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Let a classical particle, with mass m, position x and momentum p, be subject to a
real potential V = V (x), in the presence of a “Heat bath” at equilibrium, at tempera-
ture T . The classical Hamiltonian of the particle is: H = p2/(2m)+V . Its probability
distribution function is: W = W (x, p; t)(> 0) at time t. The equilibrium distribution is:
W =Weq = exp[−β (p2/(2m)+V )]. Let Hn(q) be the standard n-th Hermite polynomial.
We introduce the moments Wn =Wn(x; t) (n = 0,1,2, ...) of W [1, 2]:

Wn =
∫

d p
Hn(p/q)

(π1/22nn!)1/2W (x, p; t), q = (2m/β )1/2 (1)

(β = (KBT )−1, KB = Boltzmann’s constant). If W = Weq, then Weq,0 is proportional to
exp[−βV ] and Weq,n = 0, n = 1,2, .... Let Win be an initial off-equilibrium distribution, at
t = 0. The corresponding initial moments, using (1), are Win,n. The irreversible Kramers
equation (with a friction constant σ > 0 on the particle due to the “Heat bath”) [1]
provides one temporal evolution: (∂W/∂ t) + (p/m)(∂W/∂x)− (∂V/∂x)(∂W/∂ p) =
(1/σ)(∂/∂ p)[p + (m/β )(∂/∂ p)]W . The latter and (1) yield the infinite irreversible
three-term linear hierarchy for Wn’s (n = 0,1,2, ..., W−1 = 0) [1]:

∂Wn

∂ t
=−M′n,n+1Wn+1−M′n,n−1Wn−1−

n
σ

Wn (2)

M′n,n±1 being linear operators. From (2), Wn relax the quicker the larger n. W0 ( fulfilling
the Smoluchowski equation) dominates the approach towards equilibrium for t→+∞.

As a source of insight, we shall treat an idealization (in presence of the “Heat bath” but
without friction effects): (∂W/∂ t)+ (p/m)(∂W/∂x)− (∂V/∂x)(∂W/∂ p) = 0 (the re-
versible Liouville equation, σ−1 = 0). The infinite reversible three-term linear hierarchy
for Wn’s (n = 0,1,2, ..., W−1 = 0 ) is the same as in (2), with σ−1 = 0. Let us consider
the Laplace transforms W̃n(s)≡

∫+∞

0 dtWn exp(−st) and introduce: gn =W−1/2
eq,0 W̃n. This

and (2) with σ−1 = 0 yield the symmetric reversible three-term hierarchy for gn:

sgn =W−1/2
eq,0 Win,n−Mn,n+1gn+1−Mn,n−1gn−1 (3)

Mn,n±1gn±1 ≡ [
(n+(1/2)(1±1))KBT

m
]1/2[

∂gn±1

∂x
− (±1)gn±1

2KBT
dV
dx

] (4)
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The hierarchy (3) for gn can be solved formally, in terms of the linear operators:

D[n;s] = [s−Mn,n+1D[n+1;s]Mn+1,n]
−1 (5)

By iteration, D[n;s] becomes an infinite continued fractions of products of linear op-
erators. D[n;s] has been evaluated for V = 0 and for a harmonic oscillator [2]. We
choose n0(≥ 1) and fix s = ε ≥ 0 in any D[n;s] (ε suitably small). The D[n;ε]’s are
Hermitian, and all their eigenvalues are non-negative (if all eigenvalues of D[n+ 1;ε]
are ≥ 0, the same holds for D[n;ε]). The long-time approximation for n ≥ n0 reads as
follows. One replaces any D[n′;s] yielding W̃n(s), n′ ≥ n ≥ n0, by D[n′;ε]: this approx-
imation is not done for n < n0 and is the better, the larger n0. We regard D[n0;ε] as a
fixed (s-independent ) operator. For a simpler hierarchy, neglect all Win,n′’s for n′ ≥ n0.
Then, for small s: gn0(s) ' −D[n0;ε]Mn0,n0−1gn0−1(s). The resulting hierarchy for gn’s
(n = 0,1, .,n0−1), through inverse Laplace transform, yields a closed approximate irre-
versible hierarchy for Wn, n = 0,1, .,n0−1. The solutions of the last closed hierarchy for
Wn relax irreversibly, for large t and reasonable Win, towards Weq,0 6= 0 and Weq,n = 0,
n = 0,1, .,n0− 1 (thermal equilibrium). As an example, let n0 = 1 and regard the lin-
ear operator D[1;ε] as a real constant (> 0), playing a role similar to σ

m (for Kramers
equation). One finds the irreversible Smoluchowski equation for the n = 0 moment:
∂W0/∂ t = (D[1;ε]/βeq)(∂/∂x)[(∂/∂x)+β (∂V/∂x)]W0, with initial condition Win,0.

Finally, we treat a closed large system of many ( N� 1) classical particles, in 3 spatial
dimensions. Neither a “Heat bath” nor external friction mechanisms are assumed. The
interaction potential is: V = ΣN

i, j=1,i< jVi, j(| xi−x j |). The classical distribution function
is: W ([x], [p]; t). The initial distribution Win at t = 0 describes thermal equilibrium with
homogeneous temperature T for large distances and nonequilibrium for intermediate
distances (with spatial inhomogeneities). The reversible Liouville equation is:

∂W
∂ t

= Σ
N
i=1[(∇xiV )(∇piW )− pi

m
(∇xiW )] . (6)

We introduce moments W[n] of W (using products of Hermite polynomials, by gener-
alizing (1)) and g[n]. One gets an infinite reversible three-term linear recurrence for
g[n]’s, generalizing (3), which is formally solved in terms of continued-fraction oper-
ators D[[n];s] for the actual N(� 1). One also gets a generalized Hermitian operator
D[[n];ε] with non-negative eigenvalues. All that leads to formulate a similar long-time
approximation and to a closed approximate hierarchy, which yields an irreversible evo-
lution towards thermal equilibrium ( consistently, approximately, with Fluid Dynamics).
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