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Summary - This paper presents techniques of parameter estimation in heteroskedastic
mixed models having constant variance ratios and heterogeneous log residual variances
that are described by a linear model. Estimation of dispersion parameters is by standard
(ML) and residual (REML) maximum likelihood. Estimating equations are derived using
the expectation-conditional maximization (ECM) algorithm and simplified versions of it
(gradient ECM). Direct and indirect approaches are proposed with the latter allowing
hypothesis testing about the variance ratios. The analysis of a small example is outlined
to illustrate the theory.
heteroskedasticity / mixed model / maximum likelihood / EM algorithm

Résumé - Approches ECM des modèles mixtes hétéroscédastiques à rapports de
variances constants. Cet article présente des techniques d’estimation des paramètres
intervenant dans des modèles mixtes ayant des rapports de variance constants et des
variances résiduelles décrites par un modèle linéaire de leurs logarithmes. Les paramètres
de dispersion sont estimés par le maximum de vraisemblance classique (ML) et restreint
(REML). Les équations à résoudre pour obtenir ces estimations sont établies à partir de
l’algorithme d’espérance-maximisation conditionnelle (ECM) et d’une version simplifiée
dite du gradient ECM. Des approches directe et indirecte sont proposées, cette dernière
conduisant à un test d’hypothèse sur le rapport de variances. La théorie est illustrée par
l’analyse numérique d’un petit exemple.
hétéroscédasticité / modèle mixte / maximum de vraisemblance / algorithme EM

INTRODUCTION

Heteroskedasticity has recently generated much interest in quantitative genetics
and animal breeding. To begin with, there is now a large amount of experimental
evidence of heterogeneous variances for most important livestock production traits
(Garrick et al, 1989; Visscher et al, 1991; Visscher and Hill, 1992). Second, major
theoretical and applied work has been carried out for estimating and testing sources



of heterogeneous variances arising in univariate mixed models (Foulley et al, 1990;
Gianola et al, 1992; Weigel et al, 1993; DeStefano, 1994; Foulley and Quaas, 1995).

For many reasons (accuracy of estimation, ease of handling large data sets), a
major objective in this area lies in making models as parsimonious as possible.
This can be accomplished in at least two ways: i) by modelling variances in the
case of potentially numerous sources of heteroskedasticity, and ii) by assuming that
some functions of those parameters (eg, intra-class correlation or heritability) are
constant. The first aspect corresponds to the so-called structural approach in which
the heterogeneity of the log components of variances is described via a linear model
structure similar to that used for means (Foulley et al; 1990, 1992; San Cristobal,
1993). Restrictions as in ii) were considered by Meuwissen et al (1996) and Robert
et al (1995a,b). Meuwissen et al (1996) introduced a multiplicative mixed model to
estimate breeding values and heteroskedasticity factors assuming heritability (h2)
constant across herd-years. Robert et al (1995a,b) developed estimation and testing
procedures for homogeneity of heritability within and/or genetic correlations across
environments. But Meuwissen’s study postulates known h2 and Robert’s research
applies to only a single classification of heteroskedasticity.

The purpose of this paper is to propose a complete inference approach for
parameters having both features i) and ii), ie, for continuous data described by
mixed models with constant variance ratios and heteroskedasticity analyzed via
a structural approach. For simplicity, the theory will be presented using a one-
way random mixed model for data and afterwards it will be generalized to several
u-components. Inference is based on likelihood procedures (REML and ML) and
estimating equations derived from the expectation-maximization (EM) theory,
more precisely the expectation/conditional maximization (ECM) algorithm recently
introduced by Meng and Rubin (1993).

THEORY

Statistical model

As usual, it is assumed that the population can be structured into strata (i =
1, 2, ....,1) corresponding to potential factors of heterogeneity. Let the one-way
random model be written as:

where yi is the (n2 x 1) data vector for stratum i; j3 is a (p x 1) vector of unknown
fixed effects with incidence matrix Xi, and ei is the (ni x 1) vector of residuals.
The contribution of random effects is expressed as in Foulley and Quaas (1995)
as O&dquo;uiZiU’ where u* is a (q x 1) vector of standardized deviations, Zi is the

corresponding incidence matrix and au, is the square root of the u-component
of variance the value of which depends on stratum i. Classical assumptions are
made for the distributions of u* and ei, ie, u* N N(0, A), ei N N(0, ae.In! ), and

The notation in [1] is unusual as compared to that used in the statistical literature
on mixed effects (eg, Laird et al, 1987). There are practical motivations for such



an expression of the random part especially in animal breeding. For instance the
between sire variance may vary according to the environment in which the progeny
of the sires are raised. Note also that (JUi can be viewed as a regression coefficient of
any element of yi on the corresponding element of Ziu*. Thus, in animal breeding,
au, acts as a scaling factor of a vector u* of standardized sire values on which, for
instance, selection can be based.
A structure is hypothesized on the residual variance so as to model the influence

of factors causing heteroskedasticity. This is carried out along the lines presented
in Foulley et al (1990, 1992) via a linear regression on log-variances:

where 5 is an unknown (r x 1) real-valued vector of parameters and p’ is the

corresponding (1 x r) row incidence vector of qualitative or continuous covariates.
Furthermore, the assumption of a constant intra-class correlation (or heritability)

implies setting

EM-REML estimation

Use is made here of the EM algorithm of Dempster et al (1977) to compute
REML estimates of parameters involved in variance components (Patterson and
Thompson, 1971; Searle et al, 1992). The basic procedure proposed by Foulley and
Quaas (1995) is applied here after some adjustment of the M-step taking advantage
of the ECM algorithm of Meng and Rubin (1993). 

-

the ECM algorithm is based on a complete data set defined by x = (0’, u*’, e’)’
and its log-likelihood L(y; x). The iterative process takes place as follows.

The E-step is defined as usual, ie, at iteration [t], calculate the conditional

expectation of L(y; x) given the data y and y = y!t!

which, as shown in Foulley and Quaas (1995), reduces to

where E!t] (.) is a condensed notation for a conditional expectation taken with
respect to the distribution of x!y, y = -yftl.

Since the parameters to be estimated are heterogeneous, the estimating equations
are derived at the maximization stage from a slightly different version of the
EM algorithm, the so-called ECM algorithm. As explained in detail in Meng and
Rubin (1993), a CM stage replaces the M-step by a sequence of several conditional
maximization steps. This is basically the same principle as that employed in a cyclic



ascent maximization procedure (Zangwill, 1969). We suggest here the following
procedure:

- maximize Q over y to get 6[tH] with T set at its last value T[t], ie

- then, maximize Q over T to obtain T!’+’l with 5 in y of Q(1’I1’[t]) set to 5!!!,
ie,

Thus, the maximization step consists of two CM-steps within the same E-step
in order to reduce the need to compute the conditional expectation of eiei, and its
components more than once. The algebra of differentiation is given in Appendix A.
The iterative system for computing formulae 5 can be written as

with the elements of the right-hand side being

Note that for this algorithm to be a true ECM, one would have to iterate the NR
algorithm in [7] within an inner cycle (index £) until convergence to the conditional
maximizer y[tH] = yl’,’] at each M-step [t]. In practice it may be advantageous to
reduce the number of inner iterations, even up to only one, ie, by solving just once

However, caution should be exercised when applying such a hybrid algorithm
that no longer guarantees the monotonic convergence in likelihood values (Lange,
1995).



The formula to update T reduces to

mimicking the form of a scaled regression coefficient pooled over strata.

The elements to compute at the E-step can be expressed as functions of the sums
X’yi, Z’yi, the sums of squares yiyi within strata, and GLS-BLUP solutions of
Henderson’s mixed model equations and of their accuracy (Henderson, 1984), ie

Thus, deleting [t] for the sake of simplicity, one has:

where (3 and u* are mixed model equations for 13 and u*, and C - _ [Cf3f3 Cf3u] JCuf3 Cuu
is the partitioned inverse of the coefficient matrix.

Expressions in [12a-c] can easily accommodate grouped data (see Appendix B).
The close connection between the system of equations [7] for residual parameters

and formula [12] given in Foulley et al (1990) can be observed. There is also a
remarkable similarity between formula [9] for the ratio and formula [7] in Foulley
and Quaas (1995). This means that the computations can be implemented with
very little change in the code used previously. True or gradient EM could also have
been applied (see Appendix A). The advantage of ECM will be more substantial for
the next situations considered, and especially in the case of the indirect approach.



Extension to several u-components

Formulae (7!, [8ab] and [9] can easily be generalized to a mixed model including
several (k = 1, 2,..., K) independent u-components

with Tk = aUik/aei constant over strata i.

Letting y = (b’, T’)’ as previously but now with T = ITk being a vector of ratios
of standard deviations, the Q function to be maximized has the same form as in
[4] with ei expressed from !13!. One can perform the CM-steps using either i) the
sequence 6, ’rl, T2 .... I Tk, - - - , TK, ie, each Tk one by one, the remaining ones being
held constant, or ii) the sequence /5, and T as a whole with all the Tks maximized

jointly. In both cases, the algorithm for computing 5 is formally the same as in
[7] with only a slight change in the definition of the elements of Wbb, vb being
unchanged

If the conditional maximization of the Tks takes place one by one (case i), formula
[9] still applies for each of them. Otherwise (case ii), one has to solve the following
system:

An indirect approach

The original model with a constant T ratio specified in [1-3] can be viewed as a
special case of a more general model

with, as previously, fno, 2 - p§5, but also with a linear structure on log-ratios

involving either the same (hi = pi) or possibly different covariates.



Letting y = (6’, 71’)’ here, the sequence of the CM-steps are

The algorithm for S is the same as in [7]. The algebra for A is shown in the
Appendix, and leads to a system that can be written under a similar form as that
of 6

1--J

For practical reasons, one may also wish to limit the number of inner iterations
(index £) even to only one in order to reduce the volume of computation but the
application of this ECM gradient algorithm should be performed carefully. Further
empirical simplifications for the elements of [22] can be proposed along the same
lines as in Foulley et al (1990).

Again, these results can be extended to a model with several random independent
factors (k = 1, 2,..., K) by setting

Actually, if the CM-steps are performed for each vector 71k separately, the same
formulae as in [20], [21] and [22] apply: just replace Ti, Zi, u* by Ti,k, Zik, uk and

ML estimation

It may be interesting in some instances to use ML rather than REML for estimating
variance components (see Discussion). The ECM procedure developed in this paper
can be easily adapted to obtain ML parameter estimates. 13 is now part of the
parameter vector instead of being a vector of random effects with infinite variance
included in missing data. The Q function to be maximized has the same formal
expression as in [4] but here at the E-step, expectations have to be taken with



respect to the distribution of u* given y, y = y!t!, and 13 = 13 [’I. Maximization with
respect to 13 can be based on the equation <9Q/<9j3 = 0, ie

One can proceed as previously, ie, run two CM-steps for the dispersion parameters
based on the same E-step so as to obtain 6!t+ and T]t+1] (or !ft+1]), and then
perform an additional CM-step for computing ¡3[t+l] based on !23!, ie

l&dquo;&dquo;’-!J

Alternatively, it may be advantageous to perform the CM-step for j3 and the
next E-step jointly by solving Henderson’s mixed model equations in I3[Hl] and

u*[t+i] = E!u*!y, 61tH], rrltH]) based on 6[Hl] and Tfc+11.
Formulae for the two CM-steps do not change. The only additional modification

results from taking the conditional expectation of components of e!e, given y, y =
y[t],13 = l3[t] instead of y, y = y[t]. Formulae in [12] reduce to

where Muu is the u by u block of the coefficient matrix !11!.
Note that the trace terms inside those formulae have disappeared or have been

greatly simplified owing to conditioning with respect to (3 = l3[t]. More generally,
for models [13] involving several u-components, [25c] becomes

where (M§) )k£ is the block pertaining to random factors k and in the inverse of
the random part of the coefficient matrix.

Numerical example

The procedures presented in this paper are illustrated with a small data set obtained
from simulation. Data were generated according to a cross-classified model having
two (environmental) fixed factors (A = 2 levels; B = 3 levels) and one (genetic)
random factor (S = 9 levels). The genetic contribution consists of sire and maternal
grand sire effects, the latter being assumed to have half the value of the first one.
The model to generate the records was



where p is a general mean, ai the effect of environmental factor A (i = 1, 2), b! the
effect of environmental factor B (j = 1, 2, 3), s* the standardized contribution of
male k as a sire, and 1/2se the standardized contribution of male as a maternal
grand sire, and eZ!w&dquo;, the residual term.

Values chosen for the fixed effects were (using a full-rank parameterization):
¡..t+al +b1 = 100; az-on = 20; b2 - b, = -10; b3 - bl = -20. The vector s* = fs*kl }
of sire effects is assumed to be N(0, A) with elements of the relationship matrix A
shown at the bottom of table I.

Residual variances were obtained from

with a base line value (]&dquo;!11 = exp(p*+ai +bl) = 400, and multiplicative adjustment
factors: exp(a2 - a*) = 2; exp(b2 - bi) = 1/2 and exp(b3 - b*) = 3/2. The ratio
T = (]&dquo; 8ij / (]&dquo; eij of the square root of the sire to the residual variance was taken as

constant over A x B cells and set to 8.75- 1/2 (heritability equal to 0.41).
There were 267 observations distributed among 18 different AB x sire x maternal

grand sire subclasses. The data structure is displayed in table I as well as cell size
(n), sum (£ y) and sum of squares (¿ y2) in each suclass.



Tests of hypotheses about the location parameters {3, the residual dispersion
parameters 5 and the ratios rij were carried out via the likelihood ratio statistic as
described in previous studies (Foulley et al, 1990 1992; San Cristobal et al, 1993;
Meyer et al, 1993; Foulley and Quaas, 1995). Formulae by Quaas (1992) were used
to compute maximized likelihood functions (Ln,aX).

Results can be arranged as an analysis of variance (or deviance) table: see

table II for hypothesis testing about {3, and table III for residual (b) and ratio
(A) parameters. Note also that the test statistic for 13 relies on -2Ln,aX evaluated
from the ML estimates of all parameters, whereas a maximized residual likelihood
can be better employed for 5 and 7!.

Interaction effects on location parameters are constantly rejected under different
assumptions for the other parameters. The hypothesis of residual variance homo-
geneity is strongly rejected as well as single factor descriptions of heterogenity. The
assumption of a constant ratio T turns out to be a reasonable one. The test results

eventually agree with the simulation model; they support the practical conclusion
that the p + A + B model is the most appropriate to account for variation both in
location and in log-residual variances, the ratio T being constant.

The estimation procedure for l5 and T (or J!) is illustrated in table IV for this
model and an alternative one using both standard and residual maximum likelihood
methods of estimation. ML and REML estimates of residual variances do not differ

very much; on the contrary, the ML estimates of the ratio T turns out to be, as
expected, lower than the REML ones, the values of the latter being close to the
true value.

DISCUSSION AND CONCLUSION

The main purpose of this paper was to extend the general structural approach to
heteroskedasticity in mixed models proposed by Foulley et al (1990, 1992) to the
case of homogeneous ratios of u to e variance components.

In a sire by environment interaction, this is equivalent to postulating homo-
geneous intra-class correlations or heritabilities. This seems to be a reasonable

assumption in practice, or at least serves as a suitable compromise between the
existence of heteroskedasticity and parsimony of models. Less restrictive assump-
tions might also be investigated (Quaas, 1995, pers comm). This paper also provides
a generalization of LR tests of this assumption to unbalanced data and complex
model structures: see the previous work of Visscher (1992) on a one-way random
balanced design, and that by Robert et al (1995a,b) for heterogeneous variances
due to a single classification.

The EM algorithm turns out to be a convenient and powerful tool for solving
variance component estimation problems. The ECM algorithm allows us to simplify
the estimating equations, in particular the ECM gradient version. The advantage
of this algorithm was especially clear here in the case of the indirect approach.
A few examples of this for the mixed model have been already mentioned (Meng
and Rubin, 1993 example 1; Walker, 1996). It offers great flexibility in defining the
sequence of the conditional maximization steps, all the alternatives of which have
not been investigated here. In the case addressed in this paper, the basic statistics







generated by the EM algorithm are strikingly natural (see Appendix B) thus giving
a flavour of simplicity to the whole procedure.

It also makes it possible to switch from REML to ML or vice versa with very little
change in implementing computations (Foulley et al, 1994). Some authors such as
Leonard (1975), Denis (1983) and Anderson (1984) in statistics and Shaw (1987) in
quantitative genetics have advocated the use of ML rather than REML procedures
to estimate variance components. Although the interest of ML versus REML in
that case remains questionable, ML estimates remain mandatory for hypothesis
testing about 13 via the LR statistic (see the numerical example). Bayesian point
estimators can also be envisioned via EM (Foulley et al, 1992; Gianola et al, 1992;
San Cristobal et al, 1993; Weigel and Gianola, 1993; Foulley and Quaas, 1995).

In addition, as already pointed out by Denis et al (1996), a LR test about (3
requires 5 and T (or 71) being the same for the null hypothesis and its alternative;
the same rule holds in hypothesis testing about 5 (or 71) by keeping the other
parameters the same over the models to be compared. This is part of the general



and difficult problem of joint modelling of means and variances, which is related to
such issues as the Behrens-Fisher problem and multi-stage hypothesis testing, and
which needs further consideration.

Another area that deserves caution and further development is that of estima-
bility. Difficulties are expected when all the cells contributing to an element j of
5 or A (or to a linear combination of them) have a weight tending towards zero.
This may arise due to i) purely overparameterization problems, or due to ii) pa-
rameter values becoming extreme (eg, ratios Ti tending to zero implying elements
of 71 being infinite). This last phenomenon is similar to what happens in the anal-
ysis of binary and ordinal data with latent variable models (Misztal et al, 1989;
Fahrmeir and Tutz, 1994). Such difficulties can be avoided by reparameterization
(i), or by setting lower bounds to the diagonal elements of the system of equations
to solve (ii).

Finally, asymptotic accuracy can also be worked out numerically within the EM
framework via the so-called SEM algorithm (Meng and Rubin, 1991). Although it
only requires the code of the complete data variance covariance matrix and of the
EM or ECM outputs, the burden of calculations is then heavier, so that we suggest
that it is restricted to the simplest models. Other computing alternatives should also
be considered, eg, the average information-restricted maximum likelihood algorithm
(AI-REML) of Gilmour et al (1995).
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APPENDIX A: Algebra for the estimating equations

The Q function to be maximized is (in condensed notation)

Derivatives with respect to b (residual dispersion parameters)

First derivatives: according to the chaining rule, one has



Letting !=<9(2Q)/<9 In (y2 ei

Second derivatives: from !A4a!, one has

Now, using [A4b]



or, alternatively

Finally, the non-linear system to solve reduces to

Derivatives with respect to T (ratio)

The equation 8Q/8T = 0 results in



Additional derivatives for the exact EM

From the second expression in [A7] it follows immediately

One has also to express

Now, from [A7]

where W r8 is a (I x 1) defined by

The system for true EM (or gradient EM without inner iteractions) is then

Extension to K independent random factors

Q in [Al] remains formally unchanged with ei in [A3] being now

Based on this expression of the residual, formulae [A4ab] still hold.
Similarly, the expression of w66,ii in [A5b] becomes



or, alternatively

As far as T is concerned, [A6] becomes

leading to the following system

Derivatives with respect to 7! (parameters of the log-ratio)

Q and the model for In (T e, 2 are the same as in [Al] and [A2] but the vector of
residuals is defined as

o , I I

Using condensed notation, the iterative system to solve can be written in the same
was as previously, ie



or, after some algebra

Furthermore,

This can be easily generalized to several independent random factors

if conditional maximization is performed factor by factor. The system [AI8] applies
to each factor k with

APPENDIX B: Formulae [12] for grouped data

In some instances (see, eg, the example in table I) data can be grouped so that the
n2 observations within a stratum i share the same covariates

where x’ and z’ are the common row vectors (1 x p) and (1 x q) pertaining to fixed
and random effects, respectively.



Substituting Xi by its expression in [Bl] gives

where yzj is the jth element of yi, and

Similarly
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