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Abstract. In this study we examine the possibility of using evolutionary optimization
algorithms in protein-peptide docking. We present the main assumptions that reduce
the docking problem to a continuous global optimization problem and provide a way of
using evolutionary optimization algorithms. The Rosetta all-atom force field was used for
structural representation and energy scoring. We describe the parallelization scheme and
MPI/OpenMP realization of the considered algorithms. We demonstrate the efficiency
and the performance for some algorithms which were applied to a set of benchmark tests.

1 Introduction

Protein-peptide docking (PPeD) aims to predict peptide binding sites on protein surfaces and the
associated binding affinities. Traditional experimental methods for binding site determination include
crystallography, nuclear magnetic resonance and site-directed mutagenesis and other techniques [1].
Despite their accuracy, efficiency and the huge amount of details they can provide, they are expensive
and very labour and skill demanding. Moreover, protein-peptide complexes are more difficult to
crystallize than individual proteins. While docking is relatively cheap, it is a prediction method only.
Thus, using computational methods have become a popular research endeavor in recent years. Most
of them involve stochastic optimization at different stages [2]. The main advantage of using stochastic
methods is the possibility of including various knowledge-based information. Furthermore, it is more
computationally attractive rather than molecular dynamics simulations.

The current approaches to PPeD are based on Anfinsen’s hypothesis [3] that native-like complex
conformations represent unique, low-energy, thermodynamically stable conformations. Therefore,
the PPeD problem can be considered as a global optimization problem where the objective is to find
the complex conformation with the lowest energy. The main motivation of this study is to compare
different evolutionary algorithms and identify the most effective strategies within a certain force-field.
Solving PPeD problems typically involve the use of combined methods which require a number of
various steps and special techniques. However, such approaches are beyond the scope of the current
study.
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2 Protein-peptide docking
The interaction between peptide and protein can be described by an objective function calculated
with respect to three components representing degrees of freedom: (1) the translation of the peptide,
involving the three axis values (x, y, z) in cartesian coordinate space; (2) the peptide orientation, mod-
eled as a four variables quaternion; and (3) the flexibilities, represented by the free rotation of torsion
(dihedral angles) of the peptide and side-chain of the protein.

As illustrated in Figure 1, the problem solution is encoded by a real-valued vector of n + 7 vari-
ables. The first three values correspond to the peptide translation. The next four values correspond
to the peptide orientation with range of [−1, 1]3 including the angle slope w with range of [0, π]. The
remaining n values are peptide backbone and side-chain dihedral angles (φ, ψ, ω, and χ1−4) and pro-
tein side-chain dihedral angles within search area. The backbone and side-chain torsion variables are
measured in radians and encoded in the range of [−π, π], except for peptide backbone angle ω with
range of [π − δ, π + δ], δ = 0.2 which is locked in the trans-state. The remaining degrees of freedom
(valence angles and bond lengths) are idealized with respect to force-field values and do not change
during the conformational search.

Figure 1. Solution encoding: peptide degrees of freedom, translation, rotation; protein side-chain dihedral angles

The optimization problem is formulated as minimization of the binding energy (BE). This energy
(shown in eq. (1)) is defined as the energy of the bound state minus the energy of the unbound state.

EBE = Ecomplex − (Eprotein + Epeptide). (1)

The Rosetta 3.8 [4] framework was used for full-atom complex structure representation and scor-
ing (energy evaluation). The Rosetta all-atom force-field is a dedicated structure prediction and dock-
ing force-field. It has borrowed much from classical molecular-mechanics force-fields: Lennard-Jones
6-12 potential, Evdw, Lazaridis-Karplus implicit solvation model, Esol, Coulombic electrostatic poten-
tial, Eelec, etc. The main feature of this force-field is that it uses several knowledge-based terms. For
instance, probability of backbone φ, ψ angles, Erama. For that reason the energy score has not a direct
conversion to physical energy units like kcal/mol. The talaris2014 energy function is computed from
a linear combination of 16 energy terms Ei which are calculated as a function of geometric degrees of
freedom, Θ, chemical identities, aa, and scaled by a weight on each term, w, as shown in eq. (2).

Etotal =
∑

i wiEi(Θi, aai) = wvEvdw + · · · + weEelec + wsEsol︸�����������������������������������︷︷�����������������������������������︸
physics−based terms (kcal/mol)

+wrErama + · · · + wdEdunbrack︸�����������������������������︷︷�����������������������������︸
knowledge−based terms

. (2)

There are a lot of statistics about degrees of freedom: neighbor-dependent Ramachandran
plots [4], backbone-independent [5] and backbone-dependent [6] libraries for side-chain dihedral an-
gles. These libraries have been used to exclude impossible conformations by creating 1–4 dimensional
cumulative distribution functions that had been derived from given probability density functions.
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3 Algorithms and Implementation

In general, evolutionary algorithms have a similar structure with operators like mutation, recombi-
nation, and selection. However, in this study we focus on three algorithms with radically different
structure: Competitive Swarm Optimizer (CSO) [7], Particle Swarm Optimization (PSO) [8], and
Adaptive Differential Evolution with Optional External Archive (JADE) [9]. These techniques have
been selected as they are widely used to solve various real-coded optimization problems, both model
and real-world [2].

One of the many advantages of the evolutionary algorithms is that they are easy to parallelize.
It is possible to parallelize specific operations, or to parallelize the evolutionary process itself. We
considered algorithms where function evaluation for each individual is out from main operators and
presented as an independent operation which consists in function evaluation for a whole population.
Then the simplest parallelization scheme can be used. First, the population must be divided into
groups proportionally to number of cluster nodes. Second, all groups must be sent to cluster nodes
using MPI technology according to scheme: one process – one node. Third, objective function must
be evaluated for individuals in groups using OpenMP technology within each MPI process.

The calculations were done using the HybriLIT (LIT JINR) cluster with two Intel Xeon twelve-
core processor at each node. The effect of parallelization for JADE is presented in table 1. All the
presented algorithms have similar to JADE result due to the equal level of complexity.

Table 1. Performance of the applied scheme of parallel calculations

Threads / Nodes 4 / 1 8 / 1 12 / 1 16 / 1 24 / 1 24 / 2 48 / 2
Speed-up 3.31 6.28 9.03 11.84 17.1 15.85 31.1
Efficiency 0.82 0.78 0.75 0.74 0.71 0.66 0.64

4 Results and Discussion

The performance of the selected algorithms has been assessed on the set of structures from [1] which
are presented in table 2. There were 10 independent runs for each algorithm with the number of
energy evaluations equal to 107 per run. Typical execution time for one run using one thread vary
from 15 hours to 22 hours. It depends on number of degrees of freedom. In the case of local docking
FlexPepDock (FPD) [10] protocol from the Rosetta framework was used with comparable run time.
It performs a high-resolution PPeD using a Monte Carlo-Minimization-based approach to refine all
the peptide’s degrees of freedom (rigid body orientation, backbone and side chain flexibility) as well
as the protein receptor side chains conformations. For the case of global docking we compare results
with CABS-dock [11] and pepATTRACT [12]. The preparation of structures was performed using
the Rosetta Relax protocol.

Table 2. Protein-peptide complexes with their accession codes from the RCSB Protein Data Bank

Protein Peptide Problem
PDB id:Chain Length Sequence Docking type Search space Dimension

2CYH:A 164 AP Local sphere, R = 5Å 25
1JWG:B 140 DLLHI Local two spheres R1 = R2 = 5Å 54
2HO2:A 33 P9L Global sphere with radius of 60Å 93

The FPD protocol requires the initial starting position of the peptide. We considered two starting
states relative to the native state: a random 3d rotation with small translation (FPD2) and rotation
along one axis in the binding spot (FPD1). It should be noted that in JADE the probability of a
mutation and crossover are adaptive parameters. However, at any iteration the mutation probability
was high while the crossover probability was low for all the tasks. However, the experiments [13]
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showed that the crossover operator is a crucial step for the global search. This emphasizes a poor
adaptation scheme for the crossover operator.

The obtained docking results are shown in Figure 2. As can be seen, the JADE outperforms other
algorithms in two cases and achieves a satisfactory sub-angstrom precision. In case of the 1JWG
complex JADE outperforms FPD2, which correspond to blind docking with a random start position.
The set of FPD values is achieved with similar to JADE run time. The error is specified in Angstroms.

Figure 2. Energy score against alpha carbon Root-Mean-Square Deviation from the native conformation

5 Conclusions
The results of this study show that JADE provides the best overall performance. However, it shows
poor results even for search space of about 50 parameters. Unfortunately, it is hard to achieve much
better performance due to the heuristic nature of the algorithm. It is important to note that in rele-
vant PPeD tasks it is necessary to consider peptides with lengths of 10–15 amino acid. With prior
knowledge of the binding area and peptide structure the number of parameters will grow up to 250–
300. This makes impossible to use such algorithms with all-atom resolution. However, using other
evolutionary approaches like estimation of distribution algorithms [14], which is presently the current
cutting edge, can show better performance. This will be the subject of future studies.
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