. Temporal evolution of wave energy density,w, and its com-
ponents,wx andwy, on the surface of the impulsex0.

W =
1

8π

∞∫
−∞

(
ExE

∗
x + EyE

∗
y

)
dx =

1

4
π3qky,

is conserved. To prove this one only needs to expressEx and
Ey using Eqs. (13), (14), change an order of integration and
use the integral representation of the delta-function.

Figure7 displays the temporal change of the spatial wave
structure represented by the wave energy densityw(x). At
t = t0, there is only a gradual decrease of the wave amplitude
with distance from the source. As time elapses, the energy
accumulates near the surface of the source, while far from the
source it diminishes, tending to some small constant value.
Thus, a kernel and a tail of the oscillation are formed. As is
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Fig. 7. Wave energy density,w, at different distances from the sur-
face of the impulsex0 for different times.

seen from the figure, the width of the kernel decreases with
time.

7 Conclusions

This paper investigates the spatio-temporal structure of the
high-m ULF waves generated by a sudden impulse concen-
trated on a given magnetic shell in a rectangular box. Due
to the assumed small spatial variation in the azimuthal coor-
dinate, the contribution of the fast mode is negligibly small,
and the wave is represented by the Alfvén mode. At the out-
set, both poloidal and toroidal components are present in the
wave’s magnetic field. The wave amplitude exponentially de-
creases with the distance from the source. The poloidal com-
ponent oscillates in the beating regime. Due to phase mix-
ing, its amplitude decreases with time down to zero. Beating
is less pronounced in the toroidal component. Its amplitude
grows with time, reaching some constant amplitude. The to-
tal energy, integrated over the entire plasma volume, is con-
served. As time elapses, a thin kernel and a wide tail of oscil-
lations are formed: the energy density near the source mag-
netic shell grows, while far from the source it is significantly
decreasing, finally reaching some small constant value. That
is, the Alfvén wave on the surface of the source with the lo-
cal Alfvénic frequency on this surface grows. Each field line
in the low amplitude tail oscillates with the local Alfvénic
frequency on its magnetic shell.

The retreat of the wave energy onto the magnetic shell of
the source is a rather peculiar finding. The initial poloidal
wave spreads across field lines and excites local oscillations,
decaying by phase mixing. The small radial scales generated
in this way require a mode transformation towards toroidal
oscillations. The amplitude of these oscillations decays with
time, and energy conservation requires the wave energy to

accumulate at the source magnetic field shell. The system
behaves by not supporting wave energy transport in the ra-
dial direction in the long run. But this can only be achieved
by coupling the initial poloidal wave energy into toroidal
wave energy using the non-uniform background plasma and
its wave dispersion properties as a kind of catalytical agent.

Many features of the solution derived here have analogies
in the theory of the temporal evolution of an initial distur-
bance widely distributed across magnetic shells considered
in several earlier publications. Among them are phase mix-
ing, the transformation into toroidally polarized wave, and
oscillations with the local Alfvénic frequency. These features
were also described in the previous study ofHasegawa et al.
(1983) dealing with wave generation by a surface impulse.

Other features, such as the beating on the poloidal com-
ponent for a short time interval after the onset of the oscil-
lations, the change of the mode polarization from a mixed
to predominantly toroidal mode, the concentration of power
near the surface of the source with the local Alfvénic fre-
quency have no analogies in the theory of the initial distur-
bance widely distributed across the magnetic shells. These
features were not revealed by the earlier study ofHasegawa
et al. (1983). We suppose that such features can be used as
observational marks of ULF waves generated by sudden im-
pulses localized on some magnetic surface.

A factor which can prevent the concentration of power
near the surface of the source is the dissipation of the wave
energy due to the finite conductivity of the ionosphere. How-
ever, as is seen from Figs.6 and7, the power concentration
becomes evident as soon as ten wave periods; since usual
Pc4–5 pulsations are observable for the longer time, we do
not expect the power concentration to be prevented by the
dissipation. Second, our consideration is applied to the high-
m waves, which are the subject of the various kinds of the
wave-particle interactions and associated kinetic instabilities.
These instabilities lead to the suppression of the dissipation
on the earlier stages of the wave evolution (Klimushkin and
Mager, 2004; Klimushkin, 2007).

The results of this paper can also be applied to the gen-
eration of magnetospheric perturbations due to buffeting of
the magnetopause, especially traveling convection vortices
(Kivelson and Southwood, 1991; Glassmeier, 1992). How-
ever, in this case the source is localized in both transverse co-
ordinates, across L-shells and in the azimuthal direction. Fur-
thermore, such sources should be moving in the azimuthal
direction as they are related to magnetosheath flow, there-
fore the wave energy finally leaves the system.Mager and
Klimushkin(2007, 2008), Zolotukhina et al.(2008) andYeo-
man et al.(2012) considered ULF wave excitation by a mov-
ing source, but they supposed the source to be widely dis-
tributed across magnetic shells while localized in azimuth. A
more general theoretical treatment is required here and will
be the subject of future studies. The generation of the low-m

ULF waves by a surface impulse also demands a separate
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study, since the coupling with the fast mode greatly exagger-
ates a situation.
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