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O R I G I N A L  R E S E A R C H

Introduction
A high-efficiency, easy-to-use input device is not only

important for data entry but also for human–computer

interface (HCI). This interaction has been attracting much

attention recently with the increased use of human-oriented

mechatronic devices.

Input can be considered as a process of putting

information into machines by making selections from a set

of provided choices. Using this approach, input devices can

generally be classified into 4 types based on the selection

method and choice presentation. These types are described

in Table 1.

When using a normal keyboard (an example of the

‘physically extended’ category), a person selects the correct

character for pressing by moving on a set of spatially,

physically extended key switches. Mouse devices belong

to another spatially extended type, ‘cursor select’, but the

icons to be chosen are usually extended virtually on a

graphics layout. Input devices of most brain–computer

interfaces (BCI) belong to this type (Birbaum et al 1999).

The spatial moves for these two types need some kind of

feedback to guarantee the reaching of the correct position

to finish selection. Cursor select types need more feedback

information, since moving the cursor by a roller to the target

generally needs more than one action. Moreover, cursor

moving relies on the state of the device, eg roller and mat

conditions. Conversely, ‘temporally extended’ types, eg

Morse code telegraphs, need a sequence of actions to input

a character; however, since no spatial feedback is needed,

despite the few degrees of freedom (DOF) choice, it can

realise high-speed input. With practice, even with Morse

code, one can reach an average of 30 wpm (words per

minute), which is comparable to that of usual keyboards’

40–50 wpm.

Several companies have released effective voice input

software packages; however, speech recognition-based data

entry is still developing. A speech recognition system is

large compared with other data-entry methods, as there

needs to be a phoneme database, a word database and a

sentence database prepared and installed. In addition,

recognition accuracy is still not satisfactorily high.

Moreover, a quiet and exclusive environment is usually the

precondition of using such a data-entry method.

Correspondence: Wenwei Yu, Complex Engineering Department,
Hokkaido University, North 13, West 9, Sapporo 060-8628,
Japan; tel +81 11 706 6446; fax +81 11 708 5188; email
yu@complex.eng.hokudai.ac.jp

An EMG keyboard for forearm amputees
Wenwei Yu, Ryu Kato, Fukuda Fabio, Hiroshi Yokoi, Yukinori Kakazu

Complex Engineering Department, Hokkaido University, Sapporo, Japan

Abstract: A high-efficiency, easy-to-use input device is not only important for data entry but also for human–computer interaction. To

date, there has been little research on input devices with many degrees of freedom (DOF) that can be used by the handicapped. This

paper presents the development of an electromyography (EMG)-based input device for forearm amputees. To overcome the difficulties

in analysing EMG and realising high DOF from biosignals, the following were integrated: (1) an online learning method to cope with

nonlinearity and the individual difference of EMG signals; (2) a smoothing algorithm to deal with noisy recognition results and transition

states; and (3) a modified Huffman coding algorithm to generate the optimal code, taking expected error and input efficiency into

consideration. Experiments showed the validity of the system and the possibility for development of a quiet, free-posture (no postural

restriction) input device with many DOF for users, including forearm amputees.

Keywords: input devices, EMG analysis, Huffman coding, online learning

Table 1 Comparison between different types of input devices

Input device Selection Choice Choice Choice

type method DOF presentation type

Physically Move + 101 Spatially, Character
extended key physically

eg keyboard pressing extended

Cursor select Move + X, Y, click Spatially Depends

eg mouse click (3) extended on setting

in screen

Coding Key Click or not Temporally Character

eg Morse pressing (1) extended,

code encoding

Speech Voice Number of Signal Phoneme

recognition phoneme processing
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The basic evaluation criteria of an input device includes

input DOF, input speed and ergonomic factors such as

posture, effects on surroundings and the space occupied.

Regarding ergonomic factors, many alternative keyboards

have been recently developed, improving ease of typing,

posture during typing, or space saving (Lueder and Grant

1997). Senseboard® (http://www.senseboard.com/

index.php) realises a space-free input by capturing the

motion of hands and fingers. Virtual Keyboard (VKB)

(http://www.vkb.co.il/) uses an optical image projection

technology combined with a detection module to achieve a

small size and low power consumption input method.

However, there is little research on input devices with

large input DOF that can be used by the handicapped.

Barreto (1999, 2000) gave a practical electromyography

(EMG) interface for the handicapped, but no consideration

was shown for how to construct high DOF input devices.

The Click-N-Type virtual keyboard (http://www.lakefolks.

org/cnt/) was motivated by the needs of quadriplegic users,

and was developed for people with limited muscle control.

It also belongs to the cursor select type.

This research attempted to develop an EMG-based input

device with large DOF for forearm amputees. EMG signals

were detected from the upper forearms of amputees where,

for those who had had prompt treatment and rehabilitation,

muscle function remains after amputation. For forearm

amputees, this device will not only help them restore part

of their working ability, improving their quality of life, but

will also provide exercise for their remaining muscles.

Moreover, technologies of the input device can also be

applied to non-amputees to improve some of the ergonomic

factors of input.

As physical key touch or press is impractical for

amputees, and EMG signals detected from a few channels

cannot supply a sufficient action pattern repertoire, the

strategy needed to: (1) take as many stable elementary action

patterns as possible from a few channels of EMG signals so

that the temporal extension could be reduced to a minimum;

(2) treat the action patterns recognised from EMG signals

as basic digits, eg ‘0’ and ‘1’ of the binary system; and (3)

encode the elementary action patterns to express characters,

considering the possible recognition errors and input

efficiency. Therefore, the input device attempted was the

‘coding’ type (see Table 1). In such a system, users need to

memorise a codebook developed for them. Comparatively

high speed, quiet input with large DOF in natural postures

are features of the system.

EMG signals have been used in keyboard research

(Smith and Cronin 1992; Martin et al 1996), although mainly

as a rough, relative measurement of force exertion and

fatigue.

To use EMG signals to analyse forearm motions, the

following difficulties in EMG processing should be

considered (Yu et al 2002):

• It is difficult to specify a certain action intention from

the superposition of multiple potentials, since the electric

potentials of activated muscles are affected by various

nonlinear elements such as fat and tissue.

• The interface using EMG should be individual-adaptive,

since motion patterns of human beings are subject to a

wide range of individual variations.

• EMG analysis should be able to trace the alternation,

since subjects’ characteristics vary through time due to

environmental influence, muscle fatigue and physical

states of subjects, especially in the initial stage of

learning.

To overcome these problems, we integrated two approaches

into our system: a machine-learning approach and an online

approach. Since it is difficult to write general recognition

rules for different users, an artificial neural network (ANN)

model was used to learn and adapt to the individual

characteristics. The online process was employed to receive

teaching signals from operators and form an internal

evaluation, which accelerates the learning and enables the

controller to trace the non-stationary factor. Previous

research shows that it is possible to distinguish 6–10 forearm

action patterns for prosthetic hand control from two to three

channels of EMG within 10–15 min (Nishikawa et al 2002).

One objective of this research was to apply the online

method to EMG analysis for realising EMG input with large

DOF. However, one feature of input action gives the

particular requirement that is different with EMG analysis

for prosthetic hand control. That is, in the case of prosthetic

hand control, without considering delay, it is the signals in

the steady stage of the muscle potential that should be used.

Namely, each intended action could be taken as one

stationary state. A short sequence of transitional state outputs

or noisy outputs will not show too much bad influence on

the prosthetic hand control, since they will be overwritten

by prevailing right action sequences. Conversely, due to the

continuous nature of input action, transitional states and

unsteady states are unavoidable and will cause erroneous

characters to be recognised. Therefore, mechanisms that can

deal with the noisy and transition states should be
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incorporated. Moreover, the efficiency of input requires

fewer expected actions for text input, with lower overall

expected error rate.

The basic assumption of this study is that instead of

treating forearm motions as completely continuous ones,

each motion can be taken as a static gesture state enfolded

by several transitional states. The underlying fact supporting

this assumption is that smooth prosthetic hand control can

be realised by static gesture recognition from forearm EMG

signals, ie the static period prevails over an overall motion

process.

According to the above analysis, the following 3

methods were integrated into the EMG keyboard system:

1. the backpropagation-based online learning method to

cope with nonlinearity and individual difference;

2. a smoothing algorithm to deal with the noisy recognition

results and transition states;

3. a modified Huffman coding algorithm to generate the

optimal code considering expected error and input

efficiency.

The details of the EMG analysis system, the smoothing

algorithm, as well as the modified Huffman coding

algorithm will be described in the following section.

Method
The overall system was constructed by connecting the

3 methods mentioned above (see Figure 1). The first is an

EMG-to-gesture classifier, which receives raw EMG as

input, and outputs sequences of gesture labels attached by

transitional and noisy states. In this paper, the term ‘gesture’

denotes the part of a forearm action that can be taken as

static, while the term ‘motion’ denotes the whole process

of a continuous forearm action. The online learning method

was employed to realise the classifier. The second part is a

motion analyser, which analyses gesture sequences – raw

recognition results – processing single spot noise and

transitional states to output motion label sequences. The

third is motion-to-character transformation, realised by a

modified Huffman coding algorithm.

Online learning method
The online learning method was proposed for analysing the

physiological signals conforming to an individual’s

characteristics. Figure 2 shows the composition of the EMG

analysis system, which is composed of three main parts.

The first is a feature-extracting part, which extracts

necessary and sufficient information from source signals.

The second is a data management part, which generates and

maintains (does data management for) a training set for the

adaptive recognition part from the teaching signals sent by

operators. The third is a recognition part that determines

operations according to current feature vectors and is

implemented by an ANN in this edition. These three parts

(ie feature extracting, teaching, learning and recognition)

Analysis
unit

Classification
unit

Trainer
database

Feature Vector

Teacher Signal

Teacher Vector

User

Gesture

Figure 2 Composition of an online EMG-to-gesture classifier.

Figure 1 System overview.
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work simultaneously, ie if users feel that the system is not

working so well, they can give a teach signal to cause the

partial reconstruction of the recognition part; meanwhile,

the system should keep recognising and learning based on

the current function (Nishikawa 2002).

Feature vector
A fast Fourier transformation (FFT)-based analysis was

employed, and the spectrum generated was further

smoothed. The transformation can be briefly expressed by

the following equation:
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where w denotes a range for smoothing. Features were then

evenly selected from whole components, which would be

G ′(200), G ′(300) and G ′(400) for each channel.

Backpropagation neural network
An ANN was used for the recognition part. In this edition,

a three-layer backpropagation neural network (BPNN) was

used for adaptation (Aihara and Douya 1993). The output

of each neuron was calculated by the following equation:

1
1

1

( )
mn

m m m m
i i ij j

j

x f u f w x
−

−

=

å õ
= = æ ö

ç ÷
ä (3)

(m = 2, 3; i = 1, …, nm)

where nm is the number of mth layer’s unit, m
iu the input,

m
ix the output of i th unit of the m th layer, and m

ijw is

the weight between the (m–1)th and mth layers. Each unit

of the network used the sigmoid activation

( ) 1/(1 )xf x e α β+= + , where α and β are constants that

determine the transition of the neural unit. In this

experiment, α = 1 and β = 1. The purpose of the learning

was to minimise the energy function E, defined by
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training pair i. The update of weights was based on the

backpropagation (Aihara et al 1993), which can be expressed

as:
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Note that f ′ denotes the differential calculus of function f,

and µ is a parameter denoting the learning speed.

Smoothing
The transitional states enfolding one certain static state are

somewhat regular; therefore, if they were made use of, they

may contribute to the more accurate gesture or motion

recognition. However, this needs systematic study to first

find the underlying regularity. In this research, the emphasis

was on the static gesture part, simply removing the

transitional states and noisy recognition results to extract

motion information from raw recognition results.

Three heuristic rules were employed to cope with the

transitional states and noisy recognition results (Figure 3).

These 3 rules are executed serially; ie the 3 rules scan a

label sequence 3 times.

Let ‘1’ be a stop bit, let ‘2–7’ be gesture labels generated

by the EMG-to-gesture classifier, and let ‘*’ be a mask

denoting a temporary symbol. The objective of the first rule

is to remove noisy recognition results. Since most

physiological signal sources can be described as stochastic

processes interwoven with each other, mis-recognitions are

almost unavoidable. The first scan replaces those single spots

with a temporary ‘*’ mask. The scan by rule 2 is to keep

motion continuity. If two continuous sequences with the

same label are separated by a ‘*’ mask, the single ‘*’ is

replaced with a label the same as its neighbour. Or, if the

number of ‘*’ is larger than 1, then each ‘*’ is replaced by a

stop bit ‘1’. The last scan by rule 3, a rule contributing to

motion stability, is used to extract motion labels from a

sequence of gesture labels. The sequence of identical labels

with a length longer than threshold Th is extracted as a

motion of the same label. All the others are treated as stop

Figure 3 Three heuristic smoothing rules.

Before : 5555255553376744444445111

After : 5555*555533***4444444*111

Rule 1: nois-- removingRule 1: noise-removing

Before 5555*555533***4444444*111

After 5555555553311144444441111
Case 1: :Case 2

Before : 5555*555533***4444444*111

After : 5555555553311144444441111
Case 1: :Case 2

Rule 2: motion-continuityRule 2: motion-continuity

Rule 3: motion-stabilityRule 3: motion-stability

Before : 5555555553311144444441111 • • •

After : 5  4 

1: stop bit,
2–7: gesture, 
*: mask

• • •

• • •

• • •

• • •
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bits. Th decides the trade-off between promptitude and

accuracy of input. In the experiment described, Th was set

to 5.

A modified Huffman coding algorithm
Huffman coding is a technique that attempts to reduce the

average code length used to represent the symbols of an

alphabet. To reduce the average code length, symbols are

allowed to be of varying lengths, and the shortest codes are

assigned to the most frequently used symbols.

This meets the requirement of the EMG keyboard, which

is to input the required content using as few forearm motions

as possible. The difference is that, in addition to the

requirement of fewer motions, lower overall expected error

rate is an important condition. The rudimentary action

patterns are not completely guaranteed due to the stochastic

nature of signal sources and difficulties in signal processing.

Therefore, a code with fewer expected motions for a

character set and lower expected error rate was needed. See

Algorithm 1 for the modified Huffman coding algorithm.

After a Huffman code tree is generated, the code for

each symbol may be obtained by tracing a path to the symbol

from the root of the tree. In the case of a binary tree, a ‘0’ is

assigned for a branch in one direction, and a ‘1’ is assigned

for a branch in the other direction. For example, a symbol

that is reached by branching right twice then left once may

be represented by the pattern ‘001’.

Experimental setting
The experiment setting is illustrated in Figure 4. Two EMG

electrodes (Model DE-02.3H, Delsys) were placed on the

ulna and radius side within a belt zone 15–20 cm above the

wrist joints, respectively. The amplifier was handmade.

The A/D card used was CONTEC AD12-8 (PM) (input

range –10 V to +10 V, resolution 12 bit). The sampling rate

used for each channel was 1600 Hz.

A laptop computer (Panasonic CF-A2, 600 MHz) was

used to realise the 3 processing components. The teaching

signals were given through the keyboard of the laptop.

Operators can see both the EMG recognition results and

CG (computer graphics) hand motion displayed on the

laptop monitor. The subject gestures are illustrated by icons

of CG hand used in the experiment in Figure 5.

The parameters for feature extraction were decided by

trial-and-error: N ′ = 256, τ = 0.000625, and smoothing

parameter w= 16.

Ordinarily, the extracted feature vectors were used as

the inputs of the recognition part to decide operation

commands. However, when a teaching signal was received,

the feature vector at that moment would also be added to

the training set, with a teaching label given by the operator.

Ch.1 Ch.2 Sensor AMP

User
PC

Hello 
world!

PC

Operator
Teacher  Signals

Figure 4  Experiment setting. The subject gestures are illustrated in Figure 5 by icons of CG (computer graphics) hand used in the experiment.

Algorithm 1 The modified Huffman coding algorithm. In steps 0 and 1, the
character and motion sets are sorted according to the probability of K and
recognition correct rate of motion M, respectively, to code the keys with higher
appearance probability, achieving more reliable motions and shorter code
length.

Step 0: Sort M according to R, to a buffer Br 

Step 1: Sort K according to P, to a buffer Bp 

Step 2: Select nm keys with lower p 

Step 3: Integrate the keys to a new node g  

Set g  > nk, pg= j 
nm

 pj 

Insert node g into Bp  

Assign m of Br orderly to the keys 

Step 4: If num(Bp) > nm, goto Step 2 

 

Where: 

character set:  K (k1, k2, …, knk) 

probability of K:  P (p1 , p2, …, pnp)  np = nk, i pi = 1 

motion set: M (m1, m2, …, mnm) 

correct rate of M:  R (r1 , r2, …, rnr ) nm = nr 
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Each training set contains a 22-dimensional feature vector

(11 for each channel) and a teaching label pair given by the

operator. The BPNN used to realise recognition consists of

3 layers with an input layer neuron number of 22, a hidden

layer neuron number of 22, and an output layer neuron

number of 7 (corresponding to the 7 gestures shown in

Figure 5).

Results and discussion
In this section, the aforementioned 3 processes used to

construct an EMG keyboard are at first separately

investigated and discussed, and, finally, the overall

performance of the whole system is tested by a text-input

experiment.

Online learning for single gestures
Since the detecting positions change every time the sensors

are mounted and, also, individual characteristics change with

time, the feature vectors of both channels are inconstant.

However, if the recognition rate is sufficiently high, there

should be differences in feature space between all the motion

patterns. To give a visual illustration of how the gestures

were differentiated, averaged feature vectors of all 6 gestures

in one trial are shown in Figure 6. As shown in the figure,

the features of two channels take effect alternately, so at

least from the averaged feature vectors, these 6 gestures are

distinguishable. Kato et al (2002) investigated the

differentiability of physiological data, but it is beyond the

main topic of this paper.

The effectiveness of learning was investigated using

accuracy tests. In an accuracy test, users were required to

control the CG hand to a gesture instructed on the monitor

for a period of 15 s. The results were then recorded and

used to calculate an accuracy rate.

Figure 7 shows the recognition results for 10-trial online

learning. The accuracy rates of 6 gestures were averaged

and are denoted by bars in the figure with their deviations.

Although the standard deviation fluctuated with the trials,

the overall performance kept around 90%. According to our

experience on myo-controlled prosthetic hand control, this

average accuracy rate is sufficient for static control.

Smoothing raw recognition results to
motion patterns
Due to the existence of noisy states and transitional states,

the high accuracy rates of the static gesture recognition do

not mean a high success rate of text input. This can be made

clear by a continuous action experiment.

In the continuous action experiment, each gesture was

paired with another gesture, with 1 idle action as the stop

bit between them. For example, ‘213’ means open (2) and

grasp (3), with a middle idle. 6 × 6 pairs of gestures were

tested. Each pair was repeated 10 times. By using the same

classifier obtained in the first stage, accuracy tests were

carried out again.

Figure 8 shows one of the executions of a gesture pair

‘514’. Thin lines denote raw recognition results, and thick

lines denote smoothed results. Single-spot noisy outputs,

Figure 7 Recognition results for 10 trials. Each bar represents the average
value over 7 gestures recognised and their deviations.
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Figure 5 Subject gestures.
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Figure 6 Feature vectors of two channels of EMG.
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the transitional states, are expressed by the inconsistencies

of the up or down edges of the rectangular wave. By

knowing the gestures being executed, the raw results can

be smoothed and modified into a reasonable motion

sequence. However, in the case of real text input, the gesture

being executed would be unknown, so that erroneous

recognition existed even after the smoothing, which needs

to be considered in the key code generation stage. By

smoothing without knowing the gestures being executed,

the average (averaged over 6 × 6 × 10 executions) accuracy

rates (see Figure 9) show that the accuracy rates for each

gesture drop by about 10%.

Alphabetic keystroke occurrence frequency
and Huffman coding
Keystroke occurrence frequencies differ from one

occupation category or research field to another. Although

there are many keystroke statistics in certain specialist fields,

such as in Wall Street-related journals and some scientific

journals, it is necessary to investigate the characteristics of

input of each individual, including the edit keys, such as

the backspace and arrow keys. Fortunately, it is not too

difficult to do this. As an example, we investigated the

keystroke occurrences by recording all the key code values

while a 33-year-old subject input a piece of text, which is

the Preface (p xi–xviii) of the book Bioinformatics – The

Machine Learning Approach edited by Pierre Baldi and

Soren Brunak. The text includes 35 paragraphs, 3120 words

and 19 035 characters (22 235 characters if SPACE

included). The occurrence frequency can be calculated using

this data (see Figure 10). Details can be found in Appendix 1.

Given the motion accuracy rates and the occurrence

frequencies, a Huffman code can be generated according to

the algorithm shown in Algorithm 1. Motion codes of some

high-frequency characters are shown in Figure 10. Details

of the codebook can be found in Appendix 2.

Table 2 gives a comparison between the modified

Huffman coding and 3 other fixed-length codes, in terms of

motion number needed and expected average accuracy, for

the example text in Appendix 1. Regarding the 3 fixed-length

codes, description of 81 symbols needs 3 digits using 5 or 6

motion patterns, and 4 digits using 3 or 4 motion patterns.

Their codes are generated by assigning the motion patterns

with higher correct rate to smaller numerals. For example,

in the case of 5 motions 3 digits, flexion(5), with a highest

correct rate of 0.85, will be assigned to ‘0’, and extension(4),

with a second high correct rate of 0.83, will be assigned to

‘1’. The item ‘hit count’ expresses the number of the figure,

ie the motion used in order to input the text described in

Appendix 1. The item ‘expected accuracy’ is the product of

the count and its corresponding correct rate. From the table,

the codes generated by the modified Huffman coding

algorithm have the lowest hit count sum, which is almost 2/

3 and 1/2 of those of 3 digits and 4 digits; meanwhile, its

average expected accuracy of text input is comparable to

the other 3 codes. This is realised by assigning the motion

patterns with higher correct rate to more frequently used

figures, which is guaranteed by the correct rate sorting

Figure 8 Raw recognition results and smoothing (for 514).
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operation. This was reflected by the fact that the hit count

values of the modified Huffman coding were in descending

order – same as that of correct rates.

Text input experiment
The actual learning and training process is as follows:

1. Gesture output training stage. Several online learning

training sessions were carried out until a high gesture

recognition accuracy rate was reached. There was one

training session per day. The term of the stage is

individual dependent. Our experience is that most

subjects can go through this stage in 3–5 days. Although

the online learning method itself can deal with the time-

varying characteristics, it is impractical to change a

codebook after it has been used; the training for the

online learning-based EMG-to-gesture classifier would

last until comparatively stable action patterns could be

generated.

2. Codebook generation stage. In the case of non-amputees,

a group were asked to supply a piece of text specific to

their particular field or occupation. They were then

required to input the text at their normal input speed.

Both the keystroke occurrence features and the

individual characteristics in inputting were saved in a

key code record. In the case of amputees, several existing

key code records were employed in order to decide a

suitable one. The key code records were analysed and

used to generate codebooks.

3. A text input exercise stage. Subjects were asked to re-

member the codebook generated and practise text input.
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Figure 10 Keystroke occurrences and the Huffman code tree.

Table 2 Motion number needed and expected average accuracy for the example text in Appendix 1

Huffman code 6 motions 5 motions 3 motions

variable 3 digits 3 digits 4 digits

Correct Hit Expected Hit Expected Hit Expected Hit Expected

Motion code rate count accuracy count accuracy count accuracy count accuracy

Flexion(5) 0.85 11 657 9908.45 13 456 11 437.6 10 468 8897.8 34 124 29 005.4
Extension(4) 0.83 8501 7055.83 20 015 16 612.45 11 308 9385.64 21 929 18 201.07

Grasp(3) 0.82 6372 5225.04 9750 7995 21 995 18 035.9 32 887 26 967.34

Supination(6) 0.74 5636 4170.64 12 617 9336.58 10 551 7807.74 0 0
Open(2) 0.72 4884 3516.48 4101 2952.72 12 383 8915.76 0 0

Pronation(7) 0.72 4490 3232.8 6766 4871.52 0 0 0 0

Sum 41 540 66 705 66 705 88 940
Average 0.797045 0.797629 0.795185 0.833976
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To test the overall performance of the integrated system, a

text input experiment was done. For initial training, a short

sentence, ‘An important example of an information source

is English text.’, was used. The sentence has 10 words,

53 symbols (21 different symbols, including SPACE) and,

if no mis-recognition or mis-input occurs, needs 96 motions

to finish the input (by the codebook shown in Appendix 2).

The average motion number for each symbol is 1.88.

Figure 11 shows a real motion sequence for inputting

one word, ‘example’. In the graph of Figure 11, the raw

recognition results are in white, and the smoothed results

are in black. The stop bits in smoothed results were shifted

to ‘0’ from ‘1’ to achieve visual clarity. The vertical and

horizontal axes are time and motion pattern code,

respectively. The bars under the horizontal axis denote the

motion compound to express one symbol, illustrated by

corresponding CG hand icons. An input error occurred at

the third character input, so that it became ‘exn’, whereas it

should have been ‘exa’. To correct the error, a ‘backspace’

was carried out, then, ‘ample’ was input. A non-amputee

took part in a repeated text input experiment, using the

codebook described in Appendix 2. Ten trials were done,

and the motion number used for 10 trials is shown in

Figure 12. Note that the difference between the value and

96 (the number of motions needed to input the text without

any mis-operation) is the number used to input a ‘backspace’

to delete an incorrect symbol and input the correct one.

During 10 trials, there was no clear change to the input

accuracy and efficiency. The time to input the sentence is

roughly 3–5 minutes. This is far from ideal even compared

with Morse code. One reason for the length of time taken

was that the subject was not sufficiently accustomed to the

codebook. Another reason is that the motions used have

quite a large range of movement (ROM), so the time for the

motions is much longer than that of finger motions.
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Figure 12 Motion number needed for text inputting.
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However, the motions used in this experiment are those that

can be used by forearm amputees.

A database that contains a variety of sentences and

paragraphs, which can be selected according to individual

needs and training situations to give operators a gradual

improvement, is under construction. The results of database-

based training will be described in a coming report.

Conclusions
To develop an EMG keyboard system that can be used by

forearm amputees, the following were employed:

• an online learning method to recognise forearm gestures;

• a smoothing algorithm to extract motion labels from

discrete gesture symbol sequences for continuous

motions; and

• a modified Huffman coding algorithm for motion

sequence-to-character transformation.

Results showed the possibility of realising large DOF input

with the EMG keyboard, which can be expected to be a

quiet and free-posture input means with compact (compared

with speech recognition) support software and hardware.

Planned work includes:

1. A long-term observation experiment to identify the

learning effect of EMG keyboard use, as well as posture

and other ergonomic factors influencing input accuracy

and efficiency.

2. Exploration of the possibility of using coding algorithms

with redundancy so as to realise self-correction;

moreover, smoothing algorithms taking a motion as a

real continuous process will be considered.

3. Exploration of other muscle groups as control signal

sources, especially muscle groups that are speedy and

have small energy consumption, as in finger movement,

teeth clicking etc.

Appendix 1

Keystroke occurrence frequency of the Preface (p xi–xviii)

to the book Bioinformatics – The Machine Learning

Approach edited by Pierre Baldi and Soren Brunak. The

text includes 35 paragraphs, 3120 words and 19 035

characters (22 235 characters if SPACE included).

VK_RETURN 46 : 3 Y 2
VK_UP 10 ; 4 a 1371

VK_RIGHT 426 = 1 b 291

VK_LEFT 261 A 46 c 613

VK_DOWN 14 B 30 d 601

VK_DELETE 0 C 47 e 2033

VK_BACK 368 D 22 f 393
VK_TAB 0 E 10 g 301

VK_COMMA 239 F 5 h 662

VK_SPACE 3200 G 8 I 1322
“ 26 H 19 j 9

‘ 1 I 42 k 123

( 22 J 2 m 451
) 23 K 3 l 734

- 40 L 6 n 1252

. 519 M 56 o 1308
/ 2 N 24 p 389

0 8 O 6 q 39

1 21 P 15 r 1080
2 7 Q 1 s 1091

3 4 R 12 t 1392

4 5 S 16 u 386
5 7 T 37 v 164

6 2 U 4 w 200

7 5 V 4 x 60
8 8 W 23 y 222

9 17 X 3 z 16

Appendix 2

Huffman codebook generated (2 – open, 3 – grasp, 4 –

extension, 5 – flexion, 6 –supination, 7 –pronation).

VK_RETURN 774 : 63465 Y 63466

VK_UP 6324 ; 57663 a 54
VK_RIGHT 66 = 576654 b 76

VK_LEFT 72 A 775 c 42

VK_DOWN 6342 B 5764 d 47
VK_DELETE 57662 C 637 e 2

VK_BACK 74 D 5773 f 62

VK_TAB 57667 E 6325 g 73
VK_COMMA 575 F 57664 h 46

VK_SPACE 3 G 6322 I 53

“ 5763 H 5772 j 6323
‘ 576653 I 773 k 635

( 5774 J 63467 l 43

) 5767 K 63463 m 64
- 776 L 57656 n 52

. 65 M 636 o 56

/ 576655 N 5762 p 67
0 6327 O 57653 q 772

1 5776 P 6343 r 44

2 57654 Q 576656 s 45
3 57667 R 6347 t 55

4 57657 S 6345 u 75

5 57655 T 777 v 572
6 63462 U 57662 w 573

7 57652 V 57666 x 633

8 6326 W 5775 y 574
9 5777 X 63464 z 6344
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