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ABSTRACT:

Point cloud segmentation and classification is currently a research highlight. Methods in this field create labelled data, where each
point has additional class information. Current approaches are to generate a graph on the basis of all points in the point cloud, calculate
or learn descriptors and train a matcher for the descriptor to the corresponding classes. Since these approaches need to look on each
point in the point cloud iteratively, they result in long calculation times for large point clouds. Therefore, large point clouds need
a generalization, to save computation time. One kind of generalization is to cluster the raw points into a 3D grid structure, which
is represented by small volume units ( i.e. voxels) used for further processing. This paper introduces a method to use such a voxel
structure to cluster a large point cloud into ground and non-ground points. The proposed method for ground detection first marks
ground voxels with a region growing approach. In a second step non ground voxels are searched and filtered in the ground segment to
reduce effects of over-segmentations. This filter uses the probability that a voxel mostly consist of last pulses and a discrete gradient in
a local neighbourhood . The result is the ground label as a first classification result and connected segments of non-ground points. The
test area of the river Mangfall in Bavaria, Germany, is used for the first processing.

1. INTRODUCTION

The European directive forces the creation of change maps of
river areas (European Union, 2000, 2007). To create these maps,
the cheapest and fastest way is to use airborne LiDAR with a
green laser. This technique measures a set of points mapping the
water surface, river ground and the river waterfront. Such a set
of points is called topobathymetric point cloud. Creating change
maps of river areas needs a change detection of topobathymetric
point clouds which determines missing or new areas between two
times (e.g. caused by depositions or drifts of the river ground).
To implement such a change detection on the basis of topobathy-
metric point clouds, the first step is a segmentation and classifica-
tion. Class labels like building, vegetation, water, wet ground and
dry ground will be used for the change detection task by defining
thresholds for a change significance. For example, the ground
under the water surface (i. e. wet ground) changes with a higher
probability as the dry ground, because of the river’s morphody-
namic. Furthermore, the most important classes for the analy-
sis of topobathymetric point clouds are water and ground. The
water class must be known to correct the influence of different
light refraction characteristics of water and air (Mandlburger et
al., 2015).

A first classification is achieved by a segmentation of the point
cloud into ground and non-ground points. Such ground detection
approaches use a region growing which is computational expen-
sive in the case of a huge number of points in the scanned data.
To save computation time, it is necessary to generalize the point
cloud which can be done with a structure of volume clusters.
These so called voxels generalize the point cloud by summariz-
ing points, which are inside the same volume part. The proposed
segmentation uses a region growing approach on the basis of a
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voxel structure. This method is able to process large-scale air-
borne LiDAR data with the aim of creating segments like ground
and non ground. The focus of the approach is a fast computation
even if the point cloud data becomes large. The voxel structure,
used for this approach, is generated with an octree and the time
consumed for the computation depends only on the size of the
initial bounding box. Therefore the computation cost is almost
independent of the number of points in the point cloud.

This paper is structured as follows: Section 2 will sparsely review
some state of the art approaches of the topic point cloud segmen-
tation and classification. Section 3 will introduces the proposed
method and explain how to use it for ground detection and seg-
mentation tasks. The used data will be illustrated and character-
ized in section 4. Afterwards, section 5 shows first results of the
proposed approach and the used data, which is introduced before.
At the end, section 6 gives a short summary.

2. RELATED WORK

The classification task can be divided into two major parts: the
segmentation and the use of these segments for a matching of
class labels. The aim of the segmentation is to create regions of
connected points. Most state of the art approaches are point based
approaches. That means each point of the point cloud needs to be
processed. Such point based segmentation approaches can be find
in Rutzinger et al. (2008); Shapovalov et al. (2010); Zhang et al.
(2016).

Rutzinger et al. (2008) use a region growing approach based on
the echo width of the pulses inside the laser beam. They have the
aim to classify the point cloud into vegetation and non-vegetation
points. Therefore, they use the property of vegetation to create a
high echo width.
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Zhang et al. (2016) build an undirected graph of each non terrain
point to its k-nearest neighbours. To create segments on the ba-
sis of this graph, they determine the local maxima of the points
height value and perform a graph cut at this local maxima. This
graph cut clusters the whole graph into smaller parts, which are
normalized by a predefined threshold for the number of points of
each segment.

Shapovalov et al. (2010) use a machine learning approach to get
the class labels for each point. A Markov random field is used to
build a graph on the base of all points. The connection of nodes
in the graph is determined by unary and pairwise potentials. The
unary potential can be seen as the descriptor for a single point and
the pairwise potential as the descriptor for an edge in the graph.
Shapovalov et al. (2010) use for the unary potential spectral and
directional features, spin images, angular spin images and distri-
butions of heights. Their pairwise potential depends on the angle
between normals, the difference in altitudes and the difference
in positions of two neighboured points. The unary potential is
computed with a random forest classifier and the pairwise poten-
tial with the Naı̈ve Bayes classifier. The final class label for each
point is identified with the Markov random field inference

A similar approach, adopting conditional random fields for point
cloud classification, is propsed by Niemeyer et al. (2014). They
obtain the unary and pairwise potential with linear models trained
with the random forest algorithm. These models use a long list
of attributes like intensity, echo numbers, height of a single point
above DTM, residuals from a local plane fitting, and others.

Zhang et al. (2016) train SCLDA-based features for their point
wise descriptors and match these descriptors to a class label with
the AdaBoost classifier. Reitberger et al. (2009) show how to
segment point clouds into tree crown and tree stem segments by
using a graph cut approach.

Previous work for segmentation uses a modelling of the geom-
etry sampled with a voxel structure (Xu et al., 2017). This pa-
per introduces a graph based segmentation of a local fully con-
nected affinity graph. Instead of a pair of voxels the used affinity
graph considers all voxels in the local neighourhood. Inside this
graph, voxels are connected in dependence on their spatial dis-
tance, shape similarity and surface connectivity corresponding to
smoothness and convexity criterions. This method shows suitable
results for segmentation of building elements by recognizing ge-
ometric primitives. Furthermore, a supervoxel approach for seg-
mentation of outdoor scenes is shown in Xu et al. (2016). This
uses a connection judgement dependent on eigenvalue based ge-
ometric features. This features are used to calculate similarities
between two voxels. This approach also creates good results for
clustering point clouds into geometric primitives, but also shows
difficulties in case of vegetation. Unfortunately, large scale air-
borne LIDAR data is drawn by few geometric elements (i.e. only
buildings and flat ground parts can be modelled with geometric
primitives). Therefore, further development is needed for dealing
with non urban areas.

Aijazi et al. (2013) combine voxels to one segment if the voxels
are close in position and their intensity- or colour differences are
lower than a predefined threshold. To match the voxel segments
to a class label, they use the surface normal, the height difference
between geometrical - and barycentre, geometrical shape, color,
and intensity.

The proposed approach in this paper is based on this voxel seg-
mentation used by Aijazi et al. (2013) but uses another ground

detection approach which is more suitable for large scale areas
and non flat terrain.

3. METHOD

The proposed method for point cloud segmentation depends on a
voxelisation of the point cloud. These volume clusters (i.e. vox-
els) are needed to generalize the input data and therefore reduce
processing time. The generalisation clusters the whole volume of
the point cloud into smaller parts, which include several points.
Therefore, the algorithm only needs to process the volume parts,
whose number is lower than the number of points.

The aim of the proposed method is to segment the data into
ground and non-ground areas. For non-flat terrains some con-
ditions are defined and filters are used to create the ground seg-
ment. These conditions and filters are explained in section 3.1.
The used segmentation approach for the non-ground voxels will
be introduced in section 3.2.

3.1 Ground Extraction

For point cloud segmentation the ground can be used as a separa-
tor between the segments (Aijazi et al., 2013). Especially in the
case of airborne data, the ground needs to be extracted to get non
connected segments. One method for ground extraction is to use
a condition like ”the ground is flat”. With this condition, height
histograms are analysed to detect a threshold and the points un-
der this threshold are marked as ground points (Hebel and Stilla,
2009). This leads to problems in hilly terrains, where the ground
can be higher than some buildings. An alternative solution is to
use a region growing algorithm with the height difference as a
similarity criterion (Hebel and Stilla, 2012). Such a point wise
region growing is of low efficiency if the point cloud data grows.
For the proposed ground extraction, both methods are combined
and adopted to the voxel space.

A schematic summary of the ground detection is shown in Fig-
ure 1 which will be explained in the following.

An Octree is used to create the voxel structure. Furthermore, a
spatial ID is used to define neighbouring voxels and to search in
an ordered list for a voxel of given coordinates. The main at-
tribute of ground voxels is, that they are the lowest ones in a local
neighbourhood. Therefore, the main idea for a fast voxel based
ground detection is to search for the voxel to each x-y- coordinate
with the lowest z value. By the use of the octree, this means that
within an iteration over all x and y coordinates the ground voxel
is found as the first existing voxel inside the iteration from z = 0
to z = 2l. A voxel can be seen as a bloated point or as a point
group. Therefore, marking only the lowest voxels is like creat-
ing sampling points in a continuous ground function. Figure 2a
illustrates this interpretation as a sampling function.

All voxels have the same size and include different sized areas
depending on the voxel sampling. By checking only the low-
est voxels, the continuous ground function is transformed to a
step function in the voxel space. This could lead to holes in the
ground layer (Figure 2a). To avoid these holes, additional voxels
are added to the ground if they fulfil the following three condi-
tions:
first: they are occupied; second: there is at least one neighbour
with higher or equal z-value marked as ground (see Figure 2b);
For the third condition, the bounding box over the points inside a
voxel (sub bounding box) is used. If the sub bounding boxes of
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Figure 1. Schematic workflow of the ground detection.
Recangles show processing steps and ellipses the output of the
processing step. The gradint calculation is divided into its sub

processing steps which are shown in the blue box.

two neighbouring ground voxels with same height do not touch
each over (their distance is smaller than a threshold), the next
voxels along z are added, as well (see Figure 2c).

The proposed approach can be regarded as a voxel based region
growing where step one (Figure 2a) detects seed voxels. After-
wards, the region growing is performed between these seeds by
looking at the z coordinates of the voxel and determining voxels
to be added to the ground segment (Figures 2b and 2c). Roofs and
trees create scan shadows inside the ground layer which enables
the algorithm to select roof or tree voxels as seeds. Therefore, the
ground is over segmented by including roof and tree voxels.

Voxels containing tree points can be selected from this over seg-
mented ground by checking the pulse type of all points (pi) in
each voxel. Through the number of returns and the return num-
ber, it is possible to determine pulse classes, including first, last

(a)

(b)

(c)

Figure 2. The three steps of the ground detection. (a) first step:
The lowest existing voxels to each x-y-coordinate (blue ones)

are marked as ground voxels. This can be interpreted as creating
sampling points of a continuous ground function (black graph).
The blue arrows show the search direction along the z axis and
dotted voxels are non existing voxels. (b) second step: adding
voxels where at least one neighbour is marked as ground and
have higher or equal z-values. (c) third step: Look if there are
sub bounding boxes (black) of the ground voxels which don’t
touch each other (green arrows). In this case, the next voxles

along z are added to the ground (marked in green).

and middle pulses (Rutzinger et al., 2008). This is adopted to the
point set inside a single voxel. The probability of a voxel to be a
voxel consisting of last pulses (to be a ground voxel) is calculated
by:

problast =

∑
i

rnpi∑
i

norpi
(1)

where problast= probability of last pulse
with proplast ∈ [0, 1]

norpi = number of returns of
the beam to point i

rnpi = return number of point i

Last pulses are the ones, where the return number is equal to the
number of returns (Rutzinger et al., 2008). Therefore, this proba-
bilty gets a value of 1.0 for a voxel including only last pulses. The
probability is smaller than 1.0 if there are other pulse classes in-
side the voxel. This behaviour is used to define a threshold which
determines voxels including mostly last pulses. Voxels which do
not include mostly last pulses are marked as non-ground voxels.

Voxels which include roof points fulfil this condition, too. They
need another filter method. This method depends on the assump-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-1/W1, 2017 
 ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17, 6–9 June 2017, Hannover, Germany

This contribution has been peer-reviewed.   
doi:10.5194/isprs-archives-XLII-1-W1-107-2017

 
109



tion that roofs ”fly” over the ground of their local area. The
attribute ”fly” symbolizes that there are non existing voxels be-
tween the roof and the ground. To search for these roof voxels, a
gradient is calculated based on the discrete sampling of the vox-
els. This gradient is defined by the biggest difference in height
from the current voxel to the closets neighbouring voxels. The
closest neighbouring voxels are searched in the list of ground
voxels to given x- y-coordinates. A horizontal threshold is used
to ignore neighbours inside this list, which are to far away from
the current voxel.

If the ground is flat in the current neighbourhood, the gradient is
close to zero, because there is no difference in the height coor-
dinates. In case that the current voxel is a roof voxel, the local
gradient detects a significant difference of the z-coordinates (Fig-
ure 4). The gradient calculation is based on the center points
of the sub bounding boxes of neighbouring voxels. These sub
bounding boxes are further used to detect facades, which need
to be ignored for the gradient calculation. Facades of buildings
are detected by looking at the center points of the neighbouring
voxels’ sub bounding boxes. If the x-y-coordinates of a center
point of a vertical neighbour is inside the horizontal footprint of
the current sub bounding box, this neighbour is marked as facade
and therefore not considered in the gradient calculation. This fa-
cade detection is shown in Figure 3. Figure 4 shows this gradient
filter in profile on an example of a roof.

Figure 3. Handling of facade elemets, green line: ground, red
line: building, green point: center of the sub bounding box. In
case of a neighbour in the vertical direction which includes a
facade, the sub bounding box’s center is horizontal inside the

current sub bounding box. Such facade including neighbours are
excluded of the list of neighbours.

3.2 Segmentation

The result of the ground detection are two segments: the ground
segment and the non-ground segment. The next step is to clus-
ter the non-ground segment into smaller parts. The result of this
segmentation should be suitable for a further classification task.
Therefore, voxels belonging to one segment should have same
attributes. For such segmentation, a region growing approach
depending on intensity differences as proposed by Aijazi et al.
(2013).

Additionally the pulse class of the voxel is used. With n = number
of points, probsingle = probability of single pulse, probfirst =
probability of first pulse and problast = probability of last pulse,

Figure 4. Profile of the gradient calculation, green line: ground,
red line: building. Blue boxes shows the voxel from the octree

and black boxes the sub bounding boxes. The horizontal
distance defines usable neighbours and the vertical distance

defines the gradient value.

these pulse classes can be calculated with:

probsingle =
n∑

i

norpi
(2)

probfirst =
n∑

i

rnpi

(3)

problast =

∑
i

rnpi∑
i

norpi
(4)

These probabilities are within the range of [0,1]. If the voxel
mostly consist of points with the searched pulse class, the proba-
bility is close to 1. A segmentation based on the pulse class can
be created by putting neighbouring voxels together which have
the same pulse class. A single voxel is matched to the pulse class
where the probability is above a threshold. The same threshold is
used for all probabilities and if all of these probabilities are below
this threshold, the voxel consist of middle pulses.

4. DATA

The proposed method is tested on a dataset of the Mangfall area
in Bavria, Germany (Figure 5). This area was scanned with a VQ
820G scanner and reaches from the Tegernsee to the highway A8.
Approximately 200 Mio points were scanned within three flight
strips of approximately 500 m width and 17 km length.

A rotating multi facet mirror is used as the scan mechanism which
ensures an incidence angle of 20◦ with respect to the flight direc-
tion and an accuracy of the incidence angle up to 1◦. The beam
divergence is approximately 1 mrad which creates a 50 cm foot-
print by a flight height of 500 m (Steinbacher et al., 2012).

The scanner recognises a maximum of 4 pulses inside the same
laser beam. Furthermore, the scanner uses a wavelength of about
532 nm. Therefore, the proposed data are topobathymetric data.
Inside a single flight strip a point resolution of 4 dm on the ground
was obtained and the laser beam penetrates the water up to a depth
of 5 m.
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Figure 5. The scanned region (Photos from Google maps). In the
Background: whole Germany and parts of Europe, in the

zoomed part (red rectangle): the scanned Mangfall area (marked
in green) from the Tegernsee in the south to the highway in the

north.

(a)

(b)

Figure 6. Region of the Tegernsee. (a): Google Maps
Screenshot, (b): Scanned data with the points intensity as grey

value

Beside the intensity (Figure 6) other recognised point attributes
are the return number of a single pulse, the number of returns

in the returning signal, the GPS time of the returning signal, the
scan angle rank of the laser beam and two flags which indicates
the flight strip edges and the scan direction.

5. RESULTS

First algorithmic tests are performed on the Tegernsee part of the
proposed data (section 4). This part is shown in Figure 6 and
consists of more than 4 mio points. The area has a length of 1.4
km and a width of 400 m. A ground truth (GT) was manually
labelled and used for the evaluation. Figure 7 shows the raw data
and the ground points inside the ground truth.

(a) (b)

Figure 7. Manually labelled Ground Truth. (a): complete point
cloud, (b): ground layer.

For the evaluation of the runtime, different voxel sizes are used.
Varying voxel sizes result in different maximum levels of the used
octree (Table 1). To reduce the processing time, the whole data
set is divided into six smaller parts of equal horizontal dimensions
of 500 m by 400 m. These parts are processed in parallel. The
resulting accuracies are shown in Figure 8.

The runtime evaluation uses the following parameters:

· Height threshold which determines the voxels to delete in
the gradient chain (Tz): 6 m

· Horizontal threshold, which determines the neighbours to
use(Th): 0.5 · vdiag , where vdiag is the length of the voxel’s
horizontal diagonal. Th is further addressed as the factor in
front of vdiag .

· Number of iterations for the gradient chain: 30 m / vdiag .
This choice results in a length of 40 m for the gradient chain.

· Threshold which determines small gradients: 0.5 m;
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maximum maximum octree level total processing
Voxel size (single thread) time
vx = 20 m

5 0.32 svy = 20 m
vz = 2m
vx = 10 m

6 0.65 svy = 10 m
vz = 1m
vx = 5 m

7 3.72 svy = 5 m
vz = 1m
vx = 3 m

8 48.39 svy = 3 m
vz = 1m

Table 1. Computation time, evaluated on an Intel Core
i7-6820HQ CPU

Figure 8. Sensitivity, dependent on the runtime. Different Voxel
sizes are symbolized by different run times.

Figure 11 shows that a maximum voxel size of 10 m x 10 m x
1 m creates the best sensitivities. If the voxel size is selected as
a smaller or larger one, the sensitivity becomes lower. This has
different reasons: In the case of larger voxels, the point cloud
is more generalized. Therefore, the selection of a voxel to be
a non-ground voxel will excise more points of the ground layer.
This is shown by a strong fall of the function for the detected
ground points. In contrast to larger voxels, smaller voxels pre-
serve more details in the point cloud generalisation. In the case of
smaller voxels, the scan shadows of buildings inside the ground
layer are preserved as well and more seed voxels are selected
on roofs. Due to more details, it is possible that the gradient
gets with small steps to the ground and therefore preserve these
wrongly detected ground voxels. In other words, the wrongly de-
tected ground is not detected non-ground, which explains the de-
crease of the non-ground sensitivity. Especially the z-dimension
becomes very small with higher octree levels, because the initial
bounding box has a smaller z-dimension than x- or y- dimension.
Voxels with very small z-dimensions create a sparse height sam-
pling of the ground layer and therefore create unoccupied voxels
between two ground voxels. The region growing is aborted at
these unoccupied voxels and the sampling of the ground layer
is less complete, too. Since figure 11 shows the sensitivities of
both classes, the accuracies can be estimated as well. The ab-
solute number of ground points in the GT-data is: 2131236 and
the absolute number of non-ground points: 2330592. By using
this values to calculate the accuracies of the two classes, it turns
out, that the accuracy of the one class is close to the sensitivity of
the other class. Therefore, the following evaluation of the filter
method uses only the sensitivity values.

Figure 11 shows a comparison of the influence of two major pa-
rameters Tz and Th of the used filter. The used maximum voxel
sizes are 10 m x 10 m x 1 m and 3 m x 3 m x 1 m. The func-
tion graphs of these two maximum voxel sizes look similar which
means, that the influence of Tz and Th behaves the same. The
stronger generalisation by larger voxels and the resulting elimi-
nation of more points of the ground layer is shown by the off-
set and bigger differences between the two sensitivity graphs. In
general it can be said, that a lower Tz with higher Th results in a
higher sensitivity of the non-ground segment. This configuration
results in a stronger filter and therefore in more detected outliers.
The lower sensitivity of the ground layer can be explained by a
stronger filter, too. Since steep slopes and roofs are very similar
in the scanner data (both have big height differences in a small
area), a stronger filter will delete the points of steep slopes as
well as roof points. Therefore, the sensitivities are correlated in
a negative manner. If the sensitivity of the non-ground layer gets
bigger, the sensitivity of the ground layer gets lower. The influ-
ence of Th depends on the value of Tz . If Tz is selected to be
lower, Th changes the sensitivities with a stronger influence.

A visual result of the proposed method is shown in Figure 9. This
figure shows the area of the northern bridge across the river (see
Figure 7) with a view direction from north to south. The used
maximum voxel dimension is 10 m x 10 m x 1 m and the used
filter parameters are: Tz = 6 m, Th = 0.5.

Figure 9. Results of the ground detection. Top: raw data,
middle: result of our approach, bottom: ground truth

This area was selected, because it shows some remaining roof
points in the ground layer. The area includes steep slopes below
vegetation as well as water and river bed points. Both configura-
tions can be handled with the proposed method as it can be seen
in the figure.

Figure 10 shows visually results of the segmentation of the non-
ground segment. Due to missing ground truth data, it is not pos-
sible to do a numerical evaluation like for the ground detection.
However, the results show a division between the classes vege-
tation, water, and building which is a suitable result for a future
classification task.
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Figure 10. Result of the segmentation of the non-ground
segment. The maximum Voxel dimension is x,y < 20m, z < 2m.

The segments in the point clouds are colour coded: white:
ground, others: randomly different color.

6. SUMMARY

This paper introduces a geometric segmentation approach for air-
borne multi-response LIDAR data. Since such airborne data can
become very large (a large amount of points is scanned), a voxel
structure is used to generalize the data and therefore reduce pro-
cessing time. This voxel structure is used for a ground segmenta-
tion.

The proposed ground detection is able to detect the ground of
a hilly terrain as well as the ground below vegetation and water
surfaces. By using the voxel generalization, the ground detection
is almost independent of the number of points inside the point
cloud. The experimented results revealed that the performance
and processing time depend on the used voxel size.

Some over and under segmentations of the ground still exist. Un-
der segmentations are characterized by small non-ground areas
surrounded by ground points. Over segmentations are charac-
terized by ground areas surrounded by roof points. This phe-
nomenon will be used to detect and correct the over and under
segmentations in the future by checking the class labels of the
local neighbourhood.

The segmentation results of non-ground areas (Figure 10) are cre-
ated by a segmentation dependent on the voxel pulse classes: sin-
gle, first, middle or last pulse. This segmentation shows a cut of
vegetation areas into tree crown top points and other tree points.
A combination of pulse class and intensity difference should be
considered for the segmentation in future work. Furthermore, the
segmentation of non-ground areas will be used for a classification
task, which matches each segment to the class labels: building,
vegetation and water.
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maximum Voxel dimension: 3 m x 3 m x 1 m maximum Voxel dimension: 10 m x 10 m x 1 m

Figure 11. Influence of the parameters Th and Tz to the ground detection. The two columns show different maximum Voxel
dimensions (see header)
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