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Abstract. We use the spinor helicity formalism to calculate the cross section for produc-
tion of three partons of a given polarization in Deep Inelastic Scattering (DIS) off proton
and nucleus targets at small Bjorken x. The target proton or nucleus is treated as a classi-
cal color field (shock wave) from which the produced partons scatter multiple times. The
resulting expressions are used to study azimuthal angular correlations between produced
partons in order to probe the gluon structure of the target hadron or nucleus as well as to
study energy loss in DIS reactions.

1 Introduction

The perturbative Regge limit of Quantum Chromodynamics (QCD) – which is characterized by the
presence of a hard scale Q2 far bigger than the QCD confinement scale and high center of mass energy
s, such that x = Q2/s � 1 – continues to provide challenges to those who wish to explore it. While
Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution [1] is known to yield the correct perturbative high
energy evolution equation, if the full resummation program is fully perturbative, there exist various
theoretical arguments, which suggests that at some – yet unknown – value of energy, non-linear
effects will complement BFKL evolution and tame the observed (and by BFKL predicted) rise of
the perturbative gluon and bring it finally to hold. A dynamical mechanism which achieves such
perturbative unitarity of QCD cross-sections at low x is known under the term ‘gluon saturation’ and
has been originally proposed by Gribov, Levin and Ryskin [2]. The framework of the Color Glass
Condensate (CGC) provides on the other hand an effective action approach to gluon saturation [3].
Within this framework, the high energy hadron or nucleus is described as a a weakly-coupled yet
non-perturbative system of gluons with high occupancy number, characterized by a semi-hard scale
Qs, called the saturation scale. As a result one obtains a non-linear generalization of the BFKL
evolution equation [4–6], which includes multiple-scattering effects; the latter provide the necessary
slow down and saturation of the growth with energy, see [7] and references therein

While the above mentioned non-linear dynamics is of high interest and many efforts are dedicated
towards its exploration, one finds at the same time that at current collider energies, linear low x
evolution provides a pretty good description of data, see for instance the study [8] of exclusive vector
meson production, where the energy dependence results directly of the NLO BFKL fit of [9]. To reveal
saturation effects (or rather their onset) at current energies, it is therefore necessary to study specially
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designed observables, which provide increased sensitivity to the presence of high gluon densities. In
the following we give some details on a calculation of such an observables as well as a first numerical
simulation. The hope is that this observable will provide deeper inside into the question, whether we
already experience the on-set of non-linear corrections or not. For more details we refer the interested
reader to the original publication [12, 13].

2 3 parton production in DIS at low x

Since the CGC-framework assumes high gluon densities in the probed target, the gluonic field of
the hadron/nucleus latter can be no longer treated perturbatively. The resulting formalism represents
therefore the DIS scattering process in the low x limit as the scattering of the virtual photon on a
strong background color field; this field then essentially represents the target, together with a suitable
averaging procedure over field configurations. Defining light-cone vectors n, n̄ through the four mo-
menta of virtual photon and target, i.e. n ∼ p and n · n̄ = 1 with v− ≡ n · v, v+ ≡ n̄ · v for a generic four
vector v, theory calculations are performed using quark and gluon propagators in the presence of the
background field A+,c. One finds for the propagators

S̃ F(p, q) = (2π)dδ(d)(p − q)S̃ (0)
F (p) + S̃ (0)

F (p)τ f (p, q)S̃ (0)
F (q) ,

G̃µν(p, q) = (2π)dδ(d)(p − q)G̃(0)
µν (p) + G̃(0)

µα(p)τg(p, q)G̃(0)
αν (q) , (1)

with the free propagators

S̃ (0)
F (p) =

i/p + m
p2 − m2 + i0

, G̃(0)
µν (p) =

idµν(p)
p2 + i0

, dµν(p) = −gµν +
n−µ pν + pµn−ν

n− · p , (2)

and the interaction terms

τ f (p, q) = 2πδ(p− − q−)/n−
∫

dd−2 ze−iz·(p−q)
{
θ(p−)

[
V(z) − 1

] − θ(−p−)
[
V†(z) − 1

]}
,

τg(p, q) = −2πδ(p− − q−)2p−
∫

dd−2 ze−iz·(p−q) ·
{
θ(p−)

[
U(z) − 1

] − θ(−p−)
[
U†(z) − 1

]}
. (3)

The latter contain Wilson lines in the fundamental (V) and adjoint (U) representation which resum the
interaction with the background field with

V(z) ≡ Vi j(z) ≡ P exp ig
∫ ∞
−∞

dx−A+,c(x−, z)tc (4)

and Uba(zt) = 2tr(taV(zt)tbV†(zt)); P denotes path ordering of the gluon field in the exponent while tc

is a SU(Nc) generator in the fundamental representation.

A well known possibility to increase gluon densities and therefore the sensitivity to saturation is
to consider furthermore scattering on large nuclei. In such a nuclear environment, gluon densities are
expected to be enhanced by a factor A

1
3 , with A the mass number of the nucleon. This sensitivity

to high density effects is then furthermore enhanced, if one considers exclusive final states: while
for inclusive observables the presence of high gluon densities leads mainly to a modification of the
x dependence of gluon densities [11], exclusive production processes can provide matrix elements
which differ for high gluon densities from their low density counter parts. They are therefore more
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Figure 1. In the Mercedes-Benz star configuration, all transverse momenta have equal absolute value, with
relative angle ∆ = 2π/3. We show the normalized cross-section for three parton production in the presence of
large gluon densities against ∆θq̄g with ∆qg = 2π/3 for proton and gold up to linear and quadratic order in N(2).
For the study the photon momentum fractions of the final state particles have been fixed to z1 = z2 = 0.2, z3 = 0.6
while |p1| = |p2| = |p3| = 2 GeV and Q2 = 9 GeV2 (plot originally published in [12]).

sensitive to effects related to high gluon densities and provide a tool for their exploration. In the
following we study the process

γ∗(q) + target (p)→ q(p1) + q̄(p2) + g(p3) + X, (5)

where we refer for details to [12, 13]. This observable has the big advantage that it depends on
the gluon distribution in the target in a highly non-linear way and therefore gives hope to reveal the
presence of such non-linear effects. The results of a first numerical study are shown in Fig. 1. With the
differential cross-section for the process Eq. (5) expressed in terms of dipole and quadrupole operators
of Wilson lines Eq. (4),

S (2)
(x1 x2) ≡

1
Nc

tr
[
V(x1)V†(x2)

]
, S (4)

(x1 x2 x3 x4) ≡
1

Nc
tr
[
V(x1)V†(x2)V(x3)V†(x4)

]
, (6)

this study uses the large Nc and Gaussian approximation [14] to express the quadrupole in terms of
the dipole operator. For the dipole profile itself a model motivated by recent rcBK1 fits to HERA data
[15] has been used,

S (2)
(x1 x2) =

∫
d2 l e−il·x12 Φ(l2) = 2

(
Q0|x12|

2

)ρ−1 Kρ−1(Q0|x12|)
Γ(ρ − 1)

,

where Φ(l2) =
ρ − 1
Q2

0π


Q2

0

Q2
0 + l2


ρ

, (7)

and Q0 is a scale proportional to the saturation scale. To justify the dilute limit associated with
the Gaussian approximation, we study the cross-section at large photon virtuality Q2 = 9 GeV2

1The running coupling Balitsky-Kovchegov equation (rcBK) provides a non-linear generalization of the BFKL equation as
discussed above, see [5, 15] for details
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and expand the differential cross-section up to quadratic order in N(2) = 1 − S (2). We further use
ρ = 2.3 and Qproton

0 = 0.69 GeV, as motivated by inclusive DIS fits at x = 0.2 × 10−3. Since we want
to search for effects due to large gluon densities, we further simulate scattering on a gold nucleus
through the re-scaling QAu

0 = A1/6 · Qproton
0 = 1.67 GeV. At linear order in N(2), the cross-section

is proportional to the Fourier transform of the dipole, Φ
(
(p1 + p2 + p3)2

)
and therefore gives direct

access to the gluon distribution in the target. At this order the cross-section is – up to the detailed
shape and x-dependence of the dipole factor Eq. (7) – identical to a corresponding BFKL calculation.
The configuration dominant in the ‘collinear’ limit corresponds then to the vanishing of the sum of
transverse momenta p1 + p2 + p3 = 0, i.e. the transverse momentum transfer between projectile and
target is zero. To study deviations from this configuration we first chose |p1| = |p2| = |p3|. For this
choice the ‘collinear’ limit p1 + p2 + p3 = 0 is then given by the Mercedes-Benz star configuration,
see Fig. 1. We observe vanishing of the partonic cross section at these ‘collinear’ configurations,
Fig. 1, with a strong double peak. This vanishing is explained by the vanishing of the partonic matrix
element at leading order in N(2) for zero momentum transfer between projectile and target, which itself
is expected from gauge invariance. For a complete study at hadronic level, we expect the double peak
to turn into a single peak. While in the case of the proton we find (besides the double-peak structure)
mainly a smearing of the collinear peak at ∆q̄g = 4π/3, the effect of a larger gluon saturation scale for
a gold nucleus can be clearly seen: while the shape of the linear gold curve is similar to the proton
curve, it is wider and depleted with respect to the former. Including further quadratic terms in N(2),
we start to probe effects due to high gluon densities at the level of the matrix element beyond the
mere modification of Eq. (7) and beyond the corresponding BFKL matrix element. In the case of
the proton, these corrections are small, as expected for x = 0.2 · 10−3 and a relatively large photon
virtuality Q2 = 9 GeV2. For a highly saturated gold nucleus, they are on the other hand sizable.
While this apparently puts doubts on the reliability of the current expansion up to quadratic order
in N(2), it clearly demonstrates the sensitivity of this processes to high and saturated gluon densities
and identifies it as suitable tool in searching for such effects already at currently accessible collider
energies.

3 Conclusions

In this contribution, we provided a short overview on the use of the 3 parton production process in
Deep Inelastic Scattering to pin down the presence of high density effects. Those effects in turn would
then allow a further exploration of the dynamics associated with gluon saturation.
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