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Methylmercury (MeHg), an environmental toxicant primarily found in fish and seafood, poses a dilemma to both consumers
and regulatory authorities, given the nutritional benefits of fish consumption versus the possible adverse neurological damage.
Several studies have shown that MeHg toxicity is influenced by a number of biochemical factors, such as glutathione (GSH), fatty
acids, vitamins, and essential elements, but the cellular mechanisms underlying these complex interactions have not yet been fully
elucidated. The objective of this paper is to outline the cellular response to dietary nutrients, as well as to describe the neurotoxic
exposures to MeHg. In order to determine the cellular mechanism(s) of toxicity, the effect of pretreatment with biochemical
factors (e.g., N-acetyl cysteine, (NAC); diethyl maleate, (DEM); docosahexaenoic acid, (DHA); selenomethionine, SeM; Trolox)
and MeHg treatment on intercellular antioxidant status, MeHg content, and other endpoints was evaluated. This paper emphasizes
that the protection against oxidative stress offered by these biochemical factors is among one of the major mechanisms responsible
for conferring neuroprotection. It is therefore critical to ascertain the cellular mechanisms associated with various dietary nutrients
as well as to determine the potential effects of neurotoxic exposures for accurately assessing the risks and benefits associated with
fish consumption.

1. Introduction

Methylmercury (MeHg) is a ubiquitous environmental
toxicant [1]. Several catastrophic epidemics resulting from
the consumption of food contaminated by MeHg have
highlighted the potentially disastrous effects of MeHg on
living organisms. Important examples include outbreaks in
Minamata [2], Niigata [3], and Iraq [4]. MeHg is a potent
neurotoxicant which affects both the developing and mature
CNS [5, 6]. In infants, MeHg causes widespread and diffuse
damage, whereas focal damage is caused in the adult brain. In
adults, chronic MeHg poisoning results in the degeneration
of the sensory cerebral cortex and the cerebellum, thereby
leading to severe neurological disturbances, such as cerebel-
lar ataxia and paresthesia, sensory and speech impairment,
and the constriction of the visual field [4, 7, 8]. The patho-

logical changes involve general neuronal degeneration with
gliosis in the calcarine, and precentral and postcentral areas
of the cerebral cortex, as well as the loss of granular cells in
the cerebellar cortex [9]. In biological systems, MeHg exists
only at a very low concentration as a free, unbound cation
[10] which can bind to sulfhydryl groups (-SH) of amino
acids with a very high affinity (log K in the order of 15–
23) [10]. This affinity of Hg for sulphur and -SH groups
is a major factor underlying the biochemical properties of
MeHg, which, consequently, leads to its interference with the
enzyme activities of several cellular targets.

In the marine ecosphere, MeHg is sustained [11, 12] and,
after bioaccumulation, is introduced into the human popula-
tion through the dietary intake of fish and seafood products.
[13–15]. MeHg toxicity due to the consumption of adul-
terated fish represents a major public health issue. Greater
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fish consumption in many cases is paralleled by increased
MeHg intake [16]; however, conversely, lower maternal
seafood intake has also been associated with higher risk
for a suboptimal developmental outcome [17]. According
to the Avon Longitudinal Study of Parents and Children
(ALSPAC), the authors reported that maternal seafood intake
during pregnancy of less than 340 g per week was associated
with an increased likelihood for their children to fall into
the lowest quartile for verbal intelligence quotient (IQ)
when compared with mothers who consumed more than
340 g of seafood per week. Though Hg consumption was
not assessed in this study, it is reasonable to assume that
greater fish consumption was paralleled by increased MeHg
intake. Moreover, several discrepancies in health outcomes
in fish-eating populations have been reported, such as
neurodevelopmental impairments in New Zealand [18–20]
and the Faroe Islands [21, 22], as opposed to the beneficial
effects noted in Canada [23], the Seychelles [24, 25], Peru
[26], and the United States [17, 27–30]. Additionally, labo-
ratory studies have also shown that dietary factors, such as
selenium, cysteine, protein, fat, fiber, and vitamin contents
can modulate the toxicity and excretion of mercury [31, 32].
A previous study [33] has also shown a significantly higher
rate of fecal excretion as well as a lower degree of MeHg
accumulation in the brains of rats fed naturally contaminated
fish as compared to rats fed fish containing chemically added
MeHg. The above-mentioned studies indicate that, in addi-
tion to intrinsic, genetic factors, the phenotypic responses to
MeHg exposure may ultimately depend on a number of com-
plex interactions within biological systems involving both
mercury and various dietary factors. It is therefore important
to study the effect(s) of confounding dietary factors that
occur when fish is consumed on MeHg distribution and
neurotoxicity. In this respect, it must be noted that different
types of fish accumulate different concentrations of nutrients
and contaminants [34–36]. Therefore it is of considerable
interest to determine how each component acts individually
(as well as with others) and influences the potential risk from
MeHg exposure. These cellular and molecular mechanisms
of MeHg action, as well as the underlying processes of its
interaction with dietary components have yet to be defined,
especially in specific central nervous system (CNS) targets.
Accordingly, this paper focuses on studies directed toward
estimating the effect(s) of dietary modifiers on MeHg neu-
rotoxicity, potentially providing information about critical
cellular mechanisms responsible for conferring neuroprotec-
tion from a diet that includes MeHg-contaminated fish.

2. MeHg-Induced Oxidative Effects:
Reactive Oxygen Species (ROS) Generation
and Glutathione (GSH) Depletion

The disruption of redox cellular homeostasis by an excess
of ROS formation, which leads to cumulative oxidative
stress appears to play a key role in the in vivo pathological
process of MeHg intoxication [37–42]. Conversely, several
studies have demonstrated the partial amelioration of MeHg
toxicity in the presence of antioxidants by the inhibition of

ROS generation [40, 43, 44]. Although the critical role of
oxidative stress in the pathogenesis of MeHg cytotoxicity has
been clarified, the molecular mechanisms underlying MeHg-
mediated oxidative stress have not yet been fully elucidated. A
major source of MeHg-induced increases in ROS generation
may be the mitochondrial electron transport chain. The
damaged mitochondrion increases oxidative stress, leading
to a decrease in defense mechanisms, such as reduced GSH
content, which represents one of the principal endogenous
antioxidants. In addition, binding to GSH is reported to be
responsible for the excretion of MeHg. Therefore, decreased
GSH levels usually parallel increased oxidative stress due
to MeHg exposure [45–49]. However, two epidemiological
studies associating oxidative stress and MeHg exposure [50,
51] have shown both an increase and a decrease in GSH levels
with increased total Hg levels. This suggests that MeHg can
increase ROS which may either inhibit GSH levels or initiate
an adaptive response to oxidative stress by increasing GSH
levels. Moreover, studies of human populations, although of
direct interest, cannot be controlled for multiple confound-
ing variables. This obstacle can be overcome by conducting
studies on laboratory animals; such investigations can iden-
tify the mechanisms of action by which neurotoxicants and
neuroprotectants interact.

3. Role of GSH Modulators on
MeHg-Induced Neurotoxicity

Upregulation [52], or the induction of an increased synthesis
of GSH [45], has been reported to provide neuroprotection
against MeHg-induced neurotoxicity. A similar alleviation
in MeHg-induced cytotoxicity and oxidative stress has been
reported with N-acetyl cysteine (NAC) supplementation [39,
53–55]. The mechanisms involved in protection afforded by
NAC include increased intracellular GSH [54, 55] as well
as a transient increase in the urinary excretion of MeHg,
which was shown to cause a decrease in the level of MeHg in
both the adult brain and the fetus [53, 56]. In addition, the
increased amount of GSH in cortical, as compared to cerebel-
lar, astrocytes has been reported to account for the increased
MeHg-induced ROS production in cerebellar astrocytes [55].

Conversely, the depletion of intracellular GSH with
diethyl maleate (DEM) has been reported to increase cell-
associated MeHg and MeHg-induced ROS [48, 54, 55]. The
underlying mechanism of this process involves the conju-
gation of free sulfhydryl groups of GSH with DEM, which
results in the distinct depletion of GSH. Also, gestational
exposure to MeHg has been reported to cause the dose-
dependent inhibition of cerebral GSH levels, an outcome
which could be correlated with increased lipid peroxidation
in the pup brain [57]. These biochemical alterations were
found to endure even after Hg tissue levels decreased, thus
indicating permanent functional deficits observed after pre-
natal MeHg exposure as well as an additional molecular
mechanism by which MeHg induces prooxidative damage in
the developing CNS.

In summary, changes in intracellular MeHg content with
GSH modulation provide an explanation for the increased
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susceptibility of certain cell types towards MeHg-induced
oxidative stress [54, 55].

4. Role of DHA in Modulating
MeHg-Induced Neurotoxicity

DHA cis-4,7,10,13,16,19-docosahexaenoic acid, is one of the
most abundant polyunsaturated fatty acids (PUFA) in the
phospholipid fractions of the mammalian brain [58, 59].
Both seafood and breast milk serve as major dietary routes
of MeHg [60, 61] and DHA [62–65]. The ability of DHA
to affect ROS is controversial, as several contrasting studies
have documented the ability of DHA to decrease the level
of lipid peroxide [66–68] and to cause free-radical-mediated
peroxidation in the brain [69–71]. DHA have been reported
to modulate MeHg toxicity [33, 72–74]. These studies have
demonstrated the beneficial effects of DHA on using a DHA-
enriched diet against MeHg-induced decreases in serum
albumin levels, changes in mitochondrial membrane poten-
tial, and developmental defects. However, other contradic-
tory studies have reported no protection against MeHg-
induced behavioral defects [75, 76]. It is therefore important
to identify the biochemical mechanisms involved in the DHA
protection against MeHg neurotoxicity.

Kaur and colleagues [77, 78] demonstrated that pretreat-
ment with DHA was associated with reduced cell-associated
MeHg in neuronal cell lines and primary cells. In addition,
decreased ROS and unchanged GSH levels were found in
primary cultures, whereas increased ROS and GSH depletion
were found in C6 cells [77, 78]. These differences with respect
to the effect of DHA on oxidative stress could be due to the
fact that the growth of cancerous cells is inhibited by DHA
as compared to noncancerous cell types [71, 79]. Indeed,
another recent study has shown that fish oil offers significant
DNA protection as well as anti-inflammatory effects in the
absence of changes in GSH levels [50]. These observations
strongly suggest that DHA may neuroprotect against MeHg-
induced ROS generation even in the absence of significant
changes in GSH levels.

5. Role of Selenomethionine in Modulating
MeHg-Induced Neurotoxicity

Selenium (Se) is an essential trace element known to
accumulate in significant amounts in numerous species of
seafood [80, 81]. The majority of Se in fish is in the organic
form, selenomethionine (SeM) [82, 83], and is more bio-
available than are inorganic forms [84]. Selenium has also
been detected in human milk [85]. The modulating effect
of Se on MeHg toxicity was discovered when researchers
observed that marine mammals could accumulate exception-
ally high concentrations of Hg and Se compounds without
displaying obvious symptoms of intoxication [86, 87]. Sev-
eral subsequent studies later confirmed that the toxic effects
of both organic and inorganic Hg were prevented by Se com-
pounds [88–92]. Treatment with different Se compounds
has been shown to effectively protect cells against different
toxic effects induced by MeHg exposure, such as cytotoxicity,

fetotoxicity, neurotoxicity, and developmental and neurobe-
havioral toxicity [93–97]. In addition, Se deficiency has been
shown to potentiate the adverse effects of MeHg toxicity in
rodents [98, 99].

With regard to epidemiological studies and Se content, it
is important to note that Faroe Islanders, by virtue of a whale
meat diet, are generally exposed to MeHg levels that are in
excess of Se levels [100], whereas the Seychellois are largely
ocean fish consumers, and Se molar concentrations tend to
greatly exceed MeHg concentrations in this seafood source
[101]. In addition, the dietary Se status in the New Zealand
population was extremely poor at the time of the study [102].
This distinction could be one explanation for the different
effects noted in these studies, although additional evidence
is needed to support this hypothesis [103]. Therefore, devel-
oping a better understanding of the mechanisms associated
with the interaction of MeHg and Se is of particular necessity.

Several studies have indicated that the mechanism under-
lying Se’s ability to ameliorate MeHg toxicity is related to an
antioxidant effect [104–108], which includes the forma-
tion of GSH [109], higher glutathione peroxidase (GPx)
activity [85], increased selenoprotein levels [110–112], and
the reduction of organic hydroperoxides [113–115]. Addi-
tionally, studies have shown that binding of MeHg [116,
117] and the formation of a highly stable organic MeHg-
selenocysteine complex [98] also influence the accumulation
of MeHg in tissues [118–121] and the uptake of MeHg in cells
[114, 122–124]. Furthermore, Se is known to enhance the
excretion of MeHg [56, 125], and a recent study has shown
[126] that SeM can demethylate MeHg under physiologically
and environmentally relevant conditions. Hence, the inter-
active effects between MeHg and SeM result in reduced cell-
associated MeHg and prooxidant response from MeHg.

6. Role of Trolox in Modulating
MeHg-Induced Neurotoxicity

Seafood serves as a source of vitamins, with estimates
ranging between 4.84 and 17.90 μg vitamin E per gm of
fish [127], which makes this vitamin the most significant
physiologic membrane-associated antioxidant available from
seafood. Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-
carboxylic acid), a water soluble analog of vitamin E [128],
serves as a better antioxidant than vitamin E [129, 130]
due to its improved access to the hydrophilic compartments
of the cells [131], as well as its stoichiometric properties
[132]. Trolox scavenges free radicals [59, 133–137] via the
H-donating groups [128, 138]. Treatment with Trolox has
been reported to protect against MeHg-induced cytotoxicity
[139], the decrease in mitochondrial electron transport
system enzyme activities, and the increase of mRNAs of
antioxidant enzymes [108, 140]. Trolox treatment has also
been shown to reverse ROS induction by MeHg in pri-
mary astrocyte cultures [44] and to prevent MeHg-induced
oxidative stress [141], where the modulating effect of Trolox
on cellular ROS levels was not accompanied by changes in
cellular MeHg, GSH, or MTT activity [141]. These findings
indicate that Trolox affords protection against ROS by
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the direct quenching of free radicals and not by MeHg
chelation or by the induction of increased levels of GSH or
mitochondrial enzymes. In fact, it has been previously shown
that in vivo protection with Trolox does not affect intracellu-
lar GSH [142, 143] or MeHg levels [140]. The recognition
of the protective effects of Trolox and the identification of
its mechanisms via in vitro models establish that vitamin-
dependent antioxidant defences are important factors in
specific cells for attenuating the neurotoxic effects of a
MeHg-contaminated fish diet.

7. Discussion

Fish is not only an excellent nutritional source of protein,
vitamins, zinc, and other minerals, but it is also a source
of exposure to MeHg [144, 145]. One of the leading
controversies in the MeHg literature originates from advi-
sories concerning the consumption of fish [146] and from
uncertainties in documentation from various regulatory
agencies regarding the effects of MeHg. The Joint FAO/WHO
Expert Committee on Food Additives reported in 1978 that
“the fetus may be more susceptible to MeHg toxicity than
the adult” [147]. The United States White House in 1998
convened an international workshop where a variety of
possible uncertainties and confounders important to MeHg
toxicity evaluation were discussed. Their conclusions stated,
“Even when dietary stresses and co-exposures to other chemicals
could plausibly enhance or alter risk, it was still deemed that
there are inadequate data on this subject to draw meaningful
conclusions at this time” [148]. Later, in 2000, the National
Academy of Sciences committee reported that, “60,000
children in the United States were at risk as a result of prenatal
exposure” [149]. However, no justification or explanation for
that conclusion was provided [16, 150]. The issue that poses
a significant dilemma for both consumers and regulatory
authorities is whether fish consumption should be encour-
aged for its nutritional benefits to the developing brain or,
conversely, whether fish consumption should be discouraged
due to the possible adverse effects of MeHg on the developing
CNS. This nutrition versus neurotoxicity controversy can
be addressed by estimating the effects of dietary factors
on MeHg-induced toxicity as well as by determining the
mechanisms behind such effects. A thorough assessment
of coexposure from dietary nutrients as well as neurotoxic
exposures would offer valuable information for accurately
determining the risks and benefits of fish consumption [151,
152].

This paper explores the mechanisms associated with
MeHg and dietary nutrients obtained from the consumption
of seafood. The toxicity of MeHg has been reported to be
caused by a reduction in the amount of intracellular GSH
[45, 46, 48], which leads to the augmentation of ROS
formation [37, 40–44, 153]. This paper investigates the
effects of MeHg on oxidative stress and details the role
played by GSH in modifying these effects. It also identifies
the biochemical mechanisms underlying exposure to GSH,
DHA, Se, Trolox, and MeHg, where these modifiers have
been shown to effectively decrease MeHg-induced ROS
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Figure 1: Effect of different modulators on MeHg-induced cellular
ROS in C6-glial and B35-neuronal cell lines. Results are expressed
as mean ± standard deviation (n = 8 replicates for each cell type in
two independent experiments). Superscript (a) indicates P < 0.05
for control versus each type of treatment; (b) indicates P < 0.05
for C6 versus B35 cell line for each type of treatment; (c) indicates
MeHg versus DHA/SeM or Trolox+MeHg-treated group. Values
represented the percentage of activity relative to control cells.

(Figure 1). In addition, it is important to note that the
interaction between these dietary nutrients may have an
effect on overall toxicity. For example, the benefits from
Se against MeHg toxicity can be influenced by the intake
of long-chain, polyunsaturated fatty acids (LCPUFAs) [65,
154]. It has also been shown that the shape of the dose-
effect curve for Hg is dependent upon the co-exposure
of dietary components such as Se and vitamin E [145].
This paper, concludes that GSH, DHA, Se and Trolox are
strong confounders in the association of MeHg toxicity and
that the interaction between them may affect the cellular
oxidative status. Thus, it is necessary to consider different
confounders and the various mechanisms by which they
interact with Hg when investigating the potential beneficial
effects of fish consumption. Indeed, doing so would provide
valuable insight for developing a better understanding of
the benefits and risks of fish consumption, acknowledging
both the proven beneficial nutrients as well as the potentially
dangerous contaminants contained in this important food
source. Furthermore, such information would also assist
public health authorities as they seek to advise the populace
and as they undertake efforts to formulate appropriate
dietary recommendations for consumers of fish and seafood
products.
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