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The present work deals with experimental investigation of the levitation of magnetic and non-magnetic 

bodies in a magnetic fluid when essentially influenced by Brownian diffusion of magnetic particles in it. It 

is established that the point of levitation of bodies in a magnetic fluid varies with time. 
 

Keywords: Magnetic fluid, Brownian diffusion, Levitation. 
 

 PACS numbers: 47.65.Cb, 47.57.eb 

 

 

                                                           
* bashv@rambler.ru 

1. INTRODUCTION 
 

As theoretically shown [1, 2], the processes of mag-

netophoresis and Brownian diffusion in a magnetic 

fluid under inhomogeneous magnetic fields can essen-

tially influence a static pressure distribution in it due 

to a redistribution of magnetic particle concentration. 

Accordingly, the statics of a magnetic fluid and, partic-

ularly, conditions for levitation of magnetic and non-

magnetic bodies in it can, to a considerable extent, be 

specified by these processes.  

This fact is of special importance for magnetic fluid 

devices based on the levitaton of permanent magnets in 

the magnetic fluid: suspensions in measuring devices 

[3], dynamic shock absorbers [4], etc. for which the sta-

bility of parameters, in particular suspension elasticity, 

is significant. 

Among the fundamental parameters responsible for 

mass transfer processes in the magnetic fluid are:  

– mobility of magnetic particles b that for spherical 

particles is determined through the viscosity of the 

carrier fluid η and through their radius R: b = 16ηR;  

– diffusivity D that in Einstein’s classical theory of 

Brownian diffusion of particles is related to the mobili-

ty by / 6D kTb kT R  ; 

– dimensionless criterion 0 0 /mU m H kT  that is 

the ratio of the potential energy of a particle with a 

magnetic moment mm under a magnetic field H0 to its 

thermal energy kT. Here 0 is the magnetic permeabil-

ity of vacuum, k is the Boltzmann constant, T is the 

temperature. 

– characteristic dimension of concentration inhomo-

geneity l, at which the particle concentration changes e 

times. It is determined by the value U  1. In this case, 

as a characteristic value of a magnetic field one should 

choose a product of a characteristic value of its gradi-

ent G  |gradH| and a characteristic dimension: 

H0  Gl. Then l  kT/0 mm G.  

– characteristic diffusion time, τ , of particles in the 

magnetic fluid. It is determined as follows: 

τ  l2/D  RkT/(0 mm G)2. 

 

2. EXPERIMENT 
 

Experiment is carried out with magnetic fluids based 

on transformer oil and kerosene with magnetite parti-

cles. Their properties are presented in a table below.  
 

Table 1 – Physical properties of used magnetic fluids 
 

Carrier fluid 
Transform-

er oil 
Kerosene 

Magnetic fluid 

name 
MOT-31 MK-28 MK-44 

Magnetisation 

of saturation 

MS, kA/m 

31,2 28,3 43,8 

Density , kg/m3 1270 1158 1305 

Magnetic fluid 

viscosity , Pa·s 
0,0356 0,0025 0,0066 

Carrier fluid 

viscosity , Pa·s 
0,02 0,0008 

Magnetic parti-

cles volume con-

centration, % 

6,6 5,9 9,1 

Magnetic parti-

cle diameter, dm 
7,6-12 8-12 8,4-12 

 

The mean magnetic moment of magnetite particles 

is mm  2.5·10 – 19 J/T. 

 

2.1 Levitation of a Permanent Magnet in Mag-

netic Fluid 
 

The influence of mass transfer processes in the 

magnetic fluid on the levitation of a permanent magnet 

in it is studied by the example of an object typical for 

the above-mentioned magnetic fluid devices. It repre-

sented a magnet inside a large magnetic fluid drop held 

on a horizontal solid base, as shown in Fig. 1. 

Rectangular ferrite-barium magnets with magneti-

zation along the shortest side are used. Their size is 

10 × 20 × 5 mm, and mass is 4,7 g. 

At the initial time moment, the permanent magnet 

placed into a homogeneous magnetic fluid occupies 

some equilibrium position at a distance h0 from the 
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base. With time, because of the processes of magneto-

phoresis and Brownian diffusion, the concentration of 

magnetic particles in the vicinity of the magnet in-

creases and near the base decreases. As a result, the 

magnet when acted upon by the gravity moves closer to 

the base and finally occupies a new equilibrium posi-

tion. In experiment, this movement Δh is fixed by 

means of a cathetometer with an accuracy of 0.01 mm. 
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Fig. 1 – Scheme of experimental cell on permanent magnet 

levitation. 1 – solid base, 2 – magnetic fluid, 3 – permanent 

magnet, 4 – transparent cover 

 

It should be noted that such variations also result 

in enhancing the stiffness of the system. 

Data for the one magnet will be presented below.  

Maximum magnetic field intensity at the surface of it is 

65 kA/m, and the corresponding gradient of the field 

intensity at this point is equal to 15000 kA/m2. 

The values of the criterion U corresponding to this 

magnetic field is 5,1. 

The magnetic fluid volume V is varied from 3000 to 

5000 mm3.  

Time variations of the positions of levitation of the 

magnet in the magnetic fluid are shown in Figs. 2 and 3. 
 

 
 

Fig. 2 – A relative displacement Δh/h0 of the levitation point 

of the magnet in the kerosene based magnetic fluid in time 
 

The comparison of the data in Figs. 2 and 3 first of 

all attracts attention to an essentially different time of 

attaining a new equilibrium position by the magnet for 

different fluids.  

As seen from the presented in Introduction expres-

sion for the characteristic diffusion time, τ, of magnetic 

particles in the magnetic fluid, it is directly proportion-

al to the viscosity of the carrier fluid. For the conditions 

of the experiment described it is 220 min for kerosene 

based magnetic fluids and 5500 min for transformer oil 

based fluids. This is consistent with the order of magni-

tudes for the results plotted in Figs. 2 and 3.  

 

 
 

Fig. 3 – A relative displacement Δh/h0 of the levitation point of 

the magnet in the transformer oil based magnetic fluid in time 
 

2.2 Levitation of a Non-magnetic Body in  

Magnetic Fluid 
 

A plexiglas disc 7 mm in height and 23 mm in diame-

ter is used as a non-magnetic body. A coaxially magnet-

ized circular ferrite-barium magnet 20 mm in height, 

with inner and outer diameters equal to 84 and 40 mm,  
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Fig. 4 – Scheme of experimental cell on levitation of 

nonmagnetic disk. 1 – circular permanent magnet, 2 – 

magnetic fluid, 3 – non magnetic disc, 4 – transparent vessel 
 

 
 

Fig. 5 – Absolute displacement Δh of the levitation point of a non-

magnetic disc in the transformer oil based magnetic fluid in time 

 

respectively, is used as a source of an inhomogeneous 

magnetic field. Maximum values of the magnetic field 

intensity and its vertical gradient on the magnet axis 

are equal to 22 kA/m and 3000 kA/m2. Because of its 

small density, the disc was floating over the magnetic 

fluid surface. The fluid filled a cylindrical vessel located 

inside the magnet ring, as presented in Fig. 4. 
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In this case, the buoyancy force acting upon the disc 

decreases with time and it more submerged into the 

fluid [2]. In experiment, this movement Δh was also 

fixed by means of the cathetometer. The results are 

presented in Fig. 5.  

As seen from Fig. 5, the characteristic diffusion 

time is of the order of 4000 min and corresponds to the 

identical experimental data on the floating of the mag-

net in the transformer oil based magnetic fluid, Fig. 3. 
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