brought to you by CORE provided by Universiti Teknologi Malaysia Institutional Repository

vii

UJTABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xii
	LIST OF FIGURES	XV
	LIST OF ABBREVIATION AND SYMBOLS	xviii
	LIST OF APPENDICES	xxiii
1	INTRODUCTION	1
	1.1 Background of the Problem	1
	1.2 Statement of the Problem	2
	1.3 Objectives of the Study	3
	1.4 Scope of Research	4
	1.5 Research Hypothesis	5
	1.6 Organization of Thesis	6

LIT	ERAT	URE REVIEW	7	
2.1	Introduction			
2.2	.2 Activated Carbon		9	
	2.2.1	Introduction	9	
	2.2.2	Activated Carbon Feedstock	11	
	2.2.3	Empty Fruit Bunch Based Activated Carbon	12	
	2.2.4	Activated Carbon Productions	15	
	2.2.4.	1 Introduction	15	
	2.2.4.	2 Physical Activation	16	
	2.2.5	Activated Carbon Physical Properties	18	
	2.2.6	Activated Carbon Chemical Properties	20	
2.3	Pheno	l in Environment	24	
	2.3.1	Introduction	24	
	2.3.2	Source of Phenol Pollution	26	
	2.3.3	Effect of Phenol in Human Health	27	
	2.3.4	Control Technology for Reducing Phenol in the Environment	27	
2.4	Hydro	ogen as Future Renewable Energy	29	
	2.4.1	Introduction	29	
	2.4.2	Source of Hydrogen	30	
	2.4.3	Hydrogen Application	30	
	2.4.4	On-Board Vehicular Hydrogen Storage	31	
2.5	Activa	ated Carbon Applications	32	
	2.5.1	Activated Carbon as Phenol Removal	33	
	2.5.2	Activated Carbon as Hydrogen Storage	35	
2.6	Adsor	ption Process	39	
	2.6.1	Adsorption Equilibrium	39	
	2.6.2	Adsorption Kinetics	43	

		2.6.3 Batch Adsorption	48
	2.7	Regeneration of Activated Carbon	40 51
	2.8	Response Surface Methodology	52
3	B MA	TERIALS AND METHODS	55
	3.1	Introduction	55
	3.2	Chemicals and Materials	56
	3.3	Synthesis of Activated Carbon	59
		3.3.1 Sample Preparation	59
		3.3.2 Carbonization Process	60
		3.3.3 CO ₂ Activation	62
		3.3.4 Chemical Treatment of AC	62
	3.4	Phenol Adsorption Analysis	63
		3.4.1 Phenol Adsorption Capacity Test	63
		3.4.2 Adsorption Isotherm and Kinetic Study Test	67
	3.5	Hydrogen Adsorption Study	69
	3.6	Regeneration Study	71
	3.7	Optimization Study	71
	3.8	Sample Characterization	75
		3.8.1 Fibre Size Analysis	75
		3.8.2 Carbon, Hydrogen, Nitrogen, Oxygen (CHNO) Analysis	77
		3.8.3 Thermo Gravimetric Analysis (TGA)	77
		3.8.4 Fourier Transformation Infrared (FTIR)	77
		3.8.5 Nitrogen Adsorption Isotherm Analysis	78
		3.8.6 Adsorbent Morphology	78
	3.9	Summary	79

4	RES	SULT AND DISCUSSION	80
	4.1	Introduction	80
	4.2	Production and Optimization of AC	80
		4.2.2 Optimization of Carbonization Process	81
		4.2.2.1 Regression Model Equation for Phenol Removal Development	81
		4.2.2.2 Model plots	86
		4.2.2.3 Optimization Design	88
	4.3	Sample Characterization	90
		4.3.1 Fibre Analysis	90
		4.3.2 Carbon, Hydrogen, Nitrogen, Oxygen (CHNO) analysis	91
		4.3.3 Thermo Gravimetric Analysis (TGA)	92
		4.3.4 Fourier Transformation Infrared (FTIR)	93
		4.3.5 Nitrogen Adsorption Isotherm Analysis	97
		4.3.6 Surface Morphology Characteristic	101
	4.4	Studies on Phenol Adsorption	104
		4.4.1 Phenol Adsorption Capacity Analysis	104
		4.4.2 Batch Adsorption Analysis	109
		4.4.2.1 Adsorption Kinetics	109
		4.4.2.2 Intraparticle Diffusion	113
		4.4.2.3 Adsorption Isotherms	115
		4.4.2.4 Phenol Adsorption Mechanisms	119
	4.5	Studies on Hydrogen Adsorption	121
		4.5.1 Hydrogen Adsorption Under Ambient Pressure at Cryogenic Temperature	121
		4.5.2 Hydrogen Adsorption Under High Pressure at Cryogenic Temperature	123
		4.5.3 Hydrogen Adsorption Mechanisms	125

	4.6	Regen	eration Study	126
5	COI	NCLUS	SIONS AND RECOMMENDATIONS	128
	5.1	Introd	uction	128
	5.2	Concl	usion of Research Finding	128
		5.2.1	Production and Optimization of AC from EFB	128
		5.2.2	Characterization of AC	129
		5.2.3	Phenol and Hydrogen Adsorption Performances	130
		5.2.4	Activated Carbon Regeneration Performance	131
	5.3	Recon	nmendations for Future Works	132
REFE	RENC	CES		134
Append	lices A	A-H		147-180

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Activated carbon pore size distribution	9
2.2	Different activated carbon feedstock's properties	11
2.3	Summary of researches on capability of oil palm EFB as AC	14
2.4	Activated Carbon Pore Distributions	18
2.5	The physical and chemical properties of phenol	25
2.6	Summary of the experimental conditions for current phenol treatment processes available	27
2.7	Studies related on AC for liquid and gas phase application	32
2.8	Summary of researches on AC as hydrogen storage	36
2.9	Adsorption isotherm model	41
2.10	Adsorption kinetics models	44
2.11	Batch adsorption principle and conditions	49
2.12	Regeneration processes	51
3.1	Equipments employed in the study	57
3.2	Chemicals and gases applied in the study	58
3.3	Range of process parameters for carbonization of EFB fibre	61
3.4	Samples used in phenol adsorption capacity and isotherm and kinetic study in first phase	66

3.5	Samples used in phenol adsorption capacity test in third phase	66
3.6	Range of Independents Variables	72
3.7	Independent Variables and Process Conditions	73
4.1	Preparation of char experimental design matrix and experiment response	81
4.2	ANOVA for response surface quadratic model (unreduced models)	83
4.3	ANOVA for response surface quadratic model (reduced model)	85
4.4	Parameters limit for the optimization of phenol removal	88
4.5	Desirability Model in the Range of Study	89
4.6	Particle size of EFB fibre	90
4.7	CHNO analysis for AC products and Commercial AC	91
4.8	IR-spectra and functional groups	94
4.9	Characteristic of carbon products	94 99
4.10	Phenol concentration and phenol removal by activated carbon samples in comparison with commercial activated carbon	106
4.11	Pseudo-first and pseudo-second order adsorption rate constant values for phenol adsorption onto EFB-based activated carbon and char samples	112
4.12	Intraparticle diffusions and intercept values for phenol adsorption onto different fibre size of AC and BC	115

4.13	Langmuir and Freundlich constant values for phenol adsorption on EFB-based activated carbon	118
4.14	Comparison of the maximum monolayer adsorption capacity of phenol onto various adsorbents	118
4.15	Hydrogen adsorption data of ACs by different researches	125

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Activated carbon	10
2.2	Activated carbon particles	19
2.3	SEM image of activated carbon	20
2.4	Turbostratic structure	20
2.5	Graphite structure on carbon material	21
2.6	Acidic and basic oxygen-containing functionalities of carbon surface	22
2.7	Nitrogen-containing functionalities of carbon surface	23
2.8	Carbon-sulphur surface compounds	23
2.9	Carbon-phosphate complexes surface compounds	24
2.10	White crystal of phenol	25
2.11	Hydrogen atomic sizes	29
2.12	Mass transfer resistance on porous material	47
2.13	The six IUPAC standard adsorption isotherms	50
3.1	Flow chart of the experimental design outline	55
3.2	Empty fruit bunch fibre	56

3.3	Fibres grinder to acquire a variety of EFB fibre size range	59
3.4	Horizontal tube furnace which to be used for carbonization and $\rm CO_2$ activation processes	60
3.5	UV Spectrophotometer equipment with double beam	64
3.6	Phenol treatments for different set of chars and ACs samples in incubator shaker	67
3.7	Digital Imaging Microscopy (DIG) for identification of fibre average range and length	75
3.8	EFB fibre length determination	76
3.9	EFB fibre width determination	76
4.1	Three dimensional response surface plot for phenol removal (effect of heating rate and time) with temperature at 506 °C	84
4.2	Respond on experimental values with predicted values for the response of phenol removal	85
4.3	Contour plot of the interaction between heating rate and residence time (X_2X_3) and the effects on phenol removal	87
4.4	TGA profile for each AC samples and char by temperature against weight loss	92
4.5	The IR-Spectrum of EFB, char, and AC	96
4.6	Adsorption-desorption graph of each carbon products compared with CAC	98
4.7	Micropore and mesopore quantity of each AC	100
4.8	SEM micrograph of EFB (500x)	101

4.9	SEM micrograph of BC1 (500x)	102
4.10	SEM micrograph of AC1 (500x)	102
4.11	SEM micrograph of AC2 (500x)	103
4.12	SEM micrograph of AC3 (500x)	103
4.13	Phenol adsorption by different adsorbents	105
4.14	Percentage of phenol adsorption capacity at different temperature for AC1, AC2, AC3 and CAC	107
4.15	Pseudo-first order kinetics for adsorption of phenol onto EFB-activated carbon and char samples	110
4.16	Pseudo-second order kinetics for adsorption of phenol onto EFB-activated carbon and char samples	111
4.17	Intraparticle diffusion plots for phenol adsorption onto different fibre size of AC and BC.	114
4.18	Linearised Freundlich isotherm plots for phenol adsorption by ACF2 and ACF4	116
4.19	Linearised Langmuir isotherm plots for phenol adsorption by ACF2 and ACF4	117
4.20	Phenol and AC's functional groups chemical interactions	120
4.21	Hydrogen adsorption isotherm at ambient pressure and 77K	122
4.22	Hydrogen adsorption isotherm at 77K up to 100 bar	124
4.23	Regeneration efficiency of phenol-saturated AC3 and CAC	127

LIST OF ABBREVIATIONS AND SYMBOLS

EFB	-	Empty Fruit Bunches
AC	-	Activated carbon
CAC	-	Commercial activated carbon
GAC	-	Granular activated carbon
PAC	-	Powder activated carbon
R&D	-	Research and Development
MPOB	-	Malaysia Palm Oil Board
POME	-	Palm Oil Mill Effluent
US	-	United States
USEPA	-	United States Environmental Protection Agency
SEM	-	Scanning Electron Microscope
TGA	-	Thermo Gravimetric Analysis
FTIR	-	Fourier Transform Infrared Spectroscopy
CHNO	-	Carbon, Hydrogen, Nitrogen, Oxygen
RSM	-	Response Surface Methodology
TPR	-	Temperature Programmed Reduction
NKRA	-	National Key Result Area
GNI	-	Gross National Income
IUPAC	-	International of Pure and Applied Chemistry
BWD	-	Back washed and Drained
BET	-	Breuner, Emmer and Teller
ASTM	-	American Society for Testing and Materials
UK	-	United Kingdom

NaOH	-	Sodium Hydroxide
Mg/L	-	Milligram per litter
Min	-	Minutes
L/min	-	Litter per minutes
DIG	-	Digital Imaging Microscopy
ASAP	-	Accelerated Surface Area and Porosimetry Analyzer
HPVA	-	High Pressure Volumetric Analyzer
KH ₂ PO ₄	-	Potassium dihydrogen phosphate
K_2CO_3	-	Potassium carbonate
NaOH	-	Sodium hydroxide
C ₆ H ₅ OH	-	Phenol
CO_2	-	Carbon dioxide gas
N_2	-	Nitrogen gas
H_2	-	Hydrogen gas
H_2O	-	Water
-CH ₂ -	-	Hydrocarbon chains
КОН	-	Potassium hydroxide
UV	-	Ultraviolet
BC	-	Char
BCF	-	Char fibre
DOE	-	Design of experiment
RE	-	Regeneration efficiency
ANOVA	-	Analysis of variance
DF	-	Degree of freedom
S	-	Sulphur
NAD	-	Nitrogen adsorption-desorption

%	-	Percent
Κ	-	Kelvin
q_e	-	Amount of adsorbent at equilibrium
q_t	-	Equilibrium rate constant
Co	-	Initial concentration
Ce	-	Equilibrium concentration
V	-	Volume of solution
М	-	Absorber weight
$\frac{x}{m}$	-	Mass of adsorbate over mass of adsorbent
C,	-	Equilibrium adsorbate concentration after adsorption
N	-	Freundlich intensity parameter
А	-	Amount of adsorbate to form a complete monolayer
В	-	Emphirical formula
R_L	-	Langmuir constant
M	-	Monolayer capacity
с	-	BET constant
i.e	-	It is
°C	-	Degree Celsius
C /min	-	Degree Celsius per minutes
G	-	gram
M_1	-	Amount of raw EFB before pyrolysis
M_2	-	Amount of char produced
Mm Ml	-	Milimolar Mililiter
Co	-	Initial phenol concentration
C _e	-	Final (equilibrium) phenol concentration
V	-	Volume of solution
W	-	Mass of adsorbent

>	-	Greater than
<	-	Less than
Rpm T	-	Revolutions per minute Time
I K	-	Equilibrium rate constant
K _F	-	Freundlich coefficient factor
K _L	-	Langmuir coefficient factor
k_1	-	Pseudo-first order equilibrium rate constant
K	-	Pseudo-second order equilibrium rate constant
<i>K</i> i	-	Intraparticle diffusion constant
K_{DW}	-	Rate constant of adsorption
\mathbf{X}_1	-	Carbonization temperature
X_2	-	Carbonization heating rate
X ₃	-	Carbonization residence time
Y	-	Phenol adsorption uptake
\mathbf{Y}_1	-	RSM second order polynomial function's predicted response
В	-	RSM second order polynomial function's coefficient
Ø	-	Pore diameter
Mpa	-	Mega Pascal
Н	-	Hour
Å	-	Angstrom (10 ⁻⁹)
R^2	-	Correlation coefficient
Hg	-	Mercury
Cu	-	Copper
Pb	-	Lead
Ppm	-	Part per millions
Vol	-	Volume
R_p	-	Total particle radius
<i>qs</i>	-	Average value of q (adsorption quantity) in a spherical particle at any particular time
q(r)	-	Local value of solid phase concentration
q_{if}	-	Average concentration in the solid at infinite time

D_s	-	Intraparticle diffusion coefficient
-		intraparticle unrusion coefficient

- R Radial position
- *Qt* Adsorption capacity at time t

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Preparation of a series of phenol solution for preparing of phenol calibration graph	147
В	UV-Vis adsorption intensity data for preparation of calibration graph	148
C1	Thermal gravimetric analysis profiles of each sample (Sample EFB)	149
C2	Thermal gravimetric analysis profiles of each sample (Sample AC1)	150
C3	Thermal gravimetric analysis profiles of each sample (Sample AC2)	151
C4	Thermal gravimetric analysis profiles of each sample (Sample AC3)	152
C5	Thermal gravimetric analysis profiles of each sample (Sample CAC)	153
D1	IR-spectrum of each sample (Sample EFB)	154
D2	IR-spectrum of each sample (Sample Char)	155
D3	IR-spectrum of each sample (Sample AC1)	156
D4	IR-spectrum of each sample (Sample AC2)	157
D5	IR-spectrum of each sample (Sample AC3)	158
E1	N ₂ adsorption-desorption isotherm of each sample (Sample CAC)	159

		٠	
Х	X	1	V

E2	N ₂ adsorption-desorption isotherm of each sample (Sample Char)	161
E3	N_2 adsorption-desorption isotherm of each sample (Sample AC1)	163
E4	N ₂ adsorption-desorption isotherm of each sample (Sample AC2)	165
E5	N_2 adsorption-desorption isotherm of each sample (Sample AC3)	167
F1	Hydrogen adsorption under ambient pressure at cryogenic temperature (Sample AC1)	169
F2	Hydrogen adsorption under ambient pressure at cryogenic temperature (Sample AC2)	172
F3	Hydrogen adsorption under ambient pressure at cryogenic temperature (Sample AC3)	175
G	Hydrogen adsorption under high pressure at cryogenic temperature (Sample AC3)	178
Н	Publication of Research	180