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a  b  s  t  r  a  c  t

The  likelihood  of  initiating  addictive  behaviors  is higher  during  adolescence  than  dur-
ing any  other  developmental  period.  The  differential  developmental  trajectories  of  brain
regions involved  in motivation  and  control  processes  may  lead  to  adolescents’  increased  risk
taking  in  general,  which  may  be  exacerbated  by  the  neural  consequences  of  drug  use.  Neu-
roimaging  studies  suggest  that  increased  risk-taking  behavior  in  adolescence  is related  to
an  imbalance  between  prefrontal  cortical  regions,  associated  with  executive  functions,  and
subcortical  brain  regions  related  to affect  and  motivation.  Dual-process  models  of  addic-
tive behaviors  are  similarly  concerned  with  difficulties  in  controlling  abnormally  strong
motivational  processes.  We  acknowledge  concerns  raised  about  dual-process  models,  but
argue  that  they  can  be  addressed  by carefully  considering  levels  of  description:  motiva-
tional processes  and  top-down  biasing  can  be  understood  as  intertwined,  co-developing
components  of  more  versus  less  reflective  states  of  processing.  We  illustrate  this  with  a
model  that  further  emphasizes  temporal  dynamics.  Finally,  behavioral  interventions  for
addiction  are  discussed.  Insights  in  the development  of control  and  motivation  may  help
to better  understand  –  and  more  efficiently  intervene  in  – vulnerabilities  involving  control
and  motivation.

© 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

Motivation, from a subjective point of view, appears
to be a relatively simple process – I want something, and
therefore I attempt to get it. It is when motivational pro-
cesses “go wrong,” or when we ask how this apparently
seamless relationship between wanting and doing arises,
that the development of motivation and its relationship to
behavior becomes a theoretically interesting question with
significant practical importance. Adolescence and addic-
tion exemplify situations in which the development of
motivational processes can result in excessively risky or
otherwise dysfunctional behavior. In this review, we will
focus on symmetries between adolescence- and addiction-
related changes in motivation and cognitive control that
may  help explain increased the likelihood of substance
abuse and the onset of addiction in adolescence.

Adolescence is the developmental period between
childhood and adulthood, shared by humans and other
mammal  species (Dahl, 2004; Spear, 2000). In humans,
far-reaching changes in body appearance and function,
including hormonal changes, are paralleled by important
changes in behavior and psychological processes such as
motivation, cognitive control, emotion, and social orienta-
tion (for overviews, see, e.g., Reyna and Farley, 2006; Spear
and Varlinskaya, 2010; Steinberg, 2005). During adoles-
cence, children increasingly master the ability to control
their behavior for the benefit of longer-term goals (Best
et al., 2009; Cragg and Nation, 2008; Crone et al., 2006a;
Huizinga et al., 2006). These advances in self-regulation
abilities in adolescence, however, are accompanied by pro-
nounced changes in motivational processes. These can have
profound consequences for health in adolescence, as the
imbalance between relatively strong affective processes
and still immature regulatory skills might contribute to the
onset of developmental disorders (Ernst et al., 2006).

2. Risky decision making in adolescence

Adolescents are known to have a tendency to take
more and greater risks than individuals in other age
groups in many life domains, such as unprotected sex,
criminal behavior, dangerous behavior in traffic, and exper-
imenting with and using alcohol, tobacco, and legal or
illegal drugs (Arnett, 1992). Typically, the occurrence of
these risk-taking behaviors follows an inverted U-shape
pattern across development, being relatively low in child-
hood, increasing and peaking in adolescence and young
adulthood, and declining again thereafter (for overviews,
see, e.g., Reyna and Farley, 2006; Steinberg, 2004). This
phenomenon of adolescent risk-taking (i.e., an inverted U-
shaped trajectory with a peak in adolescence and young
adulthood) has received much attention, but only recently
has research started to identify the triggers and cir-
cumstances that contribute to increased risk taking in
adolescents under controlled laboratory conditions.

Despite the well-documented adolescent peak in risk
taking from reports about everyday behaviors (such as
accident and crime statistics), this pattern has only
recently been demonstrated in experimental studies,
which dissociated between “hot” affect-charged versus

Fig. 1. Example display of a game round of the hot version of the
Columbia Card Task (CCT; for more information, see http://www.
columbiacardtask.org).  In the CCT, participants play multiple game rounds
of a risky choice task. In each new game round, participants start with a
score  of 0 points and all 32 cards shown from the back. Participants turn
over one card after the other, receiving feedback after each card whether
the  turned card was  a gain card or a loss card. A game round continues (and
points accumulate) until the player decides to stop or until he or she turns
over a loss card. Turning over a loss card leads to a large loss of points and
ends the current game round. The main variable of interest is how many
cards participants turn over before they decide to stop. The number of
cards chosen indicates risk taking because each decision to turn over an
additional card increases the outcome variability, as the probability of a
negative outcome (turning over a loss card) increases and the probability
of a positive outcome (turning over a gain card) decreases. Across the mul-
tiple game rounds rounds, three variables systematically vary, (i) the gain
magnitude (here 30 points per good card), (ii) the loss magnitude (here
250 points), and (iii) the probability to incur a gain or a loss (here 1 loss
card). This factorial design is an advantage the CCT has over other, similar
dynamic risky choice tasks, as it allows to for the assessment of how these
three important factors influence an individual’s risky choices and risk-
taking levels, e.g., in the form of individual differences in gain sensitivity,
loss sensitivity, and probability sensitivity. In the cold CCT, to reduce the
involvement of affective processes (Figner et al., 2009a; Figner and Mur-
phy, 2011), feedback is delayed until all game rounds are finished; in
addition, instead of making multiple binary “take another card/stop” deci-
sions as in the hot CCT, participants in the cold CCT make one single
decision per game round, indicating how many cards they want to turn
over.

“cold” predominantly deliberative processes in risky choice
and risk taking. Studies using the hot and cold versions
of the Columbia Card Task (CCT; Figner et al., 2009a,b;
Figner and Voelki, 2004; Figner and Weber, in press; for a
brief description, see Fig. 1) have shown that heightened
involvement of affective processes in risky decision-
making (in the hot CCT) leads to increased risk taking
in adolescents (associated with impoverished use of risk-
relevant information), compared to children and adults
(Figner et al., 2009a,b; see also Burnett et al., 2010). In
contrast, when risky decisions are made involving mainly
deliberative processes and no or little affect (cold CCT), ado-
lescents show the same levels of risk taking as children and
adults (Figner et al., 2009a,b; see also van Duijvenvoorde
et al., 2010, for similar hot/cold differences in adolescents).
These findings show similarities to findings from research
using a simulated driving game in which the presence of
peers leads to increased risk taking in adolescents (but
not adults) when making choices between driving through
versus stopping at traffic intersections with a yellow light
(Chein et al., 2011; Gardner and Steinberg, 2005; see also
Hensley, 1977). This socio-emotional influence of peers on

http://www.columbiacardtask.org/
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adolescents is not surprising given that much risk taking
in adolescents occurs in the presence of peers (Gardner
and Steinberg, 2005), and more broadly, given the changes
in social motivations during this period, with adolescents
achieving greater independence from their parents and,
in turn, peers growing in importance (Blakemore, 2008;
Brown, 2004).

However, it should be noted that the inverted U-shape
observed in many everyday risk-taking behaviors remains
somewhat elusive to assess with laboratory risky choice
tasks. Besides the mentioned results with the hot CCT
(Figner et al., 2009a,b), only few studies found the pat-
tern commonly observed in the “real world.” Burnett et al.
(2010) found an inverted U-shape in risk taking with a
peak in adolescents aged 12–15 years with a probabilis-
tic task designed to evoke regret and relief (thus likely
making it a relatively “hot” task), again pointing to the
importance of affective processes in adolescent risk tak-
ing. Cauffman et al. (2010) also found an inverted U-shape
in a risky choice task (the Iowa Gambling Task), but the
measured behavior captured approach motivation (or sen-
sitivity to expected value) rather than risk taking itself.
Finally, Steinberg et al. (2008) found an inverted U-shape
pattern with a self-report measure, but their behavioral
measure (a task similar to the one used in Gardner and
Steinberg, 2005) showed a developmental pattern resem-
bling a non-inverted U-shape with adolescents apparently
taking less risks than children and adults. Finally, sev-
eral other laboratory studies have found evidence for
monotonically decreasing risk-taking levels across child-
hood, adolescence, and adults, which may  indicate that
these tasks captured more the cognitive or cold processes
involved in evaluating risks (e.g., Crone et al., 2008; Weller
et al., 2010). Clearly, more research is needed to further
investigate precisely which “ingredients” of a risky choice
situation (besides substantial affective involvement and
peer-presence) lead to increased risk taking in adoles-
cence.

3. Neural developments underlying risky decision
making

Insights from anatomical and functional changes in
the rodent and the human brain have led to neurobio-
logical models characterizing the “adolescent brain” by
two interacting systems. The first is the relatively early
maturing and “hot” affective-motivational bottom-up sys-
tem and the second is the more slowly developing “cold”
top-down control system (for overview papers, see, e.g.,
Casey et al., 2008; Casey and Jones, 2010; Ernst et al., 2006,
2009; Galvan, 2010; Somerville et al., 2010a,b; Steinberg,
2008). The affective-motivational system involves subcor-
tical brain areas, including the dopamine-rich areas in the
midbrain and their subcortical and cortical targets, includ-
ing the striatum and the medial prefrontal cortex (both
of which have been implicated in the representation of
rewards, e.g., Knutson et al., 2009; Tom et al., 2007). The
cognitive top-down control system is thought to involve
prefrontal regions, particularly the lateral prefrontal cor-
tex, and posterior parietal brain regions, which have
been implicated in self-control, planning, abstract thinking,

working memory, and goal-directed behavior, for example
enabling the individual to resist short-term temptations in
exchange for longer-term benefits (Adleman et al., 2002;
Crone et al., 2006b; Figner et al., 2010; Klingberg et al.,
2002; Robbins, 2007). Indeed, the lateral prefrontal cor-
tex has previously been causally implicated in self-control
in risky (e.g., Knoch et al., 2006) and intertemporal choice
(Figner et al., 2010). That is, transient disruption of the
function of these brain region using transcranial mag-
netic stimulation has led to increased risk taking (Knoch
et al., 2006) and increased impatience and impulsivity
(Figner et al., 2010) in adult participants, providing causal
support for the involvement of the lateral prefrontal cortex
in control.

The hypothesis that these brain systems develop at a
different pace during childhood and adolescence and into
young adulthood has received support from anatomical
brain development studies. Animal and human studies
have shown converging evidence of neural changes in sev-
eral brain areas during the transition from childhood to
adulthood. These include changes in dopamine-receptor
densities, changes in white matter (such as increas-
ing myelinization and anatomical connectivity through
white matter tracts), and changes in gray matter (for
overviews, see, e.g., Casey and Jones, 2010; Fareri et al.,
2008; Galvan, 2010; Somerville et al., 2010a,b; Spear
and Varlinskaya, 2010). Human functional neuroimaging
studies have supported the notion that subcortical brain
regions and networks implicated in “bottom-up” affective-
motivational processes—such as processing of rewards and
approach motivation—mature around the onset of puberty
and early adolescence (e.g., Galvan et al., 2006; Geier et al.,
2010; Van Leijenhorst et al., 2010; however, see also Bjork
et al., 2004, 2010; for an overview and discussion, see
Galvan, 2010). In contrast, cortical brain regions important
for “top-down” control (Miller and Cohen, 2001) mature
later in development, and more gradually into young adult-
hood (Crone and Ridderinkhof, 2011; Giedd, 2008). There
is evidence for hyperactivity in the striatum during ado-
lescence when anticipating and representing rewards (e.g.,
Ernst et al., 2005; Galvan et al., 2006; Van Leijenhorst et al.,
2010; but see also Bjork et al., 2004, 2010, for evidence
of striatal hypoactivity; for overviews and discussion see
Fareri et al., 2008; Galvan, 2010) and that it might be par-
ticularly difficult for adolescents (compared to children and
adults) to inhibit approach behavior in the presence of
appetitive salient cues (Somerville et al., 2010a).  Similarly,
a recent model-based fMRI study showed increased neu-
ral signals for positive prediction errors in the striatum in
adolescents (compared to children and adults), again pos-
sibly contributing to increased risk-taking behaviors in this
age group (Cohen et al., 2010). We  note at this point that
despite the above patterns of results, care must be taken
not to assign cognitive functions to the striatum and pre-
frontal cortex too directly; for instance, both regions are
involved in working memory processes (Bunge and Wright,
2007; Hazy et al., 2006). That is to say, the full network of
neural mechanisms underlying functions defined at a cog-
nitive or behavioral level may  be more extensive than the
regions that are differentially activated over conditions, so
that while specific regions may  be shown to play a (more
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prominent, consistent or extended) role in a certain func-
tion, care must be taken not to conclude that they can be
considered to encapsulate that function.

The above frontostriatal model of adolescent decision-
making thus describes a potential for imbalance in
motivational bottom-up versus controlling top-down pro-
cesses. For example, an adolescent encountering a salient
reward during risky choice may  experience strong temp-
tation and approach motivation, which may  result in a
prepotent response to take a risk in order to achieve the
potential reward. An adult in this situation may  be better
able than the adolescent to inhibit this prepotent response,
resist the immediate temptation, perhaps wait before act-
ing and think twice about it whether it is worth taking
this risk. As research has demonstrated, this dynamic of
strong motivational processes versus relatively weak pre-
frontal control can be particularly disadvantageous with
respect to high and dangerous levels of risk taking when
affective-motivational processes are strongly triggered, for
example in affect-charged situations (Figner et al., 2009a,b)
or in the presence of peers (Chein et al., 2011; Gardner
and Steinberg, 2005). Obviously, there are individual dif-
ferences in the extent to which adolescents and adults
are prone to take risks (Figner and Weber, in press; Gal-
van et al., 2006). Nonetheless, in adolescence individuals
are more likely to take risks than in adulthood, and there-
fore especially in this phase of life, it is important to
understand the triggers that may  cause some adolescents
to take unhealthy risks, such as in the case of addiction.

4. Addiction

Drug use is an example of risky behavior that is
of particular concern in adolescence. Current neuro-
biological research has identified two broad types of
neuro-adaptations that result from repeated alcohol and
drug use. Both seem likely to interact with normal develop-
mental risk factors of adolescence; indeed, most addictive
behaviors start in adolescence, when there is a high inci-
dence of experimenting with psychoactive substances such
as alcohol, tobacco, and legal and illegal drugs. Most
teenagers are incited to drink their first alcoholic bever-
age in (early) adolescence: 43% of European adolescents
have tried alcohol before the age of 13 (Hibell et al., 2009).
There is a robust association between age of onset and risk
for subsequent alcohol and drug problems (Agrawal et al.,
2009; Grant et al., 2006), and between heavy adolescent
drinking and later alcohol problems (White et al., 2011).

First, neural sensitization leads to strong impulsive
reactions (e.g., attentional biases and approach tenden-
cies) to classically conditioned cues that signal alcohol or
drugs (Robinson and Berridge, 2003), and there is evidence
from animal research that this occurs more rapidly during
adolescence (Brenhouse and Andersen, 2008; Brenhouse
et al., 2008). In later phases of addiction, habitual responses
become important, with cues automatically triggering
approach-reactions, outside voluntary control (Everitt and
Robbins, 2005). In addition, there is evidence that new ini-
tiation of drug use may  be triggered by negative affect,
which is then temporarily relieved (Koob and Le Moal,
2008a,b). Such negative reinforcement processes are asso-

ciated with severe drug dependence (Koob and Le Moal,
2008b; Koob and Volkow, 2010; Saraceno et al., 2009).
Note that all of these neuro-adaptations have the effect
of gradually decreasing voluntary control over substance
use. Increased incentive salience may  result in atten-
tional capture (“attentional bias”) of substance-related
cues (Robinson and Berridge, 2003); a habitual response
that becomes increasingly hard to control (Everitt and
Robbins, 2005). Finally, negative affect may  trigger an urge
to take drugs through associative processes (Baker et al.,
2004).

Second, there is evidence that heavy alcohol and drug
use results in impaired control functions, especially when
heavy use takes place during adolescence (Clark et al.,
2008). There are two mutually supportive lines of evidence
for this thesis. First, there is relatively strong experimen-
tal evidence from animal research (Crews and Boettiger,
2009; Crews et al., 2006, 2007; Nasrallah et al., 2009),
supporting the idea that binge drinking has strong effects
on subsequent brain development involving cognitive and
emotional regulatory processes. For example, Nasrallah
and colleagues found that adolescent rats who  had volun-
tarily consumed high levels of alcohol during adolescence,
demonstrated greater risk preference in adulthood than
control rats who  had not consumed alcohol during ado-
lescence. The difficulty with this line of evidence lies in
the generalization to humans, where cognitive control over
emotional processes may  develop over a longer period and
to a greater extent and where participants cannot be ran-
domly assigned to conditions. The second line of evidence
comes from human studies employing various neuroimag-
ing techniques in cross-sectional samples. These studies
have demonstrated that adolescent binge-drinking and
heavy use of marijuana is associated with abnormalities,
both regarding white matter structure (Bava et al., 2009;
Jacobus et al., 2009; McQueeny et al., 2009), and regarding
functional properties (Clark et al., 2008), including stronger
cue-reactivity (Tapert et al., 2003) as well as impaired exec-
utive functions (Tapert et al., 2004, 2007). However, these
studies are cross-sectional, and can therefore not deter-
mine a causal effect of these substances on subsequent
brain development (although dose-response relationships
and the converging animal literature are suggestive of such
a link).

Longitudinal human data using neuropsychological
tests and parallel animal work confirm the assumption that
binge drinking (especially multiple successive detoxifica-
tions) can result in brain damage in a variety of regions,
including those involved in cognitive control (Loeber et al.,
2009; Squeglia et al., 2009; Stephens and Duka, 2008).
There are few longitudinal behavioral studies concerning
the interplay between (adolescent) binge drinking and the
development of cognitive control. One of the few existing
studies (White et al., 2011) found that impulsive behav-
iors prospectively predicted binge drinking and also that
binge drinking predicted increases in impulsive behav-
iors. Interestingly, it was also found that these effects
may  be remediated in some cases, when heavy drink-
ing stops: adolescents who  were heavy drinkers at age
14, but not anymore at age 15 and 16 moved from the
increased impulsivity trajectory back to the normative
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development trajectory. Similar bidirectional relationships
between binge-drinking and impulsive decision making
have also been reported in young adults (Goudriaan et al.,
2007, 2011).

In summary, while most adolescents experiment with
at least some addictive substances, only few of them
become addicted. This highlights the importance of bet-
ter understanding individual differences, especially in
development, that form risk or protective factors for
addiction. Further, there is mounting evidence that ado-
lescent substance use may  exaggerate the normal inverted
U curve of risky behavior in adolescence, and may  in
some cases (related to heavy substance use and/or pre-
morbid levels of impulsivity) postpone or even prevent
the decrease in risky behaviors normally starting in early
adulthood.

5. Dual-process models of addiction

The literature on adolescent risk-taking and addiction
converges on the idea of dual processes, i.e., the existence
of two qualitatively different types of process that underlie
and may  compete for control of behavior, prominent in
many fields of psychological theory (Evans, 2008; Posner,
1980; Shiffrin and Schneider, 1977; Strack and Deutsch,
2004). These processes have been described using a variety
of terms (Evans, 2008), e.g., impulsive versus reflective
(Bechara, 2005; Hofmann et al., 2008; Strack and Deutsch,
2004; Wiers et al., 2007) or automatic versus controlled
(Shiffrin and Schneider, 1977). These labels characterize
the processes underlying observed behavior in terms of, for
instance, less versus more aware, intentional, efficient and
controllable (Bargh, 1994; Moors and De Houwer, 2006) or
unconscious versus conscious, implicit versus explicit, low
versus high effort, parallel versus sequential (Evans, 2008).
In both adolescence and addiction, the literature suggests
that risky behavior results from an inability of reflective
processes to sufficiently modulate the effects of impulsive
processes, for instance by modulating the salience of infor-
mation in working memory (Finn, 2002). This imbalance is
made explicit in dual-process models of addiction, which
emphasize the importance of drug-related consequences
on the relationship between impulsive and reflective
processes (Bechara, 2005; Deutsch et al., 2006; Stacy et al.,
2004; Wiers et al., 2007). Such models are supported by
findings showing that higher working memory capacity
(Grenard et al., 2008; Thush et al., 2008) and interference
control capacity (Houben and Wiers, 2009; Wiers et al.,
2009a) weaken the impact of alcohol-related automatic
processes.

However, limitations of dual-processing models must
be noted. First, it has long been acknowledged that the sets
of binary characteristics that define impulsive/automatic
versus reflective/controlled processing do not perfectly
covary; e.g., a process may  be efficient (a property of
automatic processes) but still depend on intentions (a
property of controlled processes) (Bargh, 1994; Evans,
2008; Moors and De Houwer, 2006). This suggests that
a simple binary division of processes underlying behav-
ior is untenable (see also Conrey et al., 2005). Second,
models or metaphors in which dual processes are defined

in terms of dual systems (rather than sets of essential
properties) have been criticized as lacking strong evidence
(Keren and Schul, 2009). For instance, the finding of brain
activation differentially related to one or the other type
of processing cannot logically be taken as evidence for
separable processing systems. Third, it has been argued
that there is a rather loose use of various theoretical terms
such as working memory, executive control, cognitive
control, control, and so forth (Keren and Schul, 2009)
(the current paper so far not being an exception). Finally,
the essential role of motivation in dual-process theories,
that is, why controlled processing does what and when,
is often unexplained. This risks implicitly introducing
a motivational homunculus: that is, when controlled
processing is required to “do the right thing” given a
certain task, context, or set of long-term contingencies, it
must be explained why the control exerted by the subject
should be task-appropriate or have a long-term positive
expected outcome. Evidently, motivation and control must
be interwoven (Hazy et al., 2006; Kouneiher et al., 2009;
Pessoa, 2009), as opposed to functioning as competing
processes. Indeed, there has been increasing interest in the
integration of motivation and reinforcement on the one
hand and controlled processing on the other (Hazy et al.,
2006; Kouneiher et al., 2009; Pessoa, 2009; Robbins, 2007).

Do such criticisms imply a fatal flaw in dual-process
models? Not necessarily. First, a distinction can be made
between specific top-down biasing processes, strongly
associated with prefrontal cortex (Cohen et al., 1996; Egner
and Hirsch, 2005; Hopfinger et al., 2000; Kouneiher et al.,
2009), versus the state of reflective processing, which must
exist at a higher level of aggregation to include motiva-
tional aspects of control. Reflective processing can then
be defined as the selection of top-down biasing functions
based on an evaluation of their expected outcome (see
Fig. 2). This levels-of-description redefinition of reflec-
tive processing as a state, versus top-down biasing as
a process, can be seen as a generalization of, e.g., the
iterative reprocessing model (Cunningham and Zelazo,
2007; Cunningham et al., 2007) or decision field theory
(Busemeyer and Townsend, 1993). Automaticity, in con-
trast, would refer to the degree to which the evaluated
selection of top-down biasing fails to play a role in response
selection or decision-making.

Evidently, some form of prior learning must underlie
the evaluation and selection of top-down biasing in reflec-
tive processing; we  therefore label this perspective on
dual-processing the Reinforcement/Reprocessing model of
Reflectivity (R3 model), to emphasize that even highly
reflective cognition is embedded in previously developed
associations. As with top-down biasing, conditioning pro-
cesses and learned associations exist at a different level
of description than either reflective or automatic process-
ing; that is, such processes do not need to be identified
as either reflective or automatic, but could play a role in
either. Similarly, specific components of working mem-
ory (e.g., the visuospatial sketch pad) do not appear
to necessarily be linked exclusively to either reflective
or automatic processing (except the central executive,
which appears to conceptually overlap with reflective
processing).



T.E. Gladwin et al. / Developmental Cognitive Neuroscience 1 (2011) 364– 376 369

Fig. 2. A sketch of an implementation of the Reinforcement/Reprocessing model of Reflectivity (R3 model). Subfigure (A) Stimuli are proposed to
activate associated responses, including generalized cognitive responses such as top-down biasing, which in turn activate expected outcomes via
stimulus–response–outcome associations. Stronger and weaker associations are shown as continuous and dashed arrows, respectively. Associative pro-
cesses  determine the speed with which this activation builds up: responses will have varying association strengths with stimuli or outcomes. Outcomes are
assumed to provide positive or negative feedback to responses during reprocessing. However, since a given outcome is not assumed to be uniquely coupled
to  a specific response, the association is considered to be more transient and flexible than the stimulus–response–outcome connections, as represented by
the  different line style (curved and shaded). For example, some form of temporal coding could be hypothesized, in which different response–outcome pairs
are  distinguished based on the timing of activation relative to the phase of a persistent background oscillation. A slowly activated response may  eventually
be  found to provide a better ultimate outcome (i.e., match to cue-evoked goals) than a more immediately available response with a strongly associated
payoff.  The time allowed for the search for responses and outcomes is determined by the set of processes that defer response execution, represented here
by  the stop sign and its inhibitory effect on response execution (circle-headed arrows). Note that such a delay allows responses and outcomes that are yet
to  be activated, and hence will only be able to compete or cause conflict after some delay, to have a chance of influencing behavior. Responses may involve
the  delay itself: if an outcome has high value (such as the expected removal of a noxious stimulus), or if speed is important, the time to search further
may  be reduced. Note that reflective processing (or, here synonymously, controlled processing) exists here as a pattern of interactions between elements
at  lower levels of description, rather than as any single element of the model separable from reinforced associations or affective-motivational processing,
or  identifiable with neural systems involved with top-down biasing. Subfigure (B) shows an illustration of the activation of two responses, one of which
would be selected given an early temporal threshold, while the other would require a late temporal threshold. The figure shows various points at which
cognitive bias modification (Section 6) could be beneficial: training could aim to increase the strength of the association of (biasing) responses to risky
stimuli, to change the (availability of) expected outcomes of responses, or to train individuals to increase the temporal threshold under risky circumstances.
The  model suggests that especially combining such changes could result in significant changes in the system’s behavior.

The primary aim of the model sketched above is to
address the legitimate criticisms of dual-process models
introduced previously. However, while the formulation of
a detailed new cognitive neuroscientific model of dual pro-
cesses is beyond the scope of this paper, it does appear that
reflective processing needs to be explicitly integrated with
affective-motivational processes in future models, includ-
ing those focusing on addiction. The viewpoint developed
here predicts that the reinforcement of top-down biasing
functions and time factors are essential to reflective pro-
cessing. The time required to activate previously reinforced
biasing functions and to evaluate their outcomes may  be
an essential individual difference determining whether
drug-related automatic processes can be controlled (Lewis,
2011). The time allowed for searching for better outcomes,
and the internal criteria for settling on a currently preferred
(cognitive) action may  play similar roles. To illustrate, if
in a highly simplified toy computational model (based on
the schematic model in Fig. 2 for instance) 300 ms  were
set as the “reprocessing time” allotted to the search for an
optimal response, then a weakly activated top-down bias-

ing function might not be evaluated before a sub-optimal
response is selected and executed. In particular during ado-
lescence, if it is the case that prefrontal top-down biasing
functions are yet to fully mature, then it appears almost
unavoidable that there is a lag between the development
of motivational processes and sufficient reinforcement of
top-down biasing functions to be applied to them in novel
situations. This may  explain the difference between adoles-
cent controlled processing in “hot” and “cold” situations.
In “hot” situations, the top-down biasing functions may
in fact be present, but not recruited because they are not
strongly enough associated with the situation to com-
pete with more immediate responses. Alternatively, the
criterion for settling on a response is influenced by emo-
tional or motivational salience in a particular task context:
perhaps adolescents have yet to learn that stressful, emo-
tional situations that may  naturally evoke a tendency for
fast responses may  sometimes benefit from a more reflec-
tive state. Similarly, the relationships between stress and
addictive behavior and drug-related biases may  reflect a
narrowing of the time window relative to the reprocess-
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ing time required to select a slowly activated response, or
one in which the superior value of the expected outcome
is slower to be retrieved. Incentive salience of alcohol cues,
for example, could hypothetically be decomposed into a
previously reinforced biasing response and a stimulus-goal
association via the signaled availability of the substance.
To avoid subsequent behavioral consequences, an alterna-
tive response would need to be effectively available, i.e.,
existing as a neural representation, associated with the
stimulus, associated with alternative positive outcomes
and selectable within the reprocessing time associated
with the context.

Thus, if care is taken to disentangle theoretical con-
structs that may  exist at different levels of description then
dual-processing may  still be considered a valid theoretical
foundation for work on addiction and adolescence. Testable
predictions must be derived from new models, specifying
in particular relationships between control and motiva-
tion. Tests could draw on the behavioral methods and
neuroimaging techniques discussed in previous sections.
Further, electroencephalography (EEG) and magnetoen-
cephalography (MEG) may  form a potentially important
method for testing hypotheses concerning the dynam-
ics of reflective processing. Due to their high temporal
resolution and their specific relationships to neural activ-
ity such methods can complement other neuroimaging
modalities, allowing tests of the sub-second timing of
events involved in reflective processing. Further, the very
fine-grained temporal coding of neural activity (Roelfsema
et al., 1997; Singer et al., 1996; Tallon-Baudry et al.,
1999) could be of fundamental importance to brain func-
tion. In particular, EEG and MEG  studies have revealed
consistent relationships between controlled processing
and time–frequency domain activity, i.e., event-related
changes in the amplitude or phase of rhythmic neural firing
patterns. Such high-resolution temporal relationships are
as yet only beginning to be studied in relation to addiction
(Rangaswamy et al., 2003), but may  play a fundamental role
in the mechanisms of overcoming effects of drug-related
incentive salience, as oscillations in neural activity appear
to be involved in working memory capacity (Benchenane
et al., 2011; Kaminski et al., 2011; Moran et al., 2010), task
set and movement preparation (Gladwin et al., 2006, 2008;
Gladwin and De Jong, 2005) and the separation of subsets of
information currently in working memory (Lisman, 2005;
Sauseng et al., 2010).

One way to provide more insight into the decomposi-
tion of processes involved in dual-processing is by targeting
the modulation of specific aspects of this model by train-
ing. Also from a clinical point of view, the obvious primary
relevance of dual-processing models is their application
to interventions. We  therefore discuss in the next section
training aimed at various elements of reflective and auto-
matic processing.

6. Interventions

A number of novel interventions have recently been
developed which attempt to influence the neurocogni-
tive processes in addiction (Wiers et al., 2006, 2008). One
could wonder how realistic it is to somehow “train away”

the consequences of possibly years of drug abuse (Wiers
et al., 2004), or to attempt to compensate for biological
immaturities. However, note that if controlled process-
ing is indeed a dynamic set of interacting factors, then
even small effects may  have significant results; e.g., if par-
ticipants learn to delay response selection even slightly,
this may  allow a qualitatively different set of responses
to be selected and reinforced (Siegel, 1978). From the
above perspective, interventions can be seen as beneficially
biased learning environments, in which reinforcement
can be provided that will either increase the chance
of successful controlled processing, or reduce the need
for it.

6.1. Working memory training

Regarding the first type of intervention, aimed at train-
ing the likelihood of successful control, there is mounting
evidence for the efficacy of working memory (WM)  training
in groups with sub-optimal working memory, for example
children with ADHD (Klingberg et al., 2005; see Klingberg,
2010). WM training has recently also been used success-
fully in addiction (Houben et al., 2011b),  where it was found
that it helped problem drinkers with strong positive mem-
ory associations for alcohol, presumably because it helped
them to overcome the bias to approach alcohol, driven by
these associations. A related method is the training of self-
control, which has also shown beneficial effects on smoking
cessation (Muraven, 2010).

Effects of WM training on the brain are only begin-
ning to be determined, but it appears that generalized
improvement may  be due to increased frontoparietal
connectivity and changes involving the basal ganglia
(Klingberg, 2010). This suggests that the top-down biasing
aspect of working memory, or executive control functions,
as well as control of access to WM are trainable. The
literature on the interplay between motivation and con-
trol processes suggests that the success of WM training
may  revolve around the synergy between such func-
tions, and in particular the ability to appropriately delay
responding.

In addition to behavioral WM training, there is also
emerging evidence that low voltage electrical stimulation
at the scalp (transcranial Direct Current Stimulation, or
tDCS) can facilitate dorsolateral prefrontal activity, lead-
ing to enhanced working memory (Fregni et al., 2005) and
reductions in craving for alcohol (Boggio et al., 2008), food
(Fregni et al., 2008b)  and cigarettes (Boggio et al., 2009;
Fregni et al., 2008a).  From the R3 perspective this could be
explained in terms of increased ability to find an escape
route from a craving cycle, as anodal prefrontal stimu-
lation would be expected to facilitate the activation of
necessary cognitive representations and top-down bias-
ing. Since tDCS also influences neuronal plasticity (Nitsche
et al., 2003; Paulus, 2004), a potentially important applica-
tion would be the combination of tDCS with WM training
or other methods. While the immediate effect of tDCS are
temporary, its effects on concurrent training could be per-
sistent, either via plasticity or by aiding the subject in
performing the training task at a higher level of perfor-
mance.
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6.2. Cognitive bias modification

In addition to studies aimed at increasing the likelihood
of successful controlled processing, research has focused on
the development of novel interventions, termed cognitive
bias modification (CBM), aimed at modulating biases that
could underlie failures of controlled processing, including
attentional biases (AB), approach biases, and evaluative
memory-biases.

6.2.1. Attentional bias modification
Most work has been done on attentional bias mod-

ification, with promising clinical effects in anxiety and
alcoholism. In this procedure, typically a modified version
of an assessment instrument is used, with a contingency
built in. For example, in a visual probe test, two stimuli
(pictures or words; usually one related to the problem and
one neutral) are presented at the same time, after which
a probe appears on one of the two stimuli locations (e.g.,
an arrow pointing up or down). In an assessment instru-
ment, the probe to which people react, appears equally
often in the location of the disorder-related stimulus and
the neutral stimulus. The attentional bias is then calcu-
lated by subtracting the reaction time on threat-trials from
the reaction time to non-threat trials. In a manipulation
or modification version of the task, a contingency is intro-
duced, with the probe appearing less often on the location
occupied by the disorder-related stimulus, while typically
no contingency is built into the task in the control group.
After promising preclinical studies (MacLeod et al., 2002),
first successful clinical applications have been reported in
targeted prevention (See et al., 2009) and in clinically anx-
ious patient groups (Amir et al., 2009; Schmidt et al., 2009),
and targeted prevention (See et al., 2009) with mainte-
nance of clinical improvement reported four months after
the training (Schmidt et al., 2009). In these clinical applica-
tions, typically multiple sessions of training are used, with
a control group receiving continued assessment. A recent
meta-analysis in the domain of anxiety found a medium
effect size for this type of CBM (d = .61). The first controlled
training CBM in the alcohol domain (Schoenmakers et al.,
2010) found a change in patients’ attentional bias for alco-
hol after training (vs. irrelevant control training) and an
effect on post-treatment abstinence after three months.

The first neurocognitive studies have been performed
in this area, all in the domain of anxiety, investigat-
ing neurocognitive changes due to this type of training
(Browning et al., 2010; Eldar and Bar-Haim, 2010). It
appears that training attention towards or away from fear
stimuli (angry faces) modifies relationships between lat-
eral prefrontal and posterior (fusiform face area) regions,
as evidenced by the need to recruit lateral prefrontal cortex
to overcome the trained bias (Browning et al., 2010). From
the perspective developed above, this increased activity
suggests reprocessing due to the fast but incorrect atten-
tional response caused by training. In general agreement
with this finding, parieto-occipital P2 potentials evoked
by task-irrelevant threatening stimuli have been found to
be reduced by attentional training in anxious individuals
(Eldar and Bar-Haim, 2010). This suggests an increase in
the ability to disengage from, or to discontinue the repro-

cessing of, threatening information (Amenedo and Diaz,
1998). In upcoming studies we  will investigate whether
similar changes are found as a function of re-training in
the addiction domain.

6.2.2. Approach bias modification
Recently, another cognitive bias in addiction has

been addressed with re-training: an approach-bias for
substance-related stimuli. This bias has been documented
for a variety of substances with a variety of instruments:
for cigarette-cues in smokers (Mogg et al., 2003), for
marijuana-cues in marijuana users (Field et al., 2006), and
for alcohol in heavy drinkers (Field et al., 2008; Ostafin and
Palfai, 2006; Palfai and Ostafin, 2003). Recently, Wiers et al.
(2009b) developed the alcohol Approach Avoidance Task
(alcohol-AAT), a task which since then has been adapted
to be used as a re-training tool. Participants are required
to respond by pushing or pulling a joystick, depending on
a feature of the stimulus unrelated to the contents (e.g.,
picture format: landscape or portrait); for details, see the
supporting information of Wiers et al. (2009b), online
at http://onlinelibrary.wiley.com/doi/10.1111/j.1601-
183X.2008.00454.x/suppinfo.  The AAT contains a
“zoom-feature” which has the effect that upon a pull
movement, the picture size on the computer screen
increases, and upon a push movement, it decreases, which
generates a strong sense of approach and avoidance,
respectively (Neumann and Strack, 2000), and disam-
biguates the meaning of pushing (is this encoded as
“moving towards” or “pushing away?”) and pulling the
joystick (Rinck and Becker, 2007). Using this task, it has
been shown that both heavy drinkers (Wiers et al., 2009b)
and alcoholic patients (Wiers et al., 2011) have an approach
bias for alcohol. This bias was moderated by the g-allele
of the OPRM1 gene: carriers of a g-allele demonstrated a
particularly strong approach bias for alcohol, as well as for
other appetitive stimuli (Wiers et al., 2009b).  Using the
same rationale as in attentional re-training, the alcohol-
AAT was changed to a modification task, by changing
the contingencies of the percentage of alcohol-related or
control pictures that were presented in the format that was
pulled or pushed. In a first preclinical study, a split design
was used, with students being trained in one session to
either approach alcohol (90% of the alcohol pictures came
in the format to which a pull movement was  made) or to
avoid alcohol (90% came in the format to which a push
movement was made) (Wiers et al., 2010). Generalized
effects were found both in the same task (novel pictures,
close generalization) and in a different task, employing
words instead of pictures: an approach avoid alcohol
Implicit Association Test (IAT; Greenwald et al., 1998).
Hence, participants who  had pulled most alcohol pictures
(recall that the task instructions, however, only involved
picture format) also became faster in pulling novel alcohol
pictures and in categorizing alcohol with approach words,
and the reverse was  found for participants who  had
pushed most of the alcohol pictures. Those participants
who demonstrated the change in approach bias in the
expected direction drank less during a subsequent taste
test. In a recent first clinical application of this novel
approach-bias re-training paradigm (Wiers et al., 2011),
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372 T.E. Gladwin et al. / Developmental Cognitive Neuroscience 1 (2011) 364– 376

214 alcohol dependent patients were randomly assigned
to one of two experimental conditions, in which they
were explicitly or implicitly trained to make avoidance
movements (pushing a joystick) in response to alcohol
pictures, or to one of two control conditions, in which they
received no training or sham training. Four brief sessions of
experimental CBM preceded regular inpatient treatment
(primarily cognitive behavioral therapy). In the experi-
mental but not the control conditions, patients’ approach
bias changed into an avoidance bias for alcohol. This effect
generalized to untrained pictures in the task used in the
CBM and to an IAT, in which alcohol and soft-drink words
were categorized with approach and avoidance words.
Patients in the experimental conditions showed better
treatment outcomes a year later. Modeling work aimed
at disentangling effects of training on controlled and
automatic processing (cf. Conrey et al., 2005) is currently
underway in our lab.

6.2.3. Further developments in intervention
In addition to these re-training paradigms, other

paradigms have been developed which demonstrated
promising results, such as evaluative conditioning (Houben
et al., 2010), neurofeedback training (Sokhadze et al.,
2008) and inhibition training in the context of problem-
related stimuli (Houben et al., 2011a),  but these procedures
have as yet only been tested in student samples. Note
that until now, all of these training-procedures, which
yielded promising results in addiction, did so in adult sam-
ples (either students or adults with addiction problems;
however, see Reyna, 2008, for training aimed at health-
related decision-making in adolescents). One important
issue, which is especially important in the context of ado-
lescent addiction problems, is motivation to participate in
a training (or more generally in any intervention). Remark-
ably, in most CBM approaches, patients both in the control
group and in the experimental group think that they are in
the control group (Beard, 2011). They find it hard to imag-
ine that such a simple computer task can really help them
with their problem. In adolescent substance use problems,
the problem is even worse: first, most adolescents with
substance use problems do not believe they have a prob-
lem (as an example, in one study Wiers and colleagues
asked participants in the context of a family tree to indi-
cate if they thought they had a drinking problem. While
75% of the sample of 96 late adolescents met  criteria for
substance use problems, only one individual indicated to
have a problem, Wiers et al., 2005). Second, should they
recognize that they have a problem (or at least that reduc-
ing substance use might not be a bad idea), they have to
be convinced that it makes sense to do the training. There
are different potential solutions to this problem. The first
is to combine the training with more traditional motiva-
tional techniques. The second is to provide adolescents
with global information about the efficacy of these train-
ing techniques. The third is to add game-like elements,
such as a game-environment (as has been done success-
fully for working memory training in children with ADHD;
Prins et al., 2011), and game elements, such as reaching
higher levels (e.g., Fadardi and Cox, 2009). Clearly, these
are promising new developments, but further research is

needed to optimize these training techniques for adoles-
cents.

7. Conclusion

The literature on adolescence dovetails with that on
addiction, both in terms of the theoretical bases – imbal-
ances are proposed that can be broadly described in terms
of dual processes – but also in terms of likely substan-
tial interactions: the vulnerabilities of adolescents map
onto what makes addictive substances harmful. It was
noted that concerns have been raised about the adequacy
of dual-process models as a theoretical foundation. How-
ever, such concerns appear to be addressable in principle,
as illustrated via the R3 model. In practical terms, dual-
process models of addiction not only provide hypotheses
why  adolescents are at increased risk of substance abuse,
but have also suggested interventions that have already
been successfully applied in adults. Developments in dual-
process models may  provide stronger scientific grounding
for cognitive bias modification as well as novel interven-
tion targets, such as the conditioned delaying of response
selection in risky situations. Future work should determine
the efficacy of such interventions in adolescents, hopefully
providing both clinical benefits and tests of novel models
of decision making, reflective processing, adolescence, and
addiction.

In conclusion, the integration of motivation and control
appears critical not only to the development of individuals,
but also to the further development of theory in cognitive
neuroscience. In particular, the (mal-) adaptive learning
processes leading to states of reflective and impulsive
processing may  be essential to understanding motivated
behavior. This suggests a strong emphasis on data that not
only demonstrate implicit motivation-related influences,
but also reveal how they arise and hence perhaps how
best to change them; and on studies that not only identify
brain networks related to motivation and control, but that
complement this information with the temporal dynamics
between involved regions.
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