
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a preprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/121935

 

 

 

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/19451883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/121935


Guaranteeing Safe Destructive Updates

through a Type System with

Uniqueness Information for Graphs

Sjaak Smetsers� Erik Barendsen� Marko van Eekelen� Rinus Plasmeijer

University of Nijmegen�

Abstract

In this paper we present a type system for graph rewrite systems� uniqueness

typing � It employs usage information to deduce whether an object is �unique� at

a certain moment� i�e� is only locally accessible� In a type of a function it can

be speci�ed that the function requires a unique argument object� The correctness

of type assignment guarantees that no external access on the original object will

take place in the future� The presented type system is proven to be correct� We

illustrate the power of the system by de�ning an elegant quicksort algorithm that

performs the sorting in situ on the data structure�

�� Introduction

Some operations on complex data structures �such as arrays� cannot be implemented
e�ciently without allowing a form of destructive updating� For convenience� we speak
about those functions as �destructively using� their arguments� In case of graph	like
implementations of functional languages without any precautions� this destructive us	
age is dangerous
 on the level of the underlying model of computation this appears
when arguments are shared between two functions�

However� in some speci�c cases destructive updates are safe� e�g� when it is known
that access on the original object is not necessary in the future� We call such an object
�locally� �unique��

Sharing�update analysis is used to �nd spots where destructive updates are possible�
However� some functions require that a destructive update can be done in all contexts
in which the function is applied� Such updating functions are functions for �le I�O�
array manipulation� interfacing with existing FORTRAN or C libraries� window	based
I�O and functions that require an e�cient storage management �e�g� in situ sorting
of a large data structure�� This requirement can be explicitly speci�ed via a type
system� This paper presents a type system related to linear types
 uniqueness types�
The uniqueness type system is de�ned for graph rewrite systems� It employs usage
information to deduce whether the uniqueness attribute can be assigned to a type for a
subgraph� A type which has the uniqueness attribute is also called a unique type� For

�Department of Computer Science� Toernooiveld �� ���� ED Nijmegen� The Netherlands� e�mail

sjakie�cs�kun�nl� fax �	�
��
������







functions that require an object of unique type� the type system guarantees that no
external access on the original object will be possible anymore� So� �depending on the
use of the object in the function body� this information can be used to destructively
update the unique object� A compiler can exploit uniqueness types by generating
code that automatically updates unique arguments when possible� This has important
consequences for the time and space behaviour of functional programs� The type system
has been implemented for the lazy functional graph rewriting language Concurrent
Clean� So far� it has been used for the implementation of arrays and of an e�cient
high�level library for screen and �le I	O �see Achten et al� �
������

The structure of the paper is as follows
 �rst graph rewrite systems are brie�y
introduced using standard terminology �Section ��� Then� a notion of typing is de�
�ned for graph rewrite systems in Section �� Section � describes a use analysis that
provides important information that is necessary to assign uniqueness attributes� How
uniqueness attributes are assigned is de�ned in Section �� The extension to algebraic
type de�nitions is given in Section �� The correctness of the type system is proven in
Section �� Section � illustrates how reasoning about programs with uniqueness types
can be done� after which Section � discusses related work�

�� Graph rewriting

Term graph rewrite systems were introduced in Barendregt et al� �
����� This section
summarizes some basic notions for �term� graph rewriting as presented in Barendsen
and Smetsers �
�����

Graphs

The objects of our interest are directed graphs in which each node has a speci�c label�
The number of outgoing edges of a node is determined by its label� In the sequel we
assume that N is some basic set of nodes �in�nite� one usually takes N � N �� and � is
a �possibly in�nite� set of symbols with arity in N �

���� Definition� �i� A labeled graph �over hN ��i� is a triple

g � hN� symb� argsi

such that
�
� N � N � N is the set of nodes of g�
��� symb 
 N � �� symb�n� is the symbol at node n�
��� args 
 N �N� such that length�args�n�� � arity�symb�n���

Thus args�n� speci�es the outgoing edges of n� The i�th component of args�n� is
denoted by args�n�i�

�ii� A rooted graph is a quadruple

g � hN� symb� args� ri

such that hN� symb� argsi is a labeled graph� and r � N � The node r is called the root

of the graph g�
�iii� The collection of all �nite rooted labeled graphs over hN ��i is indicated by G �

�



Convention� �i� m�n� n�� � � � range over nodes� g� g�� h� � � � range over �rooted� graphs�
�ii� If g is a �rooted� graph� then its components are referred to as Ng� symbg� argsg

�and rg� respectively�

�iii� To simplify notation we usually write n � g instead of n � Ng�

���� Definition� �i� A path in a graph g is a sequence p � �n�� i�� n�� i�� � � � � n�� where

n�� n�� � � � � n� � g are nodes� and i�� i�� � � � � i��� � N are �edge speci�cations	 such that

nk�� � args�nk�ik for all k � �� In this case p is said to be a path from n� to n�

�notation p 
 n�� n���

�ii� Let m�n � g� m is reachable from n �notation n � m� if p 
 n�m for some

path p in g�

���� Definition� Let g be a graph and n � g� The subgraph of g at n �notation g j n�
is the rooted graph hN� symb� args � ni where N � fm � g j n � mg� and symb and
args are the restrictions �to N� of symbg and argsg respectively�

Graph rewriting

This section introduces some notation connected with graph rewriting� For a complete

operational description the reader is referred to the papers mentioned earlier�

Rewrite rules specify transformations of graphs� Each rewrite rule is represented

by a special graph containing two roots� These roots determine the left�hand side �the
pattern� and the right�hand side of the rule� Variables are represented by special �empty

nodes	� Let R be some rewrite rule� A graph g can be rewritten according to R if R

is applicable to g� i�e� the pattern of R matches g� A match � is a mapping from the

pattern of R to a subgraph of g that preserves the node structure� The combination

of a rule and a match is called a redex � If a redex has been determined� the graph

can be rewritten according to the structure of the right�hand side of the rule involved�

This is done in three steps� Firstly� the graph is extended with an instance of the

right�hand side of the rule� The connections from the new part with the original graph

are determined by �� Then all references to the root of the redex are redirected to the

root of the right�hand side� Finally all unreachable nodes are removed by performing

garbage collection�

���� Definition� Let � be a special symbol in � with arity 
� Let g be a graph�

�i� The set of empty nodes of g �notation g�� is the collection

g� � fn � g j symbg�n� � �g�

�ii� The set of non�empty nodes �or interior� of g is denoted by g�� So Ng � g��g��
�iii� g is closed if g� � ��

The objects on which computations are performed are closed graphs� the others are
used as auxiliary objects� e�g� for de�ning graph rewrite rules�

���� Definition� �i� A term graph rewrite rule �or rule for short� is a triple R �

hg� l� ri where g is a �possibly open� graph� and l� r � g �called the left root and right

root of R�� such that

��� �g j l�� �� ��

�



��� �g j r�� � �g j l���
�ii� If symbg�l� � F then R is said to be a rule for F�

�iii� R is left�linear if g j l is a tree�

Here condition ��� expresses that the left�hand side of the rewrite rule should not

be just a variable� Moreover condition ��� states that all variables occurring on the
right�hand side of the rule should also occur on the left�hand side�

Notation� We will write R j l� R j r for gR j lR� gR j rR respectively�

���� Definition� Let p� g be graphs� A match is a function � 	 Np�Ng such that for
all n � p�

symbg���n�� � symbp�n��

argsg���n��i � ��argsp�n�i��

In this case we write � 	 p�
m

g�

���� Definition� Let g be a graph� and R a set of rewrite rules�

�i� An R�redex in g �or just redex � is a tuple 
 � hR��i where R � R� and

� 	 �R j l��
m

g�

�ii� If g� is the result of rewriting redex 
 in g this will be denoted by g
�
�
R

g�� or

just g �
R

g��

�iii� Let 
 � hR��i be a redex� The redex root of 
 �notation r�
�� is de�ned by

r�
� � ��rR� if rR � R j l�

� rR otherwise�

Term graph rewrite systems

A collection of graphs and a set of rewrite rules can be combined into a �term� graph
rewrite system� A special class of so�called orthogonal graph rewrite systems is the

subject of further investigations�

���� Definition� �i� A term graph rewrite system �TGRS� is a tuple S � hG�Ri where
R is a set of rewrite rules� and G � G is a set of closed graphs which is closed under

R�reduction�

�ii� S is left�linear if each R � R is left�linear�

�iii� S is regular if for each g � G the R�redexes in g are pairwise disjoint�
�iv� S is orthogonal if S is both left�linear and regular�

It can be shown that for a large class of orthogonal TGRSs �the so�called inter�

ference�free systems� the Church�Rosser property holds �see Barendsen and Smetsers

��������

Notation� Let S � hG�Ri be a TGRS� 
S denotes symbols in 
 that appear in G
or in R� The set of function symbols of S �notation 
F � are those symbols for which

there exist a rule in R� Moreover� 
D � 
Sn
F denotes the set of data symbols of S�

�



�� Typing graphs

In this section we will de�ne a notion of simple type assignment to graphs using a

type system based on traditional systems for functional languages� The approach is

similar to the one introduced in Bakel et al� ������� It is meant to illustrate the concept

of 	classical
 typing for graphs� In the next section a di�erent typing system will be

described�

���� Definition� Let V be a set of type variables � and C a set of type constructors

with arity in N � Write C 
 C
� � C � � � � � such that each S � C

i has arity i�
�i� The set T of �graph� types is de�ned inductively as follows�

� � V � � � T�

C � C
k� ��� � � � � �k � T � C���� � � � � �k� � T�

�� � � T � �� � � T�

�ii� The set TS of symbol types is de�ned as

� � T � � � TS�

��� � � � � �k� � � T � ���� � � � � �k�� � � TS�

The arity of a symbol type is � if it is introduced by the �rst rule� Otherwise� the arity

is k�

Convention� In the sequel� �� �� ��� � � � range over type variables� �� �� ��� � � � range

over �function� types�

���� Definition� �i� A substitution is a function � � V� T�

�ii� Let � be a substitution� and � � TS� The result of applying � to � �notation ���

is inductively de�ned as follows�

�� 
 �����

�C���� � � � � �k��
� 
 C���

� � � � � � �
�

k��

��� ��� 
 ��

� ���

����� � � � � �k�� ��� 
 ���

�� � � � � �
�

k�� ���

�iii� � is an instance of � �notation � � � � if there exists a substitution � such that

�� 
 ��

�iv� � and � are isomorphic if ��� 
 � and ��� 
 � for some substitutions ��� ���

We will usually identify isomorphic types� i�e� types that result from each other by

consistent renaming of type variables� That is� we regard types as type schemes�

Applicative graph rewrite systems

In TGRS
s symbols have a �xed arity� Consequently� it is impossible to use functions

as arguments or to yield functions as a result� However� higher order functions can

be modeled in TGRS
s by associating to each symbol S with arity�S� � � a ��ary

�



constructor S�� and by adding a special apply rule �with function symbol Ap� to the
TGRS for supplying these new constructors with arguments�

For example� Combinatory Logic �CL� expressed by

S xyz � xz�yz�

Kxy � x

Ix � x

can be modeled in the following TGRS �using a self�explanatory linear notation��

S�x� y� z� � Ap�Ap�x� z��Ap�y� z��

K�x� y� � x

I�x� � x

Ap�Ap�Ap�S�� x�� y�� z� � S�x� y� z�

Ap�Ap�K�� x�� y� � K�x� y�

Ap�I�� x� � I�x�

Note that each new constructor symbol introduces a new rule for Ap�

���� Definition� Let S � hG�Ri be a TGRS�
�i� Let S � �S with arity � 	� The above symbol S� � �D is called the Curry

variant of S�

�ii� The set �C � �D denotes the set of Curry variants of �D with arity � 	�

�iii� We say that S is Curry complete if R contains an Ap�rule for each symbol S

with arity � 	� as described above� and no other Ap�rules�

�iv� Let R � R� The principal node of R �notation p�R� is lR if symb�lR� �� Ap


otherwise it is the node containing S��

Assumption� From now on we assume that all TGRS�s are Curry complete�

Assigning types to symbols

In the rest of this section we describe how types can be assigned to graphs given a �xed

type assignment to the �function and data� symbols by a so called environment �

Currying imposes a restriction on type environments� that is to say� the type of

a Curry variant S� should be related to the type assigned to S� We also assume a

standard type for the symbol Ap to be declared�

���� Definition� �i� Let � � ���� � � � � �k��� be a function type� The curried version

of � �notation �C� is

�C � �� � ��� � �� � � ��k � �� � � ����

�ii� A �type� environment for S is a function E 
 �S � T such that

�	� E��� � ��

��� E�Ap� � ��� �� ��� ��

��� E�S�� � �E�S��C �

�



Algebraic data types

We consider new �basic� types to be introduced by so�called algebraic type de�nitions �

In these type de�nitions a �possibly in�nite� set of constructor symbols is associated

with each new type T �

The general form of an algebraic type de�nition for T is

T �� � C� ���

� C� ���

� � � �

Here �� � V� and ��i � T such that the variables appearing in ��i are contained in ���

Moreover� we assume that each Ci is a fresh constructor symbol� E�g�� the type of lists

could be obtained as follows�

List��� � Cons���List����

� Nil

A set A of algebraic type de�nitions induces a type environment EA for all con�

structors introduced by A� More speci�cally� Let Ci be the ith constructor de�ned by

some algebraic type T � The EA type of Ci is

EA�Ci� � ��i � T ���

Convention� Let A be a set of type de�nitions� 	A denotes the constructor symbols

that are de�ned via some de�nition in A�

Assumption� In the sequel we will assume that all constructors in S that are not the

curried variant of some other symbol� are introduced by an algebraic type de�nition

�i�e� 	Dn	C � 	A��

Assigning types to graphs

���� Definition� Let g � hN� symb� argsi be a graph�

�i� A type assignment to g �or g�typing� is a function T 
 N � T�

�ii� Let T be a g�typing� and n � g� The function type of n according to T �notation

FT �n�� is de�ned as

FT �n� � �T �n��� � � � �T �nl���T �n�

where l � arity�symb�n��� and ni � args�n�i�

�iii� Let E be an environment� T is a g�typing according to E if for each n � g there

exists a substitution � such that

FT �n� � E�symb�n����

���� Example� Let E be an environment containing the following type declarations�

F 
 List���� ��

Cons 
 ���List����� List����

Nil 
 List����

� 
 INT�

�



Below� a graph and its typing according to E are indicated�

F

Cons

Nil3

: INT

: List(INT)

: INT : List(INT)

���� Definition� Let S � hG�Ri be a TGRS� and A a set of algebraic type de�nitions�

Furthermore� let E be an environment for S �

�i� R � R is typable according to E if there exist an gR�typing T �according to E�
that meets the following requirements�

�	� T �l� � T �r��
�
� FT �p�R�� � E�symb�p�R����

�ii� R is typable if there exists an environment E extending EA such that each R � R
is typable according to E �

Condition �
� states that the left root node should be typed exactly with the type

assigned to the root symbol by the environment� This contrasts the requirement for

applicative occurrences of the function symbol�

Notice that the latter condition also provides that the abovementioned way of typing

rewrite rules is essentially the same as the Mycroft type assignment system for the
lambda calculus� see Mycroft �	��	�� A Milner�like type assignment system �see Milner

�	�
��� can be obtained by stating this condition for all occurrences of a symbol F in

the rule for F�

It is possible to formulate conditions under which typing is preserved during reduc�

tion� cf� Bakel et al� �	��
�� We will not go into this here�

�� Usage analysis

A �rst approach to a classi�cation of �unique� access to nodes in a graph is to count the

references to each node� In practice� however� a more re�ned analysis is often possible�

This can be achieved by taking into account the speci�c evaluation order dictated by

a speci�c reduction strategy� E�g� the standard evaluation of a conditional statement

If c Then t Else e

causes �rst the evaluation of the c part� and subsequently evaluation of either t or e�

but not both� Hence� a single access to a node n in t combined with a single access to

n in e would overall still result in a �unique� access to n� It is important to note that
this property only holds if execution proceeds according to the chosen strategy� it may

be disturbed if one allows reduction of arbitrary redexes�

We consider the following classi�cation of function arguments�

Assumption� Let S be a TGRS�

�i� Let F � �F � say with arity l� Assume that f	� � � � � lg is divided into k�	 disjoint

�argument classes�

P�A�� � � � � Ak�

�



�ii� Arguments of each constructor C � �D belong to one single class A�

The intended meaning is that arguments occurring in P are evaluated before any

other argument ��preliminaries�� whereas A�� � � � � Ak are groups of �alternate argu�

ments�� during the actual evaluation	 arguments belonging to di
erent groups are never

evaluated both� Furthermore	 it is assumed that references via preliminaries to the

graph are released before the graph is accessed via one of the alternate arguments�

���� Remark� We assume that the argument classi�cation is consistent with each

reduction rule	 i�e� the way the arguments of a left�hand side are passed to functions

in the corresponding right�hand side does not con�ict with the respective argument

classi�cations�

We will now describe a �weighted reference count� analysis based on the above

argument classi�cation� First the argument dependency of functions is translated into

dependency relations on nodes in graphs�

���� Definition� �i� For each symbol S as above	 and i� j � l	 write i �S j if i� j
belong to the same argument class of S� Moreover	 i CS j if i � P and j �� P �

�ii� Let g � G � For convenience this denotation is extended to paths in g starting

with the same node� I�e�

�n� i�m� � � �� � �n� j�m�� � � �� � i �symb
g
�n� j�

and

�n� i�m� � � �� C �n� j�m�� � � �� � i Csymb
g
�n� j�

���� Definition� Let g � G 	 and n� n� � g�
�i� Let p� p� be paths in g� Then n� n� are joined by p� p� �notation p �

n�n�

p�� if

p � m� n� p� � m� n� for some m	 and p� p� are disjoint �discarding the �rst node��

�ii� The relations � and C on Ng are de�ned by

n � n� � p � p� for some p �
n�n�

p��

n C n� � p C p� for some p �
n�n�

p��

Intuitively	 n C n� indicates that n might be accessed before n�� Moreover n � n�

indicates that n and n� appear in a common argument class of a function and thus

might be accessed in any order�

Each reference ��arc�� in a graph is labeled with a so�called use attribute�

���� Definition� The set of use attributes is

U 
 f���g�

To get some intuition for these use attributes it is convenient to consider the objects

that are accessed via a reference attributed with � as being �local� and therefore allowed

to be used destructively	 whereas objects accessed via other references must remain

una
ected� Hence	 one could say that the symbol � stands for �write access�� � for

�read access�� The simple approach using reference counts would place a � at arcs
pointing to a node with in�degree �	 and � otherwise� A more re�ned approach is

described below�

�



���� Definition� Let g � G � and n � g� The set of accesses of n �notation acc�n�� is

acc�n� � f�m� i� j argsg�m�i � ng�

���� Definition� Let g � G � The arcs of g are annotated by the function use � N�U �

with length�use�n�� � arity�symb�n��� de�ned as follows� Let n � g� Say acc�n� �
f�m�� i��� � � � � �ml� il�g� Then

use�mk�ik � � if mk � mk� or mk C mk� for some k��

� � otherwise�

Note that this de�nition completely speci�es the function use�

���� Example� Using the standard classi�cation of arguments of the conditional IF�
and no speci�c assumptions about other symbols� the following use	assignments are
made�

IF

G H

C

�

⊗

⊗⊗

⊗

IF

G H

C

�

⊗

��

Now we can formulate which redexes are allowed to be contracted� in terms of the
use function�

���� Definition� �i� Let g � G � and m�n � g� Then m is local for n �in g� if

�p � rg�m 
n � p��

�ii� Let � � hR��i be a redex in g� We say that � is applicable if for all i

useg���l��i � � � argsg���l��i is local for ��l��

The intention is that at least the redexes chosen by the strategy are applicable�

�� Uniqueness typing

Uniqueness types

The use analysis described so far only takes the reduction strategy into account
 not the
particular structure of the rewrite rules� The use attributes of arguments may change
during reduction� e�g� the � attribute of a certain argument may change into a � after
is redex has been contracted�

However� for a function F that destructively uses one of its arguments it should be
guaranteed that at the moment F is evaluated the argument has a � attribute� One
way to ensure this is to require that this property holds at the moment the application
of F is built and that is remains valid during reduction�

The aim of the rest of this paper is to present a �type system� in which the above	
mentioned analysis can be performed�

��



The fact that a function may use one or more of its arguments destructively is
expressed in its �uniqueness type�� The syntax of these types is given in the following

de�nition�

���� Definition� �i� The set U of uniqueness types is de�ned inductively by

� �� � U�

u� v � U � u
�

� v � U�

u
�

� v � U

�ii� The set U � of unique types is de�ned by

U
�

� fu � U j u � � or u � v
�

� w for some v� w � Ug�

Moreover	 U� � UnU � �

�iii� The set US of uniqueness symbol types is de�ned as

u � U � u � US�

u�� � � � � uk� v � U � �u�� � � � � uk�� v � US�

The constants � and � represent �unique use� and �potentially multiple use� re


spectively� The arrows are annotated to distinguish unique function objects from

unique objects without speci�ed structure	 and nonunique function objects from general

nonunique objects� In the following example this will be illustrated�

���� Example� Suppose Upd denotes a binary function which destructively updates

its �rst argument with its second argument� So	 the intended U
type of Upd is some


thing of the form � � ����u� It is natural to require that the uniqueness of the updated

object is propagated� Thus one arrives at the following type for Upd�

Upd � � � ���� �

A partial application ofUpd to some unique expression g results in a functionAp�Upd�� g�

that may not be copied� For	 if copying would be allowed	 then each of the applications

of a copy of the function would be allowed to update the �rst argument g destructively	

as is illustrated by the expression G�Ap�Upd�� g�� h� assuming the rule

G�f� x�� Pair�Ap�f� x��Ap�f� x���

which is obviously unwanted�

In our type system the U
type of the above expression Ap�Upd�� g� will be �
�

� �

which will prevent it from being copied�

However	 in any context in which a nonunique nonfunctional U
type is expected it

is harmless to o�er a unique object� This gives rise to a subtype hierarchy specifying

which types are convertible �can be coerced� to other types� These coercions are de�ned

as an ordering on U� They are not only depending on the demanded and o�ered types

of the context but also on the way the o�ered object is accessed� If the use information

of graphs is not taken into account	 some graphs are wrongly accepted� For this reason
we de�ne a coercion relation that also depends on the use value of the reference via

which the corresponding part of the graph is accessed�







���� Definition� The orderings �� and �� on U are de�ned as follows�
�i� Coercions via ��references are generated by

� �
�

� �

� �
�
��

� �
�
��

u� �
� u�� v� �

� v� � u�
�

� v� �
� u�

�

� v��

u�
�
� v� �

� u�
�
� v��

�ii� Coercions via ��references are the following�

� �
�
��

� �
�
��

u� �
� u�� v� �

� v� � u�
�
� v� �

� u�
�
� v��

Since we do not have type variables the notion of type instance has to be adjusted
slightly� Intuitively� a type u is an instance of a type v if u has �more structure	 than
v� This is made precise in the following de�nition�

���� Definition� The relation � on U is de�ned as


� � � � u
�

� v � � �

� � �� u
�
� v � ��

u� � u�� v� � v� � u�
�

� v� � u�
�

� v��

u�
�
� v� � u�

�
� v��

If u � v we say that u is an �U�type� instance of v�

Currying

As we have seen� in some cases it can be dangerous to copy references to functions� To
prevent a �dangerous	 function from being copied it is distinguished from �safe	 functions
by typing it with an arrow type supplied with a � attribute� The observation that once
a symbol has been applied to a unique argument it may not be copied anymore �see
example ���� leads to the following Currying rule�

���� Definition� �i� Let u � U� The uniqueness attribute of u �notation 
u� is de�ned
as follows�


u� � � � if u � U
�

� �� if u �� U
�

�

�ii� For �u � �u�� � � � � uk� and j � k the cumulative uniqueness attribute up to j
�notation 
�u�j� is de�ned by


�u�j � � if 
ui� � � for some i � j�

� � otherwise�

��



�iii� Let u � �u�� � � � � uk�� v� The set of curried versions of u �notation uC� is

uC � f u�
�
� �u�

��u��
� � � � �uk

��u�k��

� v� � � ���

u�
�

� �u�
��u��
� � � � �uk

��u�k��

� v� � � �� g�

The e�ect of applying a �possibly curried� function to a unique argument is that

the result of the application itself becomes unique� One could say that uniqueness

information �propagates upwards��

The correspondence between a symbol �with arity � �� and its Curry variant is

given by that Ap rule� In contrast to the �ordinary� type system presented in section

	
 Ap can be used with di�erent U which are not instances of one type� To make such

�generic� functions possible we allow the type environment to contain more than one

type for each symbol�

���� Definition� An �applicative� uniqueness type environment is a function E � ��
��U� such that

��� E��� � f � ��g


�
� E�Ap� � f ��
�
�������� � �

�
��� � ����

��
�
� � ���� � � � �

�
� � � � �� � �

��
�

�������� � �
�

��� � ����

��
�

� � ���� � � � �
�

� � � � �� � g�

�	� E�S�� � �E�S��C �
Here AC � faC j a � Ag�

Assigning uniqueness types to graphs

Assigning U�types to graphs can be done in two ways� The �rst way is comparable

to standard type assignment �section 	�� In the second way
 the use attributes of the

graph as well as coercions are taken into account�

���� Definition� Let g � hN� symb� argsi be a graph
 and E be an environment� Fur�

thermore
 let U � N � U�

�i� Let n � g� The function type of n �notation FU �n�� is

FU �n� � �U�n��� � � � �U�nl���U�n��

where l � arity�symb�n��
 and ni � args�n�i�

�ii� U is an uniqueness typing for g according to E if for each n � g there exists
u � E�symb�n�� such that

FU �n� � u�

�iii� Let use be the function that supplies g with use attributes� U is an weighted

uniqueness typing for g according to E if for each n � g there exist u � E�symb�n�� and

v�� � � � � vk � U such that

U�ni� �
ui vi�

�v�� � � � � vk��U�n� � u�

where ni � args�n�i
 and ui � use�n�i for i � k � arity�symb�n���

�	



�iv� If U is a �weighted� uniqueness typing for g� then the type of g �notation U�g��
is simply U�rg��

���� Definition� Let S � hG�Ri be a TGRS� and A a set of algebraic type de�nitions�

Furthermore� let E be an environment�

�i� R � R is uniqueness�typable �according to E� if for each u � E�symb�l�� there

exist a function U � gR � U such that

��� U is a uniqueness typing for R j l�
�	� U is a weighted uniqueness typing for R j r�
�
� U�r� �� U�l��
��� FU �p�R�� � u�

Such an U is called a uniqueness typing for R�

�ii� R is uniqueness�typable if there exists an environment E extending EA� such that

each R � R is uniqueness�typable according to E �
�iii� S is uniqueness�typable if there exists an uniqueness type environment E extend�

ing EA such that each R � R as well as each g � G is uniqueness�typable according to

E �

�� Algebraic type de�nitions

Since one allows pattern matching in function de�nitions� it is sometimes wrongly

concluded that part of a pattern is unique� This appears e�g� in the following example�

taking � �� for the constructor C and �� � for F with rule F�C�x��� x�

D

F

H

C

For this reason we require that �data� symbols appearing in a pattern of a rewrite rule

also obey an 
upward propagation� rule� that is to say� if such a symbol expects one or

more unique arguments the application itself is unique� E�g� in the above example C

should be typed with � � � � rejecting the given F�type�

Since the only symbols appearing in function patterns are constructors introduced

by some algebraic type de�nition� the upward propagation requirement is obtained by

making following assumption�

Assumption� Let C � �D with uniqueness type �u�� � � � � uk�� v� Then

ui � U
�

for some i � k � v � U
�

�

Consequently� a data object can only contain unique subparts if the object itself is

unique� The fact that a symbol may have more than one environment type is also very

��



useful for constructors� Remember� for example� the following algebraic type de�nition
for lists�

List��� � Cons���List����

� Nil

A list of which the �spine	 is unique can be obtained by typing Cons by

Cons 
 ��� � �� � �

A list with unique elements can be speci�ed by assuming

Cons 
 � � � � �� � �

Notice that� because of the propagation rule� the uniqueness of elements implies the

uniqueness of the spine�
Allowing both types for Cons simultaneously in the present type system may cause

type con�icts� E�g� in the rule

F�Cons�x� y��� x�

F can be typed with � � � � This is wrong� as is illustrated by the following application

of F�

Cons

Cons

H Nil

F

One way to solve this problem is to distinguish the di�erent types of the constructors

by introducing uniqueness type constructors � We only give an example�

���� Example� In the extended system� Cons can be typed as follows�

Cons 
 � � �

�

List� � ���
�

List� � ��

Cons 
 ���

�

List�����
�

List����

Then� a spine
unique list is typed with
�

List��� whereas the list containing also unique

elements is typed with
�

List� � ��

This extension will not be elaborated here� However� to prevent incorrect type

assignments we make the following assumption about type environments�

Assumption� If E is a uniqueness type environment� then the constructor types are

chosen in such a way that the type con�icts mentioned above cannot occur�

��



�� Correctness

In order to show that uniqueness typing is preserved during reduction� some analysis

with respect to the use function is needed� We focus on the relation between the

uniqueness typing of a rewrite rule and the usage information of a graph before and

after applying this rewrite rule� We will merely give an outline of the proof� The details

will appear separately�

Fix an orthogonal TGRS S � hG�Ri�

���� Definition� Let � � hR��i be a redex in g�
�i� Let U � R� U� � is U�type correct if U is a uniqueness typing for R according

to E 	 and for each n � R j l	 n �� l �say n � args�m�i� one has

U�n� � U
�

� useg���m��i � ��

�ii� � is type correct if � is U�type correct for some U �

Note that the de
nition of �applicable� �see 
��� formulates a locality condition for

the direct arguments of ��l� only� The following result extends this property to all
nodes in the matching fragment of the graph�

���� Lemma� Let � be applicable and U�type correct� Then for all n � �R j l� � �R j r�
with n �� l one has

U�n� � U
�

� n is local for ��l��

Proof� For �ordinary� reduction rules	 this follows from the propagation criterion for
constructors and regularity of S� For Ap reduction rules	 the speci
c form of curry

types and the prede
ned types for Ap imply the result� �

���� Lemma� Let m�n � g with �m� i� � accg�n�� Suppose n is on a cycle not contain�

ing m� Then useg�m�i � ��

Proof� Examine the de
nition of use� �

���� Proposition� Let � � hR��i be applicable in g� Say g
�

�
R

h� Suppose � is U�type
correct� with U�r� � U �

� Then

acch�r���� 	 accg���l���

Proof �Sketch�� By the following case distinction�

Case �� r��� �� ��R j l�� Then r��� is fresh in h	 so acch�r���� � accg���l�� after
redirection�

Case �� r��� � ��n�	 n � ��R j l�� Since U�n� � U � it follows by type correctness

and lemma ��� that ��n� is local for ��l�� Hence ��l�� m for every �m� i� � accg���n���
Now let �m� i� � accg���n��� We want to show that m is not present in h� If m �
��R j l� this is easily seen� Otherwise	 if m would be present in h �after redirection

and garbage collection�	 then ��n� � m �� ��n��� Hence useg���m
���i � � for any

�m�� i� � accR�n�	 by lemma ���	 contradicting type correctness of �� Taking the e�ect

of redirection into account it follows that acch���n�� 	 accg���l��� �

��



���� Proposition� Let � be applicable and U�type correct in g� say g
�
�
R

h�
�i� Suppose U�r� � U �

� Then for all �m� i� � accg���l�� such that m is present in

h one has

useg�m�i � � � useh�m�i � ��

�ii� Let n � R j r with n �� r� Suppose U�n� � U �

� Then for all �m� i� � accR�n�

useR�m�i � � � useh� �m�i � ��

where �m denotes the h�node corresponding to m�

Proof �Sketch�� �i� Suppose useg�m�i � �� By proposition ��� we only have to con	

sider accg�m� to determine useh�m�i� If p �
m�m�

p� in h causing useh�m�i � �
 then a

redirection �above� ��l� has taken place� This can only occur if ��l� is on a cycle in g

contradicting lemma ��
�

�ii� By a case distinction
 distinguishing the possible positions of n�m� Lemma ���

is used in the case n � R j l and m �� R j l� �

���� Proposition� Let � be applicable in g� say g
�
�
R

h� Let n � g such that n ��
��R j l�� and n � h� Then for all �m� i� � accg�n� with m present in h one has

useg�m�i � � � useh�m�i � ��

Proof �Sketch�� Suppose
 towards a contradiction
 useg�m�i � � but useh�m�i � ��
Suppose this is caused by m�
 i�e� �m�� i�� � acch�m� such that m 	 m� or m C m�
 say

p �
m�m�

p� with p 	 p� or p C p�� Since this situation does not occur in g
 these parts

contain new nodes or new arcs� Distinguish two cases� If r��� �� p� p� one arrives at

a con�ict with the argument classi�cation �cf� remark ����� Assuming
 on the other

hand
 r��� � p or r��� � p� leads to a contradiction with useg�m�i � �� �

For reduction on uniqueness	typed graphs
 the above results imply a �subject re	

duction� result� typing remains correct when reducing applicable redexes�

���� Lemma� Let g � G� Suppose g is uniqueness�typable� If � is applicable� then �
is type correct�

Proof� Obvious� �

���� Lemma� �i� Let u� v� w � U� Then

u 
� v� v 
� w � u 
� w�

�ii� Let u� v� v� � U� Suppose u 
� v and v� � v� Then there exists u� � U with
u� � u and u� 
� v��

���� Theorem� Suppose R is uniqueness�typable according to E� Let U be a uniqueness

typing for g �according to E�� Furthermore� let g
�
�
R

h with � applicable� Then there

exists a uniqueness typing U � for h such that U ��h� � U�g��

Proof� U can be extended to a uniqueness typing of h by de�ning it on the new nodes

according to the type assignment to � �proposition ��� �ii��� The type assigned to the

other nodes remains correct
 as follows from propositions ��� �i
 ii�
 ��� and lemma ���


by distinguishing the di�erent kinds of nodes in h� �

��



�� Reasoning about programs with uniqueness types

Uniqueness types can be used in several contexts� When one wants to interface func�
tional languages with imperative programs� one can assign a unique type to those
arguments that are destructively updated by the imperative function� In this way
�le I�O and array updating can be incorporated without loosing the referential trans�
parency� With these applications in mind it may seem that the destructive behaviour
of the function has to be explicitly programmed using a non�functional programming
language� However� it is of course also possible for a compiler to generate destructive
updates for pure functions de�ned in the functional language itself� This is of great
importance for improving the time�space behaviour of functional programs�

Below an example is given in a functional programming language of which it is
assumed that uniqueness types are assigned on the underlying graph rewrite system
�which can be derived directly from the program by removing some syntactical sugar��
The language uses underlining to indicate that a type has the uniqueness attribute � �
� � in a type denotes the List type� � � in a rule denotes the Nil element and � a j b �

denotes Cons a b� � �� � � � � denotes standard tupling� So� � T � denotes a list of type T

with a unique spine�

qs �� � T �� � T �

qs � � � � �
qs � hd j tl � � �qs left� 		 � hd j qs right �

where
�left� right� � split tl hd

split �� � T �� T� �� T �� � T ��

split � � p � �� �� � ��
split � hd j tl � p � �� hd j left �� right�� if p � hd

� �left� � hd j right ��
where
�left� right� � split tl p

Compared with the imperative quick�sort algorithm the functionally written quick�
sort algorithm qs has the disadvantage that the split function has to construct new lists
for its result� Now� if the function split would be de�ned on a spine�unique list� the
construction of the new cons nodes could be done by updating the old ones� Looking at
the actual di	erence between the old cons node given as an argument to split ��hd j tl��

and the new cons node to be constructed �either �hd j left� or �hd j right�� it can be
deduced that only the tail of the cons node has to be updated� This means that the
split function does not create new cons nodes at all but is actually rearranging tail
pointers in such a way that the ordered list is obtained� Such in situ updating is
essential to be able to handle large data structures e
ciently�

With respect to the updating the run�time behaviour of the functional program can
be similar to its imperative counterpart� However� the speci�ed program will require
a relatively large recursion stack� Both split and qs can be transformed to a tail
recursive version using program transformations that also eliminate the construction
of intermediate data structures� Tail recursion is usually translated into a loop on
the machine code level� The applied transformation maintains the uniqueness of the
types� So� for the resulting elegant functional program a compiler can generate code

��



that is as e�cient as the code for an imperatively written quick�sort algorithm� Hence�
this example shows that uniqueness types solve one of the challenges set at the ����
Dagstuhl seminar on functional languages 	Johnsson 	����

�

qs �� � T �� � T �� � T �

qs � � tail � tail
qs � hd j tl � tail � qs left � hd j qs right tail �

where
�left� right� � split tl hd � � � �

split �� � T �� T� � T �� � T �� �� T �� � T ��

split � � p left right � �left� right�
split � hd j tl � p left right � split tl p � hd j left � right� if p � hd

� split tl p left � hd j right �

The reasoning about the programs above implicitly made certain assumptions about
the generated code� It was assumed that updating was actually done whenever this
was possible� More speci�cally� it was assumed that updates could actually take place
for all objects of the same type� Using only such very general kinds of assumptions
and the uniqueness type information the storage behaviour of the functional program
was deduced and improved by a program transformation� It is important that these
assumptions are further formalised� Any compiler should obey the resulting formal
rules such that reasoning about the time and space behaviour of a functional program
is independent of a speci�c compiler� The programmer then can deduce whether or not
it is worthwhile to use uniqueness types for those cases where the e�ciency of the time�
space behaviour is critical� It seems that such reasoning is relatively simple and can be
applied successfully to design time and space e�cient purely functional programs for
many kinds of real�life applications�

�� Related work

The update problem is also addressed 	using linear types
 in Wadler 	n�d�
 and Guzm�an
and Hudak 	����
� Both papers use lambda calculus as basic model hence requiring
a more indirect kind of analysis� With the proposed approach in this paper graphs
are used directly as the objects of consideration� The presented system for unique�
ness types incorporates a solution to several of the questions raised in Wadler 	n�d�
�
Uniqueness types are in a sense orthogonal to the standard type systems for functional
languages� The uniqueness type system has been used successfully to support high
level I
O and e�cient array handling� Experience with uniqueness types has shown an
important change in the use of functional languages from academic exercises to real�
life programming 	ranging from a window�based text editor to a relational database
�
The use function presented in Section � has been inspired by the analysis presented
for poly�lamst in Guzm�an and Hudak 	����
 which is geared towards e�cient array
manipulation� They use Wadsworth�s shared lambda calculus involving partly copying
of lambda terms when functions are shared� In a certain sense the proposed unique�
ness types are a generalisation of their single�threadedness analysis to a general graph
rewriting context�

��



References

Achten� P�M�� J�H�G� van Groningen and M�J� Plasmeijer ������� High level speci	ca

tion of i�o in functional languages� Proc� of International Workshop on Functional

Languages� Glasgow� UK� Springer Verlag��

Bakel� S� van� S� Smetsers and S� Brock ������� Partial type assignment in left
linear
term rewriting systems� Proc� of ��th Colloqium on Trees and Algebra in Program�

ming �CAAP��	
� Rennes� France� Springer Verlag� LNCS 
��� pp� ��������

Barendregt� H�P�� M�C�J�D� van Eekelen� J�R�W� Glauert� J�R� Kennaway� M�J� Plas

meijer and M�R� Sleep ������� Term graph reduction� Proc� of Parallel Archi�
tectures and Languages Europe �PARLE
� Eindhoven� The Netherlands� Springer
Verlag� LNCS �
� II� pp� �����
��

Barendsen� Erik and Sjaak Smetsers ������� Graph rewriting and copying� Technical
Report �	�	� � University of Nijmegen�

Guzm�an� Juan C� and Paul� Hudak ������� Single
threaded polymorphic lambda calcu

lus� Proc� of Logic in Computer Science �LICS���
� Phildelphia� IEEE Computer
Society Press�� pp� ������
�

Johnsson� Thomas� ������� Discussion summary� which analysis�� Proc� of Functional
Languages� Optimization For Parallelism� Dagstuhl� Germany� Dagstuhl seminar�
pp� ��
�

Milner� R�A� ������� Theory of type polymorphism in programming� Journal of Com�

puter and System Sciences�

Mycroft� A� ������� Abstract interpretation and optimising transformations for applica�

tive programs � Dissertation� University of Edinburgh�

Wadler� P� �n�d��� Linear types can change the world�� Proc� of Working Conference

on Programming Concepts and Methods �

��


