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Abstract We compute the momentum-transfer dependence
of the proton Pauli form factor F2 in the Endpoint overlap
Model. We find the model correctly reproduces the scaling
of the ratio of F2 with the Dirac form factor F1 observed at
the Jefferson Laboratory. The calculation uses the leading-
power, leading-twist Dirac structure of the quark light-cone
wave function and the same endpoint dependence previ-
ously determined from the Dirac form factor F1. There
are no parameters and no adjustable functions in the End-
point Model’s prediction for the scaling behavior of F2.
The model’s predicted momentum dependence of the ratio
F2(Q2)/F1(Q2) is quite insensitive to the endpoint wave
function, which explains why the observed ratio scales like
1/Q down to rather low momentum transfers. We also fit the
magnitude of this ratio by adjusting the parameters of the
wave function. The Endpoint Model appears to be the only
comprehensive model consistent with all form factor infor-
mation as well as reproducing fixed-angle proton–proton
scattering at large momentum transfer. Any one of the pro-
cesses is capable of predicting the others.

1 Introduction

The electromagnetic form factors, F1 and F2, are an impor-
tant probe of the internal structure of nucleons. A popular
theoretical model assumes that at high momentum transfer
these quantities can be factorized into a hard scattering con-
tribution and a so-called distribution amplitude. The distribu-
tion amplitude has no information as regards the proton wave
function except the parton momentum fraction Feynman-x
dependence and some spin factors of a short-distance expan-
sion. The focus of the short-distance (SD) model [1–7] is a
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perturbatively calculable hard scattering kernel. The model
generates an order by order expansion in powers of the
inverse momentum transfer-squared, 1/Q2. The expansion
has often been claimed to be the unique prediction of QCD.
However, the task of comparing the model to the larger the-
ory of QCD was never completed, and it obviously cannot
be explored within the SD model itself.

Yet model predictions can be compared to experimen-
tal data. The SD model predicts that F2(Q2)/F1(Q2) →
1/Q2 for large Q [1,8]. The experimental results obtained
at the Jefferson lab [9–13], however, showed that the ratio
F2(Q2)/F1(Q2) ∼ 1/Q in the energy range 2 GeV2 <

Q2 < 8.5 GeV2. This contradicted the prediction of the SD
model that some thought had been established. The results
played an important role in dramatizing the failure of the
SD model, which had also been anticipated earlier [14,15].
It is now clear that the SD model might apply only at very
large energies, which are inaccessible experimentally. Even
at asymptotic energies there is no proof the model dominates.
Since the SD model fails it is imperative to explore alterna-
tives.

Work by Miller et al., Lin et al., and Cloet et al. [16–18] has
reproduced the experimentally observed momentum depen-
dence of F2. These calculations emphasize the importance
of the quark wave functions, i.e. the role of hadron structure,
as opposed to the role of perturbation theory.

Kivel and Vanderhaeghen [19] used Soft Collinear Effec-
tive Theory (SCET) to analyze soft spectator contributions
which represent a class of diagrams which also give the SD
scaling of Q2F2/F1 ∼ const for large Q2. It is possible that
at smaller Q2 of order few GeV2, the soft spectator contribu-
tions might lead to the observed experimental behavior. How-
ever, it is not clear how to extract these contributions system-
atically. In an earlier analysis, Belitsky et al. [20] obtained the
dependence F2(Q2)/F1(Q2) → (1/Q2) log(Q2/�2

QCD),
which matches with the observed data, by introducing higher
twist light-cone wave functions. The logarithmic term is a
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result of an integration over the soft endpoint region, where
the assumptions of the SD model no longer hold. Hence we
find that some studies in the past [19,20] have attributed the
observed experimental behavior of F2/F1 to the contribu-
tions arising from the soft spectator quarks in the endpoint
region.

Diehl et al. [21] parametrized the generalized parton dis-
tributions (GPD) both in the small and large t regions. In the
small t and small x (momentum fraction) region they used
Regge phenomenology assuming dominance of the leading
meson trajectories. At large t they assumed that the soft Feyn-
man mechanism dominates the form factors and controls the
nature of the GPD. The parametrized forms agree with the
pdf’s (parton distribution functions) at t = 0 and with the
elastic form factors for large t. These parametrizations give
expressions for F1 and F2 which provide a good fit to both
the proton and the neutron form factors. Work by Guidal
et al. [22] presents an alternative Regge parametrization and
also shows a consistent fit for both proton form factors. Both
these parametrizations agree well with the current data on
F2/F1.

In a series of papers [23–25] the nucleon form factors
have been calculated within the framework of light-cone sum
rules. The authors use perturbative QCD including up to twist
four corrections to the leading-order distribution amplitudes.
The soft contributions arising from the endpoint region are
also included in the calculation. An interesting feature of
the calculation is that the soft contributions involve the same
distribution amplitude which arise in the hard scattering cal-
culation. Furthermore the final form of the distribution ampli-
tude does not differ too much from the leading-order form.
Although the results of these papers are very interesting, it is
generally believed that nucleon form factors cannot currently
be calculated from first principles. In particular this calcu-
lation also relies on modeling of the soft endpoint region.
Furthermore a detailed calculational scheme should provide
some understanding of the basic features of the data. In the
case of exclusive processes the most striking feature is their
scaling behavior. Since the soft contributions give substantial
contributions to these processes, it is important to understand
how they can lead to the observed momentum dependence.

1.1 Significance of the endpoint region

The significance of the endpoint region for the calculation
of the ratio F2/F1 is rather interesting in view of the recent
claim [26] that an Endpoint Model (EP model) can compre-
hensively explain the scaling behavior of many exclusive pro-
cesses [1,27,28]. The model relates the observed scaling to
the behavior of the quark wave function as Feynman-x → 1.
In this limit one of the quarks carries most of the proton
longitudinal momentum. The relationship of this model with
the structure functions in the limit x → 1 has also been

explored in [30]. The model appeared several times in the
literature [29–31], yet it was dismissed prematurely, often
for reasons that its premises contradicted the assumptions
of the SD model. For that reason the EP region was long
regarded as a nuisance. Many efforts were made to attempt
to show the EP model’s contribution would be suppressed, but
the efforts made were unsuccessful. Indeed persistent “spin
puzzles” of inclusive observables have brought the endpoint
region and polarization effects from quark mass insertions
back into consideration [32–34].

Once given fair consideration, the EP model appears to
provide the simplest explanation of several experimental
observations. In [26], we applied the EP model to compute
the pion form factor, the proton Dirac form factor F1(Q2),
and the proton–proton elastic scattering cross section at high
momentum transfer. We found that one consistent wave func-
tion for the endpoint region could be extracted by fitting
the experimental form factor data. The same wave function
then predicts the scaling behavior observed in proton–proton
fixed-angle scattering. It was also shown that the valence
quark wave function gives dominant contribution to the cross
section [26]. This is because each additional parton leads to a
suppression factor of 1/Q due to the phase space integration
in the endpoint region. We extend this study here in order
to determine the proton Pauli form factor F2. We find that
the formalism predicts the scaling behavior F2(Q2) without
introducing any new parameters.

1.2 Physical picture

Let us briefly explain the physics. It is well known that quark
mass insertions produce a quark helicity flip, which can ulti-
mately produce the proton helicity (more specifically, chiral-
ity) flip characterizing F2. Quark mass terms are negligible
in the high energy limit of the SD model. This is because they
compete with terms scaling like the large momentum Q. The
role of a quark mass is qualitatively different in the EP model.
The soft quarks with momentum fractions x ∼ 0 already
have very small momenta. Their momenta are of the order of
the QCD chiral symmetry breaking scale � ∼ �QCD. The
phenomenon of dynamical chiral symmetry breaking, see for
example [35–38], is expected to lead to an effective mass of
the soft quarks of the order of �. Hence for the soft quarks
the contribution from a quark mass is not a relatively small
effect, and cannot be neglected. Let us repeat that the attempt
to banish small momentum regions from QCD never worked
out. An unexpected consequence of small momenta appear-
ing at leading-power order is that mass effects can appear at
the same order.

Another effect makes this even more interesting. Under
a Lorentz transformation with rapidity y in the z direction,
the big light cone + component transforms by ey and the
small component like e−y . All previous calculations known

123



Eur. Phys. J. C (2016) 76 :368 Page 3 of 10 368

to us at leading-power order integrate quark wave functions
over the small momentum in the first step. This appears to be
much more safe than integrating over the transverse momen-
tum components, which scale like 1 compared to e−y . Yet
we have discovered a limit-interchange error occurs. Inte-
grating away the small components is the first step of the
SD model producing a visible factorization into separated
hadronic parts. The assumption, actually a hope, that some
factorization dominates is what demands that step. Yet that
step instantly causes F2 to scale no larger than 1/Q6. When
the small momenta components are retained in the scattering
process we find a contribution to F2 scaling like 1/Q5. The
integrals cannot be represented by effective, pre-integrated
quantities that depend only on Feynman-x . This phenomenon
contradicts the tenets of factorization. In the EP model, the
leading-power contribution to F2 comes from an inseparable
union of initial and final state proton states.

Finally all of this occurs with one simple wave function,
which happens to be the most often cited, leading-twist exam-
ple. There is no particular reason to favor leading twist com-
ing from a short distance expansion. There is every reason to
use a wave function of leading power in the large momentum
P . It is seldom noticed that the leading-power, leading-twist
wave function has both chirally even and chirally odd compo-
nents. A single wave function can both maintain the proton’s
chirality in F1 and flip the chirality in F2.

We emphasize that the primary motivation of the present
paper is to explain the scaling behavior of F2. Although soft
mechanism has been invoked earlier to fit the form factor data,
an understanding of why it leads to scaling for F2 is missing
so far in the literature. The fact that both F1 and F2 besides
other exclusive processes show scaling behavior at Q2 larger
than a few GeV2 is an indication of a simple underlying mech-
anism. Our claim is that this is the soft endpoint mechanism.
A detailed modeling of the soft amplitudes, in particular the
two soft quark propagators, is required for an explicit cal-
culation. This particular soft amplitude is also identified as
an important non-perturbative input required for the calcu-
lation of form factors in SCET [19]. Here we use a simple
model of this amplitude. In this model the two soft quarks
behave as dressed quarks with effective masses generated by
dynamical chiral symmetry breaking. These masses are scale
dependent and cannot simply be set equal to the constituent
quark masses. The actual value depends on the momentum
scale of the calculation and we treat this value as a parameter.

In Sect. 2, we show that by respecting the necessary inte-
gration region, while using the endpoint dependence of the
proton wave function obtained in [26], we obtain the exper-
imentally observed scaling behavior for F2/F1. This is a
remarkable prediction of the model: If attention had been
given 30 years ago, it would have predicted F2 in advance
of the data. Reversing the argument, the observed scaling
dependence of F2/F1 predicts F1 and pp scattering at high

momentum transfer. None of these facts requires appealing
to an unusually large logarithmic correction, or an unusually
large dimensionful scale. As far as we know it is the first time
that one model is actually consistent with the known data on
exclusive processes.

Quark orbital angular momentum is a topic of great inter-
est. No orbital angular momentum (OAM) enters the SD
model, because a theoretical preference for factorization
demands integrating over quark transverse momenta before
the actual reaction has even been set up. Information about
transverse size is lost by that step. When OAM is re-cast
into a twist expansion [20] the sequence of operations dic-
tated by the SD model produces a 1/Q6 dependence for F2.
References [39,40] showed that avoiding the SD assump-
tions and performing the transverse momentum integrations
to compute F2 led to power law dependence for F2 inter-
mediate between 1/Q4 and 1/Q6. That is, the integration
region assumed to dominate asymptotically was not the actu-
ally dominant region, whether or not an endpoint issue was
considered. While the asymmetry of the endpoint integration
regions produces a rather obvious role for OAM, which is not
the focus of this paper. This paper is about using the same
leading-twist Dirac and endpoint structure found in the F1

calculation to calculate F2. The calculation is relatively sim-
ple, and agrees remarkably with data. Even more remarkably,
the ratio F2(Q2)/F1(Q2) is quite insensitive to the endpoint
wave function, explaining why the observed ratio goes like
1/Q down to rather small momentum transfer.

2 Endpoint (EP) calculation

Here we describe the calculation of F2 through the quark
mass contribution. One quark is struck by the virtual pho-
ton. The remaining quarks will be in a small momentum
region, such that their incoming and outgoing momenta are
entirely determined by their wave functions. No interactions
are computed for those particles, because perturbative inter-
actions would double-count what is already included in the
wave functions. We will use the same wave functions to com-
pute F2 as previously determined [26] from F1, found to be
consistent with pp scattering.

2.1 Coordinates

The basic diagram for proton electromagnetic form factor
is given by Fig. 1. The initial and final proton 4-momenta
are P and P ′, with q = P ′ − P . Initial quark momenta
k j (masses m j ) are unprimed, while final momenta use the
same label with a prime. In Fig. 1 k3 denotes the struck
quark, and k1, k2 denote the spectators. Our coordinates
are (energy, px , py, pz). We use a Lorentz frame where the
incoming and outgoing protons momenta are
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Fig. 1 The basic kinematics of the endpoint contribution to the proton
form factor. The photon with momentum q scatters with one of the
quarks which carries the dominant fraction of the proton momentum
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Here mP is the mass of the proton.
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2.2 The matrix element

The nucleon form factors are defined by the equation

〈p′s′|Jμ|ps〉 = −i e

[
F1(Q

2)(N
′
γ μN )

+ F2(Q2)

2mP
(N

′
iσμνqνN )

]
(4)

where Jμ is the electromagnetic current operator and N
denotes the Dirac spinors. Let �αβγ be the Bethe–Salpeter
3-quark proton wave function with spinor indices α, β, γ .
These indices correspond to the u, u, d quarks which carry
momenta k1, k2, k3, respectively. Let the symbol Mμ stand
for the quark–photon vertex, propagator factors, and momen-
tum conservation factors, displayed in a moment. The model
for the reaction is

〈
p′s′|Jμ|ps〉 =
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i

d4ki
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The three terms correspond to the photon striking the
u, u, d quarks, respectively. Note the delta functions δ4(k1 −
k

′
1), δ

4(k2−k′
2), δ

4(k3−k′
3) which explicitly enforce momen-

tum conservation of spectator quarks. As mentioned above,
the spectators have been modelled simply as two noninteract-
ing quarks, which is what introduces the inverse propagators.
Here we keep only the three valence quark wave function
since, as shown in [26], this gives dominant contribution.

The initial light-cone coordinates are defined as

k+
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i + xi Q√
2
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i = k0
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2

.

Final state symbols have a prime. In the literature, it is stan-
dard to use the coordinates κ− = k− p+; κ+ = k+/p+;
κ

′− = k
′− p

′+; κ
′+ = k

′+/p
′+ which is just parameter-

izing the light-cone coordinates with the momenta p+ =
P0 + Q/

√
2, p
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′0 + Q/

√
2.
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2.3 Integration

It is generally assumed that wave functions � ′(k′
i ), �(ki )

which are functions of the 4-momenta k′
i and ki are peaked

near the on-shell region. In that region, the actual wave func-
tion can be replaced by its integral over the small momen-
tum componentκ−

i , κ
′−
i , producing the usual light-cone wave

function Y ′(x ′
i ,

�k′⊥i ),Y (xi , �k⊥i ) [41]. The above expression
for scattering kernel Mμ has an important dependence on
κ−
i and κ ′−

i of the spectator quarks, which cannot be over-
looked. Hence the rest of the calculation cannot use the same
approximation and the process is indivisibly linked together
by the integrations. This is the point where our calculation
begins to differ from previous ones.

The basic problem is that for the soft spectator quarks it is
not reasonable to assume that their four momentum square,
k2, is approximately zero. We expect k2 to be of the order of
�2. In a constituent quark model, these quarks are assumed
to be approximately on-mass-shell with masses of the order
of few hundred MeV for the up and down quarks. In general
the behavior of the quark propagator is expected to be more
complicated and one can model its form by solving a trun-
cated Schwinger–Dyson equation [35–38]. In particular the
propagator is not expected to display a pole due to quark con-
finement and furthermore the effective mass should display a
dependence on the momentum scale k2. For very large k2, the
mass function (or running mass) of u and d should approach
the perturbative value of a few MeV and at k2 ∼ �2, it is
expected to take a value close to the constituent quark mass
[38]. For our purpose, it is adequate and self-consistent to
assume that Mμ is dominated by the on-shell region with an
effective fixed mass mi and to replace κ−

i , κ
′−
i dependence

of the spectator by the on-shell expression,

κ−
i = m2

i + �k2⊥i

κ+
i

. (7)

A more general treatment using a model mass function is
postponed to future research. On the other hand, the struck
quark is a perturbative object. Treating it consistently uses a
mass of order of a few MeV. We ignore the tiny and power-
suppressed helicity-flip contributions from the struck quark.
Using this approximation we obtain

〈p′s′|Jμ|ps〉 =
∫ ∏

i
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We next make a change of variables which gives the stan-
dard form with

〈p′s′|Jμ|ps〉 =
∫ ∏

i

dxid�k⊥idx
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id�k′⊥i
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)

.

(9)

For simplicity, we will concentrate on the diagram in which
the external photon strikes the d quark. A complete calcula-
tion with all terms will be presented in Sect. 2.6.

The delta functions of Eqs. (6) and (9) lead to the following
conditions:

x1 = 1 − x2 − x3; x ′
1 = 1 − x ′

2 − x ′
3;

k1n = −k2n − k3n; k1y = −k2y − k3y;
k′

1n = −k′
2n − k′

3n; k′
1y = −k′

2y − k′
3y;

k2y = k′
2y; k3y = k′

3y; x ′
2 = x2; x ′

3 = x3;
k3n = Q√

2
(1 − x ′

3); k′
3n = Q√

2
(1 − x3);

k2n = Q√
2
(−x ′

2); k′
2n = Q√

2
(−x2). (10)

The light-cone wave function Y of leading twist and leading
power of large P is [42,43],

Yαβγ (ki , P) = fN

16
√

2Nc

{
( /PC)αβ(γ5N )γV

+( /Pγ5C)αβNγA + i(σμν P
νC)αβ(γ μγ5N )γ T

}
. (11)

Here V,A, T are scalar functions of the quark momenta, N
is the proton spinor, Nc the number of colors, C the charge
conjugation operator, σμν = i

2 [γμ, γν], and fN is a normal-
ization. This wave function was previously used to compute
F1, and is now being applied to compute F2.

It may come as a surprise that the same chirality structure
creating F1 can predict F2. Figure 2 shows a cartoon of the
chirality flow. Each term in the Yαβγ collection has been clas-
sified as chirally even or chirally odd depending on whether
it conserves helicity (even, anti-commuting with γ5) or flips
helicity (odd, commuting with γ5). Since momentum con-
servation is trivial it is not shown. The chirality flow of the
V,A, T terms are shown at the top. A typical combination
of diagrams flipping the final state proton chirality is shown
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Fig. 2 Chirality flow in the calculation of F2, indicated by arrows. Chi-
rally even vertices conserve helicity and chirally odd ones flip helicity.
The standard leading-twist wave function contains both types, shown
across the top. A typical combination of diagrams flipping the final state

proton chirality is shown at thebottom. Thisdiagram needs one (1) inter-
nal flip of low momentum spectator quark chirality, which appears as
the closed loop with a mass insertion indicated by “X”

at the bottom. This diagram needs one (1) internal flip of
low momentum spectator quark chirality, which appears as
the closed loop with a mass insertion indicated by “X”. The
cartoon shows how the Dirac algebra works without needing
to do the algebra.

Returning to Eq. (9), inserting the wave function Eq. (11),
and extracting the terms which lead to F2 yields

N
′ i

2mP
σμνqνN F2

= −C
∫

dk2ydk3ydx2dx3
1

Q2

×
{

[N ′
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× (/k1 − m1)α′α(/k2 − m2)β ′β i (σσρ P
ρC)αβT ∗V + · · ·

}
.

The 1/Q2 factor after the integration measure comes from
the Q dependence of δ(k0
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′0
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√

2) −
(k
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i + x ′

i Q/
√

2)) and C is a constant that includes normal-
ization of the wavefunctions and other constants that are com-
mon to both F1 and F2.

Isolating the F2 contribution gives

N
′ i
2
σμνqνN F2 ∼

∫
dk2ydk3ydx2dx3

1

Q2

[
N

′ i

2mP
σμνqνN

]

×8mP [(P · k1)m2 + (P · k2)m1] T ∗V

along with other terms which yield similar Q2 dependence.

2.4 The EP wave function and F2

The leading-power wave functions of Ref. [26] were deter-
mined in the EP region:

V,A, T ∝ (1 − x3)e
−k2

T /�2
, (12)

where k2
T = k2⊥1 + k2⊥2 + k2⊥3. The exponential dependence

on the transverse momentum is a generic form that restricts
the range of x3 ∈ (1 − �

Q , 1) and x2 ∈ (0, �
Q ). The dot

products are

P · ki = k0
i

√
Q2

2
+ m2

P − xi
Q2

2
.

In terms of the light-cone variables, this gives

P · ki =
(
k−
i + xi

Q√
2

)√
Q2

2
+ m2

P − xi
Q2

2

∼
(
m2

i + k2⊥i

xi Q
+ xi

Q√
2

)
Q√

2
− xi

Q2

2
∼ �Q.

It follows that

F2 ∝
∫

dk2ydk3ydx2dx3
1

Q2

×8mP [(�Q)m2 + (�Q)m1]

×(1 − x3)e
− k2

T
�2 (1 − x ′

3)e
− k

′2
T

�2

∼
∫

dk2ydk3ydx2dx3
1

Q2 Q(1 − x3)(1 − x3)e
− k2

T
�2 e− k

′2
T

�2

123
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= 1

Q2 Q
1

Q3

1

Q
= 1

Q5
. (13)

Hence we obtain the observed 1/Q5 behavior of the Pauli
form factor [9–13].

2.5 The ratio of form factors

In our estimate of the form factor F2 we used the wave func-
tion given in Eq. (12), whose x dependence was determined
by fitting the Dirac form factor, F1. However, it is easy to see
that the ratio F2/F1 is independent of the precise form of the
wave function within the Endpoint Model.

Consider a rather arbitrary wave function

V,A, T ∝ f (x3)e
−k2

T /�2
. (14)

This leads to the Dirac form factor [26],

F1 ∝
∫

dk2ydk3ydx2dx3
1

Q2 [8Q2m1m2]

× f (x3)e
−k2

T /�2
f (x ′

3)e
−k

′2
T /�2

(15)

using Eq. (10), x ′
2 = x2, and x ′

3 = x3. Similarly the form
factor F2 becomes

F2 ∝
∫

dk2ydk3ydx2dx3
1

Q2 8mP [(�Q)m2

+(�Q)m1] f (x3)e
−k2

T /�2
f (x ′

3)e
−k

′2
T /�2

. (16)

Taking the ratio gives

F2

F1
∝

1
Q2 8mP [(�Q)m2 + (�Q)m1]

1
Q2 [8Q2m1m2]

∝ 1

Q
. (17)

Thus the ratio of form factors in the EP model is independent
of the precise form of the wave function.

The JLAB data [10] shows QF2/F1 ∼ constant start-
ing from Q2 as low as 2 GeV2. At such low values F1 dif-
fers significantly from its high-Q2scaling behavior, which is
observed to set in for Q2 > 5 GeV2 [44]. In the low Q2

regime a more complicated wave function is needed to fit
the data. However, Eq. (17) follows quite generally since the
dependence on the wave function cancels out while taking
the ratio.

2.6 Complete calculation of F2/F1 within the EP model

The above analysis shows that the EP model leads to the
correct scaling for F2/F1. If we consider that the complete
contribution for the form factors comes from the EP model,
the data for the ratio F2/F1 is a good starting point to study the
allowed range of parameters in the model. The free param-
eters available to us in the EP model are the wave function

coefficients v, a, t as shown below and the effective masses
in the spectator quark propagators (/k − m(k))−1.

V = v(1 − xi )e
−k2

T /�2;
A = a(1 − xi )e

−k2
T /�2;

T = t (1 − xi )e
−k2

T /�2
(18)

where xi is the momentum fraction of the struck quark.
Our analysis above was restricted to the diagram involving

the interaction of the photon with the d quark. A complete
calculation using all the terms in Eq. (6) involves two addi-
tional diagrams which correspond to the interaction of the
photon with the u quarks. This calculation was done with the
help of FEYNCALC [45]. The resulting expression leads to
the following terms for F1 at leading order in 1/Q2:

F1 = −C
[∫

dk2ydk3ydx2dx3
1

Q2

−1

3

([4(k1 · P ′)(k2 · P) + 4(k1 · P)(k2 · P ′)

−4(k1 · k2)(P · P ′) − 4m1m2(P · P ′)]V∗V
−[4(k1 · P ′)(k2 · P) + 4(k1 · P)(k2 · P ′)
−4(k1 · k2)(P · P ′) − 4m1m2(P · P ′)]A∗A
+[−8(k2 · P ′)(k1 · P) − 8(k1 · P ′)(k2 · P)

+8(k1 · k2)(P · P ′)]T ∗T
)

+
∫

dk1ydk2ydx1dx2
1

Q2

2

3

(
4m2m3(P · P ′)V∗T

+4m2m3(P · P ′)T ∗V
+ [−8(k2 · k3)(P · P ′) + 8(k3 · P ′)(k2 · P)

+8(k2 · P ′)(k3 · P)
]
T ∗T

)

+
∫

dk2ydk3ydx1dx2
1

Q2

2

3

(
4m1m3(P · P ′)V∗T

+4m1m3(P · P ′)T ∗V
+[−8(k1 · k3)(P · P ′) + 8(k3 · P ′)(k1 · P)

+8(k1 · P ′)(k3 · P)]T ∗T
) ]

.

The three integrals represent the contributions coming from
photon striking the d quark and the two u quarks, respec-
tively and hence the struck quark has momentum fraction
x3, x1, x2 → 1, respectively. The corresponding expression
for the Pauli form factor is given by

F2 = −C
[∫

dk2ydk3ydx2dx3
1

Q2

−1

3
[8mPm2(k1 · P)

+8mPm1(k2 · P)](V∗T + T ∗V)

+
∫

dk1ydk2ydx1dx2
1

Q2

2

3

(−8mPm3(k2 · P)V∗V

−8mPm3(k2 · P)A∗A
+8mPm2(k3 · P)V∗T + 8mPm2(k3 · P)T ∗V

)
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m q = 50 MeV
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Fig. 3 Allowed values of the wave function parameters a/v, t/v for
two different values of the effective spectator quark mass mq

+
∫

dk1ydk2ydx1dx2
1

Q2

2

3

(−8mPm3(k1 · P)V∗V

−8mPm3(k1 · P)A∗A

+8mPm1(k3 · P)V∗T + 8mPm1(k3 · P)T ∗V
) ]

.

After carrying out the above integrations for a fixed mass
of the soft quarks, we obtain F2/F1 as a function of v, a, t .
In dealing with the ratio, we can ignore the normalizations
common to both form factors. We also simplify our analysis
by assuming that the coefficients v, a, t are real. The experi-
mental data suggests that QF2/F1 ∼ 1.2 [13] at large Q. For
different values of the soft quark masses, we have obtained a
range of values for a/v, t/v which lead to the correct ratio.
The resulting parameters are plotted in Fig. 3 for two dif-
ferent values of the soft quark mass. We find that the exper-
imental ratio could be obtained only for soft quark masses
mq � 100 MeV. As expected this is much larger than the
perturbative values of the u and d quark masses. However, it
is somewhat smaller than the constituent quark mass values
which are expected to be of order 350 MeV. From a model
calculation of the momentum scale dependence of the quark
masses [38], we find that the value 350 MeV is obtained in
the infrared regime corresponding to invariant momentum
square k2 of order �2. Hence we deduce that the effective
momentum scale of the spectator quark is somewhat larger
than �2 but much smaller than the perturbative scale. From
Fig. 3 we see that we can obtain a good fit to data even if we
set the parameter a = 0. This is equivalent to assuming that
the wave function A is subdominant.

3 Soft gluon exchange

It can be verified that addition of low momentum gluons in
the interaction will not change the scaling behavior of the

Fig. 4 A 2 gluon exchange contribution to the proton form factor

Pauli form factor F2. Consider the simple case of 2 gluon
exchange illustrated in Fig. 4.

The matrix element for this diagram is

∫
[dki ][dk′

i ]
[
i (C−1σνσ P ′

ν)α′β ′ (Nγ5γσ )γ ′T ∗]

×
[
[(−i gsγ

ρ)
i (/p f2

+ m3)

p2
f2

− m2
3

(−i edγ
μ)]γ ′γ

−i

p2
g1

−i

p2
g2

[−igsγλ]β ′β

× [(−i gsγρ)
i (/p f1

+ m2)

p2
f1

− m2
2

(−i gsγ
λ)]α′α

]

× [
( /PC)αβ(γ5N )γV

]

where

[dki ] =
∏
i

dxidki⊥δ(x1 + x2 + x3 − 1)

×δ2(�k1⊥ + �k2⊥ + �k3⊥).

Evaluating the traces and extracting the coefficient of
N

′
iσμνqνN we find

N
′
iσμνqνN F2 ∼

∫
[dki ][dk′

i ]g4
s

×
(

−1

3

)
8i m2(p f2 · P)(N

′
iσμνqνN )T ∗V

(p2
f1

− m2
2)(p2

f2
− m2

3)p2
g1 p

2
g2

Keeping only leading-power term for the limit Q  �, drop-
ping transverse momentum integrals of order the hadronic
scale and substituting V, T from Eq. (12) gives

F2 ∼
∫

dx2dx3dx ′
2dx ′

3
8m2g4

s
Q2

2

�2(−(1 − x3)Q2)�2�2

×(1 − x3)(1 − x ′
3)

Each integral dx2dx ′
2 over an interval of length �/Q con-

tributes a power of 1/Q. The integration of 1 − x3 over
1−�/Q < x3 < 1 contributes a power of 1/Q and similarly
for x ′

3 we have a contribution of 1/Q2. It follows that

F2 ∝
∫

dx2dx ′
2dx3dx ′

3(1 − x ′
3) ∝ 1

Q × Q × · · · Q ∼ 1

Q5
.
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Thus the gluon exchanges do not change the leading-power
behavior.

4 Conclusions

As mentioned in the Introduction, if the EP model had been
given adequate attention 30 years ago, a fit to the known
1/Q4 dependence of F1 would have then predicted F2/F1 ∼
1/Q at large Q, just as eventually observed. The calculation
was never done, despite the model’s visibility after initial
development by Drell, Yan, Feynman, and others [29–31].

Between then and now came a period attempting to dis-
pense with hadron structure in form factors, and replacing
protons with perturbation theory, which revealed very little
about hadron structure. We find that one simple pattern of
an EP wave function, previously determined in Ref. [26]
and going like 1 − x , explains many independent exper-
iments. The EP region produces the original and earliest
quark-counting model [30]. For each spectator integration
dx restricted to x � �/Q an integral goes like �/Q. For
each hard struck quark with 1 − �/Q � x ≤ 1 an integral
goes like �/Q. Thus three quarks leads to F1 ∼ 1/Q4. The
leading-twist Dirac structure, which has no room for orbital
angular momentum, still allows a reversal of the proton’s
chirality characterizing F2, and F2 ∼ 1/Q5. These are not
asymptotic limits, but generic results of power-counting that
apply in the region Q >> �, namely Q � GeV.

The fact that QF2(Q2)/F1(Q2) is nearly constant with
Q down to relatively low values of momentum transfer is
now understood. At small Q2 ∼ 2 GeV2 the EP wave func-
tion may deviate from the simple form we have assumed in
Eq. (12). However, the integrations for F2 are so nearly like
those for F1 that the details of the wave function cancel in
the ratio F2/F1. The rule that F2/F1 ∼ 1/Q for Q >>GeV
naturally extends itself into the region of Q ∼ few GeV.
When future experiments probe higher momentum transfers
we are confident that QF2(Q2)/F1(Q2) will remain con-
stant, regardless of what might occur with the numerator and
denominator.

Using our simple model for the soft spectator quark
propagators we have also computed the value of the ratio
QF2(Q2)/F1(Q2). We find that we can fit the experimental
value of this ratio for a wide range of parameters of the wave
function with the effective mass of the soft spectator quarks,
mq � 100 MeV. We expect that the up and down running
quark masses are of the order of a few MeV at very high
momentum. As expected, the extracted value of the specta-
tor quark mass is much larger than the perturbative value. At
very low momentum, model calculations [38] suggest that
the running quark masses take values of the order of a few
hundred MeV. Hence in our case the masses take values inter-
mediate between these two regimes.
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ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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