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The retailer’s optimal procurement quantity and the number of transfers from the warehouse to the
display area are determined when demand is decreasing due to recession and items in inventory
are subject to deterioration at a constant rate. The objective is to maximize the retailer’s total
profit per unit time. The algorithms are derived to find the optimal strategy by retailer. Numerical
examples are given to illustrate the proposed model. It is observed that during recession when
demand is decreasing, retailer should keep a check on transportation cost and ordering cost. The
display units in the show room may attract the customer.
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1. Introduction

The management of inventory is a critical concern of the managers, particularly, during
recession when demand is decreasing with time. The second most worrying issue is of
transfer batching, the integration of production and inventory model, as well as the purchase
and shipment of items. Goyal [1], for the first time, formulated single supplier-single
retailer-integrated inventory model. Banerjee [2] derived a joint economic lot size model
under the assumption that the supplier follows lot-for-lot shipment policy for the retailer.
Goyal [3] extended Banerjee’s [2] model. It is assumed that numbers of shipments are
equally sized and the production of the batch had to be finished before the start of the
shipment. Lu [4] allowed shipments to occur during the production period. Goyal [5]
derived a shipment policy in which, during production, a shipment is made as soon as
the buyer is about to face stock out and all the produced stock manufactured up to that
point is shipped out. Hill [6] developed an optimal two-stage lot sizing and inventory
batching policies. Yang and Wee [7] developed an integrated multilot-size production
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inventory model for deteriorating items. Law and Wee [8] derived an integrated production-
inventory model for ameliorating and deteriorating items using DCE approach. Yao et al.
[9] argued the importance of supply chain parameters when vendor-buyer adopts joint
policy. The interesting papers in this areas are by Wee [10], Hill [11, 12], Vishwanathan
[13], Goyal and Nebebe [14], Chiang [15], Kim and Ha [16], Nieuwenhuyse and Vandaele
[17], Siajadi et al. [18], and their cited references. The aforesaid articles are dealing
with integrated Vendor-buyer inventory model when demand is deterministic and known
constant.

The aim of this paper is to determine the ordering and transfer policy which maximizes
the retailer’s profit per unit time when demand is decreasing with time. It is assumed that on
the receipt of the delivery of the items, retailer stocks some items in the showroom and rest of
the items is kept in warehouse. The floor area of the showroom is limited and wellfurnished
with the modern techniques. Hence, the inventory holding cost inside the showroom is
higher as compared to that in warehouse. The problem is how often and how many items
are to be transferred from the warehouse to the showroom which maximizes the retailer’s
total profit per unit time. Here, demand is decreasing with time. This paper is organized
as follows. Section 2 deals with the assumptions and notations for the proposed model. In
Section 3, a mathematical model is formulated to determine the ordering-transfer policy
which maximizes the retailer’s profit per unit time. Section 4 deals with the establishment
of the necessary conditions for an optimal solution. Using these conditions, the algorithms
are developed. In Section 5, numerical examples are given. The sensitivity analysis of the
optimal solution with respect to system parameter is carried out. The research article ends
with conclusion in Section 5.

2. Mathematical Model

2.1. The Total Cost per Cycle in the Warehouse

The retailer ordersQ-units per order from a supplier and stocks these items in the warehouse.
The q-units are transferred from the warehouse to the showroom until the inventory level in
the warehouse reaches to zero. Hence Q = nq. The total cost per cycle during the cycle time
T in the warehouse is the sum of (1), the ordering cost A, and (2) the inventory holding cost,
hw[(n(n − 1)/2)q]t1.

2.2. The Total Cost per Unit Cycle in the Showroom

Initially, the inventory level is L0 ≤ L due to the unit’s transfer from the warehouse to the
display area. The inventory level then depletes to R due to time-dependent demand and
deterioration of units at the end of the retailer’s cycle time, “t1.” A graphical representation
of the inventory system is exhibited in Figure 1.

The differential equation representing inventory status at any instant of time t is given
by

dI(t)
dt

= −D(t) − θI(t), 0 ≤ t ≤ t1 (2.1)
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Figure 1: Combined inventory status for items in the warehouse and showroom.

with boundary condition I(t1) = R. The solution of (2.1) is

I(t) = Reθ(t1−t) + a

((
eθ(t1−t) − 1

)
(θ + b)

θ2
− b
(
t1e

θ(t1−t) − t)
θ

)
; 0 ≤ t ≤ t1. (2.2)

The total cost incurred during the cycle time t1 is the sum of the ordering cost, G and the
inventory holding cost, where

inventory holding cost

= hd

∫ t1
0
I(t)dt

= hd

(
−R
θ
+ a

(
bθ2t21 − 2θ − 2b − 2θ2t1

2θ3

))
− hdeθt1

(
a

(
θbt1 − θ − b

θ3

)
− R

θ

)
(2.3)

Using (2.2) and I(0) = q + R, we get

q =
Reθt1θ2 + aeθt1θ + aeθt1b − aθ − ab − abt1eθt1θ − Rθ2

θ2
. (2.4)
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The revenue per cycle is

(P − C)q =
(P − C)(Reθt1θ2 + aeθt1θ + aeθt1b − aθ − ab − abt1eθt1θ − Rθ2)

θ2
. (2.5)

Then inventory holding cost in the warehouse is

hwn(n − 1)t1
(
Reθt1θ2 + aeθt1θ + aeθt1b − aθ − ab − abt1eθt1θ − Rθ2)

2θ2
. (2.6)

Hence, the total profit, ZP per cycle during the period [0, T] is

ZP = Revenue − [total cost in the warehouse] − [total cost in the showroom]

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n(P − C)(Reθt1θ2 + aeθt1θ + aeθt1b − aθ − ab − abt1eθt1θ − Rθ2)
θ2

−A

−hwn(n − 1)t1
(
Reθt1θ2 + aeθt1θ + aeθt1b − aθ − ab − abt1eθt1θ − Rθ2)

2θ2
− nG

−nhd
(
−R
θ
+ a

(
bθ2t21 − 2θ − 2b − 2θ2t1

2θ3

))
+ nhdeθt1

(
a

(
θbt1 − θ − b

θ3

)
− R

θ

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.7)

During period [0, T], there are n-transfers at every t1-time units. Hence, T = nt1. Therefore,
the total profit per time unit is

Z(n,R, t1) =
ZP

T
=

⎛
⎝ n(P−C)(Reθt1θ2+aeθt1θ+aeθt1b−aθ−ab−abt1eθt1θ−Rθ2)/θ2−A−nG

+hwn(n−1)t1(Reθt1θ2+aeθt1θ+aeθt1b−aθ−ab−abt1eθt1θ−Rθ2)/2θ2

−nhd(−R/θ+a((bθ2t21−2θ−2b−2θ2t1)/2θ3))+nhdeθt1(a((θbt1−θ−b)/θ3)−R/θ)

⎞
⎠

nt1
. (2.8)

3. Necessary and Sufficient Condition for an Optimal Solution

The total profit per unit time of a retailer is a function of three variables, namely, n, R and t1:

∂2Z(n,R, t1)
∂n2

= − 2A
n3t1

< 0. (3.1)

Thus, the retailer’s total profit per unit time is a concave function of n for fixed R and t1.
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Next, to determine the optimum cycle time for showroom, for given n, we first
differentiate Z(n,R, t1) with respect to R. We get

∂Z(n,R, t1)
∂R

=

(
1 − eθt1
t1

)(
−(P − C) + hw(n − 1)t1

2
+
hd
θ

)
. (3.2)

Depending on the sign of (P − C)θ − hd three cases arise: Define Δ = (P − C)θ − hd.

Case 1 (Δ < 0). If Δ < 0, then Z(n,R, t1) is a decreasing function of R for fixed R. It suggests
that no transfer of units should be made from the warehouse to the showroom; so put R = 0
in Z(n,R, t1) and differentiate resultant expression with respect to t1. We have

∂Z

∂t1

∣∣∣∣
R=0

= 0

(
a(P−C)(1−bt1)eθt1−(1/2)hw(n−1)aθ2t1(1−bt1)eθt1

+(1/2)(hw(n−1)a((1−eθt1)(θ+b)+bθt1eθt1))/θ2−((hda/θ2)(bt1−1)(1−eθt1))

)
t1

−

(
a(P−C)((1−eθt1)(θ+b)+bt1eθt1θ)/θ2+hw(n−1)a((1−eθt1)(θ+b)+bt1eθt1θ)t1/2θ2

−A/n−G−(hda(bt1(2+θt1)/2θ2−(θ+b)(1+θt1)/θ3)−hda((bθt1−θ−b)eθt1/θ3))

)
t21

= 0.

(3.3)

The sufficiency condition is ∂2Z(n,R, t1)/∂t21 < 0, that is,

1
2θ3nt31

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4naθ3t1Pe
θt1 + 4naθ3t1Ce

θt1 + 4nθ2Paeθt1 − 4nθ2Caeθt1

+4nθPabeθt1 − 4nθ2Pa + 4nθ2Ca − 4nGθ3 − 4Aθ3

−4nθPab + 4nθCab + 4nhdaθ + 4nhdab − 4nθ2Pabt1e
θt1

−4nθCabeθt1 + 4nθ2Cabt1e
θt1 − 4nhdaθeθt1 − 4nhdabeθt1

+4nhdabt1θeθt1 + 2naθ4t21Pe
θt1 + 2naθ3t21Pbe

θt1

−2naθ4t31Pbe
θt1 − 2naθ4t21Ce

θt1 − 2naθ3t21Cbe
θt1

+2naθ4t31Cbe
θt1 − n2aθ4t31hwe

θt1 + n2aθ3t31hwbe
θt1

+n2aθ4t41hwbe
θt1 + naθ4t31hwe

θt1 − naθ3t31hwbe
θt1

−naθ4t41hwbe
θt1 − 2naθ3t21hde

θt1 − 2naθ2t21hdbe
θt1

+2naθ3t31hdbe
θt1 + 4naθ2t1hde

θt1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0. (3.4)

Thus, Z(n, t1), the total profit per unit time, is a concave function of t1 for fixed n. There exists
a unique t1, denoted by t∗1

1 such that Z(n, t∗1
1 ) is maximum. Substituting t∗1

1 and R∗ = 0 into
(2.5) are obtain number of units to be transferred (say) q∗1 for fixed n.
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Note. Since q∗1 ≤ L for all q, q∗1 = L. If q∗1 > L, then obtain t∗1
1 using

t∗1
1 =

1
θ

ln

[
1 +

Lθ2

a(θ + b)

]
. (3.5)

Case 2 (Δ = 0). In this case, we made (2.8) as

Z(n,R, t1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hwRe
θt1

2
+
hwae

θt1

2θ
+
hwabe

θt1

2θ2
− hwa

2θ
− hwab

2θ2
− t1hwabe

θt1

2θ

−hwR
2

− G

t1
− A

nt1
− nhwRe

θt1

2
− nhwae

θt1

2θ
− nhwabe

θt1

2θ2

+
nhwa

2θ
+
nhwab

2θ2
+
nt1hwabe

θt1

2θ
+
nhwR

2
+
hda

θ
− t1hdab

2θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.6)

Here,

∂Z(n,R, t1)
∂R

= −hw
2
(n − 1)

(
eθt1 − 1

)
< 0. (3.7)

that is, Z(n,R, t1) is decreasing function of R for given n. So no transfer should be made from
the warehouse to the showroom, that is, R = 0. So (3.6) becomes

Z(n, t1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hwae
θt1

2θ
+
hwabe

θt1

2θ2
− hwa

2θ
− hwab

2θ2
− t1hwabe

θt1

2θ

−G
t1

− A

nt1
− nhwae

θt1

2θ
− nhwabe

θt1

2θ2
+
nhwa

2θ

+
nhwab

2θ2
+
nt1hwabe

θt1

2θ
+
hda

θ
− t1hdab

2θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.8)

The optimal value of t∗2
1 can be obtained by solving

∂Z(n, t1)
∂t1

=

⎛
⎜⎜⎜⎜⎝

hwae
θt1

2
− t1hwabe

θt1

2
+
G

t21
+
A

nt21

−nhwae
θt1

2
+
hwt1nabe

θt1

2
− hdab

2θ

⎞
⎟⎟⎟⎟⎠ = 0. (3.9)
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The sufficiency condition is

∂2Z(n, t1)
∂t21

= −

⎛
⎜⎜⎜⎜⎜⎝

nhwaθe
θt1

2
− nabhwe

θt1

2
− nabt1θhwe

θt1

2

−aθhwe
θt1

2
+
abhwe

θt1

2
+
t1hwabθe

θt1

2
+

2G
t31

+
2A
nt31

⎞
⎟⎟⎟⎟⎟⎠ < 0, for t1 = t∗2

1 .

(3.10)

Then, Z(n, t∗2
1 ) is a concave function of t∗2

1 and hence Z(n, t∗2
1 ) is the maximum profit of the

retailer. q∗2 can be obtained by substituting value of t∗2
1 in (2.5).

Note. Since q∗2 ≤ L for all q, then q∗2 = L. If q∗2 > L, then obtain t∗2
1 using,

t∗2
1 =

1
θ

ln

[
1 +

Lθ2

a(θ + b)

]
. (3.11)

Case 3 (Δ > 0). There are three subcases.

Subcase 3.1. ((P − C)θ − hd)/θt1 < hw(n − 1)/2 and then ∂Z(n,R, t1)/∂R < 0. It is same as
Case 1.

The optimal transfer level of units in showroom is zero and there exists a unique t1
(say) t∗3.1

1 such that Z(n, t∗3.1
1 ) is maximum.

Note. (1) t∗3.1
1 ≤ 2((P − C)θ − hd)/θt1hw(n − 1) and then t∗3.1

1 is infeasible. (2) Because q ≤ L
for all q, q∗3.1 = L. If q > L, then obtain t∗3.1

1 using (2.5). (3) The number of transfers from the
warehouse to the showroom must be at least 2.

Subcase 3.2. ((P −C)θ − hd)/θt1 > hw(n− 1)/2. Here, ∂Z(n,R, t1)/∂R > 0. Therefore, raise the
inventory level to the maximum allowable quantity. So from L = q + R and (2.5), we get

R =
Lθ2 − aθeθt1 − abeθt1 + aθ + ab + abt1θeθt1

θ2eθt1
. (3.12)

Then R is a function of t1. Substitute (3.12) into (2.8). The resultant expression for the total
profit per unit time is function of n and t1. The necessary condition for finding the optimal
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time t∗3.2
1 in showroom is

∂Z(n, t1)
∂t1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Pab

θt1eθt1
− hdab

2θ
+
G

t21
+
A

nt21
− (P − C)L

t21
− (P − C)a

θt21
+
hda

θ2t21
+
hdL

θt21
+
nhwab

2θ
− (P − C)ab

θ2t21

+
hdab

θ3t21
− hwab

2θ
− nhwLθ

2eθt1
− CL

t21e
θt1

− CLθ

t1eθt1
+
hwa

2eθt1
− hdL

θt21e
θt1

− hdL

t1eθt1
+

PL

t21e
θt1

+
PLθ

t1eθt1

+
Pa

θt21e
θt1

+
Pa

t1eθt1
+

Pab

θ2t21e
θt1

− Ca

θt21e
θt1

− Ca

t1eθt1
− Cab

θ2t21e
θt1

− Cab

θt1eθt1
− nhwa

2eθt1
− nhwab

2θeθt1

+
hwLθ

2eθt1
+
hwab

2θeθt1
− hda

θ2t21e
θt1

− hda

θt1eθt1
− hdab

θ3t21e
θt1

− hdab

θ2t1eθt1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.13)

The obtained t1 = t∗3.2
1 maximizes the total profit, Z(n, t∗3.2

1 ), per unit time because

∂2Z(n, t1)
∂t21

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2CL
t31

+
hdLθ

t1eθt1
− 2PL
t31e

θt1
− 2PLθ
t21e

θt1
− PLθ2

t1eθt1
− 2Pa
θt31e

θt1

− 2Pa
t21e

θt1
− Paθ

t1eθt1
− 2Pab
θ2t31e

θt1
+

2Ca
θt31e

θt1
+

2Ca
t21e

θt1
+
Caθ

t1eθt1

−2G
t31

+
2hda
θt21e

θt1
+

hdab

θt1eθt1
+

2Cab
θ2t31e

θt1
+

2Cab
θt21e

θt1
+
Cab

t1eθt1

+
nhwaθ

2eθt1
+
nhwab

2eθt1
− hwLθ

2

2eθt1
− 2Cab

θ2t31
− 2A
nt31

− hwab

2eθt1

+
2hda
θ2t31e

θt1
+

hda

t1eθt1
+

2hdab
θ3t31e

θt1
+

2hdab
θ2t31e

θt1
− 2Ca
θt31

+
2Pa
θt31

−2hda
θ2t31

− 2hdL
θt31

+
2hdL
t21e

θt1
− Pab

t1eθt1
− 2hdab

θ3t31
+
nhwLθ

2

2eθt1
+

2CL
t31e

θt1

+
2CLθ
t21e

θt1
+
CLθ2

t1eθt1
− hwaθ

2eθt1
+

2hdL
θt31e

θt1
− 2Pab
θt21e

θt1
+

2Pab
θ2t31

+
2PL
t31

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0. (3.14)

Subcase 3.3. ((P − C)θ − hd)/θt1 = hw(n − 1)/2 and then

t∗3.3
1 =

2((P − C)θ − hd)
θhw(n − 1)

. (3.15)

Hence, one can obtain retransfer level of items in the showroom R∗3.3 and optimal units q∗3.3

transferred.
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Algorithm

Step 1. Assign parametric values to A, G, hd, hw, P , C, a, b, θ, L.

Step 2. If Δ < 0, then go to Algorithm 3.1.

Step 3. If Δ = 0, then go to Algorithm 3.2.

Step 4. If Δ > 0, then go to Algorithm 3.3.

Algorithm 3.1.

Step 1. Set R = 0 and n = 1.

Step 2. Obtain t∗1
1 by solving (3.3) with Maple 11 (mathematical software) and q∗1 from (2.5).

Step 3. If q∗1 < L, then t∗1
1 obtained in Step 2 is optimal; otherwise,

t∗1
1 =

1
θ

ln

[
1 +

Lθ2

a(θ + b)

]
. (3.16)

Step 4. Compute Z(n, t∗1
1 ).

Step 5. Increment n by 1.

Step 6. Continue Steps 2 to 5 until Z(n, t∗1
1 ) < Z((n − 1), t∗1

1 ).

Algorithm 3.2.

Step 1. Set R = 0 and n = 2.

Step 2. Obtain t∗2
1 from (3.8) and q∗2 from (2.5).

Step 3. If q∗2 < L, then t∗2
1 obtained in Step 2 is optimal; otherwise,

t∗2
1 =

1
θ

ln

[
1 +

Lθ2

a(θ + b)

]
. (3.17)

Step 4. Compute Z(n, t∗2
1 ).

Step 5. Increment n by 1.

Step 6. Continue Steps 2 to 5 until Z(n, t∗2
1 ) < Z((n − 1), t∗2

1 ).

Algorithm 3.3.

Step 1. Set n = 2.

Step 2. Solve (3.3) to compute t∗3.1
1 and determine q∗3.1 from (2.5) and R = 0.
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Table 1

[Variations for b]
[Fixed values L = 150, A = 90, G = 10, b = 0.4]

b n t∗1
1 T ∗ q∗1 Q∗ Z∗

0.40 6 0.138 0.830 135.48 812.94 1635.60
0.45 6 0.136 0.817 132.85 797.11 1629.22
0.50 6 0.133 0.804 130.34 782.04 1622.94

Table 2

[Variations for G]
[Fixed values L = 150, A = 90, b = 0.4]

G n t∗1
1 T ∗ q∗1 Q∗ Z∗

10 9 0.152 1.368 148.4932 1336.439 1600.113
20 7 0.151 1.057 147.5394 1032.776 1560.089
30 6 0.138 0.828 135.1126 810.6756 1490.671

Step 3. If q∗3.1 ≤ L, then t∗3.1
1 obtained in Step 2 is optimal; otherwise,

t∗3.1
1 =

1
θ

ln

[
1 +

Lθ2

a(θ + b)

]
(3.18)

is optimal.

Step 4. If ((P −C)θ−hd)/θt1 < hw(n−1)/2 then ComputeZ(n, t∗3.1
1 ), otherwise setZ(n, t∗3.1

1 ) =
0.

Step 5. Solve (3.13) to compute t∗3.2
1 .

Step 6. If ((P − C)θ − hd)/θt1 > hw(n − 1)/2, then Substitute t∗3.2
1 into (3.12) to find R and

Calculate Z(n, t1∗3.2); otherwise set Z(n, t∗3.2
1 ) = 0.

Step 7. Z(n, t∗3
1 ) = max{Z(n, t∗3.1

1 ), Z(n, t∗3.2
1 )}.

Step 8. Increment n by 1.

Step 9. Continue Steps 2 to 8 until Z(n, t∗3
1 ) < Z((n − 1), t∗3

1 ).

4. Numerical Examples

Example 4.1. Consider the following parametric values in proper units: [a, θ, hd, hw, C, P] =
[1000, 0.10, 0.6, 0.3, 1, 3]. Here, (P − C)θ − hd < 0.

We apply Algorithm 3.1. The variations in demand rate b, transfer cost G, ordering
cost A, and maximum allowable units L are studied (see Tables 1, 2, 3, and 4).

Example 4.2. Consider the following parametric values in proper units: [a, θ, hd, hw, C, P]
= [1000, 0.20, 0.40, 0.10, 1, 3]. Here, (P − C)θ − hd = 0. Using Algorithm 3.2, variations in
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Table 3

[Variations for A]
[Fixed values L = 150, G = 10, b = 0.4]

A n t∗1
1 T ∗ q∗1 Q∗ Z∗

50 6 0.149 0.894 145.631 873.7861 1679.377
60 6 0.146 0.876 142.7661 856.5966 1669.339
70 5 0.144 0.72 140.8545 704.2727 1663.394

Table 4

[Variations for L]
[Fixed values A = 90, G = 10, b = 0.4]

L n t∗1
1 T ∗ q∗1 Q∗ Z∗

150 6 0.138 0.830 135.48 812.94 1635.60
250 5 0.156 0.778 151.90 759.50 1636.67
350 5 0.156 0.778 151.90 759.50 1636.67

Table 5

[Variations for b]
[Fixed values L = 150, A = 90, G = 10, P = 3, C = 1, θ = 0.2]

b n t∗2
1 T ∗ q∗2 Q∗ Z∗

0.4 10 0.151 1.508 148.43 1484.305 1746.88
0.425 10 0.149 1.487 146.14 1461.393 1743.27
0.45 10 0.147 1.467 143.94 1439.398 1739.70

Table 6

[Variations for G]
[Fixed values L = 150, A = 90, b = 0.4, P = 3, C = 1, θ = 0.2]

G n t∗2
1 T ∗ q∗2 Q∗ Z∗

10 10 0.1508 1.508 148.43 1484.305 1746.88
12 9 0.1493 1.3437 147.0036 1323.032 1734.124
14 8 0.1479 1.1832 145.6471 1165.176 1719.14

Table 7

[Variations for A]
[Fixed values L = 150, G = 10, b = 0.4, P = 3, C = 1, θ = 0.2]

A n t∗2
1 T ∗ q∗2 Q∗ Z∗

80 10 0.1548 1.548 152.3285 1523.285 1753.253
85 10 0.1528 1.528 150.393 1503.93 1750.13
90 10 0.1508 1.508 148.43 1484.31 1746.88

demand rate b, transferring cost G, ordering cost A, and maximum allowable number L on
the decision variables and objective function are studied in Tables 5, 6, 7, and 8.

Example 4.3. Consider the following parametric values in proper units: [a, θ, hd, hw, C, P] =
[1000, 0.40, 3, 1, 4, 12]. Here, (P−C)θ−hd > 0. Using Algorithm 3.3, variations in demand rate;
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Table 8

[Variations for L]
[Fixed values A = 90, G = 10, b = 0.4, P = 3, C = 1, θ = 0.2]

L n t∗2
1 T ∗ q∗2 Q∗ Z∗

100 22 0.099 2.185 98.31 2162.86 1715.17
150 10 0.151 1.508 148.43 1484.31 1746.88
175 8 0.170 1.358 166.76 1334.12 1748.55
200 8 0.170 1.358 166.76 1334.12 1748.55

Table 9

[Variations for b]
[Fixed values L = 150, A = 90, G = 30, P = 12, C = 4, θ = 0.40]

b n t∗3
1 T ∗ q∗3 Q∗ Z∗ R

0.40 3 0.151 0.452 150.74 452.22 7224.91 0
0.45 3 0.145 0.436 145.16 435.47 7195.76 4.845
0.50 3 0.141 0.422 140.16 420.48 7167.68 9.840

Table 10

[Variations for G]
[Fixed values L = 150, A = 90, b = 0.4, P = 12, C = 4, θ = 0.4]

G n t∗3
1 T ∗ q∗3 Q∗ Z∗ R

30 3 0.151 0.452 150.74 452.22 7224.91 0
20 3 0.137 0.412 138.01 414.02 7294.20 11.993
10 4 0.101 0.405 103.20 412.78 7381.82 46.804

Table 11

[Variations for A]
[Fixed values L = 150, b = 0.4, G = 30, P = 12, C = 4, θ = 0.4]

A n t∗3
1 T ∗ q∗3 Q∗ Z∗ R

90 3 0.151 0.452 150.74 452.22 7224.91 0
95 3 0.153 0.459 152.87 458.60 7214.22 0
100 3 0.155 0.465 154.97 464.90 7203.68 0

Table 12

[Variations for L]
[Fixed values A = 90, b = 0.4, G = 30, P = 12, C = 4, θ = 0.4]

A n t∗3
1 T ∗ q∗3 Q∗ Z∗ R

150 3 0.1508 0.452 150.74 452.22 7224.91 0
200 3 0.1502 0.451 153.04 459.13 7231.60 46.96
250 3 0.1496 0.449 155.38 466.13 7238.39 94.62

b, transferring cost G, ordering cost A, and maximum allowable number L on the decision
variables and total profit per unit time are studied in Tables 9, 10, 11, and 12.
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The following managerial issues are observed from Tables 1–12.

(1) Increase in demand rate b decreases t∗1, q∗, and Z∗. It is obvious that retailer’s total
profit per unit time, cycle time in the warehouse, and procurement quantity from
the supplier decrease as the demand decreases.

(2) Increase in transferring cost from the warehouse to the showroom increases t∗1, q∗

and decreases Z∗. Z∗ decreases because the number of transfer increases.

(3) Increase in ordering cost decreases cycle time in showroom and units transferred
from warehouse to the showroom and retailer’s total profit per unit time. The cycle
time in warehouse increases significantly.

(4) Increase in maximum allowable number in display area increases t∗1 and q∗ but no
significant change is observed in the total profit per unit time of the retailer. The
cycle time in warehouse and procurement quantity from the supplier decreases
significantly.

5. Conclusions

In this article, an ordering transfer inventory model for deteriorating items is analyzed when
the retailer owns showroom having finite floor space and the demand is decreasing with time.
Algorithms are proposed to determine retailer’s optimal policy which maximizes his total
profit per unit time. Numerical examples and the sensitivity analysis are given to deduce
managerial insights.

The proposed model can be extended to allow for time dependent deterioration. It is
more realistic if damages during transfer from warehouse to showroom are incorporated.

Assumptions

The following assumptions are used to derive the proposed model.

(1) The inventory system under consideration deals with a single item.

(2) The planning horizon is infinite.

(3) Shortages are not allowed. The lead time is negligible or zero.

(4) The maximum allowable item of displayed stock in the showroom is L.

(5) The time to transfer items from the warehouse to the showroom is negligible or
zero.

(6) The units in inventory deteriorate at a constant rate “θ”, 0 ≤ θ < 1. The deteriorated
units can neither be repaired nor replaced during the cycle time.

(7) The retailer orders Q-units per order from a supplier and stocks these items in the
warehouse. The items are transferred from the warehouse to the showroom in equal
size of “q” units until the inventory level in the warehouse reaches to zero. This is
known as retailer’s order-transfer policy.
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Notations

L: The maximum allowable number of displayed units in the showroom
I(t): The inventory level at any instant of time t in the showroom, I(t) ≤ L
D(t): The demand rate at time t. Consider D(t) = a(1 − bt) where a, b > 0, a� b. a denotes

constant demand and 0 < b < 1 denotes the rate of change of demand due to recession
θ: Constant rate deterioration, 0 ≤ θ < 1
hw: The unit inventory carrying cost per annum in the warehouse
hd: The unit inventory carrying cost per annum in the showroom, with hd > hw
P : The unit selling price of the item
C: The unit purchase cost, with C < P
A: The ordering cost per order
G: The known fixed cost per transfer from the warehouse to the showroom
T : The cycle time in the warehouse, (a decision variable)
n: The integer number of transfers from the warehouse to the showroom per order

(a decision variable)
t1: The cycle time in the showroom (a decision variable)
Q: The optimum procurement units from a supplier (decision variable)
q: The number of units per transfer from the warehouse to the showroom, 0 ≤ q ≤ L

(a decision variable)
R: The inventory level of items in the showroom regarding the transfer of q-units from

the warehouse to the showroom.
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