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Summary - A deterministic model is presented of assortative mating following selection
on either phenotype or best linear unbiased prediction (BLUP) estimates of breeding
values (ebv) in an infinite population. The model is based on modified theory for multi-
tier open nucleus breeding schemes. It is shown that the percentage increase in genetic
gain of assortative mating over random mating is greatly increased at low to moderate
heritability when BLUP rather than mass selection is used. The percentage increase in
genetic gain at equilibrium of assortative mating over ’random mating is independent of
initial heritability and family structure when selection is on BLUP ebv. The same is
true in the early generations if there is ample pedigree history available before selection
commences. The deterministic prediction of the percentage increase in genetic gain at
equilibrium of assortative mating over random mating is 11, 24 and 66% when 10, 50
and 90% of progeny are selected on BLUP ebv. Stochastic simulation is used to evaluate
the accuracy of the deterministic model. Both deterministic and stochastic results for
assortative mating indicate a considerably increased value over random mating in certain
situations than has previously been reported.
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Résumé - Un modèle déterministe d’homogamie après sélection dans un schéma à
plusieurs étages. Cet article décrit un modèle déterministe pour une population infinie
soumise à homogamie après une sélection soit sur le phénotype soit sur la valeur génétique
estimée (vge) par le BLUP. Le modèle est basé sur la théorie modifiée des schémas
de sélection à noyau ouvert à plusieurs étages. On montre que l’accroissement du gain
génétique dû à l’homogamie par rapport à la panmixie est grandement augmenté pour
des héritabilités faibles à modérées quand on utilise le BL UP au lieu de la sélection
massale. Le pourcentage d’augmentation du gain à l’équilibre quand on utilise l’homogamie
de préférence à la panmixie est indépendant de l’héritabilité initiale et de la structure

familiale quand la sélection se fait sur la vge BL UP. Cela est vrai aussi dans les premières
générations, si les pedigrees antérieurs à la période de sélection sont bien connus. La
prédiction déterministe de l’augmentation du gain génétique à l’équilibre avec l’homogamie



par rapport à la panmixie est de 11%, 24% et 66%, pour des taux respectifs de sélection sur
la vge BLUP de 10%, 50% et 90%. Une simulation stochastique a été faite pour évaluer la
précision du modèle déterministe. Les résultats, aussi bien déterministes que stochastiques,
montrent un avantage de l’homogamie sur la panmixie qui est, dans certaines situations,
nettement supérieur aux résultats antérieurement publiés.

homogamie / sélection / BLUP / groupes génétiques / noyau ouvert
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INTRODUCTION

For random mating, deterministic methods are available to predict the asymptotic
response to selection for an infinite population in which the selected character
is controlled by many unlinked genetic loci, each of small additive effect, ie the
infinitesimal model (Wray and Hill, 1989; Dekkers, 1992). These deterministic
methods invariably assume that the breeding values, phenotypes and selection
criteria are normally distributed in the offspring generation, even after several
generations of selection.

Bulmer (1980, p 153) argued that the departure from normality can be safely
ignored following 1 generation of mass selection combined with random mating
even when the heritability is 1. Smith and Hammond (1987) investigated the
departure from normality following 2 generations of mass selection combined with
random mating. When heritability was 0.8 they showed that the error in calculating
selection response assuming normality was 0.9, 0.2 and &mdash;1.8% when 10, 40 and 90%,
respectively, of progeny were retained for breeding (see their table III). The trend
in the error was to underestimate response with intense selection and overestimate

response when many progeny were retained for breeding. As heritability decreased
the absolute error arising from the assumption of normality became even smaller.

Selection combined with positive assortative mating (hereafter called assortative
mating) will increase the rate of genetic progress over that achieved with selection
followed by random mating. This has been demonstrated in experimental studies
with Drosophila (McBride and Robertson, 1963) and Tribolium (Wilson et al, 1965),
in stochastic computer simulations (De Lange, 1974) and in deterministic computer
simulations (Fernando and Gianola, 1986; Smith and Hammond, 1987; Tallis and
Leppard, 1987).

Smith and Hammond (1987) used multivariate normal distribution theory to
predict the advantage in selection response of assortative mating over random
mating after 2 generations of mass selection. Their methodology accommodated
both variance loss due to selection and the departure from normality in the

offspring generation. They also investigated the advantage when a selection index,
incorporating parental information, was used. They found that at low heritability,
the advantage was much higher with index selection than with mass selection. Due
to theoretical difficulties, Smith and Hammond (1987) were unable to consider more
than 2 generations of selection.

Tallis and Leppard (1987) investigated the advantage at any generation of
assortative mating over random mating under mass selection. However the model



they proposed assumed normality in each offspring generation when predicting the
expected genetic gain under truncation selection (see their equation (12!).

Smith and Hammond (1987) questioned the assumption of normality in the off-
spring generation when heritability was high and parents were mated assortatively.
When heritability was 0.8 they showed that the error in assuming normality for
the calculation of selection response following 2 generations of mass selection com-
bined with assortative mating was 3.1, 0.5 and -4.8% when 10, 40 and 90% of
progeny were retained for breeding (see their table III). As heritability decreased
the absolute error arising from the assumption of normality became smaller.

Fernando and Gianola (1986) investigated the response to selection combined
with assortative mating in two N-loci models. Model A assumed 2 alleles per
locus while Model B assumed an infinite number of alleles per locus. In Model B
selection response was calculated assuming phenotype was normally distributed in
each generation (see their equations !30-34!). However in Model A the phenotypic
distribution was allowed to be a mixture of normal distributions as parents were
selected by truncation across 3! genotype groups and were randomly mated in
3 mating groups which were formed on the basis of similarity of phenotype. A
maximum of 3 loci were used in Model A.
A mixtures approach is also proposed in this paper, but the methodology is

derived from open nucleus breeding theory assuming an infinitesimal model. James
(1989, p 191) recognised the connection between multi-tier open nucleus breeding
schemes and assortative mating programmes. This paper develops and evaluates
this connection.

This paper proposes a deterministic model, which is used to predict the genetic
gain at each generation when mating is assortative. The multi-tier model allows
the distribution of progeny breeding values to be non-normal at each generation
by considering it to be composed of a mixture (tiers) of normal distributions. The
value of assortative mating is investigated deterministically when selection is either
on individual phenotype or on best linear unbiased prediction (BLUP) estimates
of breeding value (ebv) using an animal model. Stochastic simulation is used to
evaluate the accuracy of the deterministic multi-tier model.

MATERIALS AND METHODS

The infinitesimal model is assumed in an infinite population with no accumulation of
inbreeding. Selection is for a single trait with initial heritability h2 before selection.
When mating is random the joint distribution of breeding values and selection
criteria are assumed multivariate normal at each generation before selection. The
symbols a and b represent the proportions of all male and female offspring,
respectively, used for breeding. Generations are assumed discrete.

Multi-tier model concept

Conceptually, assortative mating involves dividing the population into tiers with
the best sire and best dam mated in the top tier, the next best pair (possibly
the same sire) mated in the second tier, ... etc, and finally the worst selected sire
and dam mated in the bottom tier. With an infinite population there would be an



infinite number of tiers each of the same size, a single mating pair. With only a
single mating pair in each tier it can be correctly assumed that mating within a
tier is random.

To deterministically simulate assortative mating, the population is divided into
n tiers of equal size. Within each tier, mating is assumed random while the selection
criterion is assumed normally distributed before selection. Parents are selected by
truncation across tiers. The best proportion (1/n) of male and female parents are
selected as tier 1 parents. The next best proportion (1/n) of male and female parents
are selected as tier 2 parents and so on. This procedure of selecting across tiers and
randomly mating within tiers is followed for the required number of generations.

As the number of tiers (n) increases the population genetic gain per generation
will tend toward an asymptote. This asymptote will be the deterministic prediction
of the response to selection in conjunction with assortative mating. This procedure
can be used to predict the response to selection combined with assortative mating
at any generation.

The main issue is then the determination of the tier in which selected progeny are
mated given their tier of birth. This issue is resolved using a selection and mating
algorithm based on genetic groups as presented in the next section. The genetic
groups are defined by ’tier of birth’ and ’tier of mating’ combinations. For example,
with 3 tiers there are 9 genetic groups for each sex which have to be determined
for each generation; 3 tiers of birth by 3 tiers in which mated (fig 1). With 50 tiers
there are 2 500 genetic groups for each sex which have to be determined for each
generation. Determining genetic group composition is done separately for males
and females.



Deterministic selection and mating algorithm

Animals are selected either on individual phenotype (mass selection) or on index
ISD of Wray and Hill (1989) retaining those with either the largest phenotypic
value or the largest index values as parents of the next generation. Selection is by
truncation across the tiers. As detailed below the best in each tier are mated in
the top tier. The next best in the second top tier, and so on. Within each tier,
mating is random and the joint distribution of progeny phenotype, selection index
and breeding value is assumed multivariate normal.

The index ISD uses records from the individual, its full and half sibs and the
estimated breeding values of its sire, dam and all dams mated to its sire. This index
is used to deterministically predict response when selection is based on breeding
values estimated by a BLUP animal model. As not all relatives are used in the
index, it is hereafter denoted nBLUP (nearly BLUP animal model).

For nBLUP selection, the EBVM (ebv selection and migration) method given
by Shepherd and Kinghorn (1993) for 2-tier systems and Shepherd (1991) for 3-tier
systems can be used without change to evaluate the response to selection using 2-
and 3-tier systems. The extension of the algorithm to n tiers is quite straightforward
and involves no new concepts. However extensive modifications are necessary to
change various scalars into n dimensional vectors and n by n dimensional matrices.

For mass selection, the EBVM algorithm described by Shepherd and Kinghorn
(1992) for 3-tier open nucleus breeding systems can be used after slight modification.
This is because selection in this algorithm is on ebv calculated as the regressed
within-tier phenotypic deviation (rWTPD). That is, ebv = Ptier + h2(Pi - 75t,&dquo;)
where Pi and Ptier are the phenotypic value of animal i and the mean phenotypic
value of all contemporary progeny in the same tier, respectively.

For mass selection this EBVM algorithm requires 2 modifications because

the within-tier deviations are not regressed. That is, for mass selection ebv =

Ptier + (Pi - Ptier) = Pi. The modifications are: (1) replace ebv in steps 1-4 with
phenotypic value; and (2) replace a¡ in the identities for the standardised truncation
points in steps 2-4 with QA/h(= QP), the phenotypic standard deviation. Now the
EBVM method becomes the PM (phenotype selection and migration) method and
is suitable for deterministically simulating mass selection followed by assortative
mating.

The Appendix gives the PM method for n tiers and also the deterministic Bulmer
method of predicting genetic gain for random mating following mass selection. The
deterministic methods used to model the joint effects of assortative mating and
selection will hereafter be called the asymptotic PM method for mass selection
and the asymptotic EBVM method for nBLUP selection. The adjective asymptotic
emphasises that the prediction is made at a sufficiently large number of tiers such
that the asymptote is reached.

In fact it usually took between 50 and 70 tiers before the response to selection
reached its asymptote. This asymptote was sometimes reached in fewer tiers by
using unequal tier sizes. In all cases examined the asymptotes using equal and
unequal tier sizes were the same (as expected). Hence in reporting results no
mention is made of relative tier size and usually between 50 and 70 tiers were
used to determine the asymptote.



Stochastic simulation

Stochastic simulations were carried out to check the deterministic predictions made
by the asymptotic PM and asymptotic EBVM algorithms. These algorithms account
for variance loss due to selection but as an infinite population is assumed no
account is taken of variance loss due to inbreeding. Hence the stochastic simulations
generate progeny breeding values without loss of within-family genetic variance due
to parental inbreeding.

Initially a foundation population of S sires and D dams was created in which
breeding values Ai were randomly sampled from a normal distribution with mean
zero and variance o, A 2 = h20&dquo;! where 0,2 p was 1. The unrelated foundation parents
were randomly mated to produce the initial progeny crop for selection. Progeny
breeding values were randomly sampled from a normal distribution with mean
0.5(As + AD), the mean parental breeding value, and variance 0.5 QA. Phenotypic
values were simulated as Pi = Ai + Ei where Ei was randomly sampled from a
normal distribution with mean zero and variance (1 &mdash; h 2)0,1 P,
A proportion a of male progeny and b of female progeny were retained for breed-

ing each generation. Selection was either on individual phenotype or on BLUP
ebv using an animal model (aBLUP). Parents were selected by truncation on
the selection criterion. No fixed effects except the overall mean were included
in the aBLUP evaluation. The calculation of the inverse of the numerator rela-

tionship matrix assumed no inbreeding as no progeny genetic variance was lost
due to parental inbreeding. Each generation the system of linear equations for
aBLUP was solved by Gauss-Seidel iteration. The iteration was stopped when
B/!(T’t &mdash; £j )2 / £ r2 < 1 x 10-6 where ri and Fi are the right-hand side of equation
i and the estimated right-hand side of equation i, respectively.

The animals selected for breeding were mated either randomly or assortatively.
For assortative mating, sires and dams were ranked in descending order of either
phenotype or aBLUP ebv to determine mates. The best sire was mated to the best
ml dams, the next best sire was mated to the next best m2 dams, and so on until
all animals selected for breeding were allocated mates. Usually mi = b/a for each
sire.

The total number of dams was 1000 with either 1, 2 or 10 (1/b) progeny of
each sex per dam. The number of dams mated to each sire was either 1, 2 or 10
(b/a). There were 500 replicates for mass selection, while for aBLUP selection the
number of replicates was 400 and 200 for heritabilities 0.1 and 0.4, respectively.
The number of generations simulated was 10 and 5 for mass selection and aBLUP
selection, respectively.

To simulate very low selection intensity in both males and females (a = 0.9, b = 1)
900 sires were mated to 1000 dams with 1 male and 1 female offspring per dam. To
achieve this mating ratio, 100 sires were randomly chosen for mating twice, while
the remaining 800 sires were allocated only 1 mate. With assortative mating the
number of mates allocated to a sire was taken into account following ranking on the
selection criterion. There were 5 000 replicates of this scheme for mass selection.



RESULTS AND DISCUSSION

Mass selection

Table I shows the percent increase in genetic gain from generation 1 to 2 of the PM
method (using between 10 and 50 tiers) over that achieved with random mating.
As the number of tiers increased from 10 to 50 the predicted genetic gain from
generation 1 to 2 tended to asymptote and hence so did the percent increase over
random mating as shown in table I. For all selection intensities and heritabilities
examined the percent increase was stable by 50 tiers. Hence the values in column
9lI50 (table I) are the deterministic predictions for the asymptotic PM method
of the percent increase in genetic gain from generation 1 to 2 due to mating
assortatively rather than randomly following mass selection. The trend for the PM
method to asymptote as the number of tiers increased occurred at every generation
as envisaged in the concept of the model.

The deterministic prediction of the advantage from generation 1 to 2 of assorta-
tive mating over random mating increased as heritability increased and as selection
intensity decreased. Similar trends have been reported in the literature (Fernando
and Gianola, 1986; Smith and Hammond, 1987).

Smith and Hammond (1987) gave exact theoretical results for the deterministic
percent increase in genetic gain from generation 1 to 2 of assortative mating over
random mating. The assumptions used in their evaluation were the same as those
used in this evaluation, ie an infinite population and the infinitesimal model.
However they allowed for non-normal progeny distributions when mating both
randomly and assortatively. Their results are presented in column % ISH in table I
and are directly comparable with the results in column %7go. The discrepancy
between the 2 columns as a percentage of %ISH is given in column %error.
When heritability is 0.1, the asymptotic PM method slightly overestimates the

advantage when selection intensity is high and tends to underestimate the advantage
when selection intensity is low (table I). When heritability is 0.4, the asymptotic
PM method is once again quite accurate when approximately 50% of progeny are
retained for breeding. However as selection intensity increases the asymptotic PM
method overestimates the advantage, with the percentage error increasing with
selection intensity. The opposite trend occurs as the proportion of progeny retained
for breeding increases from 0.5. Namely, the asymptotic PM method underestimates
the advantage, with the absolute percentage error increasing as selection intensity
decreases.

The same general trends occur for heritability 0.8 as occur for the other
heritabilities (table I). However the absolute magnitude of each percentage error
when heritability is 0.8 is larger than the corresponding percentage error when
heritability is smaller.

The reason for the discrepancies at high and low selection intensity was in-
vestigated by partitioning up the percent increase into its component parts. A
heritability of 1 was chosen to maximise the discrepancies. Table II shows various
deterministic predictions of genetic gain from generation 1 to 2 using either random
or assortative mating.

The columns %7fM and %IsH (table II) show the percentage increase in genetic
gain of assortative mating over random mating using the PM method and the



method of Smith and Hammond (1987), respectively. These columns show similar
comparative trends to the corresponding columns in table I (%I5o and %Isx). The
percent increase predicted by the asymptotic PM method overestimates the value
of assortative mating when selection is intense and underestimates the value when
a large proportion of progeny are retained for breeding.

For assortative mating the predictions of genetic gain in table II were practically
identical for the asymptotic PM method and for the method of Smith and Hammond
(1987). The maximum percentage error was less than 0.03%. Hence the cause of
the discrepancies in the percent increase predictions was due to the discrepancies
in the deterministic predictions of genetic gain with random mating. The column
% error shows that for random mating the Bulmer prediction (GB) underestimated
Gsx when selection was intense and overestimated Gsx when many progeny were



retained for breeding. These results agree with the findings reported by Smith and
Hammond (1987).

Smith and Hammond (1987) were unable to extend their theory for assortative
mating beyond 2 generations of selection. Hence to examine the performance of the
asymptotic PM method beyond 2 generations of selection, stochastic simulation was
used. Figure 2 shows the genetic gain at each of 10 generations for both random
and assortative mating using low (a = 0.9, b = 1), intermediate (a = 0.5, b = 0.5)
and high (a = 0.01, b = 0.1) intensities of selection.

For random mating the deterministic prediction at each generation underesti-
mated the stochastic genetic gain when selection was intense (fig 2A) and overesti-
mated the stochastic genetic gain when selection intensity was low (fig 2E). When
50% of progeny were retained for breeding (fig 2C) the percentage error was much
reduced. These trends agree with the findings of Smith and Hammond (1987) for
generation 2. The interesting result here is that the discrepancy at later generations
is of a similar magnitude to that at generation 2. At generation 2 the percentage
error was 1.2 and 0.7% for figures 2A and 2E, respectively. Averaged over all gen-
erations the percentage error was 0.8 and 0.9% for figures 2A and 2E, respectively.
The discrepancy at generation 1 was 0.2% or less, in general agreement with Bulmer
(1980) who found a percentage error of 0.15% in his deterministic example with a
heritability of 1.

For assortative mating combined with intense selection, the asymptotic PM
method overestimated selection response significantly (P < 0.05) at all generations
by a similar amount (fig 2B). The selection response was overestimated by 0.8%
at generation 2 and by 0.6% averaged over all generations. This result does not
concur with the findings of table II in which the asymptotic PM method agreed
with the deterministic predictions of Smith and Hammond (1987). One possible
explanation may be that a stochastic simulation with 50 sires may not be large
enough to produce the infinite population result for assortative mating in this case.





For the intermediate selection intensity in combination with assortative mating
(fig 2D), the stochastic and deterministic predictions only differed significantly
(P < 0.05) from generations 7 to 10. Over these generations the average percentage
error was less than 0.3%.

For the low selection intensity in combination with assortative mating (fig 2F),
the stochastic and deterministic predictions were significantly different (P < 0.05)
from generations 4 to 10. The average percentage error was 0.7% over these
generations. The trend was for the deterministic prediction to overestimate the
stochastic value.

Hence the main finding seems to be that the asymptotic PM method is a good
predictor of genetic gain when assortative mating is used. There appears to be no
error when compared to exact deterministic predictions for 2 generations. However
stochastic simulations are often overestimated, possibly indicating that larger
stochastic populations are needed for closer agreement with deterministic infinite
population theory. In any case the percentage errors arising with the asymptotic PM
method in the stochastic simulations were usually smaller in absolute magnitude
than those found with the usual Bulmer procedure (fig 2).

Some interesting features of assortative mating can be easily demonstrated
using the asymptotic PM method. The asymptotic PM method can indeed handle
the non-normality induced by assortative mating. For a = b = 0.5, Tallis and

Leppard (1987, table I) found a percentage increase in genetic gain at equilibrium
of assortative mating over random mating of 13.4% when heritability was 1. Using
figures 2C and 2D the percentage increase at generation 10 is 24.4 and 24.3% for the
stochastic simulation and the asymptotic PM method, respectively. Figure 2D also
shows that the genetic gain with assortative mating is still increasing at generation
10, resulting in a percentage increase at equilibrium which will be even larger. Hence
Tallis and Leppard’s method of assuming normality in the offspring generation
greatly underestimates the value of assortative mating in this case.

For a = b = 0.5, Tallis and Leppard (table I, 1987) found percentage increases
in genetic gain at equilibrium of assortative mating over random mating of 5.5,
8.9 and 12.8% for heritabilities of 0.2, 0.4 and 0.8, respectively. The asymptotic
PM method produces percentage increases at equilibrium of 6.1, 11.2 and 22.0%
for heritabilities of 0.2, 0.4 and 0.8, respectively. There is only a small difference
between the 2 predictions when heritability is low, indicating that the normal
approximation is reasonable in this case. However as heritability increases the
difference gets progressively larger. This is expected as the distribution of breeding
value becomes more non-normal as heritability increases. Hence assuming normality
can greatly underestimate the value of assortative mating when heritability is high
or when selection is not intense.

A feature that does not seem to have been reported in the literature is the dif-
ference between the percentage improvements of assortative mating over random
mating at generations 2 and 10. Using the asymptotic PM method with a heri-
tability of 0.1, the ratio of the percentage improvement at generation 2 to that at
generation 10 is 0.61, 0.54 and 0.46 for the proportions selected of 0.01, 0.5 and
0.9, respectively. The trend is for the ratio to decrease as the intensity of selection
decreases and it is caused by the proportionally larger increase in the percentage
improvement at generation 10 as selection intensity decreases.



This trend is even more pronounced at higher heritability indicating an even
larger proportional increase in the percentage improvement at generation 10 as the
intensity of selection decreases. For a heritability of 1, the ratio of the percentage
increase at generation 2 to that at generation 10 is 1.43, 0.49 and 0.26 for

proportions selected of 0.01, 0.5 and 0.9, respectively. When a = b = 0.9, the
percentage improvement in genetic gain is 12.6 and 48.8% at generations 2 and
10, respectively. Hence when heritability is high and selection intensity is low,
assortative mating generates a lot of between-tier genetic variance but it takes

many generations to produce (see figure 2F).
For intense selection and high heritability the advantage of assortative mating

can be larger in the early generations. For example, when a = b = 0.01 and

heritability is 1, the percentage improvements in genetic gain are 9.3 and 6.5%
at generations 2 and 10, respectively. A similar result occurs in the stochastic
simulations in figures 2A and 2B (8.6 and 7.7% at generations 2 and 10). The reason
for this result seems to be related to that of a similar result found when investigating
the effects of variance loss on the percentage improvement in genetic gain of 2-tier
open nucleus breeding schemes over closed nucleus schemes (Shepherd, 1991). High
heritability and intense selection cause a large variance loss very quickly in a random
mating population (fig 2A). However a large amount (because heritability is high)
of between-tier variance is generated very quickly (because selection is intense) by
assortative mating under the same conditions (fig 2B). As the generations progress
some of this between-tier variance is lost due to selection. These processes result
in the percentage increase in genetic gain at generation 2 being larger than that at
generation 10.

Table III gives deterministic predictions of the percentage increase in genetic gain
at generation 10 of assortative mating over random mating for various selection
intensities and heritabilities. As found earlier when a = b the main result is
that the percentage increase at generation 10 of assortative mating over random
mating increases as either the intensity of selection decreases or as heritability
increases. As shown in table I and figure 2 these deterministic predictions are likely
to overestimate the value of assortative mating with high selection intensity and
underestimate the value with low selection intensity. The %error values in table I
can be used to give more accurate predictions, assuming the same %error values
occur at generation 10. Table III also gives the ratio of the percentage increase at
generation 2 and to that at generation 10.

BLUP selection

Table IV gives deterministic predictions of the percentage increase in genetic
gain at various generations for assortative mating over random mating. The PM
method is used for mass selection while the EBVM method is used for nBLUP
selection. In both prediction methods 50 equal sized tiers were used. Predictions
were also calculated at equilibrium when the genetic gain with assortative mating
had stabilised. As selection intensity decreased, the number of generations required
to reach equilibrium increased (as indicated in fig 2).



For each intensity of nBLUP selection the percentage increase in genetic gain
gets larger as initial heritability increases (table IV). This effect mainly occurs in
early generations and is largest at generation 2 when family information is smallest
(m = 1, np = 2). As the generations pass, the difference in the percentage increase
between heritabilities gets smaller until at equilibrium the percentage increase of
assortative over random mating is independent of both initial heritability and the
amount of family information (table IV). Being independent of initial heritability
the percentage increase for nBLUP is identical to the deterministic prediction for
mass selection at equilibrium when initial heritability is 1 (table IV). Hence at
equilibrium the percentage increase for nBLUP depends solely on the intensity of
selection.
A similar finding of independence in the advantage of opening a closed nucleus

was reported for a deterministic model of BLUP selection in 2-tier open nucleus
breeding schemes (Shepherd and Kinghorn, 1993). They used the EBVM algorithm
with 2-tiers. Shepherd and Kinghorn (1993) discussed at length the reason for their
finding. The same reasons are applicable when an infinite number of tiers are used
with the EBVM method, ie assortative mating. Their conclusion was that it was
basically caused by the between-tier analogy of the within-tier result reported by
Dekkers (1992) for selection on BLUP ebv.

For nBLUP selection the percentage increase in genetic gain of assortative mating
over random mating will be independent of initial heritability and family structure
at any generation if there is sufficient pedigree history before selection commences.
The influence of the amount of family information is shown in table IV. For example,
if a = b = 0.1 then for m = 1 and np = 2 the percentage increase at generation 2



is 8.68 and 10.34% for heritabilities 0.1 and 0.4, respectively, whereas for m = 50
and np = 100 the percentage increase at generation 2 is 10.57 and 10.98% for
heritabilities 0.1 and 0.4, respectively. With ample pedigree history the percentage
increase at generation 2 for any heritability with nBLUP will be identical to that
of mass selection at generation 2 for heritability 1.

If there is no pedigree history when selection commences then the results for
nBLUP will show similar trends to those found for mass selection in the early
generations. For example for nBLUP selection with m = 1, np = 2 and a = b = 0.1,
the percentage increases at generation 2 are 8.68, 10.34 and 11.00% for heritabilities
of 0.1, 0.4 and 1, respectively, when no pedigrees are known before selection
commences. For mass selection, the percentage increase at generation 2 is 0.89,
4.01 and 11.00% for heritabilities of 0.1, 0.4 and 1, respectively. Hence, when there
is no pedigree history before selection commences the advantage of assortative
mating over random mating at generation 2 increases with heritability for nBLUP.
However the percentage increase for low heritability is much larger with nBLUP
than with mass selection. These trends were also found by Smith and Hammond
(1987) in generation 2 for selection on an index, which included individual and
parental phenotypic information (see table IV). For a = b = 0.1, they calculated



percentage increases of 5.60 and 7.23% for heritabilities 0.1 and 0.4, respectively,
when selecting on the index.

The deterministic prediction of nBLUP was compared with stochastic simulation
for 2 selection intensities applied for 5 generations. Figure 3 gives results for a = 0.05
and b = 0.5 (high selection intensity), while figure 4 gives results for a = 0.5 and
b = 1 (intermediate selection intensity). In both figures heritabilities of 0.1 and 0.4
were used.

With random mating the deterministic method of Wray and Hill (1989) tended
to underestimate the stochastic genetic gain when the selection intensity was high,
being significantly different (P < 0.05) at 3 of the 4 generations when heritability
was 0.1 (fig 3A). The percentage error was 2.1% averaged over the 4 generations.
When heritability was 0.4 only 2 of the differences were statistically significant
(fig 3C), while the percentage error averaged only 0.4%. Only 1 of the 8 deterministic
predictions was statistically significant at the intermediate selection intensity (fig 4A
and 4C). In general terms these results tended to agree with the earlier findings for
mass selection at high heritability: underestimation at high selection intensity and
better accuracy at intermediate selection intensity.

With assortative mating the asymptotic EBVM method tended to overestimate
the stochastic genetic gain when the selection intensity was high, with the over-
estimation increasing as generations passed (fig 3B and 3D). At generation 5 the
overestimation was 3.4 and 3.3% for heritabilities 0.1 and 0.4, respectively. This
result is unlikely to be a finite population effect as 100 sires and 1 000 dams were
mated each generation. Only 1 of the 8 deterministic predictions was statistically
significant at the intermediate selection intensity (fig 4B and 4D).

For high selection intensity, the trend for the asymptotic EBVM method to
overestimate, and for the Wray and Hill method to underestimate, genetic gain
results in overestimates of the advantage of assortative mating over random
mating. For example, in figures 3A and 3B the deterministic percentage increase of
assortative mating over random mating is 10.5, 14.6, 15.6 and 15.8% for generations
2, 3, 4 and 5, respectively, whereas the stochastic mean percentage increase is 6.8,
10.8, 10.4 and 10.8%. At the intermediate selection intensity the agreement between
the percentage increases is good.

The deterministic finding of the independence with respect to heritability of
the equilibrium advantage of assortative mating over random mating is evident
in the stochastic simulation. For a = 0.05 and b = 0.5, the mean stochastic
percentage increases at generation 5 are 10.8% and 11.8% for heritabilities 0.1
and 0.4, respectively, whereas the deterministic predictions are 15.8 and 16.0%. For
a = 0.5 and b = 1, the mean stochastic percentage increases at generation 5 are
33.6 and 36.6% for heritabilities 0.1 and 0.4, respectively, whereas the deterministic
predictions are 34.5 and 35.9%. The closer agreement with the more intense selection
is expected as equilibrium is reached quicker when selection is more intense.

Hence the deterministic finding of the independence with respect to heritability
and family structure of the equilibrium advantage of assortative mating over random
mating seems to be a feature of BLUP in large populations. In view of this finding
table III with a heritability of 1 can be used to give predictions of the percentage
increase at generation 10 for BLUP. However similar corrections as discussed for
mass selection are needed to reduce these predictions when selection is intense.



A more comprehensive stochastic simulation is needed to evaluate the adequacy
of the asymptotic EBVM method when selection is on BLUP ebv. The effects of
population size and the number of sires also need to be investigated by stochastic
simulation for both the PM and EBVM methods.





CONCLUSION

Selection history

A recurring issue in the recent history of animal breeding theory is the importance
of incorporating selection history into selection strategies for populations when
generations overlap. This was first demonstrated by Bichard et al (1973) and later
extended by Hopkins and James (1977) in their Progeny Selection and Parent
Selection strategies. It is now well known that a BLUP animal model takes account
of the accumulated selection history, not of age groups as in the methods of Hopkins
and James (1977) but of individuals by using the ancestral information in the
numerator relationship matrix.

Assortative mating, whether between-tier as in open nucleus breeding systems
or within-tier, involves spreading the population in terms of genetic merit and can
be considered as the formation of genetic groups based on mating pairs or mating
groups. When generations overlap a similar spread occurs due to the formation of
genetic groups based on age and selection response can be increased if the spread or
history is taken into account. Both between-tier and within-tier assortative mating
take selection history into account and thus increase the response to selection.

The proposed model of positive assortative mating following selection accounts
for selection history by following the accumulated selection differentials of individual
tiers, which in the limit become mating pairs. In doing this the model allows the
population distribution of breeding values to be a mixture of normal distributions.
This feature produces more accurate predictions of the advantage of assortative
mating over random mating than a model assuming normality in the offspring
generation, eg, the model of Tallis and Leppard (1987).

BLUP selection

The advantage of assortative mating over random mating is higher for BLUP than
for mass selection as BLUP can more accurately predict breeding values. Thus
mate allocation will more closely reflect pairing on true breeding values and hence
produce more genetic spread in the population.

Mass selection does not regress an individual’s within-tier phenotypic deviation
as is done with rWTPD selection in open nucleus breeding systems (Shepherd
and Kinghorn, 1993). Hence for low heritability the pairing of mates with mass
selection is a poor reflection of pairing on true breeding values, resulting in a small
advantage to assortative mating. However, as heritability increases, the accuracy of
pairing increases with mass selection and results in more advantages for assortative
mating.
An interesting finding with BLUP selection is that the advantage of assortative

mating over random mating is independent of initial heritability and family infor-
mation at any generation if there is ample pedigree history available before selection
commences. Stochastic simulation showed this trend in populations of 1 000 dams
and at least 100 sires. Shepherd (1991) showed that this independence was not
solely a property of BLUP, but is in fact a feature of ancestral regression, such that
it holds for the nBLUP index used here.



The value of assortative mating at low to moderate heritability is greatly
increased when BLUP selection is used rather than mass selection. Smith and
Hammond (1987) found a similar result in generation 2 using a parental index.
This feature of BLUP certainly makes assortative mating an attractive option for
breeders wishing to increase the rate of genetic gain. ,

However, it is important to remember that the rate of inbreeding will als!
increase under assortative mating (McBride and Robertson, 1963) and no accourrt-
of genetic variance loss due to the accumulation of inbreeding has been made in this
paper. Under reasonably intense selection the increased BLUP genetic gains from
assortative mating may well be cancelled out by the loss of genetic variance due
to inbreeding, particularly at low heritability as the ebvs of relatives will be more
highly correlated giving more co-selection of relatives. This will certainly be true in
the longer term for small populations. Deterministic methods of predicting rates of
inbreeding with assortative mating are desirable but are likely to be complex given
the findings for randomly mated populations (Wray and Thompson, 1990).
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APPENDIX: DETERMINISTIC METHODS FOR MASS SELECTION

Assortative mating &mdash; the PM method for n tiers

The following algorithm describes the PM method for n tiers with a proportion
pi of the population in tier i. Usually pi = 1/n.

Step 1

Using known genetic means and variances, line up the assumed normal distributions
of progeny phenotype in each tier using the same abscissa scale.

Step 2

Select as dams for tier 1 all female progeny whose phenotype is larger than a
common truncation point t1 which is chosen such that the best bpi of all female

progeny become tier 1 dams. In mathematical terms, the proportion of female
n

progeny in tier i selected as dams for tier 1(qji) must satisfy ! piqil = bpi
I=I

where the standardised phenotypic truncation point in tier i(Xil) must satisfy
ti = pi + Xji apj with pi and aPi being the mean breeding value and phenotypic
standard deviation, respectively, of tier i.

Step 3

Select as dams for tier j(j = 2, ... , n) all female progeny whose phenotype is not
only smaller than the previous common truncation point tj-l but also greater than
another common truncation point tj which is chosen such that the best bP! of
all female progeny become dams in tiers 1 to j with the best bPj-1 in tiers 1 to

j

j - 1, and where P! _ ! pk. In mathematical terms, determine the proportion of
k=1

female progeny in tier i selected as dams for tier j(qi!) using q2! = Qi! - Qi,!-1



n

where Qil = qil and the other proportions Qi! satisfy ! pjog = bPj while the
I=I

standardised phenotype truncation point in tier i (Xij) must satisfy tj = !4j + Xj j a pj
for i = 1, ... , n.

Step 4

In an analogous manner repeat Steps 2 and 3 to calculate the proportion of male
progeny in tier i selected as sires for tier (qij ).

Step 5

Now calculate the proportion of tier j dams born in tier i(ai!) and the proportion
of tier j sires born in tier i(a* ) using the identities

Step 6

The mean progeny breeding value of tier j at generation t + 1(J-L!+1) is

where Dkj and Dkj are the genetic selection differentials of female and male progeny,
respectively, who are born in tier k and mated in tier j. Now Dkj = ikjhkQPk and

D* - i* h 2UPk where hfl is the heritability in tier k and ikj(ikj) is the standardised
selection differential for tier k born females (males) who are mated in tier j. The
standardised selection differentials are calculated assuming progeny phenotype is
normally distributed within each tier. Let S(q) denote the standardised selection
differential achieved by truncation selection of the best proportion q. Then the
standardised selection differential of tier k born females mated in tier (ikj) is
given by 2k1 = S(qkl) and for j J 1 by Zkj = [QkjS(Qkj) - Qk,j-1S(Qk,j-r)]/qkj,

j
where Qkj &dquo; §l qkl as in Step 3. The standardised selection differential for males

l=l

are calculated similarly.

Step 6a

Finally update all progeny variances taking into account the loss of genetic variance
due to selection and the gain in genetic variance due to mixing of groups with
different mean breeding values. Proceed as follows. Calculate the mean breeding
values of the selected female genetic groups which are born in tier k and either mated
in tier j (mkj) or mated in tiers 1 to j(Mkj) using the equations mkj = Ak+ikjh 2 aPk
and Mkj = Fk +!Q!!o’f/c where iQkj = S(Qkj). Now the breeding value variance



of dams born in tier k which are mated in tier j (VAkj) is given by VA,!1 = VAk Kk1
and for j > 1 by

where Kk! = 1 - iQ,!! (2(ak! - Xkj)h% and VAk is the variance of progeny breeding
values in tier k. Now the mean breeding value of all dams used in tier j is
m! _ ! ak!mk!. Hence the pooled breeding value variance of all dams used in

k

tler j !UF,9! ) is

where account has been taken of the extra variation due to the differences in mean

breeding value of the selected female genetic groups. In a similar manner, the pooled
variance of all sires mated in tier j(VMA;) can be derived. Hence the variance of
progeny breeding value in tier j at generation t + 1 (Vl+1) is calculated as follows.J

where Vo is the initial genetic variance before selection. Using vl+1 we can calculateA J
the heritability and phenotypic variance in tier j at generation t + 1.

Step 7

Now repeat Steps 1 to 6a for the next generation. Stop when the required number
of generations is reached.

Random mating &mdash; the Bulmer method

The deterministic prediction of the genetic gain at generation t + 1 ( GkH) for
random mating following mass selection is calculated from GB 1 = ! 2 [S (a) +
S(b)]Vh;Vl+1 using an obvious notation. Now the additive genetic variance at
generation t + 1(Vl+1) is calculated using Vt+’ = -V},A 4 + 4VMA + 2VA where
VFA and UMA are the additive genetic variance of dams and sires respectively, at
generation t. To calculate VFA use the equation VFA = UA{1 - S(b)!S(b) - XF] h t 21 }
where XF is the standardised truncation point for females. A similar equation is
used for calculating VTMA* The heritability at each generation is calculated in the
usual manner.
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