Classical systems: moments, continued fractions, long-time approximations and irreversibility

R. F. Álvarez-Estrada

Departamento de Física Teórica I, Facultad de Ciencias Físicas, Universidad Complutense, 28040, Madrid, Spain. E-mail: rfa@fis.ucm.es

Keywords: hierarchy for Liouville equation; initial non-equilibrium distribution; long-time approximation; relaxation towards thermal equilibrium **PACS:** 0.5.20.Gg, 05.20.Jj, 05.40.Jc

Let a classical particle, with mass *m*, position *x* and momentum *p*, be subject to a real potential V = V(x), in the presence of a "Heat bath" at equilibrium, at temperature *T*. The classical Hamiltonian of the particle is: $H = p^2/(2m) + V$. Its probability distribution function is: W = W(x, p; t)(> 0) at time *t*. The equilibrium distribution is: $W = W_{eq} = \exp[-\beta(p^2/(2m) + V)]$. Let $H_n(q)$ be the standard *n*-th Hermite polynomial. We introduce the moments $W_n = W_n(x;t)$ (n = 0, 1, 2, ...) of W [1, 2]:

$$W_n = \int dp \frac{H_n(p/q)}{(\pi^{1/2} 2^n n!)^{1/2}} W(x, p; t), \ q = (2m/\beta)^{1/2}$$
(1)

 $(\beta = (K_B T)^{-1}, K_B = \text{Boltzmann's constant})$. If $W = W_{eq}$, then $W_{eq,0}$ is proportional to $\exp[-\beta V]$ and $W_{eq,n} = 0, n = 1, 2, ...$ Let W_{in} be an initial off-equilibrium distribution, at t = 0. The corresponding initial moments, using (1), are $W_{in,n}$. The irreversible Kramers equation (with a friction constant $\sigma > 0$ on the particle due to the "Heat bath") [1] provides one temporal evolution: $(\partial W/\partial t) + (p/m)(\partial W/\partial x) - (\partial V/\partial x)(\partial W/\partial p) = (1/\sigma)(\partial/\partial p)[p + (m/\beta)(\partial/\partial p)]W$. The latter and (1) yield the infinite irreversible three-term linear hierarchy for W_n 's $(n = 0, 1, 2, ..., W_{-1} = 0)$ [1]:

$$\frac{\partial W_n}{\partial t} = -M'_{n,n+1}W_{n+1} - M'_{n,n-1}W_{n-1} - \frac{n}{\sigma}W_n$$
(2)

 $M'_{n,n\pm 1}$ being linear operators. From (2), W_n relax the quicker the larger *n*. W_0 (fulfilling the Smoluchowski equation) dominates the approach towards equilibrium for $t \to +\infty$.

As a source of insight, we shall treat an idealization (in presence of the "Heat bath" but without friction effects): $(\partial W/\partial t) + (p/m)(\partial W/\partial x) - (\partial V/\partial x)(\partial W/\partial p) = 0$ (the reversible Liouville equation, $\sigma^{-1} = 0$). The infinite reversible three-term linear hierarchy for W_n 's ($n = 0, 1, 2, ..., W_{-1} = 0$) is the same as in (2), with $\sigma^{-1} = 0$. Let us consider the Laplace transforms $\tilde{W}_n(s) \equiv \int_0^{+\infty} dt W_n \exp(-st)$ and introduce: $g_n = W_{eq,0}^{-1/2} \tilde{W}_n$. This and (2) with $\sigma^{-1} = 0$ yield the symmetric reversible three-term hierarchy for g_n :

$$sg_n = W_{eq,0}^{-1/2} W_{in,n} - M_{n,n+1}g_{n+1} - M_{n,n-1}g_{n-1}$$
(3)

$$M_{n,n\pm 1}g_{n\pm 1} \equiv \left[\frac{(n+(1/2)(1\pm 1))K_BT}{m}\right]^{1/2} \left[\frac{\partial g_{n\pm 1}}{\partial x} - \frac{(\pm 1)g_{n\pm 1}}{2K_BT}\frac{dV}{dx}\right]$$
(4)

Non-equilibrium Statistical Physics Today

AIP Conf. Proc. 1332, 261-262 (2011); doi: 10.1063/1.3569525 © 2011 American Institute of Physics 978-0-7354-0887-6/\$30.00 The hierarchy (3) for g_n can be solved formally, in terms of the linear operators:

$$D[n;s] = [s - M_{n,n+1}D[n+1;s]M_{n+1,n}]^{-1}$$
(5)

By iteration, D[n;s] becomes an infinite continued fractions of products of linear operators. D[n;s] has been evaluated for V = 0 and for a harmonic oscillator [2]. We choose $n_0(\geq 1)$ and fix $s = \varepsilon \geq 0$ in any D[n;s] (ε suitably small). The $D[n;\varepsilon]$'s are Hermitian, and all their eigenvalues are non-negative (if all eigenvalues of $D[n+1;\varepsilon]$ are ≥ 0 , the same holds for $D[n;\varepsilon]$). The long-time approximation for $n \geq n_0$ reads as follows. One replaces any D[n';s] yielding $\tilde{W}_n(s)$, $n' \ge n \ge n_0$, by $D[n';\varepsilon]$: this approximation is not done for $n < n_0$ and is the better, the larger n_0 . We regard $D[n_0;\varepsilon]$ as a fixed (s-independent) operator. For a simpler hierarchy, neglect all $W_{in,n'}$'s for $n' \ge n_0$. Then, for small s: $g_{n_0}(s) \simeq -D[n_0; \varepsilon] M_{n_0, n_0-1} g_{n_0-1}(s)$. The resulting hierarchy for g_n 's $(n = 0, 1, .., n_0 - 1)$, through inverse Laplace transform, yields a closed approximate irreversible hierarchy for W_n , $n = 0, 1, .., n_0 - 1$. The solutions of the last closed hierarchy for W_n relax irreversibly, for large t and reasonable W_{in} , towards $W_{eq,0} \neq 0$ and $W_{eq,n} = 0$, $n = 0, 1, .., n_0 - 1$ (thermal equilibrium). As an example, let $n_0 = 1$ and regard the linear operator $D[1;\varepsilon]$ as a real constant (> 0), playing a role similar to $\frac{\sigma}{m}$ (for Kramers equation). One finds the irreversible Smoluchowski equation for the n = 0 moment: $\partial W_0/\partial t = (D[1;\varepsilon]/\beta_{eq})(\partial/\partial x)[(\partial/\partial x) + \beta(\partial V/\partial x)]W_0$, with initial condition $W_{in,0}$.

Finally, we treat a closed large system of many $(N \gg 1)$ classical particles, in 3 spatial dimensions. Neither a "Heat bath" nor external friction mechanisms are assumed. The interaction potential is: $V = \sum_{i,j=1,i< j}^{N} V_{i,j}(|\mathbf{x}_i - \mathbf{x}_j|)$. The classical distribution function is: $W([\mathbf{x}], [\mathbf{p}]; t)$. The initial distribution W_{in} at t = 0 describes thermal equilibrium with homogeneous temperature T for large distances and nonequilibrium for intermediate distances (with spatial inhomogeneities). The reversible Liouville equation is:

$$\frac{\partial W}{\partial t} = \sum_{i=1}^{N} \left[(\nabla_{\mathbf{x}_{i}} V) (\nabla_{\mathbf{p}_{i}} W) - \frac{\mathbf{p}_{i}}{m} (\nabla_{\mathbf{x}_{i}} W) \right].$$
(6)

We introduce moments $W_{[n]}$ of W (using products of Hermite polynomials, by generalizing (1)) and $g_{[n]}$. One gets an infinite reversible three-term linear recurrence for $g_{[n]}$'s, generalizing (3), which is formally solved in terms of continued-fraction operators D[[n];s] for the actual $N(\gg 1)$. One also gets a generalized Hermitian operator $D[[n];\varepsilon]$ with non-negative eigenvalues. All that leads to formulate a similar long-time approximation and to a closed approximate hierarchy, which yields an irreversible evolution towards thermal equilibrium (consistently, approximately, with Fluid Dynamics).

Project FIS2008-01323 (Ministerio de Ciencia e Innovación, Spain) supports us.

REFERENCES

H. C. Brinkman, *Physica* 22, 29 (1956). H. Risken, *The Fokker-Planck Equation*, 2nd ed., Springer, Berlin, 1989. W. T. Coffey et al., *The Langevin Equation*, 2nd ed., World Sci., Singapore, 2004.

R. F. Álvarez-Estrada, Ann. der Physik (Leipzig) 11, 357 (2002); 15, 379 (2006); Eur. Phys. J. A 31, 761 (2007); J. Comput. Appl. Math. 233, 1453 (2010).

Copyright of AIP Conference Proceedings is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.