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ABSTRAK 

 

 

 

 

Komposit tenunan berdasarkan serat semulajadi semakin banyak digunakan 

untuk aplikasi dalam industri disebabkan oleh kos yang rendah, ringan, kurang 

menyebabkan kerosakan pada peralatan pemprosesan, kemasan permukaan yang 

baik, ciri-ciri mekanikal yang baik dan sumber yang boleh diperbaharui, terdapat 

beberapa masalah bagi membangunkan produk kerana kos dan tempoh masa untuk 

melaksanakan pengujian produk dalam skala sebenar. Teknik model ramalan 

digunakan untuk mengurangkan keperluan untuk ujian fizikal, memendekkan masa 

rekabentuk dan mengoptimumkan rekabentuk. Sifat-sifat mekanikal fabrik tenunan 

bagi teknikal tekstil bergantung kepada a) bahan mentah b) bilangan benang c) 

kepadatan benang dan d) struktur tenunan. Justeru itu, kajian ini dilaksanakan untuk 

mengenalpasti kesan rekabentuk fabrik terhadap sifat-sifat mekanikal. Kombinasi 

antara saiz benang dan corak tenunan bagi menghasilkan struktur fabrik yang 

optimum dikaji. Kajian ini dilaksanakan pada skala mikroskopik, mesoscopik dan 

makroskopik. Kelebihan menggunakan kaedah ini ialah: (1) mengurangkan kos 

pembangunan produk dengan kaedah cuba jaya (2) mengurangkan masa untuk 

memperkenalkan teknologi baru, (3) kaedah model pelbagai skala mengurangkan 

kemungkinan rekabentuk yang konservatif atau dikompromi yang menyebabkan 

kebergantungan kepada bahan yang kurang sempurna. Perisian digunakan bagi 

menghasilkan model komposit tenunan kenaf yang mempuyai ciri-ciri tersendiri. 

Seterusnya, model dianalisis menggunakan kaedah analisis unsur terhingga untuk 

meramalkan sifat-sifat mekanikal komposit tenunan kenaf. Di samping itu, kesan 

gabungan saiz benang dan corak tenunan bagi komposit kenaf tenunan dikenalpasti 

merujuk kepada sifat-sifat mekanikal untuk meramalkan struktur yang optimum bagi 

komposit kenaf tenunan. 
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ABSTRACT 

 

 

 

 

Woven composite based on natural fiber increasingly used for many 

applications in industries because of their advantages such as low cost, low weight, 

less damage to processing equipment, improved surface finish, good relative 

mechanical properties and renewable resources, but there are some problems as cost 

and protracted development period to perform reliability evaluation by experimental 

with real scale. Predictive modeling technique is used to minimize the need for 

physical testing, shorten design timescales and provide optimized designs. 

Mechanical properties of woven fabrics for technical textile depend on a) type of raw 

materials b) type and count of warp and weft yarns c) yarn density and d) the type of 

weave structure. The effect of fabric architecture to the mechanical properties is 

investigated. The optimum fabric structure is crucial due to the combination of 

difference of yarn size and weave pattern are observed. The research is conducted in 

the microscopic, mesoscopic and the macroscopic scale. The benefit using the 

hierarchal method of multi scale modeling is: (1) it encourages a reduced reliance on 

costly trial and error. (2) Lead-time for the introduction of new technologies is 

reduced, (3) the multi-scale modeling  system lowers the likelihood of conservative 

or compromised designs that might have resulted from reliance on less-than-perfect 

material. Woven kenaf composite is modeled using the modeling software to get the 

properties of the model. Further, the model is analyzed using finite element analysis 

to predict  the mechanical properties of the woven kenaf composite.  In addition, the 

effect of the combination of yarn size and weave pattern of the woven kenaf 

composite is stated based on the mechanical properties to predict the optimum 

structure of woven kenaf composite. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

1.0 Introduction to composite materials 

 

Composite materials with woven fabric reinforcement have become increasingly 

popular for use in structural applications in recent years due to their advantages such 

as low fabrication costs, light weight, ease of handling and high adaptability, over 

tape laminates and several other engineering materials (Hallett, 2008).  

As interest in the use of composite materials for structural applications 

continues to increase, alternative reinforcements to conventional pre-preg systems 

are being more widely considered. 3-D woven composites are gaining increased 

prominence due to their ability to produce near net shape preforms as well as 

integrated third direction reinforcement. The important characteristics of 3-D woven 

preforms that make them suitable for composites are high axial rigidity, flexibility, 

formability and stability. One of the barriers to their advancement and increased use 

is the difficulties associated with creating numerical models to predict their 

performance (Hallett, 2008).  

Composite material performance is affected by the fiber architecture and fiber 

–matrix interface. Fiber architecture which consists of (i) fiber geometry (ii) fiber 

orientation (iii) packing arrangement and (iv) fiber volume friction, controls many 

composite mechanical properties. (Paul et al, 2006). The interface between fiber and 

the matrix is also crucial in terms of composite performance. The interface serves to 

transfer externally applied loads to the reinforcement via shear stresses over the 

interface (Paul et al, 2006). Therefore, many researches are conducted to determine 

early prediction mechanical properties of composite material.     
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Finite element analysis and analytical methods are powerful tools for studying the 

mechanical properties of woven composite. However, the complexity of the micro-

structure is proportional to the number of parameters controlling the mechanical 

properties. So, various finite element techniques and assumptions have been 

proposed for simplifying the analysis. (Tan et al, 1997; Crookston et al, 2005). A 

Domain Superposition Technique (DST) has been previously proposed, which is able 

to overcome a number of traditional difficulties in creating finite element models of 

composites with complex internal architecture (Jiang et al, 2008).  One of the 

fundamental difficulties faced in modeling the detailed unit cell is to build geometry 

free  from  interpenetration  at  tow  crossovers.  Another  significant  problem  is  that  a  

very fine finite element mesh is required to deal with the degenerated volumes of the 

resin pockets between tows. This can lead to very large finite element models 

exceeding a million degrees of freedom to model a single unit cell, which is only a 

very  small  part  of  the  structure.  DST  is  successfully  implemented  for  the  

development on 2D weave structures (Hallett, 2008). A mesh sensitivity study has 

been conducted showing that good results are still obtained even when a relatively 

coarse mesh is used.  

Finite element analysis is based on the modeling of the composite material. 

Several methods were adopted for the mechanical modeling and analysis of the 

composite structures. A basic classification, according to the modeling method used, 

divides them into the analytical and numerical or computational approaches. The 

dominant engineering design culture played important role for the development and 

the succession of these approaches. Another essential classification of the modeling 

of the textile structures is made according to the scale of the model. There is 

micromechanical, meso-mechanical and the macro-mechanical modeling (Takano et 

al, 1999).  

The micromechanical modeling stage focuses on the study of the yarns, tows 

even fabrics taking into account the structure, orientation and mechanical properties 

of the constituent fibers. The meso-mechanical modeling, on the other side, studies 

the mechanical characteristics of the fabric unit cell considering the yarns as 

homogenous structures. Finally the macro-mechanical modeling stage is referred to 

the prediction of mechanical performance of the composite in complex deformations, 

as drape, studying the composite as a continuum material (Bogdanovich, A.E, 2006; 
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Lomov et al, 2001). Thus the textile society implemented a modeling hierarchy based 

on three modeling scales: the micromechanical modeling of yarns, the meso-

mechanical modeling of the fabric unit cell and the macro-mechanical modeling of 

the fabric sheet. 

The  first  numerical  studies  is  conducted  to  studies  for  the  evaluation  of  the  

elastic  properties  of  the  plain  woven composite  structures  based  on  a  strain  energy  

method applied to a one-direction undulation model using the FEM (Zhang, Y.C. and 

Harding, J. A, 1990). The studies consider of the tow undulation in one-direction that 

is a non-realistic assumption for woven fabrics. Research by Naik and Ganesh 

(1992), expanded the above approach taking into account the strand cross section 

geometry, possible gap between two adjacent strands and the two-direction 

undulation geometry with a detailed model of a large number of geometrical 

parameters to describe the undulation and varying thickness of the tow structure .  

Whitcomb introduced the first 3D finite element model of plain woven 

composites to studied the effect of quadrature order, mesh density and material 

degradation on the predicted failure resulting from the in-plain loading (Whitcomb, J. 

and Srirengan, K, 1996). Figure 1.1 shows the 3D solid modeling of the composite 

structure consists in the generation of the volumes representing the woven unit cell 

and  composite  unit  cell  as  an  external  volume.  Finally  the  volume  of  the  matrix  

material is the subtracting volumes of the woven structure from the external volume. 

 

 

Figure 1.1: Geometrical model of composite woven structure 

(woven reinforcement, matrix, composite) (Whitcomb, J. and Srirengan, K, 1996) 
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The prediction of the in plane elastic properties for the tow cross section 

(consideration of compressed hexagonal shape) of single layer 2/2 twill weave fabric 

composite was conducted by Ng et al (1998). The model approximately 52000 finite 

elements and 12000 nodes was generated using the finite element analysis software 

for modeling and mechanical analysis based on the 8-node solid elements with 3 

degrees of freedom (translational) per node. The contact areas generated during the 

subtracting  operation  (for  the  generation  of  matrix  material)  were  assigned  to  be  

shared entities for both the yarn and the matrix volumes, to ensure the transmission 

of loading.  

 

 

1.1 Problem statement 

 

In recent years, natural fiber is considerable attention as a substitute candidate for 

synthetic fibers. The application of natural fiber growing in many sectors such as 

automotive and construction due to their advantage compared to synthetics fiber. The 

advantages of natural fiber are low cost, low weight, less damage to processing 

equipment, improved surface finish, good relative mechanical properties and 

renewable resources (Chin CW, Yousif BF, 2012; Yousif BF, Ku H, 2012). Fiber 

construction in form of fabric can be construct in many ways such as woven, braided, 

stitched, and so forth can be used to form the fabric reinforcement. Woven composite 

offer a number of attractive properties compared to non woven. Woven composite is 

consists of microscopic scale (bundle of fiber in yarn), mesoscopic scale (sets of 

yarns  in  fabric)  and  macroscopic  scale  (fabric  itself).  The  considerations  of  the  

mechanical properties of woven composite are tensile strength, impact properties, 

torsional stiffness, fatigue, vibration and flexural strength (Joshi SV et al, 2004; 

Velmurugan R and Manikandan V, 2007). Woven composites have many design 

parameters such as volume fraction of fiber, architecture of reinforced fibers, the 

mechanical properties etc. There are some problems as cost and protracted 

development period to perform reliability evaluation by experimental with real scale. 

Recently, many researchers have studied the finite element analysis to predict 

mechanical properties of textile composite and mechanical properties and failure 
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behaviors of plain weave composites have been estimated (Tang and Whitcomb, 

2003).   

 Textile composite structures are still designed largely on the basis of 

experience, intuition and trial-and-error. Therefore, tracing any final product error is 

very complicated. Predictive modeling technique is use to minimize the need for 

physical testing, shorten design timescales and provide optimized designs. Approach 

of multi-scale modeling system is use to developed an energy-based argument 

combined with elastica methods to incorporate non-linear frictional behavior for yarn 

modeling.  Yarn constitutive mechanical properties are computed at fiber-yarn scale. 

These material properties form an input to yarn–fabric scale simulations. The finite 

element method is employed at yarn–fabric scale, with the yarn modeled as a 

continuum (Tan et al, 1997).  

Combined model is use if the mechanical properties of fabric effect by 

surface treatment. Suitable model should include a description of both the effect of 

meso-friction (i.e., between the yarns) and the effect of micro-friction (i.e. between 

the fibers in a yarn), together taking into account of fiber distribution within yarns 

and yarn topologies within a fabric. The benefit using hierarchal method of multi 

scale modeling is: (1) it encourages a reduced reliance on costly trial and error. (2) 

increases the confidence that new materials will possess the desired properties when 

scaled up from the laboratory level, so that lead-time for the  introduction of new 

technologies is reduced, (3) the multi-scale modeling  system lowers the likelihood 

of  conservative  or  compromised  designs  that  might  have  resulted  from  reliance  on  

less-than-perfect materials. There are many challenges for development of multi-

scale modeling approach without loss of intrinsic structural information for such a 

complicated structure material as shown in Figure 1.2. 
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Figure 1.2: Structure–property relationships for textiles and associated multi-

scale modeling hierarchy (H.Lin et.al, 2012). 

 

Finite element analysis is use to predict the mechanical properties of the 

woven composite by using the finite element analysis and modeling software to do 

the modeling of the woven fabric in difference fabric weave structure. Finite element 

modeling solution process consists of the following steps (H.Lin et.al, 2012): 

 

i. Divide structure into piece elements with nodes (discretization / meshing) 

ii. Connect (assemble) the elements at the nodes to form an approximate system 

of equations for the whole structure (forming element matrices) 

iii. Solve the system of equations involving unknown quantities at the nodes 

iv. Calculate desired quantities (e.g., strains and stresses) at selected elements. 

 

 

1.2 Objective of study 

 

i. To analyze the mechanical properties of woven kenaf composite with 

difference yarn size (759 tex, 413.4 tex, 276 tex) 

ii. To analyze the mechanical properties of woven kenaf composite with 

difference 2D weave pattern (Plain 1/1, Twill ½, Satin 5/2) 

iii. To optimize the fabric structure of plain 1/1, Twill ½, Satin 5/2  
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1.3 Scope of study 

 

In order to achieve the objective, the scope of research was to analyze the mechanical 

properties  of  woven  kenaf  composite  with  different  yarn  size,  different  2D  weave  

pattern and to optimize the fabric structure. The yarn size use in this research is 759 

tex, 413.4 tex and 276 tex for difference 2D weave pattern; Plain 1/1, Twill ½ and 

Satin 5/2. Furthermore, effect of using the combination for optimum mechanical 

properties of woven kenaf composite was investigated.  

 

 

1.4 Research outcome 

 

i. The  effect  of  different  yarn  size to the mechanical properties of the 

woven kenaf composite. 

ii. The effect of different 2D weave pattern to the optimum value of 

mechanical properties.  

iii. The optimum value for the mechanical properties depends on the 

combination of yarn size and weave pattern. 

 

 

 

 



 

 

 

 

CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

2.0 Textile structure composite 

 

Composites can be defined as a combination of dissimilar material with a specific 

internal structure and internal shape. This combination lead to singular mechanical 

properties and increase the performance characteristic compared to the material 

alone. Additionally, composite materials give superior strength to weight basis 

compare to other materials (e.g. metal). Based on the advantages of composite, the 

range of application for composite material appears to be limitless (Paul et al, 2006).  

Textile structure composites represent of advanced material which are 

reinforced with the textile for structural or load bearing applications. Textile 

structure composites are part of larger category of textile composite. Textile 

composite is the combination of a resin with a textile fiber, yarn or fabric in form of 

flexible or rigid body. Flexible textile composite includes the heavy duty conveyer or 

the inflatable life rafts. Besides that, textile structural composite are also use as the 

structural materials to resist heavy loads in the basic framework for buildings, 

vehicles, etc. The majority of textile composites are fiber reinforced plastic (FRP). 

FRP made of a textile composite perform embedded with a resin, metal or ceramic 

matrix. The matrix provides rigidity and holds the textile reinforcement material in 

prescribed orientation and position in the composite (fibers, yarns or fabrics) (Poe, C. 

C., and Harris, C.E, 1995). 

Aircraft and automotive manufacturers have been focus in the application of textile 

composites  structure  for  more  than  two  decades.  Woven  carbon  fiber  is  use  as  the  

textile structure composite in the component part is shown in Figure 2.1. The 
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composites structure offer competitive cost reduction and improve structural 

performance compare to current metallic materials. Numerous micromechanical 

models have been developed to predict the effective strengths and stiffness. Finite 

element analysis is use to predicted the textile mechanical properties even though 

they are based on simplifying assumptions but it’s provide good approximation to 

extensive testing. ( Poe, C. C., and Harris, C.E, 1995)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Preform/RTM parts in NH90 (Dumont et al, 2008) 

 

 

2.1  Natural fibers 

 

Natural fiber can be divided into vegetables, animal and mineral fibers. Vegetables 

fiber can be classified either wood or non-wood. Bast and leaf fibers are example of 

non-wood fibers.  Due to environmental awareness, the fiber use to build the textile 

structure composite previously focuses for natural fiber like cotton, flax, hemp and 
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kenaf (Paul et al, 2006).  The selection of suitable fibers is determined by the values 

of the stiffness and tensile strength of the composite. Other criteria for the choice of 

reinforcing fibers are elongation of failure, thermal stability, adhesion of fiber and 

matrix,  dynamics  and  long  term  behaviors,  price  and  processing  costs  (Paul  et  al,  

2006). Hemp and flax fiber can compete with E-glass fiber due to the tensile 

strength, elasticity and elongation at failure. Table 2.1 shows the classification of 

vegetable and cellulose fiber. 

 

Table 2.1: Classification of vegetable and cellulose fiber (Paul et al, 2006) 

 

Kenaf fibers can be use because of the properties which are low cost, 

lightweight, renewability, biodegradability and high specific mechanical properties 

as shown in Table 2.2. It has superior flexural strength and excellent tensile strength 

which make kenaf a good candidate for many applications. Kenaf fibers also have 

high absorption in moisture (hydrophilic) which can affect the mechanical properties 

whereas most common polymer matrix is hydrophobic but with certain treatment the 

adhesion can be overcome. The strength of kenaf is quite low compare to carbon and 

glass fiber but due to its low density it can compete with those synthetic fibers (I.S 

Aji et al, 2009). 
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Table 2.2: Properties of principal fibers (I.S Aji et al, 2009) 
 

  Diameter 
μm 

Ultimate 
Stress 
Mpa 

Strain 
% 

Modulus 
Gpa 

Density 
Kg/m³ 

Specific Stress 
(Mpa*m³/Kg) 

Cellulose/ 
lignin 

Microf. 
Angle 0° 

Ramic 16-120 800-1000 1.7-3 50-80 1560 0.51-0.64 70-80/0.5-1 6.0-10.0 

Pincapple 20-80 400-1000 0.8-1.6 34-82 1440 0.28-0.69 84-5/12-7 14-80 

Banana 80-250 500-700 2-3.5 7.7-20.8 1350 0.37-0.52 63-64/5 11 

Palmyra 70-1300 95-220 3.2-11 3.3-7.0 1090 0.09-0.20   30 

Sisal 50-300 500-600 3.0-7.0 9.4-16 1450 0.34-0.41 66-72/14-10 18-22 

Coir 12.0-24.0 100-200 15-20 4.0-6.0 1150 0.09-0.17 32-43/40-45 30-49 

Jute 25-120 400-700 1.5-2 2.5-15 1450 0.28-0,48 63-70/12 7.0-9.0 

Hemp 16-50 400-700 1,6-2,5 35 1480 0,27-0,47 70-88/3-4 6,0-10,0 

Kenaf 15-30 350-600 2.5-3.5 40 1500 0.22-0.40 75-90 9.0-1.0 

Cotton 15-25 300-600 5.0-8.0 4.0-12.0 1520 0.20-0.39 90-95/0 20-30 

Flax 12.0-30.0 900-1200 2.0-3.0 100 1540 0.58-0.80 71/2.2 6.0-10.0 

Carbon 6-10.5 1700-2400 1.4-1.8 180-415 1880 0.90-1.28     

Glass 2.5-15 1400-2500 2.5-5 68-96 2540 0.57-0.98     

 

 

2.2 Textile structure composite manufacturing process 

 

Textile structural composites can be studied in their hierarchical manufacturing 

process. There are usually four important levels in the manufacturing process for 

textile composite as shown in Figure 2.2. 
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Figure 2.2: Hierarchical of textile structure composite (Scardino, F, 1989) 

 

First  step  is  the  choice  of  the  high  modulus  fibers  to  resist  high  loads  in  

structural applications. Second step of the manufacturing process is grouping 

together the fibers (or filaments) in a linear assemblage to form a continuous strand 

having textile-like characteristics. After that, a group of filaments is then 

impregnated with resin (for non-hybrid fabrics, the resin is the same for all the 

strands and usually the same for the preform) and the resulting a tubular form called 

yarn (Scardino, F, 1989). As shown in Figure 2.3, yarns may be composed of one (a) 

or more (b) continuous filaments, or even discontinuous chopped fibers (c). Finally, 

two or more single yarns can be twisted together to form ply or plied yarns (d and e). 

The manufacturing process of yarns itself can involve rather complicated shapes.  

 

FIBER YARN 

FABRIC COMPOSITE 
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Figure 2.3: Different examples of idealized models of various yarn structures  

(Scardino, F, 1989) 

. 

Yarn structural features can be characterized by several geometrical 

parameters such as number of filaments, the diameter of the filaments (assuming the 

fibers have a cylindrical shape), and the yarn packing density, defined as the ratio of 

the fiber volume to the yarn overall volume. Yarn structure plays a dominant role in 

the translation of fiber properties into yarn properties. Table 2.3 listed the typical 

fiber-to-yarn strength translation efficiencies in various yarn structures for ordinary 

textile composites.   
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Table 2.3: Typical fiber-to-yarn strength translation efficiencies in various yarn 

structures (Scardino, F, 1989) 

 
 

The mechanical properties of the yarns are mainly affected by the fiber 

orientation relative to the yarn axis and the fiber entanglement in the various 

structural forms. Multifilament untwisted yarn structures, the strength translation 

efficiency ratio is 98% close to 100%, therefore the behavior of these yarns are very 

close to that of the fibers themselves. The loss of strength in the fiber direction is due 

mostly to degradation during yarn processing and lack of toughness. The fibers are 

also assumed to be transversely isotropic and the resin isotropic, such that untwisted 

yarns can be considered as transversely isotropic.  

The third step consists of bonding and interlocking the yarns together to 

produce a flat sheet with a specific pattern. Fabric types are categorized by the 

orientation of the yarns used, and by the various construction methods used to hold 

the yarns together. The periodicity of the repeating pattern in a textile fabric can be 

taken as a small repeating unit cell (RUC) which is sufficient to describe the fabric 

architecture. Figure 2.4 shows the four basic fabric structure categories are wovens, 

knits, braids, and nonwovens. 
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Figure 2.4: Comparison of basic fabric structures (Scardino, F, 1989) 

 

The interlacing of the yarns in a fabric leads to yarn crimp and give a critical 

influence on the composite stiffness and strength properties. Other factors such as the 

ability of a fabric to conform to a complex surface, stability, or porosity are also very 

important for the manufacturer.  

 

 

2.3  Woven fabrics 

 

Conventional woven fabrics consist of two sets of yarns mutually interlaced into a 

textile fabric structure. The threads that run along the length of the fabric are called 

warp or ends. The threads that run along the width of the fabric from edge to edge of 

fabric  are  referred  as  weft  or  picks.  Warp  and  weft  yarns  are  positioned  under  the  

angle of 90°. Warp and weft density is the number of warp and weft yarns per unit 

length. The warp and weft yarns in a woven fabric could be interlaced in various 

ways that is called a weave structure. The ratio of the yarn actual length to the length 

of the fabric it traverses is called crimp. The fiber volume fraction, fabric thickness 

and fabric mechanical properties influence by the crimp (J. W. S. Hearle et al, 1969). 

A cover factor is the fraction of the total fabric area that is covered by the component 
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yarn. The strength, thickness, stiffness, stability, porosity, filtering quality and 

abrasion resistance of fabrics will be influence by fabric area density and cover factor 

(J. E. Booth, 1997).  

Plain  weave  is  the  structure  where  warp  yarns  alternatively  lift  and  go  over  

across one weft yarn and vice versa is the simplest woven structure (Figure 2.5a). 

Twill is a weave that produces diagonal lines on the face of a fabric (Figure 2.5b). 

The direction of the diagonal lines viewed along the warp direction can be from 

upwards to the right or to the left making Z or S twill. Twills have longer floats, 

fewer intersections and a more open construction compared to plain weave of the 

same cloth parameters. There are many variations of twill construction (the smallest 

repeat is three in warp and weft direction) but the technical application of twills is 

restricted to simple twills.  

A weave  where  binding  places  arranged  to  produce  a  smooth  fabric  surface  

free from twill lines is called satin (Figure 2.5c) whereas the distribution of 

interlacing  points  must  be  as  random  as  possible  to  avoid  twill  lines.  The  most  

popular are satins of 5 and 8 repeats and the smallest repeat of satin weave is 5. 

These 5 ends satin is most frequently used for technical applications for providing 

firm fabric although having moderate cover factor (A. Bogdanovic & K. Pastore, 

1998). Mechanical properties of woven fabrics for technical textile depend on a) type 

of raw materials b) type and count of warp and weft yarns c) yarn density and d) the 

type of weave structure. 
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Figure 2.5: Comparison of most common woven fabric structures (David Cripps , 

2002) 

 

2.4  Effect of weave pattern in woven composite 

 

Identification of woven fabric composites is based on their microstructure called unit 

cell  (UC)  (Alif  N,  et  al.  1998).  The  interlacing  of  weave  pattern  and  unit  cell  for  

orthogonal plain weave, twill weave and satin weave is shown in Figure 2.6. The 

interlacing counts between the fill and weft yarn determine by the index, ng. The 

index for plain weave is two (ng = 2) , twill weave is three (ng = 3) and satin weave is 

four or greater (ng = 4) . The research by Nidal Alif et al. using the two woven fabric 

composite system (glass/epoxy and carbon/epoxy), three weave pattern of 

glass/epoxy composite (plain weave, twill weave) and carbon/epoxy composite (5-

harness satin weave, 8-harness satin weave). Figure 2.7 shows representative load-

displacement  (P-δ)  curves  for  the  Double  Cantilever  Beam  (DCB)  mode  I  fracture  

specimen (ASTM D5528) for glass/epoxy (Alif N, et al. 1998).  

The load-displacement curves for the plain weave composite are similar in 

both directions (Figure 2.7(a) and (b)). For the twill and satin weaves, however, 

crack propagation in the 900 direction, i.e. along the weft yarns (Figure 2.8), requires 
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significantly larger loads than propagation in the 00 direction. As the weave index, ng 

increases the fracture toughness increase. The fracture resistance of the plain weave 

composite is almost independent of direction. The small difference in toughness 

between the two directions may be due to a fill-to-weft ratio other than 1 shown in 

Table 2.5. The resistance curves for the plain weave composite are almost horizontal 

indicating no change in the fracture mechanisms after precracking. The twill and 

satin weave composites it is observed that crack propagation in the 900 direction is 

associated with greater resistance than that in the 00 direction. No oscillations happen 

in the fracture resistance curves which might be influent by the small tow width 

(Table 2.6). The reason for the stable growth observed may be the matrix ductility as 

reflected by the large failure elongation of the LY1802 epoxy (Table 2.4). The 

resistance curves for all glass/epoxy composites in a steady state without much of an 

increase in toughness. Steady-state fracture toughnesses for the glass/epoxy woven 

fabric composites are about: 425 (00), 450 (900), (plain), 525 (0 0), 620 (90 0), (twill), 

and 775 (0 0) and 925 (900) (8H-satin) in units of J/m2 (Alif N, et al. 1998). 

 

 
Figure 2.6: Interlacing patterns for woven fabric composites (a) Plain weave 

 (b) Twill weave (c) Satin weave (Alif N, et al. 1998) 
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Figure 2.7: Load-displacement curves for the glass/epoxy composite DCB specimens  

(a) Plain weave 00; (b) Plain weave 900 (c) Twill weave 00 (d) Twill weave 900  

(e) 8H-satin weave 00 (f) 8H satin weave 900 (Alif N, et al. 1998) 

 

 
 

Figure 2.8: Positioning of the insert film in the interplay region for crack propagation 
along the fill and weft yarns (00 and 900 directions) (Alif N, et al. 1998) 
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Table 2.4: Properties of fibers and matrix EL and ET are axial and transverse Young 
Modulus, VLT Poisson ratio for longitudinal extensions, εt ultimate tension strength  

(Alif N, et al. 1998) 
  
Material E-glass IM7 Carbon LY 1802 Epoxy 8551-7 epoxy 
EL 72 276 2.8 4.1 
ET 72 56 2.8 4.1 
VLT 0.3 0.25 0.36 0.37 
εt (%) 2.4 1.81 4.5 1.93 
ρ (g/cm3) 2.54 1.77 1.18 1.372 
 
 

Table 2.5: Weave characteristics for the glass/epoxy woven fabric composites  
(Alif N, et al. 1998) 

 
 
 
 
 
 
 

 
Table 2.6: Weave geometry parameters for the composites (Alif N, et al. 1998) 

 

Composite Repeat unit 
(ng) 

Tow width 
(mm) Gap (mm) 

Unit cell 
dimensions 

(mm) 
Glass/epoxy 
(plain) 2 0.56 0.02 1.21 x 1.35 

Glass/epoxy 
(twill) 3 0.51 0.02 1.54 x 1.55 

Glass/epoxy 
(8H) 8 0.46 0.06 3.8 x 3.7 

Carbon/epoxy 
(5H) 5 2.4 0.22 11.8 x 12 

 

 

2.5  Numerical simulation system for woven 

 

Woven composites have many design parameters such as volume fraction of fiber, 

architecture of reinforced fibers, the mechanical properties, etc. Therefore, there are 

some problems involved cost and development period for air planes and vehicles that 

must perform reliability evaluation by experiments with the real scale (Tetsusei 

Kurashiki et. al, 2007). Sherburn.M et al (2005) and Tang. X et al (2003) has 
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conducted a research using finite element analysis to predicted the mechanical 

properties of textile composite, mechanical properties and failure behaviors of plain 

weave composites. From the research, local delamination appears in resin region of 

crossing  parts  of  yarns  but  there  is  no  consideration  for  effect  of  resin  region  and  

damage development. Therefore, Lomov et al (2007) proposed numerical simulation 

system in multi-scale simulation to evaluate the damage development of woven 

composites shown in Figure 2.9.  The step for the multi-scale simulation consists of 

macro, meso and micro model of woven composite is shown in Figure 2.10 

(Verpoest, I. and S. V. Lomov , 2005). 

 

 

 

Figure 2.9: A practical numerical simulation system (Tetsusei Kurashiki et. al, 2007) 
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Figure 2.10: Multi-scale modeling of woven composites with 3 scales  

(Tetsusei Kurashiki et. al, 2007) 

 

The input data for a filament diameter, architecture of strand, etc will determine the 

topology of weave architecture and the structural model of internal geometry of the 

fabrics is generated. Numerical modeling program will generate hexahedron element 

for finite element model with yarns and matrix (Tetsusei Kurashiki et. al, 2007). The 

modeling simulation has a function to create 3D visual image of woven structure 

form weave diagram, etc. and also can determine the trajectory of the yarn in the 

stable state using the bending energy minimum theory within the software. The 

numerical modeling program not only generates the 2- dimensional textiles such as a 

plain weave and twill, but 3D woven or knitting can be corresponded and a structural 

image of a 3D fabric can be visualized by using the input information on the 

arrangement of weave yarns shown in Figure 2.11. 
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Figure 2.11: Geometrical modeling of 3D visual image by WISETEX program  

(Tetsusei Kurashiki et. al, 2007) 

 

2.6  Finite element modeling of yarns and resin 

 

Hexahedron  is  used  as  a  shape  of  a  finite  element  of  a  yarn  and  the  element  is  

regularly generated so that an element coordinate system and the direction of a fiber 

may become equal. Figure 2.12 shows all the procedure for the finite element 

modeling. Figure 2.12(a) shows the position and direction of the cross sections form 

the WiseTex data. Delaunay method is used to generate the mesh of a cross section 

and the cross-sectional elements are combined to the neighbor element of another 

cross section. Figure 2.12(b) shows the repeated procedure in order to create the 

hexahedron elements of a yarn. Matrix cracks and delamination at the crossover parts 

of fiber bundle will influent the estimation of damage development of woven fabric 

composites and its may lead to complicated fracture modes in comparison with uni-

directional fiber reinforced composites. Figure 2.12(b) show the yarn element was 
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generated, the finite elements of matrix parts are generated on the circumference of a 

yarn shown in Figure 2.12(c). 

Figure 2.12(d) shows the hexahedron elements are generated to connect the 

warp and weft yarns. Finally, finite elements in the upper and the lower parts of 

matrix are generated, and finite element model with yarns and matrix by the 

hexahedron element can be obtained as shown in Figure 2.12(e).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12:  Procedure of finite element model of woven fabric composites  

(Tetsusei Kurashiki et. al, 2007) 

 

Figure 2.13 shows typical examples of finite element models with several 

fabric architectures based on the developed program MeshTex. Finite element 

models of a twill fabric and 3D fabric composites considering resin parts on the 

circumference of a yarn and 3 dimensional architecture of a yarn can be obtained 

easily using MeshTex.  

 

 




