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Abstract

Little is known about how people learn to take into account others’ opinions in joint decisions. To address this question, we
combined computational and empirical approaches. Human dyads made individual and joint visual perceptual decision and
rated their confidence in those decisions (data previously published). We trained a reinforcement (temporal difference)
learning agent to get the participants’ confidence level and learn to arrive at a dyadic decision by finding the policy that
either maximized the accuracy of the model decisions or maximally conformed to the empirical dyadic decisions. When
confidences were shared visually without verbal interaction, RL agents successfully captured social learning. When
participants exchanged confidences visually and interacted verbally, no collective benefit was achieved and the model failed
to predict the dyadic behaviour. Behaviourally, dyad members’ confidence increased progressively and verbal interaction
accelerated this escalation. The success of the model in drawing collective benefit from dyad members was inversely related
to confidence escalation rate. The findings show an automated learning agent can, in principle, combine individual opinions
and achieve collective benefit but the same agent cannot discount the escalation suggesting that one cognitive component
of collective decision making in human may involve discounting of overconfidence arising from interactions.
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Introduction

The exchange of information between members of a group has

been crucial to the success of the human species [1], [2]. However,

surprisingly little is known about how we learn to integrate each

other’s opinions when making decisions as part of a group [3]. To

make effective group decisions, we must continuously evaluate the

reliability of each other’s opinions and, perhaps more importantly,

share and calibrate these subjective estimates in order to decide

whose opinion is more likely to benefit the group. This task is

complicated by the fact that the very process of social interaction

may bias the information upon which our individual opinions are

based [4–6].

Collective decisions e.g. jury verdicts, medical diagnosis or

financial investment, are often characterized by uncertain choice

between known alternatives. Uncertainty-ridden collective deci-

sion making has been subject to theoretical [7–9] and more

recently, empirical examination [10–12]. A much more extensive

body of work in social psychology of collective decision making has

focused on knowledge refinement: opinion sharing and social

influence have been studied in the context of knowledge of

numerical facts (e.g. historical milestones, ‘‘In what year did the second

world war start?’’; descriptive statistics on demographics, ‘‘what

proportion of population in Framingham, MA are under 15 years old?’’;

predicting the outcome of future sporting events) [13], [14].

However, both of these previous lines of work have generally

assumed stationarity for social decision making by (often explicitly)

positing that the reliability of individual opinions and the strategy

for combining them stay constant over time.

Recently, a number of learning models have been proposed for

social learning in non-cooperative contexts. Hampton and

colleagues used reinforcement learning (RL) to examine how we

infer the hidden intentions of those working against us [15], [16]

used RL to describe how we integrate social advice with subjective

information [16]. Behrens and colleagues [17] developed a

Bayesian model to explain how we discount social advice based

on an advisor’s history of trustworthiness. In the artificial

intelligence domain, Mirian and colleagues developed a continu-

ous Bayesian RL model to learn fusion of experts’ probabilistic

decisions [18]. However, the primary focus of these studies was on

game-theoretic approaches; consequently, for these models conflict

of interest and inference of hidden intentions are the primary

computational/cognitive hurdles. This is a different domain from

the case of uncertainty-ridden social collective decision making

where communication and integration information about uncer-

tainty is the primary computational task. In summary, despite their

intuitive appeal, theoretical and empirical examinations of

dynamic aspects achieving a benefit from cooperation are scarce.

A demonstration of social learning in the context of collective

decision making was recently reported [19]. Dyad members
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Figure 1. (A) Stimulus, experimental procedure and modes of communication. In each trial participants observed two consecutive stimulus
intervals and then announced their private decisions about which interval contained the oddball (here illustrated by the dotted outline). Participants
reported their confidence in private. Individual decisions were then announced, and in cases of disagreement participants saw each other’s
confidence rating (in both conditions) and also talked to each other (only in V/V condition) in order to reach a joint decision. Feedback was provided
at the end of each trial (B). The average psychometric function plots the proportion of trials in which the 2nd interval was chosen against the contrast
difference between oddball and distractors. A highly sensitive observer would produce a steeply rising psychometric function with a large slope.
Circles, performance of the less sensitive observer (Smin) of the dyad; grey squares, performance of the more sensitive observer (Smax); and black
squares, performance of the dyad (Sdyad ). (C) Distribution of confidence levels in the Visual and Visual/Verbal conditions. Error bars are 1 SE.
doi:10.1371/journal.pone.0081195.g001
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participated in a visual perceptual experiment in which they

estimated their confidence in their individual decisions about a

visual stimulus on every trial, but were also required to make joint

decisions whenever their individual decisions conflicted. The

results indicated that dyadic performance changed over time.

Dyads did not initially exceed their better member. But with time,

groups accumulated a robust collective benefit. Critically, the

results showed that dyad members’ communicated confidence

ratings changed relative to each other over time. Such a demonstration

of dynamic changes in social collective decision making mean that

previous simpler models that assumed stationary dynamics [10],

[11] must be complemented by more sophisticated models that

could take into account such dynamics. To address this problem,

we developed a model for social learning in collective decision

making based on the principles of reinforcement learning [20],

[21].

In addition, we used this modelling exercise to address another

question raised earlier. Bahrami and colleagues in [19] showed

that dyad members who first made an individual decision and then

verbally discussed a joint decision outperformed dyad members

who were also asked to explicitly rate their confidence in their

individual decision Thus, explicit introspection and verbal

communication interacted sub-additively in contributing to collective

decision making. Interestingly, dyads who communicated only via

explicit introspection (without verbal communication), did not do

any better. As such, the question how engaging in different modes

of expressing one’s confidence may interfere with one another

remains open. We asked if combining verbal and visual confidence

sharing affects the dynamical aspects of learning in social collective

decision making. We used the empirical data from a previous

study [19] to compare the success of our RL-based model in

explaining dyadic behaviour and to identify the possible psycho-

logical mechanism that might have led to differences in collective

benefit for various modes of communication.

Methods

The Experiment
The local ethics committee (The Interacting Mind Ethics

Committee at Aarhus University) approved all experiments, and

written informed consent was obtained from all participants. The

stimuli parameters and the procedure have been described in

detail elsewhere [19]. In brief, 58 healthy male adult participants

(mean age 6 std: 23.562.5) were paired into 29 dyads and

participated in one of two conditions (14 dyads in a Visual

condition and 15 dyads in a Verbal/Visual condition – see below).

Members of each dyad knew each other beforehand. Each

participant was only recruited for one of the two conditions.

In each trial, the dyad members first made an individual

decision about a briefly presented visual stimulus (i.e. whether a

target occurred in a first or second viewing interval) and indicated

their confidence in this decision on a scale with 5 steps (Figure 1A).

The individual responses (i.e. decision and confidence) were then

publicly displayed for both dyad members. In the case of

disagreement (i.e. the dyad members independently selected

different intervals), the dyad members were required to make a

joint decision. In the verbal/visual (V/V) condition, the dyad

members had access to each other’s responses (i.e. decision and

confidence) and were also allowed to talk to each other about what

might be the right decision. In the visual (V) condition, the dyad

members only had access to each other’s responses. In both

conditions, for each disagreement trial, one of the two dyad

members was randomly nominated to indicate the joint decision.

On each trial, visual target’s contrast was randomly chosen from 4

values, spanning very easy (high contrast) to very difficult (low

contrast) decisions. Each dyad completed 16 blocks of 16 trials,

giving rise to 256 trials in total.

Estimating the Individual and Collective Performance
For each decision maker (i.e. individuals and the dyad as a

whole), a psychometric function was constructed by calculating the

proportion of trials in which the target was reported seen in the

second interval against the target contrast (i.e. Dc, the target

contrast in the second interval minus the target contrast in the first

– see Figure 1B). The resulting curves were fit to a cumulative

Gaussian function with parameters bias, b, and variance, s2 using

a probit regression model (glmfit function in Matlab, Math works

Inc). A decision maker with bias b and variance s2 would have a

psychometric function P(Dc) where Dc is the target contrast

difference, given by

P(Dc) ~ H
Dczb

s

� �
, ð1Þ

Where H(z) is the cumulative Normal function,

H(z):
ðz

{?

dt

2pð Þ1=2
exp {t2=2
� �

: ð2Þ

Given the above definitions for P(Dc), we see that the decision

variance is related to the maximum slope of the fitted psycho-

metric curve at its point of inflection, denote s, via

s~
1

2ps2ð Þ1=2
: ð3Þ

A steeply rising curve has a large slope, indicating small

variance and thus high sensitivity to the target contrast. We used

this measure to quantify the individuals’ and the dyad’s sensitivity.

We defined collective benefit as the ratio of the dyad’s slope (sdyad) to

that of the more sensitive dyad member (i.e. the dyad member

with the steeper slope, smax); a value above 1 indicated that the

dyad managed to obtain a benefit over and above its better

observer.

Modelling
We used reinforcement learning (RL) to construct a dynamic

model of the dyadic choice behaviour. An RL agent searches for a

behavioural policy that maximizes its expected reward. The RL

agent solves this problem by estimating the expected reward –

called value–of the possible actions for each state that the agent may

encounter in its environment [20], [21]. In our case, each state(s) is

identified by the pair of confidences (c1 and c2) reported by the

dyad members in each trial. The action (a) is the joint decision (1st

or 2nd interval) adopted by the dyad. The reward (Rt) in trial t is

+1 if the decision turns out to be correct and 21 otherwise. The

behaviour policy adopted by the RL agent is the probability

distribution that the agent assigns its two possible actions for each

state. We used a single-step version of the Temporal Difference

(TD) learning algorithm (Sutton, 1998). In this algorithm, trial-by-

trial, the agent updates the value of the action-state pair (s,a)

pertaining to that trial:
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Qtz1(s,a) ~ Qt(s,a)zadt ð4Þ

where 0#a#1 is free learning rate parameter and

dt ~ Rt{Qt(s,a) is the prediction error.

Reduction of the State Space
In both conditions, (see above and Figure 1A) the individual

confidence estimates took integer values from 25 (high confidence

for first interval) to +5 (high confidence for second interval)

excluding zero. Therefore, the two dimensional 10610 state space

s~(c1,c2) had100 possible combinations. This number of states was

too large for the learning algorithm to handle and converge

meaningfully considering that the total number of trials was 256.

Moreover, we observed that participants’ used the higher

confidence (4 & 5) levels much less frequently (see Figure 1 C).

Therefore, we transformed the state space by collapsing the two

highest levels of confidence (i.e. 2/+4 and 2/+5 were relabelled

as 2/+4). Given our models’ preference for smaller state-spaces,

one may wonder whether empirical interpersonal communication

might have been more successful if a sparser confidence space (e.g.

with 3 rather 5 levels) was offered to the participants. Unfortu-

nately, the behavioural results described here cannot tell us much

about the human observers’ preferred resolution of confidence

space. Future research in collective decision making could address

such possible role of resolution of information. To ensure the

generality of our findings, we also tried a number of similar

transformations of the state space and our results were qualita-

tively replicated.

Max Accuracy RL
For each dyad, we divided the experimental data into three time

bins and for each time bin. We observed that people’s confidence

reporting changes across time (see Escalation of Confidence).

Previously, it was shown [19] that the mutual relationship between

confidence ratings of dyad members changed across time.

Bahrami et al [19] calculated the alignment of confidence across

trials and found that the dynamics of the chance in this ratio was

only observable when the data were split into three or more bins

(See their Figure 8A in ref. [19]). One way to deal with such a non-

stationary confidence reporting is to tune the a parameter

(learning rate) every few trials. Instead, and to avoid model

complexity we divided the data into three equal bins and restarted

the learning process from the beginning in each bin. By doing so,

we could cope with the previously observed non-stationary nature

of confidence reporting. We also tried dividing the data into more

bins, but number of trials in each bin wouldn’t be sufficient for the

analysis. We tried modelling the entire time-series as one whole

session (i.e. without restarting the learning by using one bin) as

well. The model fitness to dyads’ slope was best with three bins.

Nevertheless, the main findings were the qualitatively same for

three and one bin analysis. We ran the learning algorithm with a

fixed learning rate, the free parameter (0#a#1) in eq. (4). Within

each bin, we searched for the learning rate that produced the

maximum slope (defined in eq. 3). Then we computed the RL

agent’s overall slope (see Table S1 for the pseudo code). Since we

wanted this slope to be comparable to dyadic performance

measures across the entire experiment, we collapsed the whole

data of the three bins and calculated the slope of the whole trials.

At the beginning of each run of learning algorithm for each subset,

we initialized the Q-values to zero. The Q-values were updated

using (eq. 4). In each trial the agent used a greedy policy for

decision making:

at~ arg maxa1,a2
(Qt s,a1ð Þ,Qt s,a2ð Þ) ð5Þ

Where a1(a2) corresponded to 1st 2nd
� �

interval respectively. In

the first occurrence of each state, where Q s,a1ð Þ~Q s,a2ð Þ~0, the

agent took the action that had higher confidence;

i.e.at ~ interval arg maxci
f cið Þj j,i~1,2ð Þð Þ where interval(l) is the

interval associated to the confidence level l and f(.) is the state

definition function; see Reduction of the state space.

Max Similarity RL
The accuracy maximizing RL treated each dyad as one

functional unit. One may argue, however that in our experiments,

even though every disagreement trial involves arbitration between

dyad members, the joint decision was eventually made by the dyad

member who was nominated to indicate the decision. As such,

each dyad may better be described as a combination of two

decision makers. In order to address this possibility, we fitted

separate RL models to the joint decisions indicated by each dyad

member, searching for the learning rate that most closely fitted the

individual dyad member’s choice behaviour when responded on

behalf of the dyad. All other model details were the same as those

of the accuracy-maximizing RL model.

Results

Max Accuracy RL
To compare the empirical dyadic decision with those of the RL

agents, we computed the collective benefit (CB) obtained by the

model (smodel/smax, Figure 2A, dark grey bars)and compared it to

empirical collective benefit obtained by the dyads (sdyad/smax,

Figure 2 A, black bars)for the V and V/V conditions. In the V

condition, the RL model successfully accrued a significant

collective benefit compared to the dyad’s best member’s sensitivity

(t(13) = 2.6; p,0.01; one sample t-test comparing logarithm mean

CB to 0). To avoid heavy tale distribution, we applied the

statistical tests on the log-transformed ratios. Furthermore, this

collective benefit obtained by the model was comparable to that

empirically achieved by the dyads. The upper left panel in Figure 2

B shows that the accuracy maximizing RL model did a good job of

case-by-case predicting the empirical dyadic slope in the Visual

condition. In the Visual/Verbal condition, however, the RL

model did not achieve any significant collective benefit

(t(14) = 2.71; p.0.48; one sample t-test comparing logarithm

mean CB to 0). Moreover, the collective benefit accrued by the RL

model was significantly less than that achieved by the dyads

(paired t-test comparing logarithm CB for model and the dyads;

t(14) = 23.74; p,0.003; Figure 2A and 2B upper right panel).

Finally, testing our main hypothesis directly revealed that the

concordance between the RL model and empirical data (smodel/

sdyad) was significantly higher in the V compared to V/V conditions

(independent sample t-test; t(27) = 2.3; p,0.04).

Max Similarity RL
Here we modelled the dyadic decision making process as the

combination of two parallel, concurrent reinforcement learning

processes, one for each dyad member. We wanted to see if

conceiving of the dyad as the aggregation of two separate decision

makers rather than a singular unit (as in above) would enhance the

RL model’s concordance with the empirical data. The aggregate

RL agent conferred larger collective benefit in the V compared to

V/V (independent t-test; t(27) = 2.1;p = 0.034). It was a also good
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predictor of dyadic performance in the V (paired t-test; t(13) = .24;

p = 0.8; Figure 2B, lower left panel) but not in the V/V (paired t-

test; t(14) = 23.5; p = 0.0035; Figure 2B, lower right panel)

condition. In sum, these results did not show any qualitative

difference between the dyad as an aggregate (Max Similarity) and

dyad as a unit (Max Accuracy) modelling approaches. Therefore,

through the rest of the paper we only focus on the simpler Max

Accuracy RL model. However, caution must be exercised in direct

comparison of these two approaches since they employ quite

different details (e.g. number of free parameters).

The results suggested that availability of verbal communication

affected the learning strategy employed to arrive at dyadic

decisions. In the Visual condition, dyadic behaviour was consistent

with the simple RL strategy encapsulated by eq. 4 and 5.

However, in the Visual/Verbal condition, even though dyads

achieved a comparable level of collective benefits, their behaviour

Figure 2. Comparison of empirical and modelling outcomes. (A) Average collective benefit (CB, smodel/smax) is plotted for the empirical (black)
data as well as the RL models (light and dark grey). In the visual condition, the RL model successfully accrued a significant collective benefit compared
to the dyad’s best member’s sensitivity. Error bars are 1SE. (B) Scatter plots show the relation between model predictions and empirical data for Max
Accuracy (top row) and Max Similarity (bottom row): both modelling approaches did a good job of case-by-case predicting the empirical dyadic slope
in the Visual condition (left column). But in the Visual/Verbal condition (right column), the RL models were consistently inferior to empirical
performance.
doi:10.1371/journal.pone.0081195.g002
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was not consistent with the same RL strategy. What could the

impact of verbal communication on collective decision making be

that led to such divergent strategies in the V and V/V conditions?

One possibility is that direct, verbal interaction might have

affected how the individuals express their shared confidence. In an

elegant study, Shergill and colleagues [22] had participants engage

in a tit-for-tat game of exchanging forces where two participants

took turns at applying pressure (using their right index finger) to

each other’s left index finger. Importantly, both participants were

instructed to apply the same amount of pressure that their partner

had applied to them in the preceding turn. Surprisingly, the

applied force escalated rapidly even though instructions empha-

sized maintaining equality. Agents applied more and more force

upon each other. In a second experiment, Shergill and colleagues

[22] demonstrated that force escalation critically depends on direct

interaction. When participants applied forces via an intermediary

device – transforming a joy-stick movement to force –force

escalation was substantially reduced.

We conjectured that direct interaction might have a similar

effect on confidence judgements. Indeed, previous research

suggests that making a decision as part of a group leads to

increases in confidence that are not mirrored in accuracy [14].

Based on these findings, we hypothesised that direct interaction led

to an escalation of decision confidence that was not mirrored in

increased sensitivity (i.e. the slope of the psychometric function).

Moreover, similar to escalation of forces, one may expect the boost

in confidence to build up progressively over time. Finally, we

predicted that if the failure of the Max Accuracy RL models to

account for the collective decisions is due to confidence escalation,

then the collective benefit achieved by the RL algorithm should be

correlated with the speed of confidence escalation across dyads.

Escalation of Confidence
There was no difference in individual participants’ slope

between conditions (independent samples t-test; t(56) = 0.06,

p..94). However, mean absolute confidence expressed by

participants (averaged over all trials) was significantly higher in

the V/V compared to V condition (independent samples t-test;

t(56) = 22.29, p,.03). These results corroborated the previous

findings (Heath and Gonzalez,1995) that verbal interaction leads

to increased confidence without improving accuracy.

To assess the build up of confidence over time, we again divided

the data into the 3 time bins devised and employed a 2 (V and V/

V conditions) by 3 (time bins) ANOVA. The main effects of

experimental condition and time were both significant (Figure 3 A;

for condition, F(1,56) = 4.85, p = 0.03; for time F(2,112) = 26.71,

p,0.001; Figure 3 B). The interaction between condition and time

bin was nearly significant (F(,2,112) = 2.73, p = 0.070) lending

support to the hypothesis that direct interaction accelerated the

escalation of confidences. Direct comparison between conditions

in each time bin showed no significant difference in confidence in

the first time bin (t(56) = 1.56, p.0.12; independent samples t-test),

a near-significant difference in confidence in the second time bin

(independent t-test; t(56) = 21.89, p = 0.06) and a significant

difference in confidence in the third time bin (independent t-test;

t(56) = 2.6,p,.02). A similar 2 by 3 ANOVA on individual

sensitivity showed no significant effects (p..05).

We then tested the hypothesized relationship between speed of

confidence escalation and failure of the RL model. Since this

prediction was independent of the mode of communication, we

tested the correlation after collapsing the data from the two

conditions. We first quantified the change in mean absolute

confidence from bin 1 to bin 3 for each individual by:

X2

i~1

DMiz1 { Mi D

Where Mi is the average absolute confidence of a participant in

time bin i. Then for each dyad, we calculated the sum of this value

from the constituting individuals. A negative correlation (Pearson

r = 2.405; p,.03; R2 = 210.66) was found between the dyadic

cumulative change in absolute confidence and the collective

benefit obtained by the Max Accuracy RL model for each dyad.

Discussion

We employed a reinforcement learning [20], [21] approach to

develop a model for social learning in collective decision making

via confidence sharing. We used the empirical data obtained from

human participants in a previous work and trained two simple RL

algorithms that, on a trial by trial basis, combined the participants’

expressed level of confidence to arrive at a dyadic decision.

Learning involved finding the appropriate policy for mapping

individual confidence pairs to dyad decisions that either

maximized the accuracy of the model or most closely conformed

to the dyadic decisions.

We found that both approaches were similarly successful at

explaining the empirical findings in the Visual condition where

dyad members shared their confidences through a graphical

interface without interacting verbally with one another. This result

helps us draw a clearer picture of how individuals combine their

own uncertainty-ridden decision with those expressed by others.

The simplicity of the learning algorithm, which essentially boils

down to equations 4 and 5 (see Methods), is of great value in

helping us form an idea about the mechanism of how the dyads

may have learned from previous rounds of interaction towards

arbitrating the current disagreement.

This finding also demonstrates that communication of intro-

spection by Visual means alone is rich enough to ensure collective

benefit even by an automated learning agent such as the RL

models employed here. This is consistent with a recent study [12]

which showed that pooling subjective confidences from multiple

non-communicating observers leads to collective benefit. Both [12]

and the current study focused on perceptual decisions, yet it is

difficult to compare the quantitative magnitude of collective

benefits delivered by each method. Applying the Maximum

Confidence Slating (MCS) algorithm [12] to our data is

problematic because in MCS, non-communicating observers are

handpicked post-hoc by the experimenter to form ‘‘virtual’’ dyads

according to the similarity of their individual performances. This is

not the case for the current work and individuals comprising a

dyad are fixed. Future research will be needed to clarify the

possible differences between automated social learning algorithms

(such as implemented here) and the post-hoc schemes that depend

on an experimenter’s direct influence.

In the Visual/Verbal condition, on the other hand, where

participants exchanged confidences visually and interacted verbal-

ly, the same RL models were unable to achieve any collective

benefit and significantly deviated from predicting the dyadic

behaviour. These diverging findings from the Visual versus

Visual/Verbal conditions can help us infer the direction of

interference between introspection and collective decision making.

Bahrami and colleagues [19] showed that dyads achieve more

collective benefit if they make their private decisions (Figure 1) with

verbal communication but without explicit confidence rating. That

finding suggested that introspection (i.e. explicit confidence rating)
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which is a cognitively demanding process [23], [24] may interfere

with verbally mediated collective decision making. An open

question was whether this interference is unidirectional or, rather,

verbal interaction could also interfere with the process of

introspection.

Meanwhile, previous works showed that verbal communication

alone is also adequate for ensuring collective benefit [11], [25].

Since verbally and visually communicated confidences are, by

definition, meant to convey the same information (i.e. the

subjective probability of accurate decision) substantial redundancy

must be shared between them. As such, the fact that the empirical

benefits of the two channels did not add up to additional collective

benefit in the Visual/Verbal condition (Figure 3A, compare black

bars) may simply be a trivial consequence of such redundancy

rather than any form of active interference.

The failure of the RL models in the Visual/Verbal condition

rejects the redundancy alternative and presents strong evidence for

the interference account. Some active form of interference between

the two channels of communication renders the visually conveyed

information much less informative about decision uncertainty: in

the Visual/Verbal condition, the same RL models (with identical

structural complexity and number of parameters to Visual

condition)did not achieve any collective benefit from utilizing the

visually shared confidence. Thus, our findings using computational

modelling go beyond earlier work [19], [24] by clearly demon-

strating the interfering impact of direct verbal interaction on the

process of introspection and explicit confidence rating.

Our subsequent follow-up behavioural analysis showed that as

participants went through the experiment, they grew progressively

more confident in their decisions; this boost in confidence was

much more pronounced with verbal communication (Figure 3A)

and was inversely correlated with success of the RL model applied

to confidence estimates (Figure 3B). These results help further

clarify the nature of the interference between introspection and

social interaction in the form of confidence escalation (Heath and

Gonzalez, 1995; Shergill et al 2003).

An interesting aspect of our behavioural findings is that the

collective benefit obtained by the dyads was not affected by the

greater confidence escalation under V/V (vs. V) condition

(Figure 2A, black bars). This raises the possibility that participants

in the V/V condition were simply ignoring the confidence ratings

and focused on the verbal communication. This account would

require that collective benefit in the V/V condition be as good as

when participants communicate exclusively verbally without any

explicit confidence rating. Bahrami et al in [19] showed that

collective benefit is significantly larger under verbal-only (versus

V/V) communication ruling out the possibility of ignoring the

confidence ratings in the V/V condition. Shergill et al in [22]

argued that human agents engaged in force escalation underes-

timate the force they apply to their partner because they implicitly

discount their own applied force. It is likely that here too, in V/V

condition agents have some implicit understanding of the

escalating nature of their shared confidences which may help

them discount the trend and achieve empirical collective benefits

comparable to that obtained in the Visual condition where

confidence escalation is much less pronounced. Such implicit

understanding of the underlying dynamics, however, is not

available to the RL model leading to its failure in the Visual/

Verbal condition. An important question for future research would

be whether agents are indeed aware of such trends or not and if

they could learn to minimize their interfering impact on

communication towards collective benefit.

Supporting Information

Table S1 Pseudocode for RL algorithm. (A) Maximum

accuracy and (B) maximum similarity. In maximum accuracy

(maximum similarity) for each dyad (individual) we first trans-

formed the confidence ratings (see Methods) and then ran the

Figure 3. Confidence escalation and its correlation with collective benefit. (A) Mean absolute decision confidence (across participants) is
plotted against time bins. Each time bin corresponds to one third of the trials. Black and grey lines refer to V and V/V conditions, respectively. Error
bars are 1 SE. (B) Collective benefit obtained by the best fitting accuracy-maximizing RL model is plotted against change of confidence across the 3
time bins.
doi:10.1371/journal.pone.0081195.g003
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learning algorithm with a fixed learning rate for each subset of the

experimental data. We searched for the learning rate that

maximized the slope (trial by trial similarity of model and

individual) over each three subsets of the trials; then for each trial,

we assigned decisions to dyads based on the winning learning rate

model and finally calculated the overall dyadic slope for each

dyad.
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