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Abstract. The dynamic behavior of a collisionless plasma
flowing around an obstacle is investigated by numerical
methods. In the present studies, the obstacle is formed by
an absorbing cylinder, and a 2-D electrostatic particle-in-cell
simulation is used to study the flow characteristics, with ex-
tensions to a fully 3-D generalization of the problem demon-
strated as well. The formation of irregular filamented density
depletions, oblique to the flow, is observed. The structures
form behind the obstacle, in a region with a strong velocity
shear, but also other instability mechanisms can be identified.
The dynamics of these structures is highly dependent on the
physical parameters of the plasma, and they can either be
quasi-stationary or undergo a dynamic evolution. The struc-
tures are found to be associated with phase-space vortices,
observed especially in the phase space spanned by the ve-
locity direction perpendicular to the flow and the spatial co-
ordinate in the same direction. The bias of the obstacle with
respect to the plasma potential is found to be an important pa-
rameter for the dynamics of the structures, but seemingly not
for their formation as such. The results can be of interest in
the interpretation of structures in space plasmas as observed
by instrumented spacecrafts.

Keywords. Space plasma physics (Numerical simulation
studies; Electrostatic structures; Spacecraft sheaths, wakes,
charging)

1 Introduction

The properties and dynamics of collisionless plasmas can be
strongly influenced by inhomogeneities and boundaries, and
such conditions have been studied in some detail, with re-
sults reported in the literature. For instance, the problem
of plasma flow past an obstacle has been studied for dif-
ferent system sizes, as well as for different plasma param-
eter regimes. For example,Stangeby and Allen(1970, 1971)
studied analytically the stationary flow pattern of a compress-
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ible, supersonic, irrotational and inviscid flow of drifting cold
ions around a cylindrical obstacle. These results are of in-
terest for the interpretation of probe characteristics, but also
in other contexts, such as dust particles (Shukla, 2002) in
a gas discharge or dust-grains in plasmas occurring in na-
ture, where the rings of Saturn represent such an example
(Hartquist et al., 2003). Considering different and much
larger length scales,Farrell et al.(1997, 1998); Birch and
Chapman(2001, 2002) studied the kinetic effects of solar
wind electrons and the interplanetary magnetic field (IMF)
direction in the wake formation and evolution past the Moon.

In the present study, we consider small absorbing cylin-
drical obstacles, with diameters on the Debye length scale
or larger, immersed in a plasma consisting of an ion species
having a net drift velocity relative to the obstacle (Guio and
Pécseli, 2004). We investigate the characteristics of fluctua-
tions excited behind the obstacle under these conditions. The
problem is analyzed by numerical methods, using a particle-
in-cell (PIC) code. The interesting observation here is not
only that fluctuations develop in the wake behind the obsta-
cle, but that they can take the form of long-lived structures,
which at closer inspection turn out to be associated with
phase space vortices, which are known from laboratory ex-
periments, as well as several numerical plasma simulations.
The analysis can have implications for the study of plasma
waves detected by instrumented spacecraft, where it seems
that care should be taken to distinguish between fluctuations
generated by the spacecraft from those naturally occurring in
the ambient plasma.

The geometry of the problem posed here resembles that
of low Mach number neutral winds flowing past an obstacle,
a smokestack, for instance. This results in the formation of
the well-known “von Karman vortex street”. In that prob-
lem (in its standard form), however, the flow is treated as
incompressible. For the present related plasma counterpart
of the problem, the compressibility of the medium is crucial.
In neutral fluids, momentum is imparted to neighboring fluid
elements by pressure and viscosity, in collisionless plasmas
with conditions given in the present study, by electrostatic
fields.
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The present paper is organized as follows: in Sect.2 we
give an outline of the numerical methods, with results pre-
sented in Sect.3. In Sect.4 we discuss possible instabil-
ity mechanisms active for generating the observed structures,
and identify a velocity shear, as well as an ion-ion two-stream
instability, where one or both may be active for various pa-
rameter regimes. Finally, Sect.5contains our discussions, in-
cluding, in particular, a discussion of the relevance for some
spacecraft observations.

2 Numerical simulations

A general particle simulation describes both ions and elec-
trons as discrete particles, which in a purely electrostatic
model are propagated by the collective electric fields. These
models are numerically very time consuming because of the
significant difference in the characteristic time scales of ions
and electrons (i.e. the relevant plasma periods). An often as-
sumed simplification consists of retaining a particle model
for the ion dynamics, but simplify the treatment of the elec-
trons by assuming a fluid model for this component. This
approximation is generally assumed to be justified for phe-
nomena on time scales longer than the ion plasma period. In
the present study, we use the same particle-in-cell simulator
asGuio et al.(2001, 2003); Guio and Ṕecseli(2003), with
the only extension that it allows for inclusion of absorbing
surfaces. The code is parallelized and allows for simulations
with a large number of particles over a wide rectangular re-
gion. The electrons are assumed to be thermalized at temper-
atureTe, and to be Boltzmann distributed at all times, leading
to the nonlinear Poisson equation

∇
2φ =

e

ε0

(
n0 exp

(
eφ

Te

)
− n

)
, (1)

wheren is the ion density, assuming singly charged ions.
Quasi-neutrality is thus not explicitly assumed. Under some
special conditions, with additional assumptions, we can gen-
eralize the model for an electron Boltzmann distribution
slightly (Guio et al., 2003).

Because of the assumed isothermal Boltzmann distribu-
tion of the electron component, our code does not account
for electron kinetic phenomena due to, for instance, distorted
electron velocity distribution functions, or electron current
instabilities. The model can be justified for cases where the
potential difference between the obstacle and the plasma is
small, and in particular cases where the electron-electron col-
lisions are significant, while the ion component can be con-
sidered collisionless. The code offers a great advantage in
needing attention only to the time scale of the ion dynam-
ics. Since electron inertia is ignored in the present approx-
imation, a slow electron flow is irrelevant for the analysis.
Larger electron flows will require a more time consuming
code, where the electrons are also treated as individual par-
ticles. The present code allows for an externally applied
magnetic field (Guio et al., 2001, 2003; Guio and Ṕecseli,

2003), but for the present results we consider an unmagne-
tized plasma. Phase space structures can be formed in mag-
netized plasma as well (Børve et al., 2001; Daldorff et al.,
2001; Guio et al., 2003; Jovanovíc and Shukla, 2003).

The problem is analyzed by a nonlinear multi-grid method
which consists of a full multi-grid scheme, with an adaptive
strategy that allows for the omission of a coarse-grid cor-
rection if the specified accuracy is already reached on that
grid. This scheme might be followed by some iterations of
adaptive multi-grid schemes, in order to improve the accu-
racy (Wesseling, 1991). The relaxation method uses a Gauss-
Seidel-Newton iteration scheme. The simulation region here
is 120λi×120λi , in units of the ion Debye lengthλi . We
have typically 3×106 particles in a simulation. The analysis
allows for the inclusion of multi-electron temperature distri-
butions (Guio et al., 2003), but these were not studied in any
systematic way here.

An absorbing circular obstacle is placed at the origin of
the simulation region. Every ion crossing the surface of the
obstacle is removed from the simulation, and the net charge
density inside the object is fixed to zero. This solution allows
for a simple treatment of the obstacle, which is here assumed
to be at a constant potential, equal to the plasma potential.
First, a 10λi diameter is considered, but also conditions with
other diameters have been analyzed. The object is of course
subject to a drag force (Ivlev et al., 2004), which is, however,
ignored here. This is justified if the inertia of the object is
large, as assumed here, and the drag will then not be mani-
fested for the durations of the simulations presented in this
analysis.

The ions have a net flow along they-direction, as ensured
by injection of particles at one boundary. The boundary con-
dition applied to the particles along the flow as well as the
perpendicular direction, is a free space boundary, with the
number of injected particles being calculated from the flux of
a Maxwellian distribution. The boundary condition for the
electric field is a Neumann condition along the flow direc-
tion, and a Dirichlet condition in the perpendicular direction.
In this way, the quasi-neutrality condition at the boundary
is fulfilled. Some preliminary results of the present studies
were published previously (Guio and Ṕecseli, 2004).

3 Numerical results

One of the most important parameters of the problem is the
velocity difference between the plasma and the obstacle, i.e.
the Mach number associated with the problem. If we choose
the ion flow velocity to be supersonic, we obtain the well-
known sound-wave cones, very similar to related previous
results (Guio and Ṕecseli, 2003), where we studied radiation
of sound from a supersonic point charge. One interesting
feature of the present analysis is that only moderate flow ve-
locities are used, well belowCs , but larger than the ion ther-
mal velocity. In the following we measure time in units of
�−1
pi , where�pi is the ion plasma period, spatial separations

in units of the ion Debye lengthλi , and velocities in terms
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Fig. 1. Two-dimensional electrostatic potential at 6 different
times of the simulation. The color scale has red as maximum,
whereeφ/Ti≈0.2 and deep blue as minimum, whereeφ/Ti≈−2.5,
slightly behind the obstacle. The ion drift velocity isV0=0.22×Cs .

of
√
Ti/M, while potentials are normalized byTi/e, measur-

ing temperatures in energy units, thus omitting Boltzmann’s
constant.

Figure 1 shows the two-dimensional electrostatic poten-
tial at 6 different times. For this particular simulation we
haveTe/Ti0=20, but the results are representative for other
smaller temperature ratios as well. To simulate conditions in
nature, where the ion temperature is often largest in the di-
rection of the ion flow, we usedTi‖≡Ti0=5Ti⊥ for the ion
population injected at the boundary. It turns out, however,
that neither this temperature anisotropy seems to be of any
major importance.

We note first the formation of a density depletion behind
the obstacle, with an associated potential variation given by
Eq. (1). The density depletion breaks-up into long filaments
behind the obstacle. In order to visualize the time varia-
tion of the potential associated with the filaments we place
a dense probe array positioned in thex-direction (perpendic-
ular to the flow velocity), at a downstream position of 40λi .
The time evolution is sampled for 400 ion plasma periods.
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Fig. 2. Time variation of the electric potential detected at a probe
array placed at a downstream position of 40λi . The time evolution
is sampled with the numerical time resolution for 400-ion plasma
periods, for parameters as in Fig.1. As a reference, we inserted
the slopes of the ion sound velocity (solid line) and the ion thermal
velocity (dashed line), in the middle of the figure. The color scale
has red as maximum, whereeφ/Ti≈0.2 and deep blue as minimum,
whereeφ/Ti≈−1.4.

The widths of the structures after saturation is approximately
10λi . Results are shown in Fig.2. The formation time of the
structures is approximately 100 ion plasma periods.

We observe a rather irregular motion of the two filaments,
sometimes they cross, and sometimes one may be terminated,
to reappear in a different position along the probe array. At
several times, we note a coalescence of two structures, e.g.
at t≈105 andt≈180. The local slope of the structures in the
{x, t}-diagram gives the local velocity component in thex-
direction, which is here the dominant one. Disruptions, and
other abrupt changes of the structures are often associated
with radiation of small amplitude slow waves: an example is
noticeable, for instance, in Fig.2, around(x, t)≈(0, 180).
The x-component of the velocity of these fluctuations is
found to be between the ion thermal velocity and the speed of
sound. If we reduce the electron-ion temperature ratio, fila-
ments still form, but they become thinner and more irregular.
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Fig. 3. A section of phase space, spanned by{x, vx}, shown at
selected times, for parameters as in Fig.1, and the samey-position
as in Fig.2.

While the present parameters typically give two filaments,
as in Fig.1, a reduced temperature ratio can give a larger
number. In all cases they start out from the wake or shadow
region immediately behind the obstacle.

The presentations in Fig.2 are in terms of plasma poten-
tial, but since the structures are larger than the Debye length,
the quasi-neutrality condition is approximately fulfilled, and
the figures are representative for the variations in plasma den-
sity as well.

Based on the potential variation alone, it is not possible
to make any further definite statements concerning the na-
ture of the observed structures. In order to obtain a better
understanding, we analyze the phase space spanned by the
{x, vx}-coordinates, at selected times. Results are shown in
Fig. 3, and for the{x, vy} part of phase space in Fig.4. The
conspicuous features of the potential structures seem to be
associated with phase space vortices, where all the relevant
dynamics seem to take place in{x, vx}-plane, as expected
for potential structures elongated in they-direction, as here.
Such ion phase space vortices are well-known, and have been
observed experimentally byPécseli et al.(1981, 1984), as
well as in a number of numerical simulations (Sakanaka,
1972; Børve et al., 2001; Daldorff et al., 2001; Guio et al.,
2003). In particular, the coalescence seen in Fig.2 is asso-
ciated with a phase space coalescence, as found in Fig.3, at,
for instance,t=180. The velocities of these structures seems
to be at or below the ion thermal velocity, consistent with
analytical results, which demonstrate that these Bernstein-
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Fig. 4. A section of phase space, spanned by{x, vy}, shown at
selected times, for parameters as in Fig.1, and the samey-position
as in Figs.2 and3. Note that the grey-scale has been changed in
comparison with Fig.3, in order to emphasize the weaker phase
space structure.

Greene-Kruskal (BGK) equilibria (Bernstein et al., 1957) can
have in principle any characteristic velocity, as long as they
are embedded into the velocity distribution function. In their
analysis of ion phase space structures, or “solitary ion holes”,
Schamel and Bujarbarua(1980) andBujarbarua and Schamel
(1981) found an upper limit for their velocity to be 1.4-ion
thermal speeds. The radiation of small amplitude fluctua-
tions here is seemingly associated with changes in ion phase
space. It is interesting to also note thatSingh et al.(2001) ob-
served radiation of small amplitude waves when phase space
vortices underwent rapid changes (in their case electron holes
radiating plasma waves). Related observations were made by
Newman et al.(2001) andOppenheim et al.(2001).

To illustrate the parameter variation, we show, in Fig.5,
the normalized potential variation for the case where the tem-
perature ratioTe/Ti is moderate, but still with sub-sonic flow
parameters. The corresponding phase space presentation is
shown in Fig.6. We find that in this case it takes longer for
the phase space structures to form, and they appear somewhat
more “blurred” as compared to the case illustrated by Figs.1
and3, but this is to some extent an artifact of the choice of
positions. We choose to represent the features in the same
spatial positions for the two cases, but if we take a position
further downstream, where the structures are more strongly
developed, see Fig.5, then the phase space structures will
also be better defined.
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Fig. 5. Two-dimensional electrostatic potential at 6 different times
of the simulation. The color scale has red as maximum, where
eφ/Ti≈0 and deep blue as minimum, whereeφ/Ti≈−0.5, slightly
behind the obstacle. Here we haveTe=2Ti for isotropic ion temper-
atures. The ion drift velocity here is 0.82×Cs .

As mentioned, we assumed that the obstacle was at the
plasma potential, so the only way it interacts with the ions
is by adsorption, corresponding to a recombination of ions at
the surface. It does not change the results in any apprecia-
ble way to let the obstacle be biased, however. We show in
Fig.7 a case where the bias is9o=−4Te/e, which is approx-
imately the potential we would have in case the obstacle was
at floating potential. We see that the potential evolution be-
hind the obstacle is noticeably more irregular, as compared
to the case without bias. Assuming a steady state,Tskhakaya
et al. (2004) studied the formation of the sheath around a
floating object, in their case a dust grain moving with respect
to the plasma, and found the sheaths to be deformed due to
the flow. We find the sheath to be highly dynamic in our case
and observe that phase space structures are forming here as
well, see Fig.6. We find that a larger obstacle (e.g. 20λi)
basically gives the same irregular features, and argue that the
essential effect of a bias on the obstacle is to make its effec-
tive cross section larger, due to the surrounding sheath. In
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Fig. 6. A section of phase space, spanned by{x, vx}, shown at
selected times, for parameters as in Fig.5. Note that the grey-scale
has been changed in comparison with Fig.3, in order to emphasize
the weaker phase space structure.

particular, Fig.7 shows that the structures can appear on vir-
tually any position with respect to the axis of the obstacle,
i.e. not necessarily in the wake of the flow.

In Fig. 8 we show a sample of phase space corresponding
to the data in Fig.7. We can clearly identify two “beams”
in this phase space, and also the formation of phase space
vortices in this case. Note, however, that the vortices form
on the “high velocity” sides of the beams (seen best for early
times), in contrast to what is expected for vortices formed
by kinetic, beam-type, instabilities. We attribute this to be a
consequence of the velocity shear, to be discussed later.

We note that an ion flow is known to modify the sheath
characteristics (Pal et al., 2002; Kwok et al., 2003). The
large-scale motion of the vortices in the present case, where
it is significantly more noticeable than when the obstacle is
at plasma potential, is due to the fluctuations in the sheath,
which act to scatter the phase space structures being formed.
In particular, we note that the structures in the plasma seem
basically to be constrained to the wake of the solid obstacle
when it is biased to the plasma potential. When the object
is at, or close to, the floating potential, the structures can at
times be found in front of, or up streams of the obstacle.

To substantiate the discussion of the fluctuations of the
sheath in Fig.7, we show in Fig.9 short samples obtained
at 4 positions inside the sheath around the object. First,
we note a short transient after the beginning of the simula-
tion, followed by some low frequency oscillations. We note
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Fig. 7. Two-dimensional electrostatic potential at 6 different times
of the simulation. The color scale has red as maximum, where
eφ/Ti≈0 and deep blue as minimum, whereeφ/Ti≈−6, slightly
behind the obstacle. We have plasma parameters as in Fig.1, but in
the present case the obstacle is at a potential of−4Te/e.

that the oscillations are seemingly in phase around the obsta-
cle, indicating that the dominant oscillation here is a uniform
“pulsation” of the sheath. The peak-to-peak amplitudes are
sufficient to cause a nontrivial scattering of ions. By consid-
ering extended simulation periods, we obtain spectra as those
shown in Fig.10. We note the peaks around 0,05–0.07�pi ,
and also that there seems to be some variations with posi-
tions around the object. This latter observation can in part
be due to the finite record length used here, but in principle,
we would expect at least some difference between the “up”
and “down” positions. We find it interesting that the periods
around 15–20�−1

pi for the peaks observed in the spectrum
are close toD/V0. This parameter variation deserves further
scrutiny, but that study is outside the scope of the present
analysis.

We find it relevant to analyze object potentials,9o, at
the plasma, as well as the floating potential. In a labora-
tory, obviously the bias can be externally imposed, but on a
spacecraft there are possibilities for at least some controlled
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Fig. 8. A section of phase space, spanned by{x, vx}, shown at
selected times, for parameters as in Fig.7, and the samey-position
as in Fig.2. Note the formation of phase space vortices on the high
velocity side of the beams, seen best for early times.

adjustments as well. Actually, in such cases positive poten-
tials, corresponding to electron absorption, are also relevant,
but the assumption of Boltzmann distributed electrons inher-
ent in our simulations prohibit us from studying this limit,
where the electron current drawn to the solid object can give
rise, for instance, to plasma instabilities of a nature different
from those studied in the present work.

3.1 Three spatial dimensions

We have investigated the present problem by a fully three-
dimensional code as well. That analysis is significantly more
time consuming, but gives essentially the same results. As
an illustration, we show in Fig.11 a three-dimensional pre-
sentation of the potential variation, where we have a cylinder
segment embedded in the flowing plasma (see also Fig.12
for the potential variation in a selected plane for 6 different
times). The plasma parameters are as in Fig.1, apart from
havingTi‖=Ti⊥ here. Also in this case, we see clearly the
formation of spatially extended filaments. Our observations
are therefore not restricted by the dimensionality of the code.
We note though, that in the simulation from Fig.11 if we re-
place the cylinder segment with a sphere having the same di-
ameter as the cylinder, we see a diffuse noise level behind the
sphere almost without structures. These will re-occur only if
the radius is substantially increased. In order to find struc-
tures developing in the plasma flow for reduced temperature
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ratios,Te/Ti , it is particularly important to have objects be-
ing strongly elongated.

In general, the formation of phase space structures seems
to requireTe>Ti , which is in agreement with numerical stud-
ies byPécseli et al.(1981), and has analytical support in the
work byBujarbarua and Schamel(1981). Enhanced electron
temperatures are frequent in the Earth’s upper ionosphere and
magnetosphere. An ion temperature anisotropy seems to be
of minor importance, presumably because the ion popula-
tion to some extent thermalizes behind the obstacle, due to
scattering by the fluctuations. The main feature seems to be
that isotropic ion temperatures allow for wider excursions of
structures in their motion in the direction perpendicular to
the flow velocity. Larger obstacles tend to give rise to the
formation of somewhat wider (“fatter”) structures. For a di-
ameter of 1.5λi of the obstacle, it is no longer possible to
observe any structures, but for a diameter of 2.5λi or larger,
they are clearly discernible. There is a significant difference
between the dynamics of phase space vortices in one and two
dimensions (Pécseli, 1987). The difference between a two-
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Fig. 10. Fluctuation amplitude spectra obtained for signals like
those shown in Fig.9, here with duration 400/�pi .

and three-dimensional simulation of a problem with cylindri-
cal symmetry seems not to give significant differences on the
time scales considered here.

4 Discussions

Long-lived potential structures have been observed in labo-
ratory experiments, as well as numerical simulations. Also,
many satellite observations from plasmas in the Earth’s near
environment have revealed the presence of seemingly long-
lived structures. Often the linear Landau damping is ex-
pected to be large in these conditions, and such structures
should have a modest lifetime, if interpreted in the frame-
work of a linear model. It is well known, however, that
nonlinear wave phenomena can distort the velocity distribu-
tion locally, in such a way that the linear damping mecha-
nisms become ineffective. Many numerical and experimen-
tal results have demonstrated that vortical structures in phase
space have these characteristics. The properties of the indi-
vidual structures is thus relatively well understood. Their



860 P. Guio and H. L. Ṕecseli: Phase space structures

Fig. 11. Three-dimensional presentation of the potential variation
around a cylinder segment placed in the ion flow. Only one-quarter
of the simulation domain is shown. The corresponding quarter of
the cylinder segment is shown in black color. Plasma parameters
areTi‖=Ti⊥=Te/20, and we have the plasma drift velocity to be
V0=Cs/2.05.

formation mechanism is, however, still subject to contro-
versy, and it might be that no unified model can be found.

In simulations with full electron, as well as ion dynamics
(Omura et al., 2003), phase space structures were observed
in the ion, as well as the electron phase space (best seen in
electron phase space), as a result of an applied electric field
which drives a current along magnetic field lines. Those
results are expected to be relevant for the interpretation of
data from the GEOTAIL spacecraft. These simulations indi-
cate that the origin of the phase space structures is a kinetic
current driven instability. Kinetic instabilities saturating in
phase space vortices have been observed in simulations (in
one spatial dimension) of electrostatic double-layers as well
(Ergun et al., 2003), and the results related to observation
in space plasmas. A combined analytical-numerical study
of ion-ion beam instabilities byPécseli and Trulsen(1982)
demonstrated that also in this case ion phase space structures
were formed as a result of a linear kinetic instability. In the
present case, we have the initial local ion distribution being
a drifting Maxwellian everywhere, and deviations from this
develop due to the presence of the obstacle.

The plasma is unstable, due to a velocity shear insta-
bility. In this case we are dealing with a compressible
flow, rather than the “classical” incompressible case (Chan-
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Fig. 12. Time evolution of the potential variation in the mid-plane
of Fig. 11, shown for selected times.

drasekhar, 1961). In Fig.13, we demonstrate that a localized
velocity shear is present in the flow. The average or fluid ve-
locity here is obtained numerically by integrating the velocity
distribution to yield

V(r , t) ≡

∫ ∫
vf (r , v, t)dvxdvy∫ ∫
f (r , v, t)dvxdvy

,

given by small arrows, while the color coding gives the po-
tential variation as in the previous figures. As expected, the
shear is found at the edge of the obstacle: in the shadow
of the cylinder we have the plasma moving slowly, while it
flows unimpeded past the object outside the shadow region.
We see clearly a “channel” of small flow velocity behind the
obstacle, with larger velocity vectors in the surrounding flow.
The region of pronounced velocity shear is the one where the
potential structures develop, (see Figs.1) and2. In present-
ing Fig.13, we selectedt=70, i.e. a time where the potential
structures begin to develop (see Fig.1).
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4.1 Stability analysis

Two possible but basically different instability mechanisms
can be identified: one is a fluid type instability associated
with the velocity shear that exists at the edges of the shadow
region, and the other one is a kinetic instability generated
by the oppositely directed ion beams that flow into the wake
region from the two sides of the shadow region.

4.2 Velocity shear

To obtain a theoretical stability analysis for the velocity
shear, we simplify the problem by considering a uniform
shearV0(r)={0, V0(x), 0}. We ignore a density variation,
since this will only give a modification of the linear growth
rates, which will be approximate in the present model any-
how. In case we also allow for the density to be nonuni-
form, the unperturbed state will become complicated, since
the electron pressure will give a dc-electric field in that case.
This field will in turn affect the unperturbed velocity field,
rendering it nonuniform.

We use the basic linearized momentum equation for a cold
ion distribution, directly applicable for the case withTe�Ti .
With the linearized ion continuity equation, Poisson’s equa-
tion with Boltzmann distributed electrons, we can Fourier
transform with respect to the temporal variable, as well as
the z-variable, along the unperturbed flow direction. As far
as thex-direction is concerned we retain the full spatial vari-
ation.

We finally obtain one closed equation for the normalized
potentialψ≡eφ/Te as

(
ω − V0(x)k‖

) (
ψ
(
1 + (k‖λD)

2
)

− λ2
D

d2ψ

dx2

)

−C2
s k

2
‖

ψ

ω − V0(x)k‖
+ C2

s

dψ

dx

d

dx

(
1

ω − V0(x)k‖

)
+C2

s

d

dx

(
ψ

ω − V0(x)k‖

)
= 0 , (2)

where we introduced the sound speedCs≡
√
Te/M. The re-

lation can be seen, in general, as an complex eigen value
problem forω and corresponding eigen functionsψ , subject
to the constraint thatψ is finite forx→±∞.

Unfortunately, relation (2) is difficult to solve, even in the
case where we assume the velocity shear to be a simple step-
function. We consider here a localized solution, with the
assumption ofV0≈βx, which we analyze in the vicinity of
x=0. By a change in the frame of reference, this approxima-
tion can be made valid. Since this assumed that the limiting
case essentially corresponds to considering fine structures in
the direction perpendicular to the shear velocity, we ignore
terms containing the productk‖λD. In this limit Eq. (2) sim-
plifies to

d2ψ

dx2
+ 2β

k‖

ω

dψ

dx
+

(
ω2

C2
s

− k2
‖

)
ψ = 0 . (3)
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Fig. 13. Diagram for the plasma flow velocity. For simplicity, we
show only a restricted domain of the simulation space, see Fig.1
for color coding. The green-yellow transition is atφ≈−Ti/e.

The solution has the formψ=C1 exp(κ1⊥x)+C2 exp(κ2⊥x),
with κ1⊥ andκ2⊥ being solutions to the characteristic equa-
tion κ2

⊥
+2βκ⊥k‖/ω+(ω2/C2

s − k2
‖
)=0.

In order for Eq. (3) to have bounded solutions satisfying
the constraints atx→±∞ with κ⊥,‖ real, we find that the
frequency has to be purely imaginary,ω≡iγ , corresponding
to aperiodically growing solutions, in this particular frame of
reference. In the limit whereγ is small, we readily find the
approximate solutionγ=2βk⊥k‖/k2, which impliesκ=ik⊥
in the solution forψ , giving bounded solutions. More gen-
eral results can be obtained by Euler’s differential equation
as a local approximation aroundx=0.

We note that a finite ion temperature within a fluid model
will merely act to modify the sound speed slightly, and its
inclusion is therefore of little consequence, apart from adding
to the algebra.

4.3 Kinetic instability

The kinetic instability mentioned before is reminiscent of the
one studied by, for instance,Singh and Schunk(1983); Singh
et al. (1986, 1989); Samir et al.(1989), although those in-
vestigations were primarily concerned with objects moving
at supersonic speeds. Basically, the beams enter from both
sides of the shadow region, and when they mix, a two-stream
region may develop. For the present condition, where the
flow is sub-sonic, a nontrivial part of the tail population of the
Maxwellian ion distribution can flow into the shadow region,
and as far as the{x, vx}-part ion phase space is concerned,
see Fig.3, it contributes with a particle population at zero
average velocity. For a fixed Mach number of the flow (here
withM≡V0/Cs<1), the density of this component decreases
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with increasing temperature ratioTe/Ti , which will imply
ut i/Cs decreasing.

We can estimate thex-component of the ion beam veloc-
ity by noting that potential drops at the edges of the shadow
region are at most1φ≈0.2Te/e, for the case analyzed here
(see Fig.13). Consequently, thevx-component of the aver-
age ion velocity is of the order of the ion thermal velocity in
the wake-region. In a homogeneous plasma, this velocity is
insufficient to give rise to an ion-ion beam instability (Fried
and Wong, 1966), but in the present shear flow it might be
that the two instabilities enhance each other. We mention that
in estimating the perpendicular ion temperature,Ti⊥, in the
wake (or shadow) region, we must take into account the adi-
abatic cooling due to the acceleration of the ion component
at the potential drop at the wake boundary. As mentioned be-
fore, counter-propagating ion beams can be seen in the wake
region, e.g. Fig.8, but at least in this particular case the ion-
beam instability is unlikely to be operative, since vortex-like
structures form at the high velocity sides of the beams, rather
than between the two beams in phase space.

Our preference for the shear instability in the interpreta-
tion of the present simulations, Fig.13, originates from the
observation that the structures seem to develop at the loca-
tion of the maximum shear, and at a direction almost normal
to the gradient in plasma velocity. It is, however, evident that
the relative importance of the two instabilities may change,
depending on plasma parameters, the electron-ion tempera-
ture ratio in particular.

The phase space structures we observe thus represent the
saturated stage of a linear instability. We expect the lifetime
of the structures to be infinite, since they are constantly main-
tained in the wake behind the obstacle. Their length in the
ion streamwise direction is, however, finite. There are not
the same particles which constitute a structure at all times.
Studies of the lifetime of ion phase space vortices (Pécseli
et al., 1984; Børve et al., 2001) refer to initial value prob-
lems, and do not apply for the present case. If ion phase
space vortices were to be analyzed as initial value problems
with these plasma parameters, the resulting structures would
appear as transient phenomena.

We emphasize that the omission of an externally imposed
magnetic field is deliberate: it is known that ion phase space
vortices (as well as their electron counterparts) have a life-
time which is increasing with the strength of the magnetic
field (Børve et al., 2001). Our code allows for the inclusion
of magnetic fields, but we choose the “worst-case” of an un-
magnetized plasma, where the vortex lifetime is the smallest.

5 Conclusions

In the present communication, we studied plasma flows past
an absorbing obstacle, with particular attention to subsonic
flow velocities. We demonstrated that the wake behind the
obstacle (see Fig.13) is associated with a reduced plasma
drift, as to be expected, while we have a larger flow velocity
in the surrounding plasma. The resulting localized velocity

shear is unstable, and breaks up into fine structures, which in
the saturated stage turn out to be associated with phase space
vortices (see Fig.3). We find evidence for phase space co-
alescence of the phase space vortices, but this is in almost
all cases a transient event, in contrast to other related studies,
where coalesce is often an irreversible event (Saeki et al.,
1979; Lynov et al., 1979, 1980). Here we are considering
a boundary value problem, i.e. continuously maintained vor-
tices, in contrast to most previous studies with initial value
problems.

Phenomena interpreted as phase space structures are of-
ten observed by instrumented satellites (see reviews by, e.g.
Guio et al.(2003)) or Krasovsky et al.(2003). Examples are
found, for instance, in data also from the FREJA satellite.
Sometimes such structures are accompanied by wave activ-
ity, e.g. lower-hybrid waves, but often not (Dovner et al.,
1994; Pécseli et al., 1996). Care should be taken to distin-
guish the different properties of the observations. Often the
structures are claimed to be uniquely associated with elec-
tron phase space structures, but we should bear in mind that
the distinction between ion and electron phase space vortices
is not evident if made on the basis of a density depletion and
a double polarity of an electric field: in this case a signal
from a spacecraft overtaking an ion hole cannot be discrim-
inated from an electron hole overtaking the spacecraft. In
both cases we observe a small density depletion associated
with first a positive and then a negative electric field spike.
Unambiguous interpretations are only possible if the phase
space information is available, and this is rarely so, even in
laboratory experiments (although the first observation of ion
phase space vortices (Pécseli et al., 1981, 1984) was made in
part by measuring the ion velocity distribution functions). In
space observations, the evidence is mostly circumstantial.

One somewhat unpleasant observation based on our stud-
ies can be that obstacles in a plasma flow (or obstacles mov-
ing with moderate velocities through a stationary plasma) can
generate phase space structures. If we associate an obstacle
like the one investigated in the present study with a rocket or
a satellite, or a part of one, we might anticipate that the long-
lived structures can be observed by probes on the same space-
craft, and incorrectly be associated with natural phenomena
occurring in the ambient plasma. We see it as a problem that
very often pulses attributed to phase space structures are seen
in an environment where no formation mechanism is readily
identified. On the other hand, such phase space structures
have a lifetime which is large only in strongly magnetized
plasmas, i.e. forωce≥ωpe for electron holes, and�ci≥�pi
for their ion counterparts (Børve et al., 2001). These con-
ditions are only sometimes fulfilled in space plasmas, but
very easily in laboratory plasmas (Saeki et al., 1979; Lynov
et al., 1979), and for a phase space vortex to be observed by
a spacecraft, we expect it has to be close to the generation
region. It is, however, only in some cases that a generation
mechanism can be identified simultaneously with observa-
tions of phase space structures. The only obvious genera-
tion mechanism which is always present is the satellite itself!
This scenario deserves, in our opinion, some attention. The
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signal representing the plasma phenomena can be “contam-
inated”, so to speak, by structures generated by the space-
craft itself. This can happen in other cases as well: it is thus
known (Cairns and Gurnett, 1991; Feng et al., 1993; Keller
et al., 1997) that lower hybrid waves can be generated in the
plasma density gradients of a magnetic field-aligned shadow
region, behind a rapidly moving spacecraft. In this case these
spurious signals are strictly confined to the wake, and will
not be confused with lower hybrid waves naturally occurring
in the plasma, as detected by, for instance, the FREJA satel-
lite (Dovner et al., 1994; Pécseli et al., 1996), where lower-
hybrid wave-filled cavities are detected with a probability in-
dependent of the satellite spin angle.

A high altitude satellite like the GEOTAIL spacecraft is
small in comparison to the local electron Debye length (with
n≈0.1×106 m−3, Te≈100 eV). The FAST satellite is compa-
rable to or larger than the Debye length (withn≈6×106 m−3,
Te≈700 eV). Therefore, these two satellites are close to be-
ing ineffective “point-sources”, in the present context. How-
ever, a lower altitude satellite like FREJA is approximately
30×6λDe, in terms of local plasma parameters. With a typi-
cal sound speed of(7.4±15%)×106 m s−1 (taken from stan-
dard tables) for a hydrogen plasma, and a satellite speed
of 7.5×106 m s−1, we have the FREJA satellite propagat-
ing with Mach numbers varying around unity. Indeed, ob-
servations of sporadic localized structures have been re-
ported (Dovner et al., 1994), in addition to wave-filled cav-
ities, which are not discussed here. We also expect our re-
sults to apply for sounding rockets probing the collisionless
plasma in the ionospheric E-region. It might also be men-
tioned that the instruments on board the low altitude Astrid-
2 satellite have detected significant satellite induced pertur-
bations of the local plasma environment (Ivchenko et al.,
2001), although the precise nature of these perturbations
remains to be investigated. For the Astrid-2 satellite we
have typical plasma parameters being densities in the range
8×103

−14×103 cm−3 and Te≈0.25 eV, giving λDe in the
range 3–4 cm, which is much less than the geometrical size
of the satellite.

We note that the solid object evidently need not be a part of
a man-made spacecraft, it might as well represent a charged
boulder propagating at a subsonic velocity. The problem
might thus be applicable also to the dusty environment of
planets like Saturn. One difference from the analysis in the
present study can be that these “rocks” can be isolators, and
that the electrostatic potential varies over the surface. The
present study assumes constant potentials, as found for con-
ducting objects, such as satellites or rockets.

The present problem contains, unfortunately, a very large
number of parameters, and a complete coverage of the pa-
rameter space is not feasible. We have in terms of dimen-
sionless numbers the parametersV0/Cs , e9o/Te, Te/Ti ,
Ti‖/Ti⊥, andD/λDe, whereD is the diameter of the object,
assumed to be cylindrical. In three-dimensional models we
also have the parameterD‖/D⊥, allowing for elongated ob-
jects of finite lengths. If an externally imposed homogeneous
magnetic field is included, we have in addition the param-

eters�pi/�ci , D�ci/Cs , as well as the angle2 between
the velocity vector of the moving object and the magnetic
field. In the present analysis we considered various values of
V0/Cs , e9o/Te, andTe/Ti . If collisional plasmas are con-
sidered, we have also the dimensionless parameterνi/�pi ,
whereνi is the ion collision frequency, with a neutral com-
ponent, for instance, which would be relevant for the lower
parts of the Earth’s ionosphere. With the a priori assumption
of Boltzmann distributed electrons, we need not consider an
electron collision frequency. The effect of ion-neutral colli-
sions on the ion vortex lifetime was studied byPécseli et al.
(1984), and it was found that the lifetime was reduced by col-
lisions, giving a lifetime∼ν−1

i , as expected. For the present
case, with the vortices continuously maintained by the flow,
we will observe a reduced length of the filaments behind the
moving obstacle, as the collision frequency is increased.

The observations reported in the present study are ex-
pected to be relevant for supersonic conditions as well, al-
though we emphasized here subsonic conditions, to avoid
the influence of the Mach-cones. For more general condi-
tions we have possibilities for considering irregular bound-
ing surfaces, and probably more important, for velocity dis-
tribution functions deviating from Maxwellians. As far as the
ion distributions are concerned, our numerical code poses no
problems for including more general forms, but evidently,
the electron distribution here will always be a Maxwellian,
by construction of the code. The analysis presented in this
paper is restrictive by ignoring magnetic fields, but as al-
ready mentioned, this is the “worst possible” case, since it
was found (Børve et al., 2001) that it is in that case ion phase
space vortices are most difficult to excite and maintain.

A number of future studies can be suggested: it would,
for instance, be worthwhile to carry out a detailed analysis
of the polarity of the electric fields of the observed bipolar
structures in the rest frame of the plasma, which requires the
plasma bulk flow velocity to be accurately determined along
as well as across magnetic field lines. The correlation be-
tween the velocity of the observed structures and the electric
field polarity (i.e. fields pointing towards or out of the density
depletion, respectively) should be consistent with the veloc-
ity in the sense that an ion vortex should have velocities in the
range{−ut i, ut i}, and electron vortices{−ute, ute}, in terms
of the appropriate thermal velocities. It is true that formally
we can envisage, for instance, ion vortices to have veloci-
ties noticeably larger thanut i , but will emphasize that this
requires rather “artificial” velocity distributions. The distri-
bution of the positions of the observed structures with respect
to the wake of the spacecraft (i.e. the spin phase) should be
determined as well.

The analysis summarized in the present study was re-
stricted to subsonic motion, in order to avoid influence of
the Mach-cone studied previously by the same code (Guio
and Ṕecseli, 2003). In particular, for magnetized plasmas, we
expect this type of disturbance to be significant, since the ra-
diation patterns can become very complicated in those cases
(Trulsen and Fejer, 1970). The extension of our results to
magnetized plasmas implies a significant data analysis. Our
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previous experience (Børve et al., 2001) indicates that the ion
cyclotron frequency should be comparable to, or maybe even
larger than, the ion plasma frequency, for the magnetic field
to increase the vortex lifetime substantially.
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