brought to you by TCORE provided by Universiti Teknologi Malaysia Institutional Repository

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	CLARATION	ii
	DED	DICATION	iii
	ACK	NOWLEDGEMENTS	iv
	ABS	TRACT	V
	ABS	TRAK	vi
	TAB	BLE OF CONTENTS	vii
	LIST	Г OF TABLES	xi
	LIST	Γ OF FIGURES	xiii
	LIST	Γ OF SYMBOLS AND ABBREAVIATIONS	xvii
1	INT	RODUCTION	1
	1.1	Background of Research	1
	1.2	Problem Statement	3
	1.3	Objectives of Research	5
	1.4	Scope of Research	5
2	LITI	ERATURE REVIEW	7
	2.1	Plastic Waste from Petroleum-based	7
	2.2	Biodegradable Polymers	10
		2.2.1 Petroleum-based Synthetic of	11
		Biodegradable Polymer	

	2.2.2	Renewable Resources-based of	12
		Biodegradable Polymer	
2.3	Biodeg	gradability of Polymers	13
2.4	Metho	od of Biodegradation	14
2.5	Starch		18
	2.5.1	Characteristic of Starch	18
		2.5.1.1 Reviews on Cassava Starch	23
	2.5.2	Thermoplastic Starch	26
2.6	Poly (vinyl alcohol)	27
	2.6.1	Poly (vinyl alcohol) Incorporated	30
		With Starch	
2.7	Biodeg	gradation	30
	2.7.1	Biodegradation of Poly (vinyl alcohol)	30
		/starch	
2.8	Compo	ound Method and Melt-Extrusion	31
	Process	s of Poly (vinyl alcohol) /Starch Blends	
2.9	Injectio	on Moulding of PVA/starch Blends	32
MET	THODH	OLOGY	34
3.1	Materi	ials	34
	3.1.1	Poly (vinyl alcohol)	34
	3.1.2	Cassava Starch	35
	3.1.3	Glycerol	35
	3.1.4	Phosphoric Acid	36
	3.1.5	Calcium Stearate	36
3.2	Blends	s Preparation	37
	3.2.1	PVA/CS Blends Formulation	37
	3.2.2	Melt Extrusion of PVA/CS Blends	37
	3.2.3	Injection Molding Process of	40
		PVA/CS Blends	

3

3.3	Mech	anical Analysis	41
	3.3.1	Tensile Test	41
	3.3.2	Izod Impact Test	41
3.4	Chara	acterization Studies	41
	3.4.1	Fourier-Transform Infrared	41
	3.4.2	Differential Scanning Calorimetry	42
	3.4.3	Thermogravimetry-Derivative	42
		Thermogravimetry	
	3.4.4	X-ray Diffraction	42
	3.4.5	Melt Flow Index	43
3.5	Biode	egradability Analysis	43
	3.5.1	Moisture Sorption Test	43
	3.5.2	Soil Burial Test	45
	3.5.3	Enzymatic Hydrolytic Method	47
	3.5.4	Solid Phase Medium under Aerobic	47
		and Anaerobic Condition	
RESU	LTS A	ND DISCUSSION	48
4.1	Comp	ounding Characterization	48
	4.1.1	Tensile Properties: One-Step	49
		and Two-Step Compounding Process	
4.1.2	Izod I	Impact Test	51
4.2	Comp	ound Characterization	52
	4.2.1	Fourier Transform Infrared	53
	4.2.2	Differential Scanning Calorimetric	60
		Analysis	
	4.2.3	Thermogravimetry – Differential	64
		Thermogravimetry Analysis	
	4.2.4	X-ray Diffraction	66
		Melt Flow Index (MFI) of	68
		PVA/CS Blends	

4

4.3	Biodegradability Analysis	69
	4.3.1 Moisture Sorption Analysis	70
	4.3.2 Assessment of Weight Loss by Soil	74
	and Compost Environment	
	4.3.3 Enzymatic Degradation	77
4.3.4	Exposure to Different Reagent Used:	79
	Fungi, Bacteria and Effective Microorganism	
	Under Aerobic and Anaerobic Conditions	
CON	CLUSION AND RECOMMENDATIONS	86
5.1	Conclusions	86
5.2	Recommendations	88

5

REFERENCES	89

Appendices A-D	109 - 11:
Appendices A-D	109 - 1

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Types of biodegradable polymers from bio-derived monomers	11
2.2	Concepts and techniques for different biodegradation testing methods	16
2.3	Cassava production in Asia	24
2.4	Amylose and amylopectin content and degree of polymerization of various starches	25
2.5	Average chemical composition of cassava starch granules	25
2.6	Infrared absorption bands of partially and fully hydrolysed PVA	26
3.1	General properties of poly (vinyl alcohol)	34
3.2	General properties of glycerol	35
3.3	General properties of calcium stearate	36
3.4	Composition of PVA/CS blends	37
3.5	Lists of different types of saturated aqueous salt solution	44
4.1	FTIR peaks assignment of PVA, cassava starch and glycerol	54
4.2	FTIR peaks assignment of pPVA, pCS and PVA/CS blends	59

4.3	Absorption frequencies of PVA and cassava starch	59
	before and after addition of glycerol	
4.4	Onset and end-point melting temperature, melting	62
	temperature (T _m), enthalpy of melting (ΔH_m) and	
	degree of crystallinity (χ_c) of PVA/cassava starch blends	
4.5	XRD Peaks Assignment for cassava starch, PVA, pPVA	67
	And PVA/CS blends	
4.6	Visual Assessment of Aspergillus Oryzae, Bacillus	80
	Amyloliquefaciens, and effective microorganism	
	growth for each formulation under aerobic condition	
4.7	Visual Assessment of Aspergillus Oryzae, Bacillus	81
	Amyloliquefaciens, and effective microorganism	
	growth for each formulation under anaerobic condition	

LIST OF FIGURES

FIGURE	NO.
---------------	-----

TITLE

PAGE

2.1	World plastic production from 1950 to 2008	8
2.2	Plastic resin in the global market	9
2.3	Classification of biodegradable polymer	10
2.4	Different categories of bio-based polymers	13
2.5	Structure of amylose	18
2.6	Structure of amylopectin	19
2.7a	Schematic representation of structural levels of the starch granule	20
2.7b	Starch granule structure showing organization in semi-crystalline and crystalline shells, blocklet structure in association with amorphous channels, internal blocklet structure and the crystal structures of starch	20
2.8	Diagram of A-, B and V- types of starch	21
2.9	Swelling, disruption and dispersion of a starch granule during gelatinization	23
2.10	Reaction sequence used in the industrial production of PVA	27
3.1	High speed mixer CL-10 brand Chyau Long Machinery Co., Ltd	38

3.2	Twin-screw extruder brand from Sino-Alloy Machinery Inc. (Sino PSM 30 Co-Rotating B5B25)	39
3.3	PVA/CS pellets	39
3.4	Injection moulding brand 'JSW N100 BII'	40
3.5	A set-up for moisture sorption method	44
3.6	A set of garden pot used in soil-compost burial test	46
4.1	Tensile strength from one-step compounding and two-step compounding (Mohd Shahrul Nizam Bin Salleh et al., 2010) of pPVA and PVA/CS blends	50
4.2	Impact strength of pPVA and PVA/CS blends	52
4.3	FTIR spectra of PVA, cassava starch and glycerol	54
4.4a	FTIR spectra of pPVA (100wt.% PVA: 0wt.% CS), pCS (0wt.% PVA:100wt.%CS), CS55 (50wt.%PVA: 50wt.%CS), CS46 (40wt.%PVA: 60wt.%CS), CS37 (30wt.%PVA: 70wt.%CS) and CS28 (20wt.%PVA: 80wt.%CS)	57
4.4b	FTIR spectrum of CS55 (50wt.%PVA:50wt.%CS)	58
4.5	DSC thermograms of pPVA, PVA/CS blends (CS55 - 50%PVA:50%CS, CS46 - 40%PVA:60%CS, CS37 - 30%PVA:70%CS, CS28 – 20%PVA:80%CS) and pCS	61
4.6	Experimental enthalpy of melting (ΔH_m) and theoretical enthalpy of melting (ΔH_{mi}) of PVA/CS blends	63
4.7	Thermogram (a) and Differential-thermogram (b) integration curves of pPVA, PVA/CS blends and pCS	65
4.8	Melt flow index of from references by Nwufo et al. (1984) without plasticizer and experimental research with plasticizer	69

4.9	Moisture sorption of pPVA and PVA/CS blends based on water activity (aw) a) 0.22 (saturated salt potassium acetate), b) 0.43 (saturated salt potassium carbonate), and c) 0.97 (saturated salt potassium sulphate)	71
4.10	Effect of moisture sorption of a) $a_w = 0.22$, b) $a_w = 0.43$, and c) $a_w = 0.97$ after three months of pPVA and PVA/CS blends	73
4.11	Percentage of weight loss as a function of wt% of PVA loading in starch content, A – Lag phase, B – Biodegradation phase, C –Plateau phase	74
4.12	Effect of enzymatic hydrolysis of plasticized PVA and PVA/CS blends	78
4.13	Visual of leaching surface before and after enzymatic hydrolysis of pPVA and PVA/CS blend at 80% starch contents	78
4.14	Sediment after enzymatic process	79
4.15	Percentage of weight loss over 21 days in different condition and reagent used	82
4.16	Visual observation over 21 days with different condition on <i>Aspergillus Oryzae</i> of pPVA in a) Aerobic condition,b) Anaerobic condition	83
4.17	Visual observation over 21 days with different condition on <i>Aspergillus Oryzae</i> of CS55 in a) Aerobic condition,b) Anaerobic condition	83
4.18	Visual observation over 21 days with different condition on<i>Aspergillus Oryzae</i> of CS46 in a) Aerobic condition,b) Anaerobic condition	84
4.19	Visual observation over 21 days with different condition on <i>Aspergillus Oryzae</i> of CS37 in a) Aerobic condition,b) Anaerobic condition	84

XV

LIST OF SYMBOLS AND ABBREVIATIONS

ASTM	-	American standard of testing and method
a_{w}	-	Water activity
CaS	-	Calcium stearate
$C_3H_8O_3$	-	Glycerine
CH ₃ COONa	-	Sodium acetate
CS	-	Cassava starch
pCS	-	Plasticized cassava starch
FTIR	-	Fourier transform infrared
DSC	-	Differential scanning calorimeter
DTG	-	Differential-thermogravimetric
FTIR	-	Fourier transform infrared
J/g	-	Joule/gram
H_3PO_4	-	Phosphoric acid
ISO	-	International standard organization
mm	-	Millimeter
MFI	-	Melt flow index
μm	-	micronmeter
phr	-	Part per hundred
PVA	-	Poly(vinyl alcohol)
pPVA	-	Plasticized poly (vinyl alcohol)
pCS	-	Plasticized cassava starch
PVA/CS	-	Plasticized poly(vinyl alcohol)/cassava starch
T_{g}	-	Glass transition temperature
TG	-	Thermogravimetric
T _m	-	Melting temperature
w/w	-	Weight over weight

wt %	-	Weight percentage
XRD	-	X-ray diffraction
ΔH_{m}	-	Enthalpy of melting
ΔH_{mi}	-	Theoretical enthalpy of melting
$\Delta H_{\rm f}$	-	Enthalpy of 100% crystalline PVA