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STATISTICAL ANALYSIS OF DATA FROM
ELECTRONIC COMPONENT LIFETESTS

(A TUTORIAL PAPER)

J. MOLTOFT*

Methods of statistically analysing data from electronic component lifetests are discussed. Particular emphasis is given to
analysis techniques using the assumptions of constant hazard rate (Exponential distribution), the Weibull distribution
and mixed Weibull distributions. The methods used for analysing Weibull data when the data itself is non-uniform due
to both removal of test samples during test and also the non-continuance of surveillance of components under test are
discussed. Attention is finally given to the effect of two or more failure mechanisms which can produce S-shaped
patterns when data is plotted on Weibull Graph paper.

Numerous examples are given, mainly from the field of analysis of CMOS circuit components.

1. INTRODUCTION

The subject of statistical analysis of lifetest data is very wide and several textbooks treat this
subject in depth. Most textbooks in reliability engineering include directly or in an appendix
many of the fundamental theories and methods. It is not the purpose of this paper to
compete with the textbooks, merely to attempt to extract some methods which by experience
have proven to be useful and which are not too complex to be applied in the day-to-day
engineering work in industrial R & D laboratories. For a more complete treatment some of
the textbooks in the list of references may be studied (Ref. 1, 2, 3, 4).

In the following we will start by going through some of the most important definitions of
reliability and try to explain their practical applicability. The next step will be to discuss the
different reliability tests and failure types to be taken into account. Further, as the main
body of the paper, some very useful applications of Weibull analysis technique will be
described in detail. The concepts and methods will be explained by practical examples,
founded on experience from real life.

The paper is oriented towards components (or in general terms: non-repaired items). For
repairable items which are repaired during their life, the methods cannot be used.

2. SOME IMPORTANT RELIABILITY MEASURES

The concept of reliability is clearly expressed in the definition:

The ability of an item to perform a required function under stated conditions for a stated
period of time.

The three key phrases are underlined and we will return to this definition several times in
the paper.

This definition leads to the fundamental probabilistic measure of reliability

R(t) P(tactual > t)
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which says that the reliability is the probability, P, of having a lifetime (tactual) greater than
the stated period of time t. The word "lifetime" means that the item under consideration
performs the required function under stated conditions. These two conditions are often
forgotten when planning and interpreting lifetests.

The lifetime tactual of an item can be both shorter and longer than t. Having a specific item
in our hands, we cannot tell how long tactual would be for that particular item. This means
that the lifetime is a stochastic variable which has an associated probability <listribution that
may be characterized by one or more parameters. One of the purposes of a lifetest is to
estimate these parameters.

Probability distributions are usually expressed in terms of the cumulative distribution
function c.d.f, or the probability density function p.d.f. In the present case we have the c.d.f.
for the lifetime expressed as:u

F(t) P(tactual < t)

This states the probability of having a lifetime shorter than or equal to the stated period of
time. As an item either performs its function or not, we have:

F(t) 1- R(t)

because the total probability cannot exceed one. The corresponding p.d.f, is

dF(t)f(t)- dt

While the p.d:f, is seldom used, a further measure that is often used in reliability
technology is the hazard or failure rate function.

h(t) f(t)/R(t)

The failure rate h(t) expresses the conditional probability such that:n

h(t) dt is the probability that the item will fail in the coming time interval dt given that it
has survived the stated period of time t.

For small values of where R(t) is close to unity, the p.d.f, and the hazard rate function
are almost identical. As R(t) decreases with time h(t) and f(t) differ more and more.

One of the most used and abused reliability measures is the mean time to failure,
MTTF. This is simply the mean value of our stochastic variable, the lifetime.

It is calculated by the standard formula for mean values

MTTF f(t)dt

As mentioned the MTTF measure is often abused. One of the misconceptions is the
intermixing with the working life- that is the time where wear-out is setting in and the
hazard rate rises. The MTTF has nothing to do with the working life, which cannot be
underlined too often.

3. TYPES OF LIFETEST AND FAILURES

Referring to figure 1 lifetests can be performed either in the field or in the laboratory.
Laboratory tests are most used for components. Whatever test is used, the operational
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conditions have to be decided. For a field test the selected market and customers determine.
For a laboratory test we set up a test cycle consisting of combinations of environmental

parameters (temperature, voltage, current, humidity, etc.), functional modes (test patterns,
signal flow, biasing, etc.) and duty cycle (on-time, off-time). The operational conditions in a
laboratory test should be selected in order:m

to give reproducible results,
to precipitate failure modes and mechanisms which are seen in actual use,
to enable predictions of field failure patterns.

The next step is to make a statistical test plan in which the sample size, test duration etc.
are determined. The same procedure and methods are used for field and laboratory tests.
The planning methods are, however, different depending on whether the outcome required
is a reliability verification or a reliability estimation. In our case we will have a close look at
estimation. However, in many cases the data from a verification test may be analysed in the
same way and thus can provide further information than the simple answer, "yes" or "no",
to the postulate to be verified.

Failures can be categorized in many ways. This is usually done in accordance with the
purpose of the exercise. In the present case a failure occurs when a component ceases to
perform its intended function. This can happen in two ways:m

1) catastrophically, which happens when the component suddenly and abruptly ceases to
work properly,

2) gradually, which happens when a parameter drifts outside a preset specification limit.

We will accept both types as failures in our statistical analysis. However, for further
analyses, as for example failure cause analyses and for predicticn purposes, it is very
important to distinct between these two types of failures.

Often both types are discussed together and the concept of the "bath tub" curve is
introduced. However such a concept has to be treated carefully if mistakes are to be avoided.
In this case, all failures are regarded as catastrophic and the failure rate function follows a
bath tub shaped curve with a high failure rate in the beginning, a long period in the middle
with a constant failure rate and a rising failure rate in the end.

The descriptions above regarding type of lifetests and failures are not in any way
exhaustive. The purpose was just to explain the frame in which we make the statistical
analysis.

An example for illustration; background

For the purpose of illustrating the basic methods, a specific example has been selected. This
is based on results from a real life reliability test in which high speed CMOS integrated
circuits were subjected to 85C, 85% RH and a supply voltage of 6V. The failure mechanism
reported was corrosion of the thin metal film interconnection layer.

Analyses under the constant hazard rate assumption

Many component manufacturers still reveal data in the form:m

a sample of 50 CMOS circuit components were tested for 6000 hours and 6 failures were
found,

followed by the statement:--

The failure rate for the components is 2%/1000 hours.

The calculation is very simple as exponential distributed lifetimes are assumed. In this case
the reliability function



STATISTICAL ANALYSIS OF LIFETESTS 263

R(t) e-’it

with the corresponding c.d.f.

F(t) 1 e-’t

The hazard rate will be constant:--

h(t) 2

The estimation of 2 is obtained from:--

where r is the total number of failures and T is the accumulated relevant test time. T is
determined from:--

T 2 ti + (n- r)t*
i=1

where ti is the time-to-failure for failure no. and t* is the test duration.
Confidence limits can also be derived by the use of the z2-distribution (Ref. 1 and 3). The

formula are:--

2 2

Zl-,v
2T 2T

for a two-sided confidence interval, and:--

2

< Zl-@----’v2
for a single side upper confidence limit. The confidence level is 1 a and the degrees of
freedoms are

v 2r

v2 2r
for a failure truncated test

+ 2 for a time truncated test.

The test duration may be either preset (a time truncated test) or determined by the
occurrence of the last of a preset number of failures (a failure truncated test).

Example

Having the mathematical formulas in hand we get immediately

n 50

r =6

t* 6000
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However, the value of T has to be approximate, because we do not have the time-to-failures.
We approximate (slightly optimistic) because of the few failures compared with the sample
size

T 6 6000 + (50 6) 6000 50. 6000 300,000 h

The calculations then give the estimate:--

6
300000

20. 10-6. h-1 2%/1000 h

and the 90%-confidence limits:i

5.23 )2 2
,95% ;2.6+2 23.75%;2.6 < , <600000 2 300000 2. 300000 600000

2
90%’2.6+2 21.1
2. 300000 600000

The result will

The hazard rate for the CMOS circuit component is 2%/1000 h or lies with 90%
confidence between 0.87 and 4.0%/1000 h or below 3.5%/1000 h.

i.e. 2.0%/1000 h.

0..87%/1000 h. < ,,90 < 4.0%/1000 h.

’90 < 3.5%/1000 h.

The problem with this method is that the assumption of exponentially distributed lifetimes
seldom is fulfilled. Therefore more sophisticated methods are necessary. However, in this
case we need to know the time-to-failures (at least approximately).

4. WEIBULL ANALYSIS

The foundation for the Weibull analysis technique is the Weibull distribution function. If the
lifetimes are Weibull-distributed, the reliability function

R(t)= exp -{tr/-t-toJ

where the three parameters/3, r/ and to are:--

the shape parameter

the characteristic lifetime

to the location parameter.

/3 describes the shape of the p.d.f. For low values of/3 the p.d.f, is skew to the left./3 1
gives an exponential distribution. /3 3.44 makes a good approximation to the normal
distribution except in the tails. For higher values of/3 the p.d.f, is skew to the right.
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r/is the time for which the cumulative failure is 63% regardless of the values of/3 and to.
to defines where the distribution can start. Lower values of may give a reliability greater

than one, if/3 is an integer. If/3 is a non-integer we will get a complex value of the reliability.
Both cases are impossibilities. For this reason to is often called the minimum life.

For to 0 (or after carrying out the transformation to;/1 r/- to) we get the two
parameter Weibull-distribution

R(t) e -(1/4)/- (1)

This is often the case, and in the following we will concentrate on the two parameter
distribution.

The c.d.f, becomes:--

F(t) 1 e-(-)/ (2)

and the p.d.f.

f(t) e-(1/4) (3)

For the hazard rate we obtain:--

h(t) . (4)

In the exponential case, where/3 is equal to one, q MTTF. In other cases r/and MTI’F
are interrelated by the gamma-function via the value of fl as follows:--

On the basis of the two-parameter Weibull-function, a Weibull graph paper developed.
Manipulating the c.d.f, we obtain:--

1lnln 1 F(t) fllnt flln7 (5)

which constitute a straight line

y =/3 x -/31nr/ (y lnln
\

1.
1 F(t) x lnt

In order to plot data on the basis of the two parameter Weibull function (eqn. 1), the
function in the form of equation 5 is used. For this purpose special graph papers have been
evolved and figure 2 shows one such.

In figure 2, the ordinate plots values of the c.d.f., F(t), in terms of the L.H.S. of equation
5. The abscissa is and is, therefore, plotted for convenience on a logarithmic scale.
Therefore, using such paper, a plot of F(t) versus time can give a straight line of slope ft.
However specific constructions are necessary to avoid the complication of calculating/3
directly from the axes of the Weibull paper. At the same time it is also found possible to
establish a construction for determining r/. These constructions are shown in figure 3 where
equation 5 is plotted with r/ 8 and/3 2.4.

To obtain r/reference needs to be made to equation 5. If in equation 5 r/ t, then
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FIGURE 2 An example of a Weibull graph paper

1luln 0
1 F(t)

Hence F(t)

0.632

This is shown in figure 3 where the c.d.f, value of 63.2% for the Weibull plot gives a
r/ (= t) value of 8.

In the case of the determination of fl a special construction must be used relative to a fl
scale which has been calculated for that construction and has been placed on the graph
paper. In the case of Chartwell graph papers (numbers Ref. 6572 and 6573), this is done by
using an estimator point. However, in the present case the value is arrived at by drawing a
line parallel to the original plot but through the fixed point given by F(t) 0.63 and e.
Where this parallel line intercepts the 1 value, a value for fl can then be read off
numerically from the scale on the left or right of the page.

In a lifetest, the lifetimes or times to failure of components are measured. To obtain the
cumulative percentage failure (F(t)) the times to failure are arranged in increasing order and
the median rank values for F(t), F(t), calculated using the following formula developed by
Benard (Ref. 8).

P(t) i- 0.3
n + 0.4

x 100% (6)

where is the failure number (rank order no) and n is the sample size. The median rank value
calculation is necessary since the time to first failure, second failure in the sample etc. would
each form part of a distribution if the test were repeated many times. The above formula is
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FIGURE 3 How to use the Weibull graph paper

only approximate and applies only to non Gaussian distributions. More accurate values can
be obtained from tables if required.

Thus we have a tool to analyse many complex distribution functions. Corresponding
values of lifetimes and estimated c.d.f.-values are plotted on the Weibull paper. If a straight
line can be drawn through the points, we have a Weibull distribution and the values of fl and
r/can be estimated. If the plotted points diverge from a straight line we may split the curve
into a combination of Weibull functions. Engineering common sense combined with
statistical Weibull analysis thus gives us a simple and very powerful tool for reliability
assessments.

Example

Analysing further the lifetest data for the CMOS circuits discussed previously (Section 3), we
find the following lifetimes for the failed components (Table I).

TABLE
CMOS circuit life times

Failure no lifetime (t)
rank order no ti h

1800 1.39
2 3000 3.4
3 3900 5.4
4 4300 7.3
5 5300 9.3
6 6000 11.3

In the table we have calculated the median rank values, F(t) based on the sample size
n 50.
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Figure 4 shows the Weibull plot and it is seen that a straight line can be drawn through the
points. The estimated value of/3 is 1.8 and this means that we are far from the exponentional
case (/3 1). Furthermore, the plot shows that the previous calculation was too optimistic
for the long term behaviour and too pessimistic for the short term behaviour of the com-
ponents (compare with the dotted line for the exponential case in which fl 1).

For this failure mechanism we have an increasing hazard rate with time (Fig. 5).

1.8 ( o.sh(t) 19300 \19300]

This is quite common for a wear-out type failure such as corrosion.
It is possible to add confidence limiting curves to the graph. This is described in several

textbooks as for example [ref. 1] and [ref. 2].

Effect of non uniform data

In many cases the testing procedure is not that simple. The sample size is often high in the
beginning and decreasing for a number of reasons as time goes on. Some of the samples fail
for reasons that are irrelevant for the testing purpose. After some time a substantial number
from the sample can be taken away for other testing purposes. It may be too expensive to
carry on testing a large sample size. In all such cases we seek help in the rank order
calculation for suspended items.

The formula for an increase, A, to obtain the next rank order number after a suspension
is (Ref. 9).

(n + 1) (previous rank order number)A 1 + (number of items following suspended set) (7)

FIGURE 4 Weibull plot for CMOS-circuits; (sample size 50)



STATISTICAL ANALYSIS OF LIFETESTS 269

FIGURE 5 Hazard rate for the CMOS-circuits; (sample size 50)

Subsequent rank order numbers after the suspension are calculated by adding A to the
previous recalculated rank order numbers. After each new suspension a new A-value must
be calculated.

Another often used short cut in reliability testing is that the components are not under
continuous surveillance. Instead every component is measured at regular time intervals. By
these measurements more than one failure may be discovered at the same time of
measurement and the precise lifetime is not known. The times-to-failures for the failed
components lie somewhere between two measurement points. If such a short cut has to be
used it is advisable to measure with short time intervals in the beginning and longer intervals
at the end of the testing period.

Example

The two major points discussed above, namely removal of specimens from the sample under
test and non continuous surveillance are illustrated in the following example on the results of
a set of real lifetests for CMOS-circuits.

Using the formula for suspended items, equation (6), we obtain the table below (Table
III). It should be noted that the designation of failure numbers within the five time intervals
is arbitrary as there has not been continuous surveillance.

Let us for example calculate the rank order numbers for failure number 7 and 8.
Originally there were 818 circuits under test. Therefore we have

n 818

Failure number 7 comes right after a suspension. Therefore we get

A (818 + 1) 6 1.16309 1.1631 + 698
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TABLE II
Test results on CMOS circuits

time of measurements
[hours]

number of components on test
between the measurements

number of failures found
at the measurements

0 0
818

1000 6
698

2000 9
420

3000 13
360

4000 11
120

6000 6

TABLE III
Modified test results on CMOS circuits

time of failure number number of components A rank order
measurements hours after suspension no

1000 818
6 6

7 7.163
2000 698 1.163

15 16.6

16 18.38
3000 420 1.91

28 41.25

29 43.40
4000 360 2.15

39 64.95

40 71.18
6000 120 6.23

65 102.34

Thus

i7 i6 + A6 6.000 + 1.163 7.163

Failure number 8 follows failure number 7 and not a suspension. We therefore get

i8 i7 + A6 7.163 + 1.163 8.326

This process can be continued through all the failures up to the next suspension. The
figures given in table 3 after the suspension between failure numbers 15 and 16 have been
rounded to two decimal places for simplicity. However it should be noted that to obtain
these figures the three thermal places for A are needed in the calculation.
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TABLE IV
Time to failure and median bank values for CMOS circuit failures

Failure no Rank order no Time-to-failure h (t) %

0.086
1000

6 6 0.70

7.16 0.84
2000

16.67 2.0

18.38 2.2
3000

28 41.25 5.0

29 43.40 5.3
4000

39 64.95 7.9

40 71.18 8.7
6000

45 102.34 12.5

The first failure in a group can be taken to be the top one in the group and one can draw a
Weibull curve using only these points.

Taking these aspects into account, the corresponding time-to-failure and calculated
median rank values, (equation (6)) can be tabulated as follows.

The median rank value, (t), is calculated using the sample size n 818 at all Times.
Thus:--

;.)errt i- 0.3
100

1 0.3
n + 0.4 8.184

The Weibull plot of the data is shown in figure 6 and it appears that a straight line through
the top points in a group is a reasonable approximation.

From the graph we can derive the values for fl and 7.

fl=l.8

17000 hours

These figures are enough for a complete description of the estimated Weibull
distribution.

Other figures may be derived as well, for example the well know B10-1ife, which is the
time where 10% of the components have failed. From figure 6 we obtain:--

B10 4600 hours

Furthermore we can find how many percent failures we expect to obtain in one year of
continuous operation. In this case we get:--

F(1 year 8760 hours) 26%
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5. THE FLAW MODEL AND THE MODEL OF COMPETING
FAILURE MECHANISMS
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In many cases the plotted points on the Weibull graph paper do not fit a straight line. An
example of a typical pattern appears in figure 7 in which the time-to-failure for CMOS
components, (Type 4007 dual complementary pair plus inverter) tested at 200C, are
plotted. The method has been described above.
An approximate curve may be fitted to such a pattern assuming the bimodal distribution

F(t) pFl(t) + (1 p)F2(t) (8)

in which Fl(t) and F2(t) are ordinary Weibull functions and p is the probability of a
component having a lifetime distribution which follows Fl(t). A fit for the present case is
shown in figure 8.

The shape of the curve looks like an S and such patterns are therefore named S-curves.
The S-shaped pattern is often associated with flaws in the components that cause early

failures. The later failures are normally caused by unavoidable wear-out mechanisms. Under
normal use conditions wear out may happen far out in time, and the last part of an S-curve is
therefore only usually seen if the test data is obtained during accelerated testing. This has
been the case for the CMOS 4007 example shown.

The philosophy behind the bimodal lifetime distribution is as follows. A specific
component with no flaw will have a lifetime distribution FE(t). With a flaw the lifetime
distribution will follow Fl(t). These two possible failure situations are mutually exclusive.
Either a flaw is present or it is not, and once a component has failed due to one of the causes,
it cannot fail due to the other cause. We don’t know whether a specific component contains a
flaw. The only thing we know is the probability p that a flaw is present. Furthermore, the
probability that a flaw is present is statistically independent of the lifetime the flaw will cause
and vice versa. The statistical independence gives the two terms: p. Fl(t) and (1 p) F2(t).

Probability [%]

0,i [hi

FIGURE 8 CMOS 4007 test. Approximation with a bimodal distribution function
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Due to the mutual exclusiveness, the two terms can be added directly. This principle can
be used in an analogous manner if more than one flaw type may be present in the actual
component type as long as the probability of having more than one flaw in a specific
component can be regarded as negligible.

Looking more specifically at the FE(t) distribution, this may be a consequence of more
than one different failure mechanism, which are all acting at the same time. This is a
situation which is very similar to an electronic system in which there are many parts. If one
part fails, then the system fails. The similarity is that if a failure mechanism in the component
causes a failure, then the component as such fails. In reliability terms we are dealing with a
series system, and if the failure mechanisms are acting statistically independent, the
combined c.d.f., Fe(t), can be calculated from:--

F2(t) 1- I-I (1- Fj(t)) (9)

where Fj(t) is the c.d.f, for the j’th failure mechanism, and m is the total number of
simultaneously acting failure mechanisms. This is sometimes called the model of competing
failure mechanisms.

S-curve analysis

As mentioned above one usually only observes the first part of the S-curve. If we want to
examine this part, the method is straightforward and quite simple. The analysis of the latter
part may be very uncertain due to lack of data and is furthermore more complex to carry out.

The first step is to isolate from each other points belonging to the two distributions. This
is done using Bayes’ analysis (Ref. 10). The formula

pf(ti)
pi pf,(ti) + (1 P)fz(ti) (10)

which gives the probability that failure no belongs to subpopulation no 1. p is the previous
mentioned probability of a component having a flaw, and fl(ti) and fe(ti) are the p.d.f.-values
of subpopulation 1 and 2 respectively at the time ti of failure no i. If this probability exceeds
50% we deem the failure to belong to subpopulation no 1. Otherwise it belongs to no 2.

In order to use this formula we need to know approximate values of p and the
parameters describing fa(ti) and f2(t). This can be derived from the plotting of the known
points using the median rank method already described. The technique is illustrated in
figure 9.

An approximate value of p is derived by estimating the plateau level. The slope of the first
part of the S-curve.is then approximately fll and the intersection between a horizontal line at
p 63.2% and the first part of the S-curve gives an estimate of Ta. While the first part of the
parameters of f(ti) need to be close to the correct ones, the parameters of f2(ti) are not so
important because of the robustness of the Bayes formula to that type of uncertainty. If the
number of points after the plateau are too few to indicate a slope, a conservative estimate is
to draw a line with the Webull-slope fl 1 through the last point. This line’s intersection
with the F(t) 63.2%-1ine can be used as an approximate value of /2. However, if there are
enough points to indicate a straight line, this can be used as an approximation of Fe(t) and fie
and 2 are letermined in the usual way.

Example

90 components were tested over 10000 hours and 13 failures were found. The times to failure
were known and are ranked as shown in the following table (Table V). F(t) is calculated
using equation (6) with n 90.
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TABLE V
Component test results

ti [hi (ti) [%1

60 0.77
2 140 1.9
3 200 3.0
4 280 4.1
.5 400 5.2
6 480 6.3
7 480 7.4
8 640 8.5
9 960 9.6
10 960 10.7
11 1200 11.8
12 1920 12.9
13 5760 14.0
(14) (10000) (15.2)

Point no 14 is not measured, because the test was stopped at 10000 hours. However, a
failure could have happened just after 10000 hours and therefore point no 14 can contribute
to the curve as a conservative estimate of the time-to-failure of failure no 14.



276 J. MOLTOFT

F(t) %-Weibull

FIGURE 10 Weibull-plot for components with a bimodal lifetime distribution. (Sample size n 90)

The points are plotted and the result shown in figure 10 from which we derive:--

15 =0.13

/1 1.2

01 570 h

2 62000 h

To examine the data in more detail the Bayes formula equation (10) can be used,
inserting p and the calculated values of fl(t) and fz(t) using equation (3), i.e.:--

fl(ti)

f2(ti) f12(tit/32-1222/ e-\/(tifl2

These formulae can be applied for all the failures of Table V. When this is done for failure
11 and 12, it is found that there is an abrupt change in P] viz:--

For failure no 11 we obtain:--

fa(1200) 1.2 0.2
e_5_70_ 2.123. 10-4



STATISTICAL ANALYSIS OF LIFETESTS 277

f2(1200) 1 ( 1200 o {1200 ]1
e-\]

62000 \62000]
1.582. 10-

and

pl 0.13.2.123. 10-4

0.13-2.123- 10-4 + 0.87. 1.582. 10-5
0.67 67%

For failure no 12 we obtain in the same way:--

f1(1920) 3.6620. 10-5

f2(1920) 1.5637. 10.5

and

p2 0.26 26%

Interpreting the results, it is found that the first 11 failures can be deemed to belong to
subpopulation 1 and the rest to subpopulation 2.

The next step is to plot the 11 failures belonging to subpopulation 1 as if they were a
"sample" from a population containing only flawed components. In this case the "sample"
size is 11 and all in the "sample" have failed. The corresponding table is as follows (Table
VI).

TABLE VI
Analysis of failures

ia til [hi ,(t) [%1

60 6.1
2 140 14.9
3 200 23.7
4 280 32.5
5 400 41.2
6 480 50.0
7 480 58.8
8 640 67.5
9 960 76.3
10 960 85.1
11 1200 93.9

The Plotting on Weibull-paper gives figure 11 and in the usual manner we can estimate
that:--

/1-" 1.3

01 570 h

which is very similar to the previous rough estimates
With regard to the points belonging to subpopulation 2 we must realise that these two (or

maybe three) points are too few to make any analysis realistic. This will often be the case in
practical testing. However, a comprehensive description of the analysing method has been
given by Jensen and Petersen (Ref. 2).
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’r]l

I0 I00 1000 t[hours] 10. 000

FIGURE 11 Weibull-plot of the failure belonging to subpopulation 1.

Our last concern is the value of p itself. ,Only a very rough estimate can be made on the
S-curve itself. If Fl(t) and F2(t) are close to each other, this type of estimate becomes very
uncertain. A better estimate can be obtained using the Bayes formula which results in the
following:m

P
i-1 (11)n

where r is the number of failures.
In the present case a computerized calculation with 71 570 h,/32 1 and q2 62000 h

gives the following results:n

0.104 for fll 1.2

15 0.103 for fl 1.3

We see that compared with the rough estimate this estimate is significantly different.
Furthermore, we see that the change in the fl-value in this case does not make any practical
difference.

6. CONCLUSION

As mentioned in the introduction this presentation of the methods available for statistical
analyses of data from lifetests is not in any way comprehensive. For example we have left out
other distributions than Exponential and Weibull, in particular the log-normal distribution



STATISTICAL ANALYSIS OF LIFETESTS 279

which is used very often by some of the major telecommunication companies in analysing
equipment failure. Furthermore, we have not discussed methods for analysing parametric
drift with time.

However, it is the author’s belief that mastering the methods described makes one able to
carry out reasonable analyses on most of the lifetest data that at present appear in real life.

One word of caution should be made here. The statistical analysis cannot stand alone. It
is very important before drawing conclusions to make physical failure analyses and establish
as close as possible the cause of failures. It is the combination of statistics, physics and
engineering judgement that constitute a powerful tool, not the statistical analysis by itself.
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