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Abstract. We introduce and discuss the use of the exponential spline family for Bayesian nonpara-
metric function estimation. Exponential splines span the range of shapes between the limiting cases
of traditional cubic spline and piecewise linear interpolation. They are therefore particularly suited
for problems where both, smooth and rapid function changes occur.
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INTRODUCTION

Nonparametric function estimation is required if we wish to represent an empirical
set of data

�
xi � fi � in the absence of a first principles based theory. If such a theory is

available, it need not be correct and nonparametric fits may point to certain deficiencies
which may trigger improvement of the theory. But even if parametric (theory based) and
nonparametric fits turn out to be in close agreement, their first derivatives may differ
considerably. In cases where the gradients are the information of primary importance
and this applies to all transport phenomena in physics, the greater flexibility of the
nonparametric approach is likely to provide the more reliable results.

EXPONENTIAL SPLINES

Consider a set of function values fi given at support points xi. The exponential spline
function Si

�
x � in the interval xi � x � xi � 1 is then given by

Si
�
x ��� αi 	 βi

�
x 
 xi ��	 γiψi

�
x 
 xi ��	 δiφi

�
x 
 xi �� (1)

The auxiliary functions ψi and φi contain a stiffness parameter λi � 1 on the support�
xi � xi � 1 � and are given by

ψi
�
x ��� 2 � cosh

�
λi � 1

�
x 
 xi � � 
 1 ��� λ 2

i � 1 (2)

φi
�
x ��� 6 � sinh

�
λi � 1

�
x 
 xi � � 
 λi � 1

�
x 
 xi � ��� λ 3

i � 1 (3)
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Since the series expansions of the hyperbolic functions are

cosh � λ z ��� 1 � � λ z � 2
2!

������� (4)

sinh � λ z ��� λ z � � λ z � 3
3!

������� (5)

we realize that ψi and φi tend to � x � xi � 2 and � x � xi � 3 in the limit of λ tending to zero.
In this limit Si � x � reduces to a third order polynomial on � xi � xi � 1  which when subject
to the requirements of continuity of function, first and second derivative becomes the
traditional cubic spline. It will be shown below that in the opposite limit of λ tending to
infinity the nonlinear terms in x, ψi and φi, vanish as 1 ! λ and (1) reduces in this limit to
a linear interpolation.

Exponential splines minimize the functional

Φ � S �"� ∑
i

# xi $ 1

xi %'& S ()(i � x � & 2 � λi � 1 & S (i � x � & 2 * dx � (6)

For vanishing λi this functional has a minimum if S is a cubic spline. If on the other
hand the curvature term & S ()(i � x � & 2 is negligible compared to the first derivative term the
functional is minimized by a polygon which may therefore also be called a linear spline
function. It is important to note that in the general case the stiffness parameters λ are
different on every interval. This allows for a change of character of the exponential
spline function from linear to third order polynomial on adjacent support intervals. It
is this property which provides the extremely high flexibility of the exponential spline
function which also offers continuity of function, first and second derivative.

The so far unknown coefficients α � β � γ � δ are determined from the requirement of
continuity of function, first and second derivatives at the pivotal points xi. Continuity of
function and second derivative yields already an explicit representation of the exponen-
tial spline function in terms of function values + fi , and second derivatives + Mi , at the
pivotal points + xi , . Introducing the definitions

hi � 1 � xi � 1 � xi
zi � λi � 1 � x � xi �

µi � 1 � λi � 1hi � 1 (7)

we obtain

Si � x �-� xi � 1 � x
hi � 1

fi � x � xi
hi � 1

fi � 1� Mi
λ 2

i � 1

sinh � µi � 1 � zi ���.� zi ! µi � 1 � 1 � sinh � µi � 1 �
sinh � µi � 1 �� Mi � 1

λ 2
i � 1

/
sinh � zi �0� zi
sinh � µi � 1 � � zi

µi � 1

sinh � µi � 1 �1� µi � 1

sinh � µi � 1 � 2 (8)



The terms involving the function values fi and fi 3 1 represent the linear interpolation
part of Si 4 x 5 . The terms involving the second derivatives Mi and Mi 3 1 introduce the
curvature. In order to determine the so far unknown second derivatives 6 Mi 7 in terms of
the function values 6 fi 7 we use finally the continuity requirement for the first derivative.
This yields the system of equations

Mi 8 1hi
sinh 4 µi 519 µi
µ2

i sinh 4 µi 5;:
Mi < hi

µi cosh µi 9 sinh µi
µ2

i sinhµi : hi 3 1
µi 3 1 cosh µi 3 1 9 sinhµi 3 1

µ2
i 3 1 sinhµi 3 1 =

Mi 3 1hi 3 1
sinhµi 3 1 9 µi 3 1

µ2
i 3 1 sinhµi 3 1 > fi 3 1 9 fi

hi 3 1
9 fi 9 fi 8 1

hi
(9)

For N pivotal points this is a system of N 9 2 equations. The system can be closed
by putting M1 > MN > 0 or by given values of the first derivative at the end points.
Inspection of the coefficients of Mi 8 1 and Mi 3 1 shows that they vanish as 1 ? λ 2 for
λ @ ∞. The coefficient of Mi on the other hand vanishes only as 1 ? λ and Mi becomes
proportional to λ in this limit. The terms M ? λ 2 in (8) vanish therefore as 1 ? λ which
concludes the proof that (8) converges to a polygon in the limit λi @ ∞ for all i since the
coefficients of Mi ? λ 2

i 3 1 and Mi 3 1 ? λ 2
i 3 1 in (8) remain smaller than two.

PERFORMANCE

The application in plasma physics which we shall exploit is the determination of profile
gradients from experimentally determined profile data. In order to demonstrate the
suitability of the exponential spline family for this estimation problem mock data were
generated as follows. Let g 4 r 5 be the gradient of the test profile

g 4 r 5 > 9 c

1 :BAAA r 8 r0
∆ AAA k

(10)

where r0 and ∆ determine position and width of the function g 4 r 5 and k tunes the
steepness of the gradient. For small k, e.g. k > 2, this function is bell shaped. For k @ ∞
it assumes the shape of a rectangle. The mock profile G 4 r 5 was generated from (10)
choosing r0 > 0 C 7 and ∆ > 0 C 1 by numerical integration with posterior choice of c such
that G 4 0 5 > 1. Twenty profile values Gi uniformly distributed between r > 0 and r > 1
were then converted to mock data di employing a Gaussian random number generator of
mean Gi and shape parameter σi

σi > 0 C 07 4 0 C 5 : U 4 0 D 1 EF5 Gi (11)

Profile and gradient reconstruction was afforded on a grid of 39 pivots using five support
pivots for the exponential spline. Their position except for the end points r > 0 and
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FIGURE 1. Full dots with error bars show the mock data. Open circles with uncertainties are the
reconstruction. Data were generated with k G 6.

r H 1 which were kept fixed was marginalized employing simple sampling on the grid
of reconstruction pivots. Marginalization was also performed for the stiffness parametersI

λi J . Since they are setting the scale (7) for the variables of the problem the appropriate
prior to afford this marginalization is a bounded form of Jeffreys’ prior. Figure 1 shows
mock data for a steepness parameter k H 6 as full dots and profile reconstructions with
error bars as open circles for the three models polygon, exponential spline and cubic
spline. The reconstruction looks quite satisfactory in all three cases apart from the
region r K 0 L 5 in polygon reconstruction. It ignores the structure in the data introduced
by the randomization and is therefore obviously too stiff for this data set. Note that
both the cubic and the exponential spline account for the structure introduced by the
low uncertainty points 5 to 7 and 11 to 13. More interesting is the reconstruction of
the gradients shown in figure 2. The polygon reconstruction is again quite stiff and
overestimates the steepness of the profile. The cubic spline on the other hand is too
smooth and suffers also from a shift of the reconstructed profile (open circles) with
respect to the generating profile (10). The exponential spline exhibits a nearly perfect
fit for r M 0 L 5. The proper evaluation of the quality of the reconstruction is however
not by visual inspection but by straightforward calculation of the prior predictive value
(evidence). Table I shows the ppv in units of the natural logarithm for the polygon and
the cubic spline with respect to the exponential spline. All of them are negative meaning
that the exponential spline approach wins the game for all three test cases. For a smooth
profile, k H 4, its evidence is marginally higher than the cubic spline. For a rigid profile,
k H 20, we find that the evidence for the exponential spline is close to but slightly larger
than for the polygon model. Very interesting is the intermediate case which corresponds
to the reconstruction in figure 1 and figure 2. The evidence analysis singles out the
exponential spline model with very high significance for this profile of intermediate
stiffness.
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FIGURE 2. Profile gradients are shown as open circles with error bars. The continuous curve shows the
data generating function (10).

TABLE 1. Prior predictive values
of the cubic spline and the polygon
reconstructions relative to the expo-
nential spline in units of the natural
logarithm for three different profile
stiffness parameters.

k polygon cubic spline

4 -6.12 -0.70
6 -8.25 -10.18
20 -0.61 -14.46

CONCLUSION

The family of exponential spline functions which comprises as limiting cases polygons
and cubic splines is a very versatile set for Bayesian nonparametric function estimation.
The added complexity by the necessity to marginalize over the stiffness parameters N λi O
is unimportant in view of the everywhere amply available computation power.
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