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Abstract

Chronic intestinal inflammation and high dietary iron are associated with colorectal cancer development. The role of Stat3
activation in iron-induced colonic inflammation and tumorigenesis was investigated in a mouse model of inflammation-
associated colorectal cancer. Mice, fed either an iron-supplemented or control diet, were treated with azoxymethane and
dextran sodium sulfate (DSS). Intestinal inflammation and tumor development were assessed by endoscopy and histology,
gene expression by real-time PCR, Stat3 phosphorylation by immunoblot, cytokines by ELISA and apoptosis by TUNEL assay.
Colonic inflammation was more severe in mice fed an iron-supplemented compared with a control diet one week post-DSS
treatment, with enhanced colonic IL-6 and IL-11 release and Stat3 phosphorylation. Both IL-6 and ferritin, the iron storage
protein, co-localized with macrophages suggesting iron may act directly on IL-6 producing-macrophages. Iron increased
DSS-induced colonic epithelial cell proliferation and apoptosis consistent with enhanced mucosal damage. DSS-treated
mice developed anemia that was not alleviated by dietary iron supplementation. Six weeks post-DSS treatment, iron-
supplemented mice developed more and larger colonic tumors compared with control mice. Intratumoral IL-6 and IL-11
expression increased in DSS-treated mice and IL-6, and possibly IL-11, were enhanced by dietary iron. Gene expression of
iron importers, divalent metal transporter 1 and transferrin receptor 1, increased and iron exporter, ferroportin, decreased in
colonic tumors suggesting increased iron uptake. Dietary iron and colonic inflammation synergistically activated colonic IL-
6/IL-11-Stat3 signaling promoting tumorigenesis. Oral iron therapy may be detrimental in inflammatory bowel disease since
it may exacerbate colonic inflammation and increase colorectal cancer risk.
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Introduction

Inflammatory bowel diseases (IBD) are life-long incurable

conditions that are increasing in frequency[1] with high morbidity

including an increased risk for colorectal cancer (CRC).[2] These

cancers are frequently multiple, flat, histologically high-grade and

difficult to recognize by colonoscopy with poor long-term

prognosis. Whilst the pathogenesis of IBD associated-CRC is

unclear, chronic inflammation is thought to be a significant

contributor.[3] Intestinal inflammation can result in abdominal

pain, intestinal bleeding and diarrhea, and many IBD patients

suffer systemic symptoms of malnutrition and anemia. Anemia is

the most common systemic complication of IBD[4] and iron

deficiency is evident in many IBD patients.[5,6]

Chronic intestinal inflammation in IBD results in the upregula-

tion of pro-inflammatory cytokines causing damage to the

intestinal mucosa resulting in recurrent intestinal blood loss and

anemia.[7] These cytokines also contribute to anemia of inflam-

mation,[7,8] a condition where inflammation causes dysregulation

of iron metabolism and inhibition of erythropoiesis. The

inflammatory cytokine interleukin (IL)-6 increases the synthesis

of liver hepcidin, a major iron-regulatory hormone central to iron

homeostasis, resulting in reduced duodenal iron absorption and

retention of iron in macrophages and hepatocytes promoting iron

storage thus limiting the availability of iron for erythropoiesis.[9]
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In addition, tumor necrosis factor (TNF), IL-1b and interferon c
(IFNc) impair erythropoiesis by inhibiting erythroid progenitor cell

proliferation and erythropoietin synthesis.[8]

Oral or parenteral iron supplementation is frequently used to

treat anemia in IBD. Although oral iron may be beneficial, it may

induce oxidative stress contributing to intestinal inflammation and

mucosal damage.[10,11] Furthermore, excess iron can promote

oxidative stress-induced carcinogenesis.[12] Numerous population

studies have suggested that high dietary iron intake and body iron

stores increase CRC risk.[13,14] Conversely, iron chelation may

reduce intestinal oxidative stress in IBD patients.[15] Interestingly,

a reduction of body iron stores has been associated with lower risks

for numerous human malignancies.[16] The mechanistic link

between iron, colorectal inflammation and carcinogenesis, how-

ever, remains to be elucidated.

The aim of this study was to examine the effects of dietary iron

on the development of colonic inflammation and tumorigenesis in

the azoxymethane/dextran sodium sulfate (DSS) mouse model of

inflammation-induced colorectal cancer. We found that dietary

iron and acute intestinal inflammation synergistically activated

colonic IL-6/IL-11-Stat3 signaling and promoted tumorigenesis.

Increased intratumoral IL-6 and possibly IL-11 expression

suggested that Stat3 activation may contribute to the development

of dietary iron induced-colonic tumors. Anemia was also evident,

but was not alleviated by dietary iron supplementation. This study

indicates that the practice of using oral iron for the treatment of

anemia in IBD should be avoided as it is unlikely to improve

anemia, may exacerbate colonic inflammation and increase the

risk of CRC.

Materials and Methods

Ethics statement
This study was undertaken in accordance with the recommen-

dations of the Australian code of practice for the care and use of animals for

scientific purposes and was approved by the Animal Ethics

Committee of the University of Western Australia (RA/3/

100674 and RA/3/100972). Colonoscopy and all surgical

procedures were performed under anesthesia.

Mouse model
Female mice (C57BL6; Animal Resources Centre, Murdoch,

WA, Australia) were fed, from 4 weeks of age, either a control

(0.02% iron) or an iron-supplemented diet (1% carbonyl iron for 6

weeks followed by 0.1% iron thereafter). At 8 weeks of age, mice

were administered a single dose of azoxymethane (AOM; 7.4 mg/

kg body weight ip; Sigma-Aldrich Pty Ltd, Castle Hill, NSW,

Australia) followed by dextran sodium sulfate (DSS; 2% w/v; MP

Biomedicals, Seven Hills, NSW, Australia) in the drinking water

for various times using a modified method of Becker et al.[17] In

acute studies, mice were treated with DSS for 3 to 7 days post-

AOM injection whilst in long-term studies, mice were adminis-

tered 3 cycles of DSS with each cycle consisting of one week on

DSS followed by 2 weeks on plain water. Untreated mice were

injected with isotonic saline and given plain drinking water. For

brevity, untreated mice fed the iron-supplemented or control iron

diet will be referred to as Iron and Control mice, respectively,

whilst their AOM/DSS-treated counterparts will be referred to as

Iron/DSS and Control/DSS mice. At the end of the experiment,

blood was collected by cardiac puncture and tissues were perfused

in situ with 0.9% sodium chloride before removal. Liver and colon

were snapped frozen in liquid nitrogen for gene and protein

analyses as well as formalin-fixed for histology or frozen in Tissue-

Tek optimal cutting temperature (Sakura Finetek, Alphen aan den

Rijn, The Netherlands) embedding medium for immunofluores-

cence studies.

Hematological parameters
Whole blood (200 mL) was collected into MinicollectH tubes

coated with tripotassium ethylenediamine tetraacetic acid (Greiner

Bio-One, Kremsmünster, Austria). Hemoglobin (Hb), hematocrit,

mean cell hemoglobin (MCH), mean cell volume (MCV), red

blood cell (RBC) count, reticulocyte count and white blood cell

(WBC) count were measured using a Cell-Dyn Sapphire analyzer

(Abbott Diagnostics, North Ryde, NSW, Australia) at PathWest

Laboratories, Fremantle Hospital.

Iron parameters
Plasma transferrin saturation (TS) and liver non-heme iron

concentration were measured as previously described.[18] Colonic

iron was detected by histology using enhanced Perls’ Prussian blue

staining according to the method of Brookes et al.[19]

Lipid peroxidation
The lipid peroxidation marker, F2-isoprostane, was measured in

the colon by gas chromatography-mass spectrometry using a

deuterium-labeled internal standard, as previously described.[20]

Immunofluorescence
Immunofluorescence was performed on cryosections of the

colon fixed in 4% paraformaldehyde in phosphate-buffered

saline as previously described.[21] Rabbit anti-ferritin (1:500,

Dako), biotinylated rat anti-F4/80 (1:50, AbD Serotec, Raleigh,

NC), rat anti-IL-6 (1:100, BD Biosciences, North Ryde, NSW,

Australia) and rabbit anti-pStat3 (1:50, Santa Cruz Biotechnol-

ogy, Santa Cruz, CA) were detected using anti-rabbit/rat Alexa

Fluor 594 (1:200, Life Technologies, Mulgrave, VIC, Australia),

anti-rat Alexa Fluor 488 (1:200, Life Technologies) or strepta-

vidin-Alexa Fluor 488 conjugate (1:800, Life Technologies) and

mounted with Long Gold antifade reagent containing 49,

6-diamidino-2-phenylindole (Life Technologies) for nuclear

visualization.

Terminal deoxynucleotide transferase dUTP nick end labeling

(TUNEL) was performed to detect cellular apoptosis on cryosec-

tions of colonic Swiss roll preparations (,5 cm from anus; rolled

from distal to proximal end) that had undergone 1% paraformal-

dehyde fixation, using the ApoptagH Fluorescein Direct In Situ

Apoptosis Detection Kit (Merck Millipore, Kilsyth, VIC, Aus-

tralia) according to the manufacturer’s instructions. TUNEL

positive cells and the number of crypts (detected by 49,6-

diamidino-2-phenylindole counterstaining) were determined from

merged pictures of sequentially captured images of each

fluorophore at 206 magnification from the entire colonic Swiss

roll of each mouse. TUNEL positive cells were expressed per 100

crypts for each sample.

Colonic inflammation and tumor development
Colonic inflammation and tumor development were monitored

using a high-resolution mouse video endoscopy. Colonic (proximal

and distal) inflammation was assessed using a modified murine

endoscopic score of colitis severity (MEICS), examining changes in

colonic wall translucency, vascular pattern, presence of fibrin,

mucosal granularity and stool consistency.[17] Histological scoring

of colonic inflammation (colitis score) using hematoxylin and

eosin-stained distal sections of the colon was performed by a

histopathologist blinded to the treatment groups and quantified

according to a modified method of Dieleman et al.[22] The

Iron-Induced Colonic IL-6/IL-11-Stat3 Signaling
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severity and extent of colonic inflammation as well as crypt

damage were assessed. The number and size of colonic tumors

were also determined by colonoscopy with tumor size graded from

1 to 5 based on the ratio of tumor coverage of the colonic

circumference as described previously by Becker and col-

leagues.[17,23] Tumor score was calculated from the sum of size

of all tumors in each mouse whilst average tumor size was

determined from the division of the tumor score by the number of

tumors in each mouse.

RNA expression
Total RNA was isolated from colonic tissue and reverse-

transcribed using Superscript III (Life Technologies) as described

previously.[24] Gene transcript levels of cytokines, TNF, IFNc,

IL-6, IL-11 and IL-1b, cell cycle regulators, cyclin D1, cyclin B1

and c-myc, iron transporters, divalent metal transporter 1 (Dmt1),

transferrin receptor 1 (Tfr1) and ferroportin (Fpn), and house-

keeping genes, hypoxanthine-guanine phosphoribosyltransferase

(Hprt) and acidic ribosomal phosphoprotein PO (Arbp), were

measured by real-time polymerase chain reaction using a

FastSyBR mastermix (Roche Diagnostics, Castle Hill, NSW,

Australia). Primer sequences are listed in Table 1. Gene

expression was normalized against Hprt or Arbp mRNA

expression.

Colonic cytokine release
Colonic explants (5 mm sections taken from distal colon) were

cultured in serum free RPMI-1640 containing 25 mM HEPES

(Life Technologies) for 24 hours at 37uC. The incubation medium

was centrifuged at 20,000 g at 4uC and the explant supernatant

collected for cytokine analysis. Colonic IL-6 (R&D Systems Inc.,

Minneapolis, MN), IL-11 (Sigma-Aldrich) and IL-1b (R&D

Systems) concentrations were measured using enzyme-linked

immunosorbent assay (ELISA) kits as per manufacturers’ instruc-

tions.

Colonic epithelial cell isolation
Whole mouse colons were removed, incised longitudinally and

flushed with phosphate buffered saline. The colons were incubated

in isolation buffer containing 2 mM ethylenediamine tetraacetic

acid (Sigma-Aldrich), 1 mM ethylene glycol tetraacetic acid

(Sigma-Aldrich) and 1% fetal bovine serum (Life Technologies)

for 30 min at 37uC, with shaking, after which the colons were

removed and the incubation solution centrifuged at 300 g for

15 min at 4uC. The supernatant was removed and the resultant

cell pellet consisted of the isolated colonic epithelial cells.

Immunoblotting
Protein from distal colonic tissue of mice or isolated colonic

epithelial cells was extracted in a lysis buffer [150 mM NaCl,

25 mM Tris-HCl (pH7.5) and 0.5% Triton X-100] containing

cOmplete protease (Roche Diagnostics) and PhosStop phospha-

tase (Roche Diagnostics) inhibitors. Briefly, protein samples

(30 mg) were separated on 4–12% gradient gels (Life Technologies)

by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and

electroblotted onto nitrocellulose membranes (Pall Life Sciences,

Somersby, NSW, Australia). Membranes were incubated with

phosphorylated signal transducer and activator of transcription 3

(pStat3, 1:1000; Cell Signaling Technology Inc, Danvers, MA),

total Stat3 (Stat3, 1:1000; Cell Signaling), proliferating cell nuclear

antigen (PCNA, 1:100; BD Biosciences) and actin (1:2000; Merck

Millipore) at 4uC overnight after which they were incubated with

the appropriate secondary antibodies conjugated with horseradish

peroxidase (1:2000; Santa Cruz Biotechnology). Protein expression

was detected using enhanced chemiluminescence and quantified

by densitometry. Protein expression was normalized against actin

expression.

Statistics
Results are expressed as the mean and SEM, n = 3–8.

Differences between groups were analyzed using one-way analysis

of variance with Tukey’s multiple comparison post-test or

unpaired Student’s t-test (GraphPad PRISM, La Jolla, CA).

Differences between groups were defined as being statistically

significant for P,0.05.

Results

Dietary iron increased colonic iron levels and lipid
peroxidation

Dietary iron increased iron and ferritin levels in the colon. Iron

accumulated in the epithelium and macrophages in the lamina

propria of the colonic mucosa in Iron/DSS and Iron mice at day 3

(Fig. 1A). Iron staining was very low or not detected in Control

mice (Fig. 1A). Likewise ferritin, an indicator of iron stores, was

localized in the colonic epithelium as well as co-localized with F4/

80+ macrophages in the lamina propria of Iron/DSS and Iron

mice (Fig. 1B). Ferritin was also detected in colonic epithelial cells

Table 1. Mouse primers.

Gene Primer sequences 59-39

TNF Forward CTGTAGCCCACGTCGTAGC

Reverse TTGAGATCCATGCCGTTG

IFNc Forward ATCTGGAGGAACTGGCAAAA

Reverse TTCAAGACTTCAAAGAGTCTGAGGTA

IL-6 Forward GTATGAACAACGATGATGCACTTG

Reverse ATGGTACTCCAGAAGACCAGAGGA

IL-11 Forward CTGCACAGATGAGAGACAAATTCC

Reverse GAAGCTGCAAAGATCCCAATG

IL-1b Forward GTGGCTGTGGAGAAGCTGTG

Reverse GAAGGTCCACGGGAAAGACAC

Cyclin D1 Forward CCCTGACACCAATCTCCTCAAC

Reverse GCATGGATGGCACAATCTCCT

Cyclin B1 Forward ACTTCAGCCTGGGTCGCC

Reverse ACGTCAACCTCTCCGACTTTAGA

c-myc Forward TCTCCACTCACCAGCACAACTACG

Reverse ATCTGCTTCAGGACCCT

Dmt1 Forward TCTATCGCCATCATCCCCACCC

Reverse TCCACAGTCCAGGAAAGACAGACCC

Tfr1 Forward TTCCTACATCATCTCGCTTAT

Reverse CATAGTGTTCATCTCGCCGA

Fpn Forward GTCATCCTCTGCGGAATCATCCTGA

Reverse GAGACCCATCCATCTCGGAAAGTGC

Reverse CCAGCAAGCTTGCAACCTTAACCA

Arbp Forward ACTGGTCTAGGACCCGAGAAG

Reverse TCCCACCTTGTCTCCAGTCT

doi:10.1371/journal.pone.0078850.t001
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and macrophages in Control/DSS and Control mice but staining

was weaker and there were less ferritin-stained cells (Fig. 1B). A

similar pattern of co-localization was observed for ferritin and

CD11b+ or CD68+ macrophages (data not shown). Increased iron

accumulation in the colon resulted in elevated levels of colonic F2-

isoprostane, a marker of lipid peroxidation (Fig. 1C; P,0.05). DSS

treatment alone, however, had no effect on colonic F2-isoprostane

levels.

Plasma TS was increased by approximately by 2-fold (Fig. 1D;

P,0.001) and liver iron concentration was increased by approx-

imately 9-fold (Fig. 1E; P,0.0001) in mice fed an iron-

supplemented diet. At day 7, plasma TS decreased (Fig. 1D;

P,0.05) and liver iron concentration increased (Fig. 1E; P,0.01)

in both Iron/DSS and Control/DSS mice compared with Iron

and Control mice, respectively.

Mice developed anemia after DSS treatment
Thehematologyprofileofmiceafter treatmentwithDSSfor7days

is presented in Table 2. Hemoglobin, hematocrit, MCH, MCV and

RBC count were decreased in Iron/DSS and Control/DSS

compared with Iron and Control mice, respectively (P,0.05).

Conversely, the number of reticulocytes and white blood cells were

increased in Iron/DSS and Control/DSS mice (P,0.05). There was

Figure 1. Iron accumulation in the colon increased F2-isoprostane levels. 3,39-diaminobenzidine-enhanced Perls’ Prussian blue (A) and
ferritin and F4/80 double immunofluorescent (B) staining were performed on colon sections from Iron and Control (Ctrl) mice treated with or without
DSS for 3 days. Colonic iron (A) accumulated in apical epithelial cells (black arrowheads) and macrophages of the lamina propria (black arrows).
Immunofluorescent staining (B) of ferritin (red) was increased in colonic epithelial cells (white arrowheads) and in lamina propria F4/80+ (green)
macrophages (white arrows) in iron-supplemented mice. Colon F2-isoprostane concentration (C), plasma transferrin saturation (D), liver non-heme
iron concentration (E) were measured in Iron and Ctrl mice treated with or without DSS for 7 days. Results are expressed as mean6SEM, n = 4–7. *
P,0.05 denotes significance between DSS treatment versus no treatment; # P,0.05 denotes significance between Iron/DSS versus Ctrl/DSS or Iron
versus Ctrl mice. Scale bar denotes 25 mm.
doi:10.1371/journal.pone.0078850.g001

Table 2. Hematology profile of Iron and Control mice treated
with or without DSS.

Paramaters Iron/DSS Iron Control/DSSControl

Hb (g/L) 118.962.1* 144.362.8 122.163.5* 137.162.8

Hematocrit (%) 37.6360.50* 45.0060.82 37.3860.98* 42.6360.84

MCH (pg) 15.6660.14* 16.6360.09# 15.8360.05* 16.2460.12

MCV (fL) 49.5060.42*# 51.8860.35# 48.5060.19* 50.5060.38

RBC (1012/L) 7.6160.16* 8.6560.11 7.7160.23* 8.4260.16

Reticulocytes
(109/L)

639.0682.4* 354.5637.9 523.1630.0* 393.5617.8

Platelets (109/L) 894.6630.6# 818.4633.5# 696.6612.3 678.9640.91

WBC (109/L) 5.4660.64* 3.8160.21 7.1860.91* 4.0960.55

Results are expressed as mean6SEM; n = 7-8. * P,0.05; denotes significance
between DSS treatment versus no treatment and # P,0.05; denotes
significance between Iron/DSS versus Control/DSS or Iron versus Control mice.
Hb, hemoglobin; MCH, mean cell hemoglobin; MCV, mean cell volume; RBC, red
blood cell count; WBC, white blood cell count.
doi:10.1371/journal.pone.0078850.t002
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no difference in these parameters between Iron/DSS and Control/

DSS mice. Platelet concentration and MCV were significantly

increased in iron-supplemented mice with or without DSS treatment

(P,0.05). There was a small but significant increase in MCH in Iron

mice compared with Control mice (P,0.05).

Iron enhanced DSS-induced colonic inflammation
Mice treated with DSS exhibited signs of weight loss and

diarrhea with or without overt rectal bleeding, reflecting colonic

inflammation. The body weight of Iron/DSS mice was lower than

Control/DSS mice after days 5 and 6 of DSS treatment (Fig. 2A;

P,0.05). Colonic inflammation was increased in Iron/DSS and

Control/DSS mice compared with Iron and Control mice,

respectively. Endoscopically, the MEICS score was significantly

higher in Iron/DSS mice than in Control/DSS mice at day 5

(Fig. 2B; P,0.05). Similarly, the colitis score was more than 2-fold

greater in Iron/DSS mice than in Control/DSS mice at day 7

Figure 2. Dietary iron enhanced acute colonic inflammation. Body weight (A), endoscopic MEICS (B) and histological colitis (C) scores were
measured in Iron and Control (Ctrl) mice treated with or without DSS for up to 7 days. In hematoxylin and eosin-stained distal colon sections (D), Iron/
DSS mice exhibited extensive areas of mucosal erosion (arrowheads) with severe crypt damage (arrows) whilst crypt damage was moderate in Ctrl/
DSS mice. There was no damage in Iron and Ctrl mice. Results are expressed as mean6SEM, n = 6–8. * P,0.01 denotes significance between DSS
treatment versus no treatment; # P,0.05 denotes significance between Iron/DSS versus Ctrl/DSS or Iron versus Ctrl mice. Scale bar denotes 50 mm.
doi:10.1371/journal.pone.0078850.g002

Table 3. Cytokine gene expression in Iron and Control mice
treated with or without DSS.

Cytokine Iron/DSS Iron Control/DSS Control

TNF 12.2063.47 * 1.4060.36 11.9763.49 * 1.0060.22

IFNc 14.2062.68 * 0.7160.17 10.7066.34 1.0060.14

IL-6 19.0764.79 *# 0.6060.04 # 2.9260.44 * 1.0060.16

IL-11 5.3560.76 *# 1.2560.10 1.2760.40 1.0060.07

IL-1b 17.7062.04 *# 0.8860.05 3.1660.84 * 1.0060.14

Results are normalized against Hprt or Arbp expression and expressed relative
to Control mice as mean6SEM; n = 3–6. * P,0.05; denotes significance between
DSS treatment versus no treatment and # P,0.05; denotes significance
between Iron/DSS versus Control/DSS or Iron versus Control mice.
doi:10.1371/journal.pone.0078850.t003

Iron-Induced Colonic IL-6/IL-11-Stat3 Signaling
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(Fig. 2C; P = 0.0001) and is depicted histologically in Fig. 2D.

Iron/DSS mice exhibited extensive inflammatory cell infiltration

in the colonic mucosa and submucosa with mucosal erosion to

greater than 50% of the colonic mucosa with severe loss of crypt

structure whilst Control/DSS mice displayed moderate crypt

damage with a mainly intact surface epithelium (Fig. 2D). There

was no crypt damage observed in Iron and Control mice.

Iron enhanced colonic IL-6, IL-11 and IL-1b expression
and Stat3 signaling

Colonic inflammation was associated with increased inflamma-

tory cytokine expression at day 7. Colonic TNF mRNA expression

was increased in both Iron/DSS and Control/DSS mice (Table 3;

P,0.05) compared with non-DSS treated mice whilst IFNc
expression was increased in Iron/DSS mice (P = 0.001) with a

trend to increase in Control/DSS mice. IL-6 and IL-1b mRNA

expression were increased in both Iron/DSS and Control/DSS

mice compared with Iron and Control mice, respectively (Table 3;

P,0.05). There was an increase in mRNA expression of IL-11

(P,0.05) but not oncostatin M and ciliary neutrophic factor (data

not shown), which are all members of the IL-6 family of cytokines,

in Iron/DSS mice compared with Iron mice. Importantly, dietary

iron in combination with DSS treatment further increased IL-6,

IL-11 and IL-1b mRNA expression (Table 3; P,0.05). Similarly,

colonic IL-6 and IL-1b released from ex vivo colonic tissue were

increased in both Iron/DSS and Control/DSS mice (Fig. 3A,C;

P,0.0001) whilst IL-11 release was increased in Iron/DSS mice

(Fig. 3B; P,0.0001). Colonic IL-6, IL-11 and IL-1b release were

enhanced by iron in DSS-treated mice (Fig. 3A-C; P,0.01).

IL-6 and IL-11 activate the transcription factor, Stat3, and

colonic Stat3 phosphorylation was increased by both DSS (Fig. 3D;

P,0.001) and dietary iron (P,0.05). Immunofluorescent detection

of colonic IL-6 showed that it co-localized with the cell markers,

F4/80 (Fig. 3E) and CD11b (data not shown) in DSS-treated mice,

suggesting IL-6 was produced by colonic macrophages. Phosphor-

ylated Stat3 protein was predominantly localized in the nucleus of

epithelial cells in colonic crypts (Fig. 3E), suggesting the crypt

epithelium was the main target of mucosal IL-6/IL-11-Stat3

signaling.

Iron stimulated cell cycle progression and apoptosis
The expression of genes involved in cell cycle progression was

induced in DSS-treated mice. The cell cycle regulators, cyclin D1,

cyclin B1 and c-myc mRNA expression were increased in Iron/

DSS and Control/DSS mice compared with non-DSS treated

mice at day 7 (Fig. 4A-C; P,0.05). Cyclin D1 mRNA expression

Figure 3. Dietary iron enhanced colonic inflammatory cytokine release and Stat3 signaling during acute colonic inflammation.
Colonic IL-6 (A), IL-11 (B) and IL-1b (C) release from colonic tissue explants were measured after 24 hours in culture at 37uC. The tissue explants were
harvested Iron and Control (Ctrl) mice treated with or without DSS for 7 days. Colonic Stat3 phosphorylation (D) was also determined in Iron/DSS and
Ctrl/DSS mice compared with non-DSS treated mice at day 7. Immunofluorescent staining (E) of F4/80 (green) and IL-6 (red; left panels) or
phosphorylated Stat3 (red; right panels) at day 3 of DSS treatment identified F4/80+ macrophages (arrows) as a main source of IL-6 production and
epithelial crypt cells as active sites of nuclear pStat3 localization (white arrowheads) in Iron and Ctrl mice. Results are expressed as mean6SEM, n = 3–
8. * P,0.001 denotes significance between DSS treatment versus no treatment; # P,0.05 denotes significance between Iron/DSS versus Ctrl/DSS or
Iron versus Ctrl mice. Scale bar denotes 25 mm.
doi:10.1371/journal.pone.0078850.g003

Iron-Induced Colonic IL-6/IL-11-Stat3 Signaling
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was further increased by dietary iron supplementation (Fig. 4A;

P,0.05). There was a trend for PCNA protein expression to

increase with DSS treatment (Fig. 4D) and expression was

significantly increased in Iron/DSS mice compared with Control

mice (Fig. 4D; P,0.05).

Apoptosis of colonic epithelial cells was evident in DSS-treated

Iron and Control mice at day 3 (Fig. 4E,F). Iron/DSS and

Control/DSS mice exhibited more TUNEL positive cells com-

pared with their non-DSS treated counterparts (Fig. 4E; P,0.01).

In addition, there was a 2-fold increase in TUNEL positive cells in

Iron/DSS compared with Control/DSS mice (P,0.05).

Iron enhanced colonic tumor development
Colonic tumor development was examined by determining the

number and size of tumors during colonoscopy (Fig. 5A).

Hematoxylin and eosin-stained tumor sections were graded as

high-grade dysplasia in Iron/DSS and Control/DSS mice

(Fig. 5B). As expected, no tumors were induced in non-DSS

treated mice (Fig. 5C,D). By day 42, Iron/DSS mice had

developed more colonic tumors (Fig. 5C; P,0.05) as well as

larger-sized tumors compared with Control/DSS mice (2.8860.09

versus 2.1960.11; P,0.01) resulting in a higher tumor score

(Fig. 5D; P = 0.001).

TNF, IFNc, IL-6 and IL-11 gene expression were higher in

non-tumor tissue from Iron/DSS and Control/DSS mice com-

pared with colonic tissue from Iron and Control mice at day 78

(data not shown). Cytokine gene expression was also examined in

colonic tumor versus non-tumor tissue; the latter was taken from

areas surrounding tumors. TNF mRNA expression was signifi-

cantly increased in tumor compared with non-tumor tissue in

Iron/DSS and Control/DSS mice (Fig. 6A; P,0.01) whilst there

was no difference between tumor and non-tumor IFNc mRNA

expression (Fig. 6B). There was a trend for IFNc expression to be

downregulated by dietary iron. IL-6 and IL-11 mRNA expression

were increased in colonic tumors compared with non-tumor tissue

in both Iron/DSS and Control/DSS mice (Fig. 6C,D; P,0.05). As

in the early phase of DSS induction (Table 3), colonic tumor IL-6

(P,0.05) and possibly IL-11 (P = 0.07) mRNA expression was

higher in Iron/DSS compared with Control/DSS mice but not

TNF or IFNc (Fig. 6A–D).

Iron transporter gene expression was altered in colonic
tumors

Iron transporter gene expression was assessed in colonic tumor

and non-tumor tissue. The expression of the cellular iron import

genes, Dmt1 and Tfr1, was increased in tumors compared with

non-tumor tissue (Fig. 7A,B; P,0.05) whilst the expression of the

Figure 4. Dietary iron enhanced cyclin D1 expression and promoted epithelial cell apoptosis during acute colonic inflammation.
Colonic mRNA expression of cell cycle regulators, cyclin D1 (A), cyclin B1 (B) and c-myc (C) were measured in Iron and Control (Ctrl) mice treated with
or without DSS for 7 days. PCNA protein expression (D) was determined by immunoblot in isolated colonic epithelial cells from Iron/DSS and Ctrl/DSS
mice compared with non-DSS treated mice at day 3. Apoptotic colonic epithelial cells were quantified (E) from TUNEL staining (F; representative
images shown) of whole colonic Swiss roll preparations from Iron and Ctrl mice treated with or without DSS for 3 days. Results are expressed as
mean6SEM, n = 3–8. * P,0.05 denotes significance between DSS treatment versus no treatment; # P,0.05 denotes significance between Iron/DSS
versus Ctrl/DSS or Iron versus Ctrl mice. @ P,0.05 denotes significance between Iron/DSS versus Ctrl. Scale bar denotes 50 mm.
doi:10.1371/journal.pone.0078850.g004
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cellular iron export gene, Fpn, was decreased (P,0.01) or

unchanged (Fig. 7C). In non-tumor tissue, Dmt1 and Fpn mRNA

expression were decreased in Iron/DSS compared with Control/

DSS mice (Fig. 7A,C; P,0.05) whilst there was a trend for Tfr1

expression to decrease (Fig. 7B; P = 0.06). In contrast, iron

importer expression in colonic tumors was similar in Iron/DSS

and Control/DSS mice (Fig. 7A,B). Tumor Fpn mRNA expres-

sion was lower in Iron/DSS compared with Control/DSS mice

(Fig. 7C; P,0.05).

In long-term studies, iron staining in the colon of Iron mice was

similar to that observed in the acute studies (Fig. 1) with iron

accumulating in the epithelium and macrophages in the lamina

propria of the colonic mucosa (data not shown). In Iron/DSS

mice, there was weak but stainable iron in the mucosa of non-

tumor tissue that was absent in Control/DSS mice (Fig. 7D). In

contrast, there was no stainable iron detected in colonic tumor

epithelium and stroma in both Iron/DSS and Control/DSS mice

(Fig. 7D). In non-tumor tissue, there was evidence of architectural

crypt distortion with distension and branching of glands (Fig. 7D).

Discussion

In the present study, dietary iron enhanced colonic IL-6/IL-11-

Stat3 signaling and promoted colonic inflammation and tumor

development in a DSS mouse model of inflammation-associated

colorectal tumorigenesis. There were synergistic effects of iron and

colonic inflammation on IL-6 and IL-11 expression as well as

Stat3 phosphorylation indicating iron activated Stat3 signaling.

Both ferritin and IL-6 co-localized with macrophages in the

lamina propria suggesting that these cells accumulate iron as well

as synthesize IL-6. Intratumoral IL-6 and possibly IL - 11

expression was further increased by dietary iron suggesting that

iron-induced colonic tumorigenesis may be mediated by IL-6/IL-

11-Stat3 signaling. We also report the presence of anemia of

inflammation and iron deficiency anemia in this mouse model that

was not alleviated by dietary iron supplementation.

Liver iron concentration and plasma TS were increased in iron-

supplemented mice confirming iron loading conferred by dietary

iron supplementation (Fig. 1E,F). Iron accumulated in the colonic

epithelium as well as in mucosal macrophages in iron-supple-

mented mice. Increased levels of colonic F2-isoprostane, a marker

of lipid peroxidation, in iron-supplemented mice indicated the

presence of oxidative stress as previously reported,[25] whilst

colonic inflammation alone had no effect on lipid peroxidation

(Fig. 1C). Decreased TS, Hb, hematocrit, MCH, MCV and RBC

as well as increased reticulocyte count in both Iron/DSS and

Control/DSS mice (Fig. 1D; Table 2) were consistent with the

presence of microcytic, hypochromic iron deficiency anemia and

Figure 5. Dietary iron promoted colonic tumor development in inflammation-associated tumorigenesis. Colonoscopy images (A)
depict tumor development in Iron/DSS and Control (Ctrl)/DSS mice at day 42. Arrows indicate colonic tumors. Tumors were classified as high-grade
dysplasia by hematoxylin and eosin staining (B). Colonic tumor number (C) and tumor score (D) were determined in Iron and Control (Ctrl) mice
treated with or without DSS at day 42. Results are expressed as mean6SEM, n = 6. * P,0.05 denotes significance between DSS treatment versus no
treatment; # P,0.05 denotes significance between Iron/DSS versus Ctrl/DSS or Iron versus Ctrl mice. Scale bar denotes 100 mm.
doi:10.1371/journal.pone.0078850.g005
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increased erythropoietic activity in the bone marrow of DSS-

treated mice. Interestingly, the platelet concentration was

increased in mice fed the iron-supplemented diet suggesting that

iron may influence thrombopoietin, the hormone that regulates

platelet production, whilst the WBC count was elevated in DSS-

treated mice reflecting the colonic inflammation. Colonic inflam-

mation was also associated with an increase in liver iron

concentration and a reduction in plasma TS (Fig. 1D,E). The

observed anemia following DSS treatment was most likely due

to intestinal blood loss that was exacerbated by the anemia of

inflammation which is associated with hypoferremia as a result

of liver iron retention limiting the availability of iron for

erythropoiesis.[8] The presence of iron deficiency anemia and

anemia of inflammation in DSS-treated mice mirrors the

anemia observed in IBD patients[7] and did not improve with

dietary iron supplementation.

The DSS-induced colonic inflammation in the mice was

associated with extensive infiltration by inflammatory cells

(Fig. 2D) consisting predominantly of macrophages and neutro-

phils.[26] As expected, colonic expression of the pro-inflammatory

cytokines, TNF, IFNc, IL-6 and IL-1b (Table 3; Fig. 3A,C), was

increased consistent with other colitis models[27,28] and IBD

colitis.[26,29,30] The colonic inflammation was exacerbated by

dietary iron as observed in other rodent DSS studies.[10,31]

Colonic IL-6, IL-11 and IL-1b levels were also synergistically

increased with DSS treatment and dietary iron supplementation

(Table 3; Fig. 3A-C). As IL-6 and IL-11 are activators of the

transcription factor, Stat3, intracelluar signaling is initiated when

they bind to their respective receptors and associate with gp130

triggering Stat3 activation via Jak[32] within the colonic

mucosa.[30,33,34] Consistent with this, colonic Stat3 was

activated in the DSS-treated mice with dietary iron supplemen-

tation augmenting colonic Stat3 activation. IL-6 and IL-11 as well

as IL-1b are also downstream target genes of Stat3 and may

contribute to the inflammation in the mice.[35] Our findings thus

demonstrate that dietary iron not only exacerbates colonic

inflammation but also promotes IL-6/IL-11-Stat3 signaling.

Stat3 also regulates genes involved in cell growth, proliferation,

apoptosis, survival and migration[35] and studies in genetically

modified mice with impaired Stat3 signaling highlight the integral

role of Stat3 in intestinal epithelial cell regeneration.[36,37] In our

study, an upregulation of cell proliferation gene expression in the

presence of colonic inflammation was observed (Fig. 4A-C).

Dietary iron further increased cyclin D1 expression suggesting that

Figure 6. Dietary iron enhanced intratumoral IL-6 gene expression in inflammation-associated tumorigenesis. TNF (A), IFNc (B), IL-6 (C)
and IL-11 (D) mRNA expression were measured in colonic tumor (T) and surrounding non-tumor (nT) tissue from Iron/DSS and Control (Ctrl)/DSS mice
at day 78. Results are expressed as mean6SEM, n = 3–6. * P,0.05 denotes significance between T and nT tissue from Iron/DSS or Ctrl/DSS mice; #
P,0.05 denotes significance between Iron/DSS versus Ctrl/DSS in T or nT tissue.
doi:10.1371/journal.pone.0078850.g006
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iron may drive the G1 to S transition phase of the cell cycle during

inflammation. This was supported by iron chelation studies where

cellular iron depletion resulted in the downregulation of cyclin D1

expression.[38,39] Colonic epithelial cell apoptosis was also

increased with acute DSS treatment and this was enhanced by

iron (Fig. 4E,F). Higher apoptotic activity in the epithelium of

Iron/DSS mice was consistent with the more severe colonic tissue

damage and inflammation observed in these mice (Fig. 2).

Elevated colonic lipid peroxidation in the Iron/DSS mice

(Fig. 1C) suggests that enhanced apoptosis in these mice may be

due to increased oxidative stress and this may exacerbate colonic

inflammation by further compromising mucosal epithelial barrier

integrity thereby allowing transmigration of gut microflora into the

mucosa. Colonic inflammation has been shown to increase

epithelial cell proliferation and apoptosis, as well as induce

oxidative stress in animal colitis models and IBD colitis,[40–45]

whilst increasing anti-oxidant activity can attenuate the inflam-

mation.[46,47] Furthermore, dietary iron supplementation pro-

motes and iron deprivation ameliorates colitis-induced oxidative

stress.[10,15,25]

Chronic colonic inflammation increases the risk of CRC in

ulcerative colitis and Crohn’s disease, correlating with disease

duration, extent and severity of inflammation.[2] Unresolved

intestinal inflammation can lead to continuous excessive inflam-

matory cytokine production and persistent STAT3 and/or NFkB

activation which may promote carcinogenesis by switching on

tumor cell survival pathways.[35,48] Inhibition of IL-6, IL-11 or

Stat3 signaling can suppress the development of inflammation-

associated CRC, with IL-11-Stat3 signaling playing a more

prominent role than IL-6 in colonic tumorigenesis.[36,37,49] In

the present study, IL-6, IL-11 and TNF mRNA expression were

increased in colonic tumors in Iron/DSS and Control/DSS mice

Figure 7. Iron transporter gene expression was modified in colonic tumors in inflammation-associated tumorigenesis. Iron importer,
Dmt1 (A) and Tfr1 (B), as well as iron exporter, Fpn (C), mRNA expression were measured in colonic tumor (T) and non-tumor (nT) tissue from Iron/DSS
and Control (Ctrl)/DSS mice at day 78. 3,39-diaminobenzidine-enhanced Perls’ Prussian blue staining (D) showed that no iron deposits were detected
in the tumor epithelium from Iron/DSS or Ctrl/DSS mice. In surrounding non-tumor tissue, there was some stainable iron detected in colonic
epithelial cells (arrowheads) of Iron/DSS mice compared with Ctrl/DSS mice and there was some evidence of distension and branching of glands in
the mucosa (D; arrows). Results are expressed as mean6SEM, n = 3–6. * P,0.05 denotes significance between T and nT tissue from Iron/DSS or Ctrl/
DSS mice; # P,0.05 denotes significance between Iron/DSS and Ctrl/DSS in T or nT tissue. Scale bar denotes 25 mm.
doi:10.1371/journal.pone.0078850.g007
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(Fig. 6A,C,D) consistent with other reports.[50–52] Dietary iron

increased the number and size of DSS-induced colonic tumors and

enhanced intratumoral IL-6, and possibly IL-11, expression

(Fig. 6C,D) suggesting that iron promotes colonic tumorigenesis

via the Stat3 signaling pathway. The mechanism underlying iron

promotion of colonic IL-6/IL-11-Stat3 signaling is not known.

Recently, it has been suggested that iron may modulate Toll-like

receptor 4 (TLR4) signaling and IL-6 production.[53] TLR4

expression is upregulated in IBD[54] and promotes inflammation-

associated colorectal tumorigenesis in mice.[55] As both IL-6 and

IL-11 activate Stat3, and in turn are regulated by Stat3 and/or

NFkB,[35,56] it is likely that iron and colonic inflammation may

regulate IL-11 in a similar manner to IL-6.

Iron is important for DNA synthesis and cell cycle progression,

hence, tumor cells have a high requirement for iron to sustain their

proliferation.[57] The expression of iron importers, Dmt1 and

Tfr1, increased and iron exporter, Fpn, decreased in colonic

tumors of DSS-treated mice (Fig. 7A-C) suggesting that there was

increased iron uptake by the tumors. Dmt1, Tfr1 and Fpn protein

expression have been shown to be upregulated in mouse and

human colorectal adenoma and/or carcinoma.[19,58] Downreg-

ulation of Fpn expression, however, has been reported in other

cancers and is associated with a poor prognosis in breast

cancer.[59] Iron staining in the colonic tumors was not detectable

(Fig. 7D) suggesting that the increased iron taken up by the tumors

did not accumulate but was instead utilized for cell proliferation.

Dietary iron has been shown to promote colonic inflammation

and tumor development in other DSS models whilst parenteral

iron administration has no effect.[10,60] This suggests that

increased iron levels in the intestinal lumen are required for

exacerbation of colonic inflammation. Only 5–10% of daily

dietary iron intake is absorbed, mainly by the small intestine and

the remaining iron will reach the colon where some of the iron is

absorbed. The route of iron administration to treat the anemia in

IBD patients is, therefore, important since dietary iron could

exacerbate intestinal inflammation and potentially increase the risk

of tumor development. Indeed, in a mouse model of ileitis, mice

fed a low iron diet exhibited less severe inflammation compared

with mice fed an iron replete diet.[61]

In conclusion, dietary iron and colonic inflammation synergis-

tically activated colonic IL-6/IL-11-Stat3 signaling promoting

tumorigenesis. Increased intratumoral IL-6 and possibly IL-11

expression suggested that dietary iron may promote colonic tumor

development via a Stat3-mediated pathway. This study also

suggests that the use of oral iron for the treatment of anemia in

IBD should be avoided as it is unlikely to improve anemia and

may exacerbate colonic inflammation increasing the risk of CRC.
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