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Abstract—Domain-Specific Languages (DSLs) receive attention
as the possible next abstraction step in programming. Despite
the benefits of using DSLs, in the industry there is also some
reluctance against their introduction in product development.
We address a number of issues that are important to gain
industrial confidence for the introduction of DSLs. These include
the available tools, the quality of generated code, and the
incorporation in the industrial workflow. Our observations are
based on an industrial study project at Philips Healthcare,
especially concerning the development of a DSL for collision
prevention. We also relate our experiences to the literature.

I. INTRODUCTION

Domain-Specific Languages (DSLs) currently receive atten-
tion as the possible next abstraction step in programming that
brings software development closer to the domain require-
ments. As described in [14], by trading generality for ex-
pressiveness in a limited domain, DSLs offer substantial gains
in ease of use compared with general-purpose programming
languages in their domain of application.

Surveys like [13], [5] illustrate that DSLs have been studied
for some decades, but their use is not widespread in industry.
Modern implementation technologies like EMF [20] seem
to boost the applicability of DSLs in industrial practice, as
witnessed by reports like [15], [22].

A lot of value of the DSL approach is obtained by code
generation; see also the best practice “Use models to generate
production code” from [18]. However, the development of
code generators requires quite some effort. Since product
development becomes dependent on the generated code, we
need to show how this effort can be limited and how the quality
of the generated code can be guaranteed.

In general, the introduction of DSLs in product develop-
ment is not for free. For instance, [14] observes that “DSL
development is hard, requiring both domain knowledge and
language development expertise. Few people have both. Not
surprisingly, the decision to develop a DSL is often postponed
indefinitely.” In this paper, our aim is to answer the question:

“How to get confidence for the introduction of DSLs in
industry?”

According to our experience, confidence has to be obtained in
several directions, leading to the following questions:

1) Which tools support the development and the use of
DSLs? How practical are they in use?

2) How to get started with the introduction of DSLs? How
to deal with the risks associated with new technology?
How to limit the initial investment?

3) How to guarantee the quality of the generated code?
How relevant is the structure and readability of the
generated code?

4) How to embed DSLs in the existing industrial workflow?
How to integrate the code generation with the existing
software build process?

We address these questions based on our experiences with
the industrial introduction of DSLs. Moreover, we relate our
work to the literature and indicate where we follow or deviate
from published guidelines, such as [24], [14], [10], [23].

In particular, we report about an industrial study project
at Philips Healthcare aimed at redesigning some of the colli-
sion prevention components. Their medical imaging systems
contain a number of moving parts, such as a table and various
pieces of imaging equipment. Safety of these systems includes
the avoidance of collisions between these heavy physical
objects and humans, such as patient and medical staff.

The goal is to re-develop the collision prevention compo-
nents in order to facilitate systematic reuse of safety-critical
software across product configurations and medical applica-
tions. After analysing the proposed reference architecture in a
similar way as described in [9], we have developed a DSL for
collision prevention. This development includes the definition
of a textual language, validation, code generation, and finally
testing on physical systems.

Overview: In Section II we introduce the typical ingre-
dients of a DSL and address the choice of tool support. We
illustrate our choice using the study case at Philips Healthcare.
Section III discusses our approach to the introduction of
DSLs in industry. Questions concerning the quality of the
generated code are discussed in Section IV. Section V explains
our experiences with the support for debugging, logging,
and monitoring, which are important for incorporation in the
industrial workflow. Concluding remarks and a sketch of future
work can be found in Section VI.

II. DSL INGREDIENTS AND TOOL SUPPORT

When starting to develop a DSL in practice, one of the first
questions is what tools to use. This concerns tools for both



the users and the developers of the DSL, as is also indicated
by the guideline “Tooling Matters!” from [23].

There are two typical kinds of languages, namely, textual
and graphical. The guideline “Adopt existing notations domain
experts use” from [10] advocates to reuse notation from the
domain itself. The guidelines “Decide carefully whether to
use graphical or textual realization” from [10] and “Graphical
vs. Textual Notation” from [23] compare these main types of
languages. An important observation is that textual languages
and their editors are faster to develop.

In the context of our collision prevention case, no existing
notations were in use for specifying the collision prevention
logic, apart from the implementation code. Our intended
language users are familiar with textual programming lan-
guages. Moreover, they even prefer a textual language, as this
simplifies the integration with their tools for comparing and
merging files. Therefore we have focused on textual languages
instead of graphical languages.

Based on industrial application reports like [15], [22], we
have decided to focus on the Eclipse Modeling Framework
(EMF, [20]). EMF is supported by a large collection of open
source tools, including the tools EMFText [19], Xtext [4],
Xtend [3], Epsilon [2] and Acceleo [1]. These tools can
be used for creating editors, parsers, validators and code
generators. Two main tooling approaches can be distinguished:

1) one integrated toolset (e.g., Xtext/Xtend);
2) a combination of several specialized tools.

In the following subsections we discuss some observations
from our informal experiments with all these tools. It is not
our goal to perform a systematic tool comparison. For our
industrial study case we have decided to use Xtext/Xtend, but
our results are not restricted to this toolset.

An overview of the typical ingredients of a DSL is depicted
in Fig. 1. This overview addresses both the meta level, where
the language infrastructure is defined, and the instance level,
which is used by engineers when developing a particular
application. The ingredients are explained in the following
subsections.

Figure 1. Overview of DSL ingredients

A. Abstract Syntax and Concrete Syntax

To create an editor and a parser for a textual language, at
the meta level two artefacts are used:

• Abstract syntax (or meta-model): describing the domain
concepts and their relations, typically in terms of a kind
of UML class diagram. In our study case, the collision
prevention component restricts the movements and in-
forms the user, leading to concepts such as Restriction,
EffectLimit and EffectUserGuidance; Fig. 2 depicts a
small part of our abstract syntax.

Figure 2. Abstract syntax

• Concrete syntax (or language): describing the represen-
tation of an instance of the abstract syntax, typically in
terms of grammar rules. Fig. 3 shows a small part of the
concrete syntax of our study case.

Figure 3. Concrete syntax

These syntaxes are usually separated to manage the com-
plexity [6], separating concept definition from their represen-
tation. Nevertheless, the structure of the abstract and concrete
syntax overlap significantly [12] and they need to be defined
consistently; see also guideline “Align abstract and concrete
syntax” from [10]. As argued in [11], the abstract syntax is
the central element which functions as pivot between concrete
syntax and semantics.

EMF has built-in support for creating an abstract syntax,
namely, a tree editor and a graphical editor (Ecore tools). For
creating a concrete syntax, we have considered the tools Xtext
and EMFText. These tools are based on ANTLR [16], which
generates LL(*) parsers. Based on the syntaxes, these tools



generate a basic language environment, which includes Java
classes for the concepts in the abstract syntax and an Eclipse-
based editor using the concrete syntax.

The Extended Backus-Naur Form (EBNF) notation is the
standard way of defining grammars, but both tools include
some own extensions. In terms of [17], we consider the ex-
tensions from XText (such as assigned actions) more solution
oriented, and the extensions from EMFText (such as operator
precedence annotations) more problem oriented.

Petter Graff posted three blog [7] entries comparing Xtext
and EMFText. He observes that their functionality is very
similar, but there is more documentation for Xtext than for
EMFText. He also observes some differences in the underlying
language development process. Both tools can be used with
a given abstract syntax, whereas Xtext can also derive an
abstract syntax from a concrete syntax. As a consequence,
the natural development process using EMFText starts with
an abstract syntax, whereas using Xtext it can also start with
a concrete syntax.

Given the very strict relation in these EMF-based tools
between abstract and concrete textual syntax, we consider that
a separate abstract syntax leads to more modelling efforts,
more modelling formalisms (that need to be learnt), and more
consistency issues. Hence, our choice is to use Xtext.

B. Instances of the DSL

Based on the definitions at the meta level, a language
infrastructure is generated, including a dedicated editor for
the defined DSL. It recognizes the domain specific keywords
(as defined in the concrete syntax) and provides content assist
functionality.

Fig. 4 contains an example instance of our collision preven-
tion DSL. It uses custom language elements that correspond
to domain concepts, including keywords such as “restriction”
and “limit”. Restrictions have an activation condition that
depends on the distance between certain pairs of objects.
Active restrictions lead to a certain effect, such as displaying
user guidance messages and imposing speed limits on object
movements.

Figure 4. Instance of our DSL

In addition, our language has some features that make it
more convenient and less error-prone to use:

• Shorthands: notations such as “TableTop*” denote object
TableTop and all objects it depends on. This is compact,
but probably not self-explanatory; see also guideline
“Balance compactness and comprehensibility” from [10].

• Units: programming languages usually focus on the types
of numbers, but for specifications we use (optional) mea-
surement units such as “mm” and “cm”. This information
was added based on earlier experiences with faults due
to a misunderstanding of the units used.

C. Model Validation and Code Generation

At the instance level, code generation is used to generate
source code from the model. Model validation is used for early
fault detection, which saves development time by reporting
problems (if any) before code generation. We consider two
kinds of constraints for model validation:

• domain-specific constraints (e.g., certain relations must
be acyclic);

• assumptions from the code generators (e.g., non-
implemented features).

At the meta-level, model validation and code generation are
defined using similar kinds of languages; in both cases the
main goal is to get the right data from the model. Acceleo is
a pragmatic implementation of the Object Management Group
(OMG) MOF Model to Text Language (MTL) standard; see
[1]. Acceleo files are interpreted during code generation. The
Xtend language is based on the Java language, and Xtend files
are compiled into Java source code.

We have observed that after a small change in the DSL the
Acceleo code generators always overwrite all generated files
(also if there are no changes). For programming environments
such as Visual Studio this leads to a time-consuming rebuild
of all files. We have also observed that Xtend code generators
only overwrite generated files that have changed, which avoids
Visual Studio to rebuild them unnecessarily.

III. INTRODUCTION OF DSLS IN INDUSTRY

Since DSLs are new for the involved business unit of Philips
Healthcare, we have to deal with the risks associated with
the introduction of a new technology. This includes training
the developers, but in [21] it is stressed that “only one or
two developers need to master language and code generator
development. The other developers simply use the modeling
languages these experts have created. This division of labor
enables the best developers to package their experience, em-
powering other members of the development team.”

Still it is important to limit the initial investment and show
the value of DSLs as soon as possible. To avoid a “big
bang” approach, we have initially used the existing legacy
code to implement some functionality by means of a DSL. In
this way, it is possible to quickly demonstrate the generated
code on a physical system. In our study case we could also
quickly experiment with various collision prevention strategies
expressed using the DSL.



Section III-A discusses the importance of the architecture
and the requirements for developing a good DSL. In Sec-
tion III-B we explain how we have incrementally identified the
essential domain concepts. Section III-C discusses our choice
to minimize the number of meta-models to reduce the initial
investment.

A. Architecture and Requirements

Developing a DSL based on legacy code has the danger
that the code generated from the DSL may need to mimic the
existing code artefacts. In particular, there is a risk that the
essential domain concepts may get lost in the implementation
decisions of the legacy system. To obtain a good DSL, it is
crucial that also the software architecture and the details of
the requirements can be discussed.

For our study case, we have extensively discussed the possi-
bility to separate various pieces of functionality. This is useful
for reducing the complexity of the DSLs. Phrased differently,
in the words of [21], “focusing only on a narrow area of
interest ... The narrower the domain, the easier it becomes to
build a good, high-level language and make generators produce
first class code.”

In our experience, the systematic approach imposed by
DSLs helps to focus on general solutions (within the domain)
instead of ad-hoc solutions. It helps to focus on identifying the
essential domain concepts that can be reused systematically,
instead of introducing all kinds of exceptions.

Given a new architecture with clear responsibilities for
software layers and well-defined interfaces, a migration path
can be defined where the code generated by the DSL gradually
replaces larger parts of the legacy code. In this way, the
risks are reduced and confidence in the DSL can be obtained
gradually.

B. Incrementally Identify the Essential Concepts

When starting the development of a DSL, it is often difficult
to decide which concepts should and should not be in the meta-
model and the language. Initially the focus for the concepts
is often on structure, and hence there is a risk that different
developers have a different semantics of these concepts in
mind. When inexperienced in developing DSLs, there is the
additional problem of getting used to thinking at the meta
level. In such situations, identifying a full meta-model before
implementing any code generators is a big risk.

To develop the meta-model and the language, our approach
is to quickly develop an incremental series of DSLs, including
the code generators that give semantics to the concepts in the
DSL. As updating the code generators requires a significant
amount of work, we initially aim for pragmatic but not nec-
essarily optimal implementations. During later development
phases, once the language and meta-model are (more-or-
less) fixed, optimizations can be performed by experienced
programmers in the target programming language.

In our experience, this is an effective way to get fast
feedback from domain experts. Demonstrating generated code
on physical systems also helps to gain confidence in DSLs.

This approach corresponds to the guideline “Iterate!” from
[23], and the following advice from [21]: “The best approach
for building DSLs is incremental. ... This iterative process
minimizes risks, allows early testing, and smoothes the path
of organizational change: moving from coding to modeling.”

In general, we are reluctant towards introducing additional
concepts; see also guideline “Reflect only the necessary do-
main concepts” from [10], and guideline “API should be
minimal without imposing undue inconvenience” from [8].
We typically start with a very simple DSL that is close to
the required external software interfaces, and offers minimal
functionality. Then we proceed by determining what essen-
tial functionality is missing, and how this can be specified
effectively. We continuously try to avoid introducing ad-hoc
concepts, in order to keep the DSL simple, and the workload
manageable.

In contrast, we are generous towards syntactic requests that
increase the acceptance by users of the languages; see also
guideline “Notation, notation, notation” from [23]. Examples
of such syntactic requests include changes in keywords, or
the order of attributes. Such requests can be implemented
quickly, but we have noticed that we need to be careful with
homonyms, which have different meanings to different people.
In our collision prevention DSL, we have therefore avoided the
term “movement”, and we have introduced an explicit keyword
“activation” to distinguish between “restriction” and “active
restriction”.

C. Small Number of Meta-Models

Model-based development, and in particular domain-specific
languages, often consider multiple meta-models. However, as
developing, maintaining, and documenting them also requires
significant effort, we aim for a small number of meta-models,
primarily the source meta-model. Below, we mention two
reasons for the introduction of additional meta-models and
explain why we did not use them.

Firstly, a meta-model could be introduced for the target
language (like C or C++) itself. Instead, we expect that the
complexity of a transformation step to the target meta-model is
comparable to a generation step to the target language. More-
over, the generation step looks more intuitive for experienced
developers in the target language. Generation also gives more
control over the layout in the target language.

Secondly, extra meta-models could be used to split a gen-
eration (or transformation) step into several smaller steps.
Instead, we control the complexity of the generation step using
structured sets of auxiliary functions that on-the-fly perform
transformations. The drawbacks include that the intermediate
results cannot easily be inspected, and that it naturally leads to
a tendency to recompute certain data from the model multiple
times.

IV. QUALITY OF GENERATED CODE

The generated code becomes part of the final product and
hence we must address its quality. To gain acceptance and con-
fidence in both the generated code and the code generator, we



aim to generate human-readable code. This also provides an
exit-strategy if DSL technology would be abandoned at some
point in time, for example, because of future developments, or
because of time pressure. Thus the development can continue
manually based on the generated code.

The guideline “Care about generated code” from [23] also
identifies the importance of adhering to the same standards
as manually written code. On the other hand, sometimes we
adapt the code structure to the DSL structure, in order to keep
the code generator simple.

To manage the complexity of the code generators, we have
defined a set of auxiliary functions to obtain information from
the model efficiently. These functions can then be used in
the code templates. This facilitates distribution of work, as
developing the auxiliary functions is a different skill than
developing code templates for the target language. It also
stimulates that all code templates rely on the same definitions
of the important domain-specific relations, which is good for
their reliability. The guideline “Care about templates” from
[23] also proposes the use of modularization techniques, and
in particular to extract complex expressions in functions called
by the templates.

A. Separating Constant and Variable Fragments

We distinguish two kinds of code fragments: constant and
variable. Variable code fragments are affected by the DSL
instance, whereas constant code fragments are not influenced
by the DSL instance. When building a code generator, it is
very tempting to mix constant and variable fragments.

This typically leads to a lot of code duplication, but (ini-
tially) this may not be considered as a major issue, given that
the code is generated. It may even be considered beneficial
for the statistics on the amount of generated code.

Nevertheless, this mixing has serious disadvantages:

• constant fragments are duplicated, which leads to unnec-
essarily long compilation times, and errors (if any) that
are reported multiple times;

• constant fragments are likely to be developed using
template editors, which are not as supportive as modern
editors for traditional (plain) code.

For instance, an earlier version of our code generator resulted
in a lot of duplication in the code that was generated for
each restriction. In an improved version of the code generator
we made this structure explicit using inheritance. That is,
we use one general super-class for restrictions containing
all generic/constant fragments, and let all specific restrictions
inherit from this class.

In this way, the structure of the generated code is similar
to typical manual code, where variable parameters are also
separated from constant mechanisms. We therefore aim to
separate constant and variable fragments, and aim to develop
constant fragments outside the code generator. In particular we
prefer to limit the amount of generated code by using external
libraries with reusable functionality.

B. Testing the Code Generator
Domain-specific code generators can be seen as custom

software tools. Since product development depends on these
tools, the question is how to ensure the quality of the code
generator. Note, however, that the code produced by the code
generators can be treated in the same way as manually written
code. Assuming that the generated code is tested thoroughly,
there is no strong business need to test the code generator
itself explicitly.

Code generators produce their code in a very structured way,
and by using them more often and testing the generated code,
the confidence in the code generators will grow. Moreover,
the use of code templates makes it easy to ensure consistency
of the pieces of code, and to adhere to coding standards.
Furthermore, code generators focus on a structured translation
from domain requirements to implementation concepts. Once
implemented, this translation can be reused systematically in
a more reliable way than manual coding.

V. DEBUGGING, LOGGING, AND MONITORING

Before introducing code generators in product development,
we need to determine how to support debugging, logging, and
monitoring. As the code is generated using code templates, it is
easy to weave in some extra code for logging and monitoring.
The main challenge is to relate the generated code back to the
abstraction level of the DSL instance.

We distinguish between debugging the code generator and
debugging a language instance, although in both cases the gen-
erated code plays a role. When debugging the code generator,
we can assume familiarity with the details of the DSL and the
structure of the generated code. To support the debugger, it
is important that the generated code and the code generator
are human-readable and well-structured. Then we can rely on
traditional means of debugging the generated code and the
code generator.

When debugging a language instance, we cannot assume
that the developer is (or wants to be) aware of the details of the
design and the execution architecture of the generated code. In
these cases we need mappings between the DSL instance and
the generated code. Regarding debugging, [25] distinguishes
two aspects:

• debugging actions, e.g., breakpoints, step, suspend, and
resume;

• debugging views, e.g., on variables and control state.
Typically a single DSL construct is translated into several
constructs in a target language. Hence debug actions in terms
of a DSL need to be translated to the target language,
and the values of variables need to be translated from the
target language to the DSL.One way is to integrate the DSL
environment with a traditional development environment, e.g.,
MetaEdit+ with Visual Studio. Open issue “Model Debugging”
from [23] expresses a preference for such a general technical
solution instead of a hand-constructed specific solution.

For DSLs that are operational and state-based, it may be
useful to map small steps in the DSL to big steps in the gen-
erated code. For declarative DSLs like our collision prevention



DSL this is not so natural. Our collision prevention DSL is a
declarative language with two natural big computation steps,
related to:

• a user command with a new movement request;
• a periodic evaluation of all requests and restrictions.

The places in the code that initiate the DSL behaviour for these
big computation steps, typically a single method call per big
computation step, are logical places for breakpoints and for
performing “step over” actions.

For debugging views that inspect the internal state of the
generated code, we have used various monitor screens at
the abstraction level of the DSL. These include the values
of the used input sensors, the evaluation of restrictions, and
the produced output to the motors. In addition, part of this
information and the incoming and outgoing method calls
are stored in logs. This is fully integrated with the other
logging and monitoring facilities in the product software. As
an extra benefit over a general technical solution, this product-
integrated solution can even be used when the system is
running outside the development environment.

VI. CONCLUDING REMARKS

To obtain industrial confidence for the introduction of DSLs,
we have developed a prototype DSL and made a number of
decisions, which we have related to the literature. Thus we
address our initial questions from Section I as follows:

1) We have developed a textual DSL using the EMF-based
toolset Xtext/Xtend, for which only a small number of
artefacts need to be created at the meta level.

2) To effectively implement a software component using
a DSL, we have focused on clearly defined pieces of
functionality, where some variability is to be expected.
To limit the initial investment, we have minimized the
number of meta-models and incrementally identified the
essential concepts. Already in early stages we have
developed the first code generators, in order to reduce
risks, to obtain executable results and to get early
feedback.

3) To get confidence in both the code generator and the
generated code, we have generated human-readable code
without a lot of code duplication. This also avoids the
danger of a technology lock-in as product development
can always continue manually based on the generated
code alone. To structure the code generator, we have
separated the functions that inspect the model from the
code generation templates.

4) To integrate DSLs with the existing industrial work-
flow, a strategy is needed for debugging, logging, and
monitoring. On the tooling side, unnecessary rebuilds of
unchanged files should be avoided, and code generation
must be possible from the command line for inclusion
in the software build process.

The DSL approach separates domain models for specific
cases from code generators for the general case. This separa-
tion facilitates a change to another target language, to another

coding standard, or to another logging and tracing strategy.
In addition to generating code, also analysis models can be
generated; see also best practice “Rule of Two” from [18]. As
a part of future work, we aim to generate analysis models for
more advanced validation, including safety and performance
analysis.
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