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Abstract

This work studies proton-proton collision data recorded by the
ATLAS detector at the LHC from 2010 to 2012. The bulk of the
work concerns measurements of the sum of the transverse energy of
particles as a function of their pseudorapidity, η, at a centre-of-mass
energy

√
s = 7 TeV. These measurements are performed using the

entire acceptance of the ATLAS detector, 0 < |η| < 4.8, and are
split into two classes of event: one requiring the presence of low
transverse momentum particles and the other requiring particles with
a significant transverse momentum. In the latter case measurements
are made in the region transverse in φ to the hard scatter. As
such, both measurements are sensitive to non-perturbative QCD
processes. Comparisons are made with the predictions from various
Monte Carlo event generators, which generally underestimate the
quantity of transverse energy at high η. This discrepancy is found
to be dependent on the choice of Parton Distribution Function.

A new technique for performing model independent missing
transverse energy searches is presented. The ratio of the branching
fractions between Z → νν̄ and Z → µ+µ− processes is used, with
deviation from the Standard Model prediction inferred as an indica-
tion of new physics. Preliminary Monte Carlo results are shown by
way of proof-of-principle.

In addition, technical measurements of the muon reconstruction
efficiency of the ATLAS inner detector trigger algorithms are pre-
sented. An established technique is used to obtain unbiased results,
and the performance of the algorithms discussed.
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Chapter 1

Introduction

“In the dreaming man’s dream, the dreamed man awoke.”
— Jorges Luis Borges

Theories last as long as experimental evidence allows them to. In this respect, the
Standard Model of particle physics has emerged as one of the most enduring theories
in modern science. Inspired by developments in quantum mechanics, it has motivated
the technological advances necessary to study Nature at its most fundamental scale.

The rise of the Standard Model has been accompanied by a flowering international
community. As its scope has increased over the past half-century from explaining
quantised electromagnetic interactions to the origin of matter itself, the number
of people involved in its development has burgeoned. This has culminated in the
ATLAS (A Toroidal Lhc ApparatuS) experiment, based at the Large Hadron Collider
(LHC) at the European Organisation for Nuclear Research (CERN). With over 3000
physicists from 38 different countries, it represents the largest ever collaboration of
scientific researchers. The LHC itself, which is designed to accelerate and collide
hadronic particles at energies equivalent to those ten trillion-trillionths of a second
after the Big Bang, is an unprecedented feat of engineering.

The primary aim of the ATLAS experiment, and this work, is to test the Standard
Model’s description of physics at these energies. This work is divided into five
parts: the first two provide the theoretical (Chapter 2) and practical (Chapter 3)
background relevant for the remaining three sections, which detail measurements
of Standard Model physics (Chapter 4), a new technique for measuring physics
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processes not described by the Standard Model (Chapter 5), and a measurement
of how efficiently the ATLAS detector reconstructs particles from Standard Model
processes (Chapter 6).

In Chapter 2, the origins and scope of the Standard Model are discussed. The
components most relevant to this work are examined in detail and techniques for
measuring them are presented. In addition, one of the outstanding unsolved issues in
the Standard Model is considered, and a popular theory for its resolution is described.

The design and operation of the LHC and the ATLAS detector is discussed
in Chapter 3. Key features of the ATLAS detector pertinent to the following
measurements are highlighted, and a detailed description of the reconstruction
software analysed in Chapter 6 is given.

The world’s first fully inclusive measurement of the sum of the transverse energy
in pp collisions, for two types of Standard Model physics processes, is presented in
Chapter 4. The motivation is discussed and the analysis process detailed. The final
results are compared with a number of different physics models, and an assessment
of their descriptions is given.

A new technique for making measurements of processes beyond the Standard
Model is presented in Chapter 5. The advantages of the method over current methods
are given, and the theoretical justification provided. Preliminary results are shown,
and a discussion of the necessary steps to complete the analysis is given.

Chapter 6 describes the first unbiased measurement of the ATLAS inner detector’s
tracking software reconstruction efficiency. The technique used to perform the
measurement is presented, and the analysis process detailed. Comparisons are
made between different software implementations and conclusions drawn as to the
performance at large.

Finally, Chapter 7 summarises the conclusions from the preceding studies and
discusses their relevance to the development of the Standard Model.



Chapter 2

Theory

“The sum of the square roots of any two sides of an isosceles triangle
is equal to the square root of the remaining side!”

— Homer Simpson

2.1 The Standard Model

At its heart, the Standard Model of particle physics is a theory of interacting fields. Its
origins lie in the successful fusion of electromagnetism, quantum mechanics and special
relativity, elegantly expressed by the Dirac equation. Upon quantising the resulting
gauge theory — in effect, allowing it to be measured — a new basis for understanding
elementary particles and their interactions was born, called quantum field theory
(QFT). This basis was used to create the theory of quantum electrodynamics (QED),
which defines the electromagnetic interaction between photons and charged particles,
and which has since become the best tested theory in the history of science1.

A guiding component in the development of the Standard Model is the principal
of symmetries. The root of this idea is Noether’s theorem, which states that if the
action of a physical system has a continuous symmetry, then a physical property is
conserved. Therefore in QFT, the Lagrangian describing a given system’s dynamics

1The gyromagnetic ratio of the electron has been measured to agree with theory to within ten parts
in a billion.
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is constructed such that it is invariant under some symmetry transformation groups.
To provide a description of sub-atomic particles, their interactions, and observed
conservation laws the Standard Model is constrained in terms of such groups. It can
be roughly separated into two non-Abelian2 gauge theories: the SU(2)×U(1) gauge
theory describing electromagnetic and weak interactions, and the SU(3) gauge theory
describing the strong interaction. These descriptions are constrained by a number of
free parameters — for example, the fermion masses, mixing angles, complex phases,
and coupling constants — which are determined by experiment. It is a testament to
the strength of the theory that accurate measurements of these parameters over the
past few decades have not lessened its descriptive power; for example, the Standard
Model predicted the existence of the top quark, found at the Tevatron at Fermilab [1],
and recent measurements of its mass [2–4] are in agreement with Standard Model
predictions.

Combining these theories produces the SU(3)×SU(2)×U(1) Standard Model
(SM) of particle physics, which encapsulates a complete description of three of the
four fundamental forces3 . Its Lagrangian conserves properties such as the classical
electric charge, and also quantum numbers such as isospin. It is the aim of this
work to experimentally test various components of the SM, and to help improve its
description of physics not derivable from first principles.

2.2 Particles

There are two types of particles in Nature, defined by whether they have half-integer
or integer spins: fermions and bosons, respectively. A direct consequence of the
observed conservation of charge, parity and time as a combined quantity (CPT) is
that every particle must have an anti-particle, with the same spin state but opposite
charge and helicity. Furthermore, CPT conservation dictates that these particles
have the same mass and lifetime as their counterparts. Hence we have the basis of a

2Unlike U(1) (a 1-dimensional, Abelian gauge theory with simple phase transformations), SU(N)
theories depend on several (N2 − 1) variables and do not necessarily commute, meaning that the
result of two consecutive transformations may depend on the order in which they are applied.

3Along with the separate theory of general relativity, which describes the gravitational force, the
SM bestows a simple, beautiful law: that all observed interactions in Nature are a product of local
symmetries.
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family of fermions (Tables 2.1 and 2.2 for quarks and leptons, respectively), whose
existence has been verified or inferred by experiment.

Governing the interactions of these particles are the vector bosons (Table 2.3),
which arise from their respective gauge theories: photons (QED), W and Z bosons
(electroweak) and gluons (strong). The gravitational force is not constrained by
the Standard Model, and its unification with the other three forces remains an
outstanding issue in modern physics.

Quark Symbol EM charge (e) Spin (h/2π) Mass (GeV)
up u 2/3 1/2 0.003
down d -1/3 1/2 0.006
strange s -1/3 1/2 0.1
charm c 2/3 1/2 1.3
bottom b -1/3 1/2 4.2
top t 2/3 1/2 173

Table 2.1: The Standard Model quark family, paired by generation.

Lepton Symbol EM charge (e) Spin (h/2π) Mass (GeV)
electron e -1 1/2 0.0005
electron neutrino νe 0 1/2 < 2× 10−9

muon µ -1 1/2 0.1
muon neutrino νµ 0 1/2 < 2× 10−9

tau τ -1 1/2 1.8
tau neutrino ντ 0 1/2 < 2× 10−9

Table 2.2: The Standard Model lepton family, paired by generation.

2.3 Quantum Chromodynamics

The theory of Quantum Chromodynamics (QCD) provides the basis for our under-
standing of the strong interaction, one of the four fundamental forces in Nature. It is
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Boson Symbol EM charge (e) Spin (h/2π) Mass (GeV)
gluon g 0 1 0
photon γ 0 1 0
W W± ±1 1 80.399 ± 0.025
Z Z0 0 1 91.1876 ± 0.0021

Table 2.3: The Standard Model force carriers.

this interaction, mediated by gluons, that binds quarks together to form the family
of particles called hadrons, of which the most common example is the proton.

Mathematically it is expressed as a non-Abelian gauge theory, with a correspond-
ing gauge-invariant Lagrangian given by:

LQCD = −1
4F

µν
a Fµνa +

nf∑
f=1

q̄f (iγµDµ −mf )qf (2.1)

where the covariant derivative is defined by

Dµqf = δµqf + igsAµa
1
2λaqf (2.2)

In Equation (2.1), F µν
a and Fµνa represent the gauge invariant gluon field strength

tensors in the adjoint representation of SU(3), and qf describes the quark field in
the fundamental representation of SU(3). The sum over f is for the different quark
flavours: up, down, charm, strange, top and bottom, each with different masses, mf .
The γµ matrices provide the link between the spinor and vector representations of
the Lorentz group, and the covariant derivative ensures that the Lagrangian itself is
invariant. Equation (2.2) expands on the covariant derivative itself: δµ is a standard
Dirac delta function; gs is essentially the strong coupling constant, αs (αs = g2

s/4π);
Aµa are the spin-1 gluon fields; and λa are the hermitian, traceless Gelman matrices.

Examining (for example) the field strength tensor F µν
a explicitly:
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F µν
a = [∂µAνa − ∂νAµa − gfabcA

µ
bA

ν
c ] (2.3)

Here the indices a, b, c run over the eight colour degrees of freedom of the gluon
field, and fabc are the structure constants of SU(3). Notably, it is the non-Abelian
third term which allows for triplet and quartic gluon self-interactions, which ultimately
lead to asymptotic freedom (discussed in more detail in Section 2.3.2).

The SU(3) gauge theory itself describes the physics of quarks interacting via the
exchange of massless gluons, and contains two types of symmetry: colour, which
is a local gauge symmetry, and flavour, which is global4. As such quarks carry a
colour charge, r, b, g (anti-quarks r̄, b̄, ḡ) and their interactions are invariant under
transformations in colour space.

While QCD shares similarities with QED, which also describes the interaction of
fermions with massless vector bosons (photons), it features two important differences:
gluons’ colour charge means they can self-interact, whilst photons are charge-neutral
and hence can not; and quarks and gluons are never observed as free particles, but
instead combine to form colour-neutral hadrons. These features give rise to two
idiosyncrasies in QCD: colour confinement and asymptotic freedom.

2.3.1 Colour confinement

An interesting property of the interaction between quarks and gluons is that its
strength does not diminish as the distance between them increases. Though not
explicitly predicted by QCD, it can be explained in terms of gluon self-interactions
and the fact that the interaction strength depends on the number of quarks.

When energy is supplied to a qq system, causing the quarks to separate, virtual
gluons can interact along the “tube” connecting them, effectively flattening it as
the distance increases. Since the area of this tube will stay roughly constant, and
the number of field lines exactly constant, the energy of the system increases with

4The SM considers two types of symmetries: local and global. Loosely speaking a local symmetry
is dependent on spacetime, whereas a global symmetry is not. Therefore global symmetries can be
thought of as a subset of fixed-parameter local symmetries; in effect, they are a bi-product of local
symmetries.
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separation. An analogy to this is the stretching of an elastic band; when the QCD
tube snaps, however, another qq pair is formed and the original pair return to a
ground state.

2.3.2 Asymptotic freedom

Another peculiar feature of QCD is the so-called “running” of its coupling strength
αS(µ2) with the energy scale µ2 of the process; specifically, it decreases as µ2 increases:

αS(µ2) ≈ 4π

(11− 2
3Nf )ln(µ2/λ2

QCD)
(2.4)

Here Nf is the number of quarks, λQCD represents the energy limit of QCD as a
theory, and the term in 4π is a bi-product of the integration over all space.

The running of the coupling constant is due to gluons carrying colour charge. Like
the EM field in QED, the gluon field strength can be decreased, or “screened”, by
virtual particle-anti-particle pairs (in QED e+e−, in QCD qq) which cause the vacuum
to become polarised. However the fact that gluons are themselves also charged results
in a competing opposite effect that enhances the field at long distances. Hence at
low energies (long distances) the strong force is strong, while at high energies this
latter effect is negligible, and the gluon field strength decreases.

As a consequence of Equation (2.4), αS(µ2) is very large if µ2 ≈ λ2
QCD; at a

value of approximately5 λ2
QCD ≈ 0.3 GeV. This presents a problem in terms of

quantum mechanical calculations, which rely on perturbation theory to describe real
quantum systems. The main idea of perturbation theory is to start with the simplest
known system and add a perturbing Hamiltonian to represent a weak disturbance,
allowing for the calculation of more complex states. This is a standard technique,
necessary because it is very difficult to find exact solutions for even moderately
complex quantum systems. Though perturbation theory does not provide exact
solutions, for small values of the expansion parameter, say, α, they can lead to results

5Throughout this work, the convention h̄ = c = 1 is adopted.
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well reproduced by experiment. With respect to QCD, this expansion parameter is
equivalent to αS.

As such, “soft” processes of the order λ2
QCD ≈ 0.3 GeV can not be calculated

from first principles. Theoretically, the most well established approach is lattice
QCD, which uses a discrete number of space-time points to restrict the analytically
unsolvable path integrals to a series of involved numerical calculations. Experimen-
tally the primary handle is obtained via parton distribution functions (PDFs), which
are extracted from measurements of non-perturbative states. These PDFs define the
probability of finding a parton of longitudinal momentum fraction x at momentum
transfer Q2; in essence, they govern the number of interactions and the spread of
particle energies per collision. Further discussion of the types of processes described
by PDFs is given in Section 2.4.2.

In the energy regime µ2 � λ2
QCD the coupling strength becomes essentially

negligible, and perturbation theory can be used. The highest energy transfer between
two partons in a hadronic interaction is termed the “hard scatter”, which defines the
top-level, or “hard”, process. Precise calculations using perturbative QCD are usually
only performed to three orders6: leading (LO), next-to-leading (NLO) and next-to-
next-to-leading (NNLO) orders. All orders above LO are treated by renormalisation,
which is discussed in the following section.

2.3.3 Infrared and ultraviolet divergences

(a) Left of the interaction ver-
tex: soft Coulomb gluon
exchange. To the right: a
hard collinear gluon.

(b) A simple gluon loop.

Figure 2.1: Feynman diagrams displaying (a) IR and (b) UV divergences, respectively.

There are two types of divergences possible in the QCD (and indeed QED) cross-
section: infrared (IR) and ultraviolet (UV). IR divergences are possible because

6The number of vertices in a given process’ Feynman diagram dictates its order.
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gluons have zero mass and are essentially impossible to resolve at low energies. They
come in two types: soft and collinear exchange (see Figure 2.1a). As shown in
Figure 2.1a, soft exchange (mediated by what are termed “Coulomb” gluons) occurs
between the incoming quarks. The term collinear is used due to the emitted gluons
having transverse momentum kT → 0; as such, they propagate parallel to the parton.
Both types are usually controlled by dimensional regulation, which reduces the range
of the loop integral by some factor then takes the limit as this factor tends to infinity.

UV divergences arise from virtual corrections due to loop diagrams (see Fig-
ure 2.1b). They are partly controlled by applying a non-physical cut-off λ0, above
which QCD can no longer make predictions. A renormalisation scale µR is also
introduced, chosen to be similar to the scale of observed physics. These terms are
convoluted, allowing for the UV divergences to be subtracted into bare parameters,
leaving finite predictions. This process is know as renormalisation, and is neces-
sary for any field theory containing propagators that can form virtual loops to be
practicable.

2.3.4 Factorisation in QCD

The strong force renders a smooth calculation of the cross-section from zero to
infinite energies impossible. Theoretically the process of qq splitting described in
Section 2.3.1 can continue until no further energy is delivered to the system and all qq
pairs are in their ground state. This adds a serious complication to the calculation of
strong processes from first principles, since IR divergences appear as a given gluon’s
momentum tends to zero.

Therefore, in order for QCD to be a theory that can make predictions, it is
necessary for the two regimes defined in Section 2.3.2 to be determined separately.
This technique is called factorisation, and was first successfully applied to Deep
Inelastic Scattering (DIS) processes7. It is worth noting that factorisation only works
exactly for processes with 0 or 1 incoming quarks or gluons; for hadron collider
experiments it is applied more approximately, mainly due to contributions from
multiple parton interactions.

7DIS typically involves the interaction of a photon or lepton with a hadron, allowing the hadron’s
structure to be studied.



Theory 43

In terms of the hadron’s structure function, F (x), factorisation is expressed as:

F (x) =
∑
f

∫ 1

x
(dξ/ξ)

Hard scatter︷ ︸︸ ︷
Hf (x/ξ)

PDFs︷ ︸︸ ︷
φf/N(ξ) (2.5)

x + ξ x− ξ

Figure 2.2: Basic outline of DIS, where an incoming quark interacts with an incoming
particle, transferring momentum ξ.

Here the sum is over all partons, f , in the interacting hadron N , and x and
ξ are the longitudinal momentum fractions carried by the interacting parton (see
Figure 2.2). The important feature of this equation is that a Parton Distribution
Function (PDF), φf/N(ξ), has been factorised out of the perturbative ‘hard kernel’,
Hf (x/ξ). This is performed in a manner similar to the resummation method discussed
in Section 2.3.3 — a ‘factorisation scale’, µF , is chosen and all terms up to this
point are absorbed into the PDF. As such there is, once again, an implicit scale
dependence; its value is usually set such that the result of a given computation varies
little for different values of µF . This is often the same as the renormalisation scale,
to the effect that µ2

F = µ2
R = Q2.

2.3.5 Hadronisation

As a consequence of colour confinement (Section 2.3.1), the energetic qq pairs
produced in a hadron-hadron collision will continue to reproduce more pairs until
a stable ground state is reached. This process results in the formation of many
hadronic final states and is appropriately called hadronisation (Figure 2.3).

Hadronisation is the reason why quarks can not be observed directly8; instead,
their presence is inferred at the detector level by the collimated shower of hadrons
8The exception here is the top quark, which decays too quickly to hadronise. However, its short
lifetime also ensures it does not reach the detector.
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Figure 2.3: An illustration of hadronisation, the process whereby a qq splits into subse-
quent pairs until no more energy is available.

they produce. This shower has an implicit non-perturbative component, and as such
matching hadrons to quarks exactly is a tenuous notion. Instead, particle showers
are enveloped by what are known as ‘jets’, which provide the means to measure the
parent particle. Jets are one of the main tools in observable QCD, and are discussed
— along with others — in the following section.

2.4 QCD in practice

Experimentally there are a number of techniques to measure both perturbative and
non-perturbative QCD. Those most pertinent to the analyses presented in this work
are discussed here.

2.4.1 Jet algorithms

As outlined in Section 2.3.5, jets form the bridge between a parton and the measured
shower of hadrons it begat (see Figure 2.4). In practice they are constructed by
jet algorithms, which utilise information provided by the detector — such as the
energy deposited in a given part of the calorimeter — to reduce the mess of hadronic
activity to a single object. Since the main aim is to compare theory with experiment,
the same jet algorithm must be applicable at the parton, hadron and detector level.
As such there are certain common requirements that a jet algorithm must meet; for
consistency, they are discussed at the parton level.
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J/Ψ K

Calorimeter

V ertex

Figure 2.4: An illustration of hadronic jet detection: from the interaction point, quarks
and gluons hadronise, producing particles that leave energy deposits in the
calorimeter cells.

Practically speaking, a jet algorithm needs to decide which particles to include
in a given jet, and how to combine them. The combination is normally performed
by summing the 4-momenta of the jet’s constituents, yielding the jet 4-momentum.
Crucially, in terms of theory-experiment comparison, this quantity is invariant under
longitudinal boosts.

The question of which particles to include in the jet is more involved. The simplest
approach is to construct a cone of radius R around a particle, such that its axis
maximises the energy contained by the cone, and include all other particles within its
radius. Though conceptually clear, this approach renders the result dependent on the
choice of seed particle; for example, if two cones overlap, a particle may be assigned
to the wrong parent. Furthermore, this dependency causes most cone algorithms9 to
handle emissions with vanishingly small momenta incorrectly, leading to incomplete
cancellations of real and virtual contributions and hence IR divergences. These flaws
can cause significant discrepancies between theory and experiment.

An alternative tactic is to use a cluster algorithm which, as its name suggests,
collects particles into clusters. The exact mechanics of the procedure vary between
algorithms, with the basic idea being to take two particles and combine them into
9The exception here is the SISCone algorithm [5], which treats IR divergences correctly. However,
the same is not true for collinear radiation.
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a single jet, provided they satisfy certain conditions. In the case of the anti-kT
algorithm [6], particles are combined by minimising the distance, dij between them:

dij = k2p
T

∆2
ij

R2 (2.6)

And the condition for two particles combining to form a single jet is:

k2p
T = 2min(E2

i , E
2
j )(1− cosθij) < ycuts (2.7)

Here, in Equation (2.6), ∆2
ij = (yi − yj)2 + (φi − φj)2, where yi = 1

2 ln
Ei + pi,z
Ei − pi,z

is termed the rapidity and pi and φi are the momentum and azimuth of particle i,
respectively; and R is the radius of the jet, which is analogous to the cone algorithm
radius parameter. In Equation (2.7), Ei and θi are the energy and polar angle of
particle i; ycut is the chosen cut-off, and s is the usual centre-of-mass energy squared.
Hence if either Ei → 0 (soft) or θ12 → 0 (collinear), kT → 0 and the particles
are merged. The procedure begins with the hardest particle and iterates until no
particle or cluster of particles satisfies Equation (2.7), producing distinct, collimated
jets. Furthermore, this technique ensures that a finite measurement is obtainable by
requiring that both soft and collinear emissions are treated in the same manner as
virtual contributions.

2.4.2 PDFs

Another aim of observational QCD is to provide input data for PDFs. These data
constrain certain model decisions used to build the PDF — for example, the relative
fraction of gluons at a given longitudinal momentum will dictate the number of
particles produced in a given phase space, which can be tested against multiplicity
measurements in data. This is conducted for various initial conditions, such as
hadronic type and centre-of-mass energy. As such, differences between PDF sets
are largely due to the data used in tuning. This work focuses on two such sets: the
MSTW [7] and CTEQ [8] parametrisations.
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2.4.3 The underlying event

Due to their composite nature, when two hadrons collide it is possible that additional
parton-parton interactions accompany the hard scatter. Such processes are termed
multiple parton interactions (MPI), first observed in high pT events10 from hadron
collisions at the ISR at CERN [9]. The probability of MPI occurring scales with
centre-of-mass energy; it is therefore a sizeable effect at modern hadron-hadron
colliders.

Further interactions are possible due to colour reconnection — a term used for
strong interactions between parton systems of different origin — and beam-beam
remnants. Collectively all these effects are labelled as the underlying event (UE),
which essentially includes every final state particle apart from the hard scatter.

2.4.4 Diffraction

Strictly speaking there are two classes of events if a collision occurs: elastic and
inelastic. The former comprises ∼ 25% of the interaction cross-section, and consists
of identical initial and final states with no new particles produced, making them
largely uninteresting.

(a) Non-diffractive (b) Single-diffractive (c) Double-diffractive

Figure 2.5: Diagrammatic examples of (a) non- (b) single- and (c) double-diffractive
processes, respectively.

The inelastic cross section can be further subdivided into three11 categories of
events, depending on the degree of hadron dissociation: non-, single- and double-
10In particle (and nuclear) physics, an “event” is a blanket term for an interaction.
11Technically a fourth category exists, termed central diffraction. However its contribution to the
cross-section is very small (< 1%) and is more relevant to studies featuring very large rapidity
gaps, such as in reference [10].
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diffractive (Figure 2.5). The different processes are a result of the varying probabilities
with which the two protons interact — in the non-diffractive case, the hadrons collide
“head-on”, resulting in their complete dissociation. In diffractive events, the hadrons
do not collide directly but instead interact as they cross via colour-singlet exchange.
In the single-diffractive case, this causes one of the hadrons to dissociate while the
other remains complete. In the double-diffractive case, both hadrons dissociate.

Non-diffractive events constitute the bulk of the total interaction cross-section
(∼ 55%), with single- (∼ 12%) and double- (∼ 8%) making up the remainder (along
with the elastic contribution). Since diffractive events involve colour-singlet exchange,
which suppresses additional interactions in the phase space between the hadrons, a
typical signature is large gaps in particle production at central rapidity, known as
rapidity gaps.

2.5 Electroweak boson production

As the main body of this work is motivated by the study of QCD interactions, only
a brief overview of the electroweak processes relevant to later chapters is given.

The electroweak force describing weak interactions, such as nuclear β± and
mesonic decays, is mediated by the W and Z bosons. These bosons couple to weak
charge, which is analogous to the strong and electromagnetic charges carried by
gluons and photons, but which is possessed by all quarks and leptons, including
neutrinos. Due to their non-zero masses (Table 2.3) and correspondingly short
lifetimes the range of the weak force is much less than the other three fundamental
forces.

Typical Feynman diagrams for W and Z production via proton-proton (pp)
interactions are given in Figure 2.6.

Here the leptonic decay channels are shown, but equivalent diagrams also exist
for qq̄′ → qq̄

′ processes. In both figures, the anti-quark represents a “sea” quark,
which originates from virtual qq̄ pairs in the proton structure. In Figure 2.6b the γ∗

represents contributions from virtual photons.
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q

νl

W±

l±

q̄
′

(a) W boson production

q l+

l−

Z0/γ∗

q̄

(b) Z boson production

Figure 2.6: Feynman diagrams displaying (a) W± and (b) Z0 production, respectively.

The quantum field theory for electroweak interactions defines the amplitude for
these processes asA ∝ 1

p2
W,Z −M2

W,Z

, where pW,Z andMW,Z are equal to theW and Z

boson momentum and mass, respectively. As such at very low energies (p2
W,Z �M2

W,Z)
the W and Z bosons decay so quickly that their propagation is reduced to extremely
short-ranged “pointlike” interactions. At the electroweak energy scale (O(100 GeV)),
however, the bosons’ momentum and mass are of the same order, resulting in the
weak force having a strength comparable to the electromagnetic interaction. It is
here that their unification becomes appropriate: hence the SU(2)×U(1) component
of the Standard Model.

2.6 Interactions beyond the Standard Model

While the SM provides an excellent description of electroweak and strong interactions,
there are several outstanding observations left unexplained. As mentioned previously,
one of these concerns gravity, which is observed to be much weaker than the other
three fundamental forces, becoming strong only around the Planck scale (O(1019

GeV)). Known as the hierarchy problem, several theoretical extensions of the SM
— such as supersymmetry (SUSY) — attempt to provide a reason for the massive
discrepancy between the Planck and electroweak scales, and to address the issue of
possible quantum corrections of the order of the Planck scale to electroweak masses.

In SUSY, the lightest supersymmetric particle is electrically neutral and typically
stable. Provided its mass lies within a specific range, these properties also make it
an attractive candidate for what is known as “dark” matter. The presence of dark
matter can be inferred from the observed discrepancy between the rotation velocity
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permitted, according to gravitational theory, by the visible (baryonic) matter in
large astronomical objects and the actual measured velocity. To ensure that these
dark matter particles survived the high densities — and hence high probabilities of
mutual annihilation — after the big bang, it is reasoned that dark matter interacts
only weakly with itself and visible matter. This is also true of many new particle
candidates proposed to extend the SM, and as such the search for these weakly
interacting particles is highly motivated.

The primary avenue for performing dark matter searches is via the direct detection
of dark matter particles. This requires high precision detectors which, in order to
minimise the presence of other particles (such as cosmic ray muons), are often located
deep underground. Assuming that dark matter interacts not just with itself but also
with SM particles, there are two further possibilities for observation. These searches
either involve the decay of a dark matter candidate to a SM particle, observable by
astrophysics detectors, or the decay of a SM particle to a dark matter candidate,
mediated by the interaction of SM particles in a collider experiment (Figure 2.7).

SM

SMX

X

DMdetectors

Astrophysics

Colliders

Figure 2.7: Diagrammatic example of the production of dark matter (DM) particles (X )
in relation to Standard Model particles (SM). The approach best suited to
the detection of each interaction type is indicated: dark matter detectors
for direct searches (X → X ); astrophysics detectors for indirect searches
(X → SM); and SM particle collisions for collider searches (SM → X ).

Since dark matter interacts only minimally with visible baryonic matter, its
presence in collider experiments must be inferred from an apparent violation of the
conservation of energy — if a dark matter particle is present, the energies of the
incoming SM particles will not equal that of its observed decay products. This absent
component in the total energy of the final state is known as the missing energy,
6E, calculated via the absolute value of the vector sum over all observed final state
particles. In hadron collider experiments, where the energies of the incoming partons
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are unknown but their initial transverse component is zero, it is instructive to express
the missing energy in terms of its longitudinally invariant transverse component, 6ET .

2.7 Monte Carlo generators

Monte Carlo generators (MC) provide a computational implementation of theoretical
models, allowing them to be tested against real data. In particle physics, an MC
is a program designed to calculate the cross-section of a certain physics process
in a defined kinematic region. To reflect the probabilistic nature of real particle
interactions, the code uses a random number generator to integrate the cross-section
randomly over phase space; hence Monte Carlo, a city renowned for its games of
chance.

The generated event begins with the primary particle scatter; in the case of pp
collisions, parton scattering (see Figure 2.8). Initial and final state gluon radiation
— known as bremsstrahlung — is then added, creating parton showers which form
colourless hadrons. Their decays are then simulated, and the final step is to mediate all
the remaining interactions between decay products. The generator stops computing
when all particles have decayed to a stable final state, defined as being those with a
proper lifetime greater than 3× 10−11s. Particles now exist at the hadron level.

To allow for direct comparison with real data, the particles at hadron level are
propagated through a detector simulation. The most ubiquitous program used to
do this is GEANT4 [11], which provides a model of the ATLAS detector, and
accounts for effects such as particle ionisation in the trackers, energy deposition in
the calorimeters, intermediate decays and interactions with non-detecting material.
Particles now exist at the detector level.

There are a variety of MCs available, each defining a certain model. Each
model provides a differing physical description, utilising, for example, different
matrix elements12, PDFs, hadronisation, description of MPI, parton showering and
colour reconnection models. Comparing their outputs with real data is therefore
an instructive test of model choices. Furthermore, these data are used to optimise

12In particle physics, the S-matrix defines the scattering amplitude of two incoming particles into a
set of outgoing particles.
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(a) Hard scatter (b) ISR and FSR

(c) Hadronisation (d) Final states

Figure 2.8: The main stages of Monte Carlo simulation: (a) the hard scatter; (b) initial
and final state radiation; (c) hadronisation, and the subsequent hadronic
decays; and (d) finalise all remaining interactions. Everything but the red
lines constitute the underlying event.

an array of model parameters: this process is termed tuning, and the resulting
description denotes a particular MC’s tune.

Those MCs pertinent to this work are described in more detail below.

2.7.1 Pythia

The Pythia 6 [12] and Pythia 8 [13] brace of MCs are general purpose generators
that use the Lund string hadronisation model [14]. Pythia 8 is the more advanced
of the two, utilising a pT ordered parton shower by default; Pythia 6 provides this
in its more recent versions, but older versions employ a virtuality-ordered parton
shower. Both models simulate 2→ 2 non-diffractive processes and MPI according
to lowest order perturbative QCD; divergences in the cross-section as pT → 0 are
regulated by phenomenological models and, when the pT ordering is utilised, MPI
and parton showers are interleaved in a single common sequence of decreasing
pT values. Again, Pythia 8 features a more complete implementation, with the
interleaving performed between initial and final state parton showers and the MPI;
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for Pythia 6, the final state is not included. In both models diffraction is treated
explicitly, with the inelastic cross-section split into the components described in
Section 2.4.4 and the diffractive processes governed by pomeron exchange [15], using
(by default) the Schuler and Sjostrand [16] parametrisation of the pomeron flux.
However, the products of diffractive dissociations are treated differently between
generators. Pythia 6 uses a blanket approach, treating all such dissociations with
the Lund string model, resulting in a final state with particles of limited pT . Pythia
8 only does this for low mass13 diffractive systems; in high mass systems, diffractive
parton distributions from H1 [17] are used to best simulate diffractive states from
hard partonic interactions, with the full canon of MPI and interleaving also being
employed. This results in a final state with significantly more high-pT particles.

2.7.2 Herwig++

Herwig++ (H++) is another general purpose generator, built with different compo-
nents: instead of pT ordering, it uses an angular-ordered parton shower; and instead
of the Lund string model, it uses the cluster hadronisation model [18]. It employs
an MPI model similar to the Pythia brace, with tunable parameters for regularis-
ing the behaviour at very low momentum transfer; it does not, however, include
interleaving with the parton showers. Another important difference is that inclusive
hadron-hadron collisions are simulated by applying the MPI model to events with no
hard scattering, rendering it possible to generate an event with zero 2→ 2 partonic
scatters. These events only display activity from beam remnants, and feature large
central rapidity gaps; as such, they look similar to double-diffractive dissociation.
This is useful because of another prominent difference between H++ and the Pythia
brace: it does not contain an explicit model for diffraction.

2.7.3 EPOS

EPOS is a different class of event generator, used primarily to simulate heavy ion14 and
cosmic shower interactions. However, it can also simulate proton-proton interactions,

13Here, mass refers to the invariant mass of the particles produced by the dissociated proton,
ranging from light mesons such as the π0 to systems with hundreds of GeV.

14Typically lead ions, though others of similar atomic mass are also considered.
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making it an interesting test of the more tailored models mentioned previously. Unlike
those models, it utilises an implementation of a parton based Gribov-Regge [19]
theory which is an effective, QCD-inspired field theory describing hard and soft
scattering simultaneously; as such, cross-sections do not rely on the standard PDFs.
A hydrodynamic evolution of the initial state is calculated for the proton-proton
scattering process at high parton densities, using the same treatment as for heavy
ion interactions. This work considers the EPOS LHC tune, which represents a
parameterised approximation of the hydrodynamic evolution derived from early LHC
data.

2.7.4 ALPGEN

The ALPGEN [20] generator is designed for the study of multiparton hard processes
in hadronic collisions. Events are generated at the parton level, providing full
information on their colour and flavour structure, allowing for the evolution of the
partons into fully hadronised final states. Furthermore, these final states can contain
up to six partons. This makes it an important tool for predictions in high energy
hadronic environments, where final states with several well separated hard jets can
occur frequently.



Chapter 3

The ATLAS detector at the LHC

“The effect of a tool-driven revolution is to discover new things that
have to be explained.”

— Freeman Dyson

The Large Hadron Collider (LHC) at CERN is the world’s highest energy hadron
collider, with a peak design centre-of-mass energy

√
s = 14 TeV. Housed in a 27 km

subterranean ring straddling the French-Swiss border, it supplies particle collisions to
the four main particle detectors located in caverns around the ring: namely ATLAS
and CMS, which are general purpose detectors; LHCb, which focuses on B-meson
physics; and ALICE, which is designed to make measurements of high multiplicity
final states. A brief overview of the method by which particles are made to collide
within the detectors follows; though it deals specifically with protons, the same
general technique is applied to larger nuclear masses.

3.1 The LHC

First, a linear accelerator (Linac II) liberates protons from hydrogen atoms by the
application of an electric field. Upon exiting the accelerator the 50 MeV protons
enter a booster (Proton Synchrotron Booster), which circulates, accelerates and
squeezes protons into bunches, allowing approximately 100 times more protons
to enter the next stage than would be possible from Linac II alone. Now at an
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energy of 1.4 GeV, the proton bunches are directed to a synchrotron (Super Proton
Synchrotron), which uses dipole magnets and radio frequency cavities to bend and
accelerate them to an energy of 450 GeV. Finally, the proton bunches enter the
two adjacent parallel LHC rings in opposite directions, where an electromagnetic
field adds energy with each rotation. When the bunches reach the designated energy,
focusing quadrupole magnets cause the two beams to cross in the centres of each
of the four LHC experiments. The incredibly large electromagnetic fields (O(1 T))
necessary to bend and accelerate the protons are obtained by super-cooling the
magnets with liquid helium to a temperature of approximately 1.9 K, causing them
to act as superconductors.

3.2 The ATLAS detector

The ATLAS detector at the LHC [21] is a multipurpose detector constructed to
detect and distinguish a broad range of physics signatures (Figure 3.1). Its current
incarnation was first proposed in 1994 [22], with the first data from pp collisions at
√
s = 900 GeV collected in November 2009.

Figure 3.1: A schematic of the ATLAS detector at the LHC. Image taken from [21].

In the right-handed ATLAS Cartesian co-ordinate system, the positive z−axis
is directed along the beam direction, the positive y−axis points perpendicularly
upwards from the beam direction, and the positive x−axis points to the centre of
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the LHC ring. The polar angle θ between a particle and the beam axis is measured
in the y− z (longitudinal) plane. In this work, θ is expressed in terms of the particle
pseudorapidity, η, defined as η = −ln(tan(θ/2)). The pseudorapidity can also be

expressed as η = 1
2 ln( |p|+ pz
|p| − pz

), such that it is approximately equal to the rapidity

(Section 2.4.1) in the limit of highly relativistic particles. The azimuthal angle φ
between a particle of radius r and the x−axis is measured in the x− y (azimuthal)
plane.

The ATLAS detector is comprised of separate sub-systems, each designed to
measure specific types of particle interactions. Working from the interaction point
out, it contains:

• the inner detector, covering |η| < 2.5, which performs high precision measure-
ments of charged particle tracks
• the electromagnetic and hadronic calorimeters, covering |η| < 4.9, which measure

electromagnetic and hadronic energy deposits
• the muon spectrometer, covering |η| < 2.7, the primary aim of which is to

identify high energy muons

Together these systems enable the ATLAS detector to cover almost the whole
solid angle around the interaction point; specifically, it is nominally forward-backward
symmetric with respect to the interaction point, with complete coverage1 in the
azimuthal plane and a pseudorapidity coverage of 0 < |η| < 4.9 in the longitudinal
plane.

3.2.1 Inner detector

The inner detector (ID) covers a pseudorapidity range 0 < |η| < 2.5 and is designed
to reconstruct charged particle tracks and interaction vertices. It is immersed in a
2 T solenoidal magnetic field, which causes charged particle trajectories to bend,
allowing their momentum to be accurately determined from the curvature of their

1In practice the coverage is not entirely complete, due to the detector services — such as read-out
systems and pipes supplying coolant gas — occupying space in between detector components.
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path through the detecting medium. The transverse momentum (pT ) resolutions2

are shown in Table 3.1.

Detector Design resolution η coverage
Measurement Trigger

Tracking σpT
pT

= 0.05% pT ⊕1% ±2.5

EM calorimetry
Barrel and end-caps σE

E
= 10%

√
E ⊕0.7% ±3.2 ±3.2

Forward calorimeter σE
E

= 100%
√
E ⊕3.5% 3.1 < |η| < 4.9 3.1 < |η| < 4.9

Hadronic calorimetry
Barrel and end-caps σE

E
= 50%

√
E ⊕3% ±3.2 ±3.2

Forward calorimeter σE
E

= 100%
√
E ⊕10% 3.1 < |η| < 4.9 3.1 < |η| < 4.9

Muon spectrometer σpT
pT

= 10% at pT = 1 TeV ±2.7 ±2.4

Table 3.1: Design resolutions of the ATLAS sub-detectors.

The ID is comprised of three main sub-systems; starting from the interaction
point and moving out, they are:

• the pixel detector, covering |η| < 2.5
• the semiconductor tracker (SCT), covering |η| < 2.5
• the transition radiation tracker (TRT), covering |η| < 2.0

Each sub-system is further divided into barrel and end-cap components, with the
detecting material aligned parallel and perpendicular to the beamline, respectively
(Figure 3.2). While the three sub-systems provide almost hermetic coverage in the
azimuthal plane, there is a region between the SCT and TRT barrel and end-caps
(1.0 < |η| < 1.2) with a gap between detecting material — this is termed the crack
region. Particles traversing this region may suffer from reduced spatial resolution due
to the lack of tracking information, and may not even reach the end-cap detectors.

The pixel detector is the most finely segmented of the ID sub-systems, containing
approximately 80 million readout channels. It is comprised of layers of doped silicon
2The resolution is a measure of how accurately a detector can resolve its measurement quantity.
For example, a finely segmented detector will have a better (smaller) resolution than a more coarse
equivalent.
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Figure 3.2: Longitudinal schematic of a quarter of the ATLAS inner detector. Image
taken from [21].

pixel sensors, segmented in R− φ and z, with a minimum size in R− φ× z of 50 ×
400 µm2. The accuracy in the barrel is 10 µm (R− φ) and 115 µm (z), and 10 µm
(R−φ) and 115 µm (R) in the disks, providing a high granularity position resolution
around the interaction point. Typically, a particle will traverse three pixel layers
before reaching the SCT.

The SCT is comprised of layers of doped silicon pixel strips arranged in pairs.
The accuracy in the barrel is 17 µm (R − φ) and 580 µm (z), and 17 µm (R − φ)
and 580 µm (R) in the disks, reflecting the less fine granularity of the SCT compared
to the pixel detector. If a particle crosses two strips, a single space point, denoting
its position in R− φ and z, is formed. A particle leaving the SCT will have crossed
at least eight strips, defining four space points, helping to facilitate accurate track
reconstruction.

The TRT is comprised of 4 mm diameter “straw” drift tubes containing a Xe-CO2-
O2 gas mix. This enhances the ID’s ability to identify electrons via measurements
of photons from transition radiation. Unlike the two preceding detectors, it only
provides R − φ information, with each straw delivering an intrinsic accuracy of 130
µm. Due to its large surface area, a particle exiting the TRT will typically result
in a track with a large number of hits (approximately 36). As such, despite having
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a worse spatial resolution than the pixel and SCT detectors, when combining their
precision with its high statistical information a robust track pattern recognition is
achieved.

By design, the active materials in the ID sub-systems respond only to charged
particles — doped silicon requires a charge to upset the p-n balance and drift tubes
require a charge to ionise the contained gas. As such, the ID is not sensitive to
neutral particles.

3.2.2 Minimum bias trigger scintillators

The minimum bias trigger scintillators (MBTS) are mounted in front of the calorime-
ter end-caps (|z| = 3560 mm) on both sides of the interaction point, covering a
pseudorapidity range 2.1 < |η| < 3.8. The MBTS feature an eight-fold azimuthal sym-
metry, and provide a trigger signal as part of its output; when used in low-luminosity
LHC operations, this information can be used to enforce very basic requirements on
event selection.

3.2.3 Calorimetry

The ATLAS calorimeters (Figure 3.3) cover the entire acceptance (|η| < 4.9) and
are designed to provide complimentary measurements of various particle types and
physics signatures. Moving from the interaction point out, the main sub-detectors
are:

• the electromagnetic (EM) calorimeter, covering |η| < 3.2
• the hadronic calorimeter, covering |η| < 3.2
• the forward calorimeter (FCAL), covering < 3.1 |η| < 4.9

Similarly to the ID, the EM and hadronic calorimeters are further divided
into barrel and end-cap components; each component’s fiducial region and energy
measurement resolution are given in Table 3.1. Aside from having a large acceptance
and a fine resolution — requirements for any general-purpose detector system — the
calorimeters must also occupy a large volume, and feature dense materials. This is
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necessary to ensure particles interact and deposit energy in the active (detecting)
material.

Figure 3.3: Cut-away view of the ATLAS calorimeter systems. Image taken from [21].

The EM calorimeter is finely segmented in the region surrounding the inner
detector, making it ideally suited for identifying electrons and photons. Its electrodes
are arranged in an accordion shaped geometry, providing complete azimuthal coverage.
Lead absorber plates, covering the whole acceptance, ensure that there are sufficient
radiation lengths3 to mitigate EM particle interaction. To expedite energy-loss
corrections due to material upstream of the calorimeter (such as the ID), a presampler
— consisting of an active LAr layer — is installed in the region |η| < 1.8.

The hadronic calorimeter is constructed in two parts, defined by their technologies:
the tile and LAr hadronic end-cap calorimeters. Each component is segmented into
three layers, providing the sufficient interaction lengths, λl (analogous to radiation
lengths) to mitigate hadronic particle interaction. The tile calorimeter, comprised
of steel absorbers and active scintillating tiles, is located directly outside the EM
calorimeter barrel. The LAr hadronic end-cap calorimeters are positioned immediately
behind the EM end-cap calorimeters, and consist of interleaved copper plates and
active LAr gaps. Their coverage (1.5 < |η| < 3.2) is such that they overlap slightly

3A single radiation length (X0) is defined as the mean path length a radiating particle (such as an
electron) traverses in material before its energy is reduced by a factor 1/e.
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with both the tile and forward calorimeters, reducing the drop in material density in
the transition regions.

3.2.4 Forward calorimeters

The ATLAS forward calorimeters (FCal) cover an η range 3.1 < |η| < 4.9 and have
to withstand what is arguably the harshest radiation environment in ATLAS (see
Table 1.5 in [21]); located 5 m from the interaction point, they are subject to a high
particle flux compared to the central calorimeters. Moving from the interaction point
out, they are comprised of one EM module and two hadronic modules, with the
former recessed approximately 1.2 m with respect to the EM calorimeter front face to
reduce its exposure to excessive radiation. As such, the FCal must substitute a large
volume for increased density — in the EM (hadronic) modules, copper (tungsten) is
used to construct metal matrices of concentric rods and tubes parallel to the beam
axis, with active LAr filling the gaps between the rods and tubes.

The FCal plays an important role in searches for particles beyond the Standard
Model, especially those involving final states with large missing transverse energy.

3.2.5 Muon spectrometer

A three component (one barrel and two end-cap) toroidal magnet system defines
the overall geometry of the muon spectrometer, and hence the ATLAS detector
as a whole. It features an eight-fold azimuthal symmetry (Figure 3.4), with the
barrel toroid providing 1.5 to 5.5 Tm of bending power in the pseudorapidity range
0 < |η| < 1.4, and the end-cap toroids delivering approximately 1 to 7.5 Tm in
the region 1.6 < |η| < 2.7; in the transition region where the two magnet systems
overlap, this bending power is reduced. Combined with the large volume and low
density of the structure, the muon spectrometer enables high resolution tracking
whilst minimising the probability of multiple-scattering.

Located variously between the barrel and end-cap components, its main sub-
systems are:

• Monitored drift tubes (MDT), for precision tracking, covering |η| < 2.7
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• Cathode strip chambers (CSC), for precision tracking, covering 2.0 < |η| < 2.7
• Resistive plate chambers (RPC), for triggering, covering |η| < 1.05
• Thin gap chambers (TGC), for triggering, covering 1.05 < |η| < 2.4

Figure 3.4: Cut-away view of the ATLAS muon spectrometer. Image taken from [21].

Similar to the ID, in the barrel component the tracking chambers are aligned
parallel to the beam axis, and in end-cap regions they are arranged perpendicularly.
The MDT performs precision measurements over most of the muon spectrometer
η−range, while at large pseudorapidities the CSC — comprised of multi-wire propor-
tional chambers with cathodes segmented into strips — facilitates high granularity
tracking to meet the requirements of high rates and backgrounds. The RPC (barrel)
and TGC (end-caps) constitute the muon spectrometer trigger system, covering a
pseudorapidity range |η| < 2.4. Along with measuring muon co-ordinate information
in the plane orthogonal to the tracking chambers, the trigger system also provides
bunch-crossing identification and enables well-defined pT thresholds.
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3.3 The ATLAS trigger

The ATLAS trigger system is designed to reduce the rate of data taking by a factor
of 2 · 105, with the aim of recording the few interesting events in every million to
tape. Since the hardware designed to select these interesting events must make a
decision with a latency of approximately 2µs, an efficient and robust trigger system is
necessary. ATLAS tackles these criteria with a three level trigger system (Figure 3.5)
that optimises between rapid selection and reliable identification.

Figure 3.5: Block schematic of the ATLAS trigger system.

Starting from the smallest latency and increasing, they are:

• The level 1 trigger (LVL1), hardware-based with a fixed latency of 2µs. It takes
readings at a rate determined by the Central Trigger Processor (CTP), which
defines the ATLAS internal clock frequency (usually 40 MHz). As shown in
Figure 3.5, the calorimeter and muon systems provide hardware-based triggering
at this level. During its latency it must determine one or more slices from the
detector’s read-out that contain the most interesting fraction of a given event:
termed a region of interest (RoI)4, this information is passed to the next level
via the readout drivers; if no RoI is found then the event is ignored.

4An RoI is a rectangular cone in the η− φ plane opened in the z−direction to allow for uncertainty
in the primary vertex position.
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• The level 2 trigger (LVL2), software-based with a latency of order 10ms. Taking
the RoI passed through the readout buffers at LVL1, the LVL2 algorithms
reconstruct the data from this slice of the detector only. Therefore at this
stage events are selected on the basis of partial reconstruction: this allows for a
high event selection efficiency while avoiding the huge bandwidth required to
reconstruct complete events.
• The event filter trigger (EF), also software-based and with a latency of order 1s.
Based on the events passed at LVL2, the EF algorithms, which are similar to
their offline counterparts, run a full reconstruction in the RoI on the processor
sub-farms, allowing for refined alignment and calibration; if an event passes the
EF, it is written to tape.

The two software triggers comprise what is termed the high level trigger (HLT),
which is responsible for running the object reconstruction algorithms. As detailed
in Chapter 6, in order to prevent the loss of interesting physics signatures these
algorithms must meet the requirements of the highest object reconstruction efficiency
possible given the limited time within which they operate. Furthermore, it is
essential that they operate within the designated latencies; not doing so can cause
the computing farms to lag behind the detector’s data output rate.

3.3.1 Inner detector trigger algorithms

Part of this work (Chapter 6) concerns measurements of the inner detector trigger
algorithms’ track reconstruction efficiency. As such, a detailed description of the
relevant algorithms is given here.

The main difficulty with conducting fast and efficient tracking is the high occu-
pancy per event due to additional proton-proton interactions that can accompany
the hard-scatter. It is by exploiting the differences between pile-up and interesting
physics interactions that the number of detector hits can be reduced before track
reconstruction begins; namely, these differences are:

• they occur at different places along the beam line (σz ≈ 6 cm)
• physics tracks from the leading-order process have, on average, higher pT
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The first two ID LVL2 algorithms described here, IDSCAN and SiTrack, utilise
these distinctions in differing implementations. Both were employed during the
2010-2012 data taking period, with the IDSCAN algorithm used primarily for pattern
recognition in the muon and electron trigger channels, and SiTrack used primarily in
the tau and b-jet trigger channels. Furthermore, a new framework (L2STAR) was
developed for 2012 data taking. It provides implementations of the 2012 equivalents
of both IDSCAN and SiTrack, labelled Strategy A and Strategy B, respectively, and
also features a new algorithm, labelled Strategy C.

The EF algorithm used in all data taking periods represents an implementation
of the algorithms used in offline processing, which use a more precise description of
the detector geometry. To be operational in the HLT, the EF algorithm is configured
to run within the required latency.

3.3.2 IDSCAN

This algorithm performs pattern recognition in the ID using space points identified
in the pixel and SCT detectors. It operates by first finding the position of the
primary vertex, performed by populating a histogram with the z−intercept of all
possible pairs of space points in fine φ−slices in the RoI and identifying peaks in
the resulting distribution (Figure 3.6a). Restricting the pairings to small φ−slices
reduces combinatorial background from low-pT tracks, which bend more in the B-field,
resulting in a small number of hits in several φ−slices. Furthermore, more weight is
naturally given to high-pT particles, which leave a large number of hits in adjacent
φ−slices.

Due to the high occupancy of particles in the ID, there will always be an incoherent
spray of space points in the RoI (Figure 3.6b,c). Given that space points from high-pT
tracks associated with the primary vertex will have similar (η, φ) co-ordinates, a 2D
histogram containing each space point’s (η, φ) is constructed (Figure 3.6d). After
cuts are placed in terms of r − φ, this histogram is used to identify groups with at
least four space points in different detector layers.

Finally, these groups are used to construct a 2D histogram in (1/pT , φ), filled for
all possible combinations of triplet space points. Track candidates (Figure 3.6e,f) are
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required to have, again, at least four space points from different detector layers. The
track pT resolution is then improved by extending to the TRT.

Figure 3.6: The IDSCAN pattern recognition process in graphical format, for a simulated
electron RoI: (a) the z−intercept histogram, showing a clear peak at ∼ 5cm;
(b,c) all space points in the x− y and r − z planes of the RoI, before cuts;
(d) the 2-D histogram in (η, φ), with all the hits from the electron collected
in a single bin; (e,f) the reconstructed track, viewed in the x− y and r − z
planes. Taken from [23].

3.3.3 SiTrack

Similar to IDSCAN, SiTrack uses space points registered in the pixel and SCT
detectors. However, instead of first identifying the primary vertex, it begins by
treating space points in terms of a predefined list of detector layers, termed logical
layers. These layers represent various combinations of space point information from
the detector layers; for example, a single logical layer may be comprised of several
barrel and end-cap detector layers.

A track seed is formed by pairing space points from the two innermost logical
layers. It is then extrapolated back to the beam-line, with a requirement placed on
the transverse impact parameter to ensure the track provenance was the interaction
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vertex. Furthermore, a histogram of the longitudinal impact parameter is used to
identify, by way of local maxima, the z−position of the interaction vertex.

Provided that the seed can be associated with any reconstructed vertex, it is
extrapolated to the outer logical layers to form a triplet of space points. Fitting is
then performed between the inner and outer space points in the longitudinal and
transverse planes. Finally, all remaining triplets of space points are merged and the
fitting performed again, yielding the final track parameters.

3.3.4 L2STAR

The L2STAR framework represents an effort to combine both the IDSCAN and
SiTrack algorithms in a common coding structure, allowing their respective track
pattern recognition techniques to be used in a modular format. This enables easy
optimisation of the algorithms to specific physics signatures. In 2012 data taking,
the separate implementations of IDSCAN and SiTrack were replaced with their
L2STAR equivalents, labelled Strategy A and Strategy B, respectively. These
algorithms employ the same code structure but with some optimisation of the
ingredient parameters. For example, the IDSCAN φ−slices were reduced in size and
a tighter requirement was placed on the z−position of potential vertex candidates.
These were adjusted to improve the pattern recognition performance in the high-
pileup environment created by the LHC running with an instantaneous luminosity of
the order of 1 · 1034cm−2s−1. The effects of the adjusted parameters on the tracking
performance are discussed in Chapter 6. Furthermore, a pilot algorithm employing
offline software pattern recognition techniques similar to the EF software, labelled
Strategy C, was also tested during 2012 running.

As a final note, it should be highlighted that there are numerous reconstruc-
tion algorithms using data from different detector components; the aforementioned
represent just a few of the many physics-finding processes run by the ATLAS trigger.



Chapter 4

Measuring the transverse energy
flow

“To stop the flow of music would be like the stopping of time itself,
incredible and inconceivable.”

— Aaron Copland

The primary aim of the LHC experiments is to make measurements about and
above the electroweak symmetry breaking scale (O(100 GeV)), with the ultimate aim
of discovering new physical processes. Though these processes typically produce high
energy signatures — distinguishing them from the myriad of soft interactions — they
suffer from low cross-sections and as such require high instantaneous luminosities
in order to occur. This in turn increases the number of additional interactions per
bunch crossing, each of which contributes to the debris of non-perturbative QCD. In
order to pick out the particles of interest, and ensure that their measured 4-vectors
are not contaminated by spurious contributions from the underlying event (described
in Section 2.4.3), it is important to model this non-perturbative contribution as
accurately as possible.

Previous measurements of inclusive pp interactions [24–27] and the underlying
event [28–33] have been made with ATLAS; however, all were restricted to the
acceptance of the inner detector (|η| < 2.5), as they either used the tracking
information directly — in the case of counting particle tracks — or implicitly —
in the case of calibrating calorimeter information. The CMS collaboration also

69
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performed a measurement of inclusive pp events and the underlying event [34]; this,
however, was restricted to the forward calorimeter (3.15 < |η| < 4.9) and solely
measured the mean ΣE per event.

This measurement utilises the full acceptance of the ATLAS calorimeters (|η| <
4.8) and provides ΣET distributions as well as their means. This is performed with
two distinct data sets, termed the “minimum bias”1 and “di-jet” samples, yielding,
respectively, a complete description of both “pile-up” — a jargon term for additional
pp interactions accompanying the hard scatter — and the underlying event at the
LHC general purpose detectors.

To demonstrate the necessity for a complete understanding of pile-up events,
Figure 4.1 shows the maximum mean number of interactions per bunch crossing2

versus month during the pp runs in 2010 to 2012, as recorded by the ATLAS detector.
The number steadily increases across the years, which reflects the LHC achieving the
injection of increasingly larger numbers of proton bunches, more protons per bunch
and a smaller separation in time between the bunches [35].

Figure 4.1: The maximum mean number of events per bunch crossing as a function of
time during pp runs in 2010-2012, as recorded by ATLAS. Produced by the
ATLAS luminosity measurement group, from work conducted in [35].

Furthermore, modelling of the relative central-to-forward3 activity (a loose term
referring to the number and energy of particles), and of the forward region itself, is
currently not well constrained, making this analysis intrinsic to a complete picture
of soft QCD at the LHC.

1The term “minimum bias” indicates that the sample is as inclusive as possible.
2This number varies according to a Poisson distribution, as the events occur with a known rate and
are independent in time of each other.

3Here, central is defined as 0 < |η| < 3.2 and forward as 3.2 < |η| < 4.8.
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4.1 Definition of hadron level variables

The data used in these analyses are unfolded back from the detector to the hadron
level (the unfolding process is discussed extensively in Section 4.5). The hadron level
variables are defined as follows: the ΣET per event is constructed from all stable4

neutral particles with |p| > 200 MeV and all stable charged particles with |p| > 500
MeV. These cuts are chosen so as to best reflect the types of particles that deposit
a significant fraction of their energy in the detecting medium; low energy particles
can, for example, be forced into helices by the magnetic field before reaching the
detector. A quantitative analysis supporting these values was performed by matching
charged and neutral hadron level particles to their detector level counterparts, and
hence measuring the energy fraction a given particle deposits in the calorimeter as a
function of its momentum.

The ΣET distribution is constructed such that 1
Nevt

dNevt

dΣET
is a function of the

ΣET , where Nevt is the total number of events in the sample. This is performed
separately in adjacent regions of absolute pseudorapidity space, each of width 0.8,
for 0 < |η| < 4.8, totalling six regions, or |η| “bins”. From this variable the mean
ΣET per unit η − φ in each |η| bin is extracted. It is defined as 1

Nevt

dΣET
dηdφ

, and

hereon called the Eflow
T . For the inclusive pp analysis, these variables are defined

for the full φ−space; the underlying event analysis, however, measures them in the
region transverse in φ to the hard scatter — specifically, for π3 < |∆φ| < 2π

3 , where
|∆φ| is the angle between the leading jet and any other particle. This region has
been shown [36] to be most sensitive to measurements of the underlying event, since
it is away from the phase space occupied by the hard scatter.

4.2 Selection criteria

Most analyses in particle physics use a priori knowledge of the studied process to
isolate the desired events, or signal, from the background, which is the collective term
for every other type of event. In practice matters are not always so clear-cut: an
irreducible background may also be present in the signal events, which obviously
can not be eliminated by removing the event altogether. By design, the minimum
4As noted in Section 2.7, a stable truth particle has proper lifetime τ > 3× 10−11s.
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bias measurement presented here is essentially free of this irreducible background,
making it a truly inclusive measure of pile-up activity at the LHC. The di-jet
measurement is more complicated, and has a correspondingly involved selection to
minimise background events.

4.2.1 Hadron level minimum bias selection

In the minimum bias sample, rudimentary requirements are made to ensure a pp
collision occurred. An event is required to have at least 2 charged particles with
pT > 250 MeV and |η| < 2.5; this is essentially a vertex cut, made to reflect the
explicit vertex requirement made at the detector level. It is worth noting that the pT
cut is higher than in the detector case, which includes tracks down to pT = 150 MeV.
However, due to track and vertex inefficiencies, reconstructed events with at least
two pT = 150 MeV tracks will usually have more than two 150 MeV charged particles
present when a vertex is required. As a result, reconstructed events with at least
two pT = 150 MeV tracks have the same Eflow

T as events with at least two pT = 250
MeV charged particles. The cut at pT > 250 MeV was chosen as it minimised the
difference, in terms of the hadron level Eflow

T defined by MC models used in this
analysis, between the hadron and reconstructed level event selections.

4.2.2 Hadron level di-jet selection

A di-jet event is formed when two partons recoil off each other and hadronise.
Therefore, to select a di-jet event, at least 2 anti-kT truth jets with Ejet

T > 20 GeV
and R = 0.4 are required. Additionally, the leading and sub-leading jets in the event

are required to be central (|η| < 2.5), well balanced (E
jet2
T

Ejet1
T

> 0.5, where Ejet1(2)
T

is the ET of the (sub)-leading jet) and back-to-back (|φjet1 − φjet2| > 2.5 radians,
where φjet1(2) is the φ of the (sub)-leading jet). These balancing cuts help to suppress
events with more than two high energy jets, as the presence of additional jets could
contaminate the phase space transverse to the two leading jets.
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4.2.3 Reconstructed minimum bias selection

The main sources of background in the minimum bias sample are from empty events,
where no collision occurs, and beam noise, which can occur if the beam halo interacts
with the detector. To ensure a collision occurred, signal events are required to:

• Have passed selection by the L1 MBTS 1 trigger
• Feature one primary vertex with 2 or more associated tracks with pT > 150

MeV
• Contain no additional vertices with 5 or more associated tracks with pT > 150

MeV.

The L1 MBTS 1 trigger requires that at least 1 of the 32 scintillators on the
minimum bias trigger scintillator disks (2.09 < |η| < 3.84) be above noise threshold
— this helps to ensure that the event is not background. The second requirement
furthers this aim, while the third helps protect against additional pp interactions;
5 associated tracks are required to avoid removing particle decays from secondary
vertices, which typically have a small number of tracks and should not cause an event
to be vetoed.

4.2.4 Reconstructed di-jet selection

To control the backgrounds mentioned in the previous section, exactly the same
requirements are placed on potential di-jet events. Additional cuts on the jets are
made to ensure a well balanced, back-to-back di-jet topology is selected. In full,
signal events are required to:

• Have passed selection by the L1 MBTS 1 trigger
• Feature one primary vertex with 2 or more associated tracks with pT > 150

MeV
• Contain no additional vertices with 5 or more associated tracks with pT > 150

MeV
• Contain at least 2 jets, with:

(a) Ejet
T > 20 GeV

(b) |ηjet| < 2.5
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(c) |φjet1 − φjet2| > 2.5 radians
(d) Ejet2

T

Ejet1
T

> 0.5
Where jet1 and jet2 refer to the leading and sub-leading jet, respectively.

As with the hadron level di-jet selection, the cuts listed (b), (c) and (d) endeavour
to ensure a back-to-back, well-balanced, central di-jet topology.

4.3 Data samples

This analysis uses data collected by ATLAS from
√
s = 7 TeV pp collisions during the

first LHC runs of 2010. The minimum bias analysis uses an integrated luminosity5

of 7.07 µb−1, a subset of the 585 µb−1 used by the di-jet analysis. These data
were collected during low instantaneous luminosity runs, and as such the level of
pile-up present was very low (of order 0.01 peak number of pp interactions per
bunch crossing). This is necessary to ensure that pile-up does not contaminate
the measurement, which is designed to be a measurement of the effects of pile-up
itself. Events in both datasets were checked against a Good Runs List (GRL), which
requires that a given event was recorded during stable beams and without any major
faults in the detector modules.

The MC models and tunes used to correct the data for detector effects, provide
systematic checks in the correction process, and make final comparisons to data are
described in detail in Section 2.7.

Table 4.1 displays event counts for the minimum bias samples, and Table 4.2
shows a more detailed equivalent for the di-jet samples.

4.3.1 Data analysis

The data produced by the ATLAS detector are written to raw (byte stream format)
data files. These are passed through reconstruction software, which processes the
raw data to produce objects — such as jets — to be used at the analysis level. The
5In particle physics, the luminosity is the number of particles per unit area per unit time, multiplied
by the opacity of the target.



Measuring the transverse energy flow 75

Data MC (reco) MC (truth)
ND SD DD ND SD DD

388,040 636,731 239,558 261,304 637,934 242,397 264,194

Table 4.1: Number of data and Pythia 6 AMBT1 MC events passing the minimum bias
event selection. Here ND, SD and DD refer to non-diffractive, single-diffractive
and double-diffractive processes, as described in Section 2.4.4. The MC samples
are merged with each contribution weighted by their relative cross-section.

Selection cut Data AMBT1 (ND) AMBT1 (jets) 4C (jets) H++ (jet)
Total 1.00155×108 19,989,200 1,500,750 106,100 474,890
Minimum bias 1,626,830 2,043,640 1,062,506 105,423 472,450
Ejet1
T > 20 GeV 173,739 224,717 566,434 58,066 272,795

Ejet2
T > 20 GeV 44,156 56,732 20,253 20,199 98,576
|ηjet1,2| < 2.5 28,413 36,522 13,111 12,553 63,957
∆φjet1,2 < 2.5 22,723 28,549 10,195 10,356 49,846
Ejet2
T

Ejet1
T

> 0.5 21,894 27,530 9,843 9,946 48,261

Table 4.2: Number of reconstructed events passing the di-jet event selection. Here, AMBT1
is a Pythia 6 tune, 4C is a Pythia 8 tune, and ND refers to non-diffractive
events. The AMBT1 (jets) and 4C (jets) labels represent samples with varying
energies of jets required in the final state, merged according to cross-section.
The H++ (jet) label represents a single sample where events are required to
have a final state jet.



Measuring the transverse energy flow 76

final format adopts a simple n×m matrix structure, with each row representing an
event and each column the physical objects associated with that event.

The analysis is performed by processing these data using a standalone C++
framework. All graphs shown in the following chapter are made using ROOT [37],
unless specified otherwise.
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4.4 Topological clusters

At the reconstructed level, the ΣET per event is constructed from topological clusters,
which represent a particular treatment of the energy deposited by traversing particles
in the calorimeter cells. A scale factor is applied to all clusters to account for any
mis-modelling of the detector energy response by the MC used in correcting for
detector effects.

A description of the cluster algorithm, the cluster energy scale, the derivation of
said scale factors, and the effects of energy deposits from sources other than particles
— primarily electronic noise — are presented in the following sections.

4.4.1 Clustering algorithm

A topological cluster [38], or topoCluster, is a three dimensional collection of calorime-
ter cells constructed with the aim of associating energy deposits with particles. A
topoCluster is seeded around a single calorimeter cell with |E| > 4σ, where σ is
equal to a standard deviation from the mean energy of the calorimeter electronic
noise, which typically ranges from approximately 10 MeV in the first layers of the
EM barrel to O(100) MeV in the FCal [38]. The algorithm proceeds by including
all cells adjacent to the seed with |E| > 2σ, and finishes when no cell adjacent to
these contains enough energy to seed another topoCluster. A final check is made for
multiple local signal maxima; if more than one is found, the topoCluster is split into
a correspondingly smaller number of topoClusters.

Once a topoCluster is constructed, its 4-vector can be calculated. In this analysis,
the topoCluster E is measured at the EM scale6, calibrated using test-beam data [39–
42]. A justification for using the EM scale is given in Section 4.4.4. The topoCluster
η and φ values are calculated from an energy-weighted average of the constituent
cell centres. Finally, topoClusters are technically defined as massless objects.

6In ATLAS, the EM scale represents the electromagnetic energy deposited in the calorimeter cells
before corrections for effects such as the lower hadronic response.
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4.4.2 Cluster scaling

The MC used in correcting the data for detector effects must simulate the calorimeters
measurement of, or response to, low energy particles; if it does not, the correction
will be inaccurate. A measurement of this response with the ATLAS calorimeters
using π0 → γγ candidates has been conducted [43] — the π0 peak is constructed and
the data are compared to MC signal plus background templates. A scaling factor
(1+α) is then applied to the MC signal template, and the optimal value of α derived
by minimising the χ2 between the signal and background templates and data. This is
performed in η bins of the candidates photons, denoted in Table 4.3. The asymmetric
nature of the scale factor suggests that the detector response in data differs to that
provided by the MC; that is, in reality the detector is not perfectly symmetric. All
MC topoClusters in both analyses are scaled according to this prescription before
unfolding is performed.

α Uncertainty
−4.8 < η < −4.2 0.04 -0.023, +0.023
−4.2 < η < −3.5 -0.017 -0.032, +0.034
−3.5 < η < −3.2 0.01 -0.098, +0.11
−3.2 < η < −2.8 -0.027 -0.023, +0.025
−2.8 < η < −2.37 -0.089 -0.025, +0.029
−2.37 < η < −1.52 -0.022 -0.021, +0.02
−1.52 < η < −1.37 -0.073 -0.17, +0.18
−1.37 < η < 0 -0.017 -0.031, +0.025
0 < η < 1.37 -0.013 -0.031, +0.025
1.37 < η < 1.52 -0.013 -0.17, +0.18
1.52 < η < 2.37 -0.031 -0.021, +0.02
2.37 < η < 2.8 -0.107 -0.025, +0.029
2.8 < η < 3.2 -0.054 -0.023, +0.024
3.2 < η < 3.5 0.04 -0.092, +0.1
3.5 < η < 4.2 -0.042 -0.032, +0.034
4.2 < η < 4.8 0.01 -0.023, +0.023

Table 4.3: Best fitting α values obtained from the π0 → γγ fits and systematic uncertain-
ties for each η region. α is defined in the text.
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4.4.3 Acceptance

In a given |η| bin topoClusters of all energies are included in the ΣET , for the whole
geometric acceptance of the ATLAS detector except the region 1.3 < |η| < 1.32. In
this region topoClusters are found to deposit a larger fraction of their energy in
the hadronic calorimeter than topoClusters in the rest of the detector (Figure 4.2a).
Though not a problem in itself, corrections to the data are dependent on the MC and
its detector description; if there is a difference in the topoCluster hadronic fraction
between data and MC, the correction factor will be wrong. This is indeed the case,
as shown in Figure 4.2b. Removing topoClusters with hadronic fraction > 0.4 in the
region 1.3 < |η| < 1.32 counters this problem, returning similar agreement between
data and MC as in the regions bordering this space (Figure 4.2c). The choice of
cut is somewhat ad-hoc, and was determined primarily to minimise the difference
between data and MC.

4.4.4 Energy scale

As mentioned previously, the cluster energy is measured at the EM scale. A calibrated
scale also exists, which employs corrections to account for the calorimeters’ lower
hadronic response. In a hadronic shower, there are contributions7 from charged
particle ionisation, neutrons from nuclear spallation and non-detectable energy (such
as in nuclear binding and neutrinos). The resulting shower therefore has a lower
measured energy, or response; corrections made to account for this, and for out-of-
cluster and material energy losses, result in calibrated topoClusters. In ATLAS,
this calibration is performed for positive energy topoClusters only. Negative energy
topoClusters, which the clustering algorithm allows because the seed requirement
is in terms of |E|, are primarily8 a result of electronic noise, making corrections
unnecessary.

A comparison between the two scale types in terms of the Eflow
T is shown in

Figure 4.3. It is observed that the calibrated scale generally agrees better with the
truth data than the EM-scale, since it accounts for the energy losses mentioned

7The exact fractions depend on the detecting material and parent hadron energy.
8Other background effects also contribute: out-of-time pile-up (additional vertices from previous
bunch crossings), capacitive cross-talk (where a signal in one circuit or channel adversely affects
another), and noise spikes.
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Figure 4.2: (a) Hadronic energy fraction for topoClusters with 1.3 < |η| < 1.32 (red) and
the rest of the calorimeter (black). Figure (b) shows the EflowT in data and
MC and their ratio. The same distribution is shown in (c) after rejecting
topoClusters with a hadronic fraction > 0.4 in the region 1.3 < |η| < 1.32.
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Figure 4.3: MC reconstructed level EflowT at the EM (a) and calibrated (b) scales com-
pared to the hadron level EflowT .
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previously. However, in the regions 2.4 < |η| < 3.2 and 4.0 < |η| < 4.8 it performs a
significant over-correction, to the effect that the agreement between reconstructed
and truth data is worse than for the EM-scale. A similar relationship is observed
when examining the ΣET distributions in each |η| bin explicitly (Figure 4.4).
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 [GeV]T EΣ

0 5 10 15 20 25 30

# 
ev

en
ts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 truth

EM scale

calibrated scale

| < 4.0η3.2 < |

(e) 3.2 < |η| < 4.0

 [GeV]T EΣ

0 5 10 15 20 25 30

# 
ev

en
ts

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
truth

EM scale

calibrated scale

| < 4.8η4.0 < |

(f) 4.0 < |η| < 4.8

Figure 4.4: Truth level ΣET compared with EM and calibrated scale ΣET at the re-
constructed level MC, in the following |η| regions: (a) 0.0 < |η| < 0.8, (b)
0.8 < |η| < 1.6, (c) 1.6 < |η| < 2.4, (d) 2.4 < |η| < 3.2, (e) 3.2 < |η| < 4.0
and (f) 4.0 < |η| < 4.8.
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To investigate this further, the individual topoCluster ET distributions in each |η|
bin at the truth, EM scale and calibrated scale are shown in Figure 4.5. Again the
calibration tends to increase the energy of the topoClusters, pulling the distribution
closer to the truth. The double peaks observed in the first three |η| bins at the truth
level can be reasoned in terms of the momentum cuts applied, which have different
values for charged and neutral particles (p > 500 and 200 MeV respectively), and
remove proportionally more central than forward particles (the latter, by definition,
tend to have a higher average momentum). A similar double peaked structure is
observed in some |η| bins at the calibrated scale. This could be due to corrections
designed for EM particles being applied to hadronic deposits (and vice-versa), possible
because the correct identification of each type is problematic. Furthermore, since
the calibration is not applied to negative energy clusters, an additional double peak
centred at ET = 0 is observed.

The observed over-calibration could arise if a single particle is accidentally re-
constructed as two separate topoClusters; for example, if only the end of a particle
shower reaches the calorimeter, it may be that not all the deposits are sufficiently
above the noise threshold, causing gaps to form between the active cells. In this
case the calibration algorithm would overestimate the necessary correction — lower
energy clusters lose more of their energy before reaching the calorimeters, and as
such require a larger correction than higher energy clusters.

While the calibrated scale is generally closer to the truth than the EM scale, the
procedure itself has flaws. As discussed previously, this can cause problems when
correcting for detector effects if the MC does not properly simulate the conditions
present when collecting real data. Figures 4.6a and 4.6b show the Eflow

T in the
inclusive pp and di-jet data respectively; here, the data are corrected for detector
effects by unfolding the ΣET spectra in each |η| bin (the correction method is
described in depth in Section 4.5), with the yellow band indicating the energy
scale systematic uncertainty (detailed in Section 4.6). The procedure is performed
separately with topoClusters defined at the EM and calibrated scales; since the
unfolding process accounts for detector effects and correlations, the two results should
ideally be equal — this is indeed the case in the central region. However, in the two
|η| bins where the calibration significantly over-corrected (Figure 4.3), the results do
not converge within systematic error. In particular, the most forward |η| bin displays
a disagreement at the level of 10%.
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Figure 4.5: Truth level ET compared with EM and calibrated scale ET at the recon-
structed level MC, in the following |η| regions: (a) 0.0 < |η| < 0.8, (b)
0.8 < |η| < 1.6, (c) 1.6 < |η| < 2.4, (d) 2.4 < |η| < 3.2, (e) 3.2 < |η| < 4.0
and (f) 4.0 < |η| < 4.8.
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Figure 4.6: The EflowT in data, after unfolding EM- and calibrated scale topoClusters
separately, in (a) minimum bias and (b) di-jet data.

A study of the contribution from electronics noise asserted that the noise spectrum
at the EM scale is symmetric about zero, whilst the positive energy calibration results
in an asymmetric distribution about zero. As such the noise term cancels in the ΣET
at the EM scale. For this reason, and the fact that the two scales agree after unfolding
in all |η| bins except the most forward, where the EM scale better reflects the truth
distribution, the EM scale is chosen as the default for all analysis topoClusters.
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4.5 Unfolding

The data collected by any detector will have been changed in some way by their
measurement. Even in a perfectly understood detector it is necessary for particles to
interact — and hence lose energy — with it to be measured. Therefore in order to
make comparisons between data and physics models, the data need to be corrected
back to their natural, or “true”, state. This process is known as unfolding.

4.5.1 Bayes’ theorem

There are a number of techniques available to perform unfolding [44–46]; this analysis
utilises a method based on Bayes’ theorem of conditional probability. Its most simple
form can be derived quite easily, by way of treating two overlapping probability
spaces, P (H) and P (O) (P (Ω) = 1, integrating over all space). Given that an event
occurred in O-space, the probability of it also occurring in H-space is given by the
fractional contribution of the overlap to O-space:

P (H | O) = P (H ∩O)
P (O) (4.1)

Taking the corresponding relation for an event occurring in H-space:

P (O | H) = P (O ∩H)
P (H) (4.2)

But P (H ∩O) = P (O ∩H), so:

P (H | O) = P (O | H)P (H)
P (O) (4.3)
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This is the simplest form of Bayes’ theorem. By considering the whole space Ω
as being a sum of subspaces Hi, Bayes’ theorem can be expressed in terms of the
total probability:

P (H | O) = P (O | H)P (H)
ΣiP (O | Hi)P (Hi)

(4.4)

Interpreting Equation (4.4) in terms of experimental physics reveals Bayes’ theo-
rem as an important tool: for a given observation, it provides the means to determine
the probability of a given hypothesis being true.

4.5.2 Applying Bayes’ theorem

The application of an iterative Bayes’ theorem to experimental particle physics was
proposed by D’Agostini [47]. Since this analysis is interested in unfolding distributions
— specifically, histograms — the method outlined here is constructed in terms of a
given distribution’s bins.

As described in Section 2.7, MC software provides the means to simulate physics
processes, propagate particles through the detector, and reconstruct their final states.
It is therefore an important tool in building a relationship between hypothesis
and observation. In terms of matrix algebra, the relationship between each bin of
hypothesis, or “truth”, TMC

i , and each bin of observation, or “reconstructed”, RMC
j ,

can be given by:

RMC
j =

∑
i

SijT
MC
i (4.5)

Where Sij is called the smearing matrix, which describes the mapping of truth to
reconstructed elements. Naively, but mathematically sound, matrix inversion can
be used to return the truth distribution of a variable as a function of the inverted
smearing matrix:
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TMC
i =

∑
j

S−1
ij R

MC
j (4.6)

However in practice this is not possible, due to the non-linear correspondence
between the reconstructed and truth elements.

As such, a new technique must be found to recover the true distribution. A
hint at a potential candidate can be found by realising that the denominator of
Equation (4.4) is just a normalisation factor; hence, the equation can be restated as:

P (H | O) ∝ P (O | H)P (H) (4.7)

This looks similar to Equation (4.5), with the smearing matrix Sij being equivalent
to P (O | H). It is therefore clear that Bayes’ theorem can be used to recover the true
distribution from data. Re-writing Equation (4.4) in terms of truth and reconstructed
histograms:

P (TMC
i | RMC

j ) =
P (RMC

j | TMC
i )P (TMC

i )∑
i P (RMC

j | TMC
i )P (TMC

i ) (4.8)

Here P (TMC
i | RMC

j ) is an element in what is called the unfolding matrix,
P (RMC

j | TMC
i ) is an element in the smearing matrix, Sij , and P (TMC

i ) is an element
in what is termed the “prior”. The prior represents previous knowledge of a given
measurement; in this case, an appropriate physics model. Applying this unfolding
matrix to the data should remove detector effects and reveal the true distribution:

n(Cdata
i ) =

∑
j

P (TMC
i | RMC

j )n(Rdata
j ) (4.9)
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Where n(Rdata
j ) is the number of events in bin j of the measured data histogram,

and n(Cdata
i ) the number in bin i of the corrected. This histogram represents the

data corrected for detector effects, and can be compared directly to theory; it is
termed the “posterior”.

It is important to note the subtle difference between P (TMC
i ) from Equation (4.8)

and P (H) from Equation (4.4): if the former is constant with varying i then all bins
are equally likely; if the latter is constant, all spectra are equally likely. Therefore,
while a flat P (H) distribution places no a priori emphasis on a particular spectrum,
a flat P (TMC

i ) distribution is a major assumption that usually does not correspond
to the distribution in data. As such, the choice of prior has a strong influence on the
unfolding matrix, and hence the posterior. This is a feature that initially appears in
conflict with the Bayesian philosophy of recovering an unbiased, true distribution.

To counter this, an iterative procedure is adopted whereby the posterior after a
single application of the unfolding (the unfolded data distribution) is used as the
prior in the next iteration, and so on. This is the heart of D’Agostini’s method; how
it is applied practically is discussed in more detail in the following section.

4.5.3 Unfolding procedure

The Bayesian unfolding is performed using the Imagiro package [48], which provides
a C++ implementation of the method discussed in Section 4.5.1. As input it takes
flat ROOT ntuples containing truth, reconstructed and real data events, with which it
produces matrices and corrected results. Imagiro applies the unfolding procedure on
a per event basis and therefore a per event variable is necessary: here, the topoCluster
ΣET in bins of |η| width 0.8 is used. The Eflow

T is then calculated by taking the
mean of each ΣET distribution, dividing by the η bin width, the φ phase-space and
a factor of 2 to account for each |η| bin being filled with both positive and negative
η clusters.

4.5.4 Reweighting the MC

Before performing the unfolding, the MC used in unfolding was reweighted to the
data in an attempt to reduce the residual model dependence. Despite the iterative
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procedure, this is necessary as none of the models are constrained by data in the
forward region, and hence have wildly varying descriptions. This is particularly
important when it is necessary to treat events with MC information exclusively, as
will be discussed in Section 4.5.6.

The reweighting is performed such that the reconstructed MC ΣET distributions
match the data in each |η| bin, as shown in Figures 4.7 and 4.8, for minimum bias
and di-jet data respectively.

To perform the reweighting itself, the ratio of the data ΣET to the MC ΣET is
fitted with a spline, which provides a smooth interpolation between bin centres. The
spline is then used to weight the MC; due to low statistics in the ΣET tails, at high
ΣET the ratio is set equal to the value of the last bin with relative statistical error
< 20%. The Pythia 6 AMBT1 model was chosen as the nominal MC, as it represents
a general purpose generator tuned to early ATLAS minimum bias data [49].

4.5.5 Smearing matrices

An example two-dimensional smearing matrix filled on an event-by-event basis with
Pythia 6 AMBT1 truth and reconstructed ΣET is shown in Figure 4.9. The off-
diagonal elements are inferred as being a result of detector effects; if there was
a ρ = 1 correlation, the measured value would correspond exactly to the truth.
Generally, the truth value is larger than the reconstructed. This is expected, since
there are various mechanisms by which particles can lose energy interacting with the
detector before depositing the measured topoCluster. The highest bins on each axis
represent special event types, and are described in Section 4.5.6.

The bin sizes in all unfolding matrices were chosen so as to ensure the smallest
bias when calculating the mean of the ΣET in each |η| bin, and hence the Eflow

T . For
the matrix in Figure 4.9, 0.5 GeV wide bins were used for ΣET < 50 GeV, 1 GeV
wide bins for 50 < ΣET < 120 GeV and 10 GeV wide bins for ΣET > 120 GeV. The
range is -6 GeV < ΣET < 200 GeV, ensuring negative energy topoClusters are also
included.

The affect on the unfolded Eflow
T due to the choice of bin width in the ΣET

spectrum can be seen in Figure 4.10, which shows the MC truth Eflow
T obtained by

taking the mean of the ΣET distribution in each |η| bin. A special graph type (in
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Figure 4.7: Minimum bias ΣET distributions comparing the data with reconstructed
Pythia 6 AMBT1 MC, before and after reweighting, in the following |η| bins:
(a) 0.0 < |η| < 0.8; (b) 0.8 < |η| < 1.6; (c) 1.6 < |η| < 2.4; (d) 2.4 < |η| <
3.2; (e) 3.2 < |η| < 4.0; (f) 4.0 < |η| < 4.8.
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Figure 4.8: Di-jet ΣET distributions comparing the data with reconstructed Pythia 6
AMBT1 MC, before and after reweighting, in the following |η| bins: (a) 0.0
< |η| < 0.8; (b) 0.8 < |η| < 1.6; (c) 1.6 < |η| < 2.4; (d) 2.4 < |η| < 3.2; (e)
3.2 < |η| < 4.0; (f) 4.0 < |η| < 4.8.
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Figure 4.9: Minimum bias smearing matrices, after 2 iterations, in the following |η| bins:
(a) 0.0 < |η| < 0.8; (b) 0.8 < |η| < 1.6; (c) 1.6 < |η| < 2.4; (d) 2.4 < |η| < 3.2;
(e) 3.2 < |η| < 4.0; (f) 4.0 < |η| < 4.8. Note that the axes correspond to
the bin number of the unfolded distribution and not the units of the input
variable. The highest bin (18) on the truth axis is filled for “fake” events, and
the highest bin (18) on the reconstructed axis is filled for “missed” events. A
description of these event types is given in Section 4.5.6. The magnitude in
each bin, denoted by the rainbow bar, indicates the probability that a truth
event in bin i is reconstructed in bin j.
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Figure 4.10: The EflowT formed from the mean of ΣET histograms with various numbers
of bins compared to that obtained from a TProfile. The points labelled “Var
bins” correspond to the variable bin widths used in the matrix. The other
points correspond to various numbers of bins (with constant bin width) in
the range -6 GeV to 200 GeV.

ROOT framework terminology, a TProfile [37]), displaying the mean Eflow
T and its error

for each bin in |η|, is chosen as the benchmark because it calculates the “true” mean
— it is extracted from an unbinned ΣET distribution and hence unbiased by the choice
of binning. The maximum deviation from the TProfile is 2% when unfolding with 50
bins, and 1% with 100 bins. All other binning choices result in a deviation of < 0.5%.
The unfolded distribution is then rebinned to reduce both the effect of bin-to-bin
migrations and statistical errors: 2 GeV wide bins for 0 < ΣET < 8 GeV, 4 GeV
wide bins for 8 < ΣET < 20 GeV and 10 GeV wide bins for 20 < ΣET < 60 GeV.
The ΣET range in each distribution depends on the number of events in the tails.

The smearing matrix is applied to the uncorrected data according to Equa-
tion (4.9). This produces a posterior distribution, which is then used as the prior in
the next iteration. As explained previously, this lessens the influence of the choice
of model on the unfolding process. The number of iterations used was chosen by
comparing unfolded distributions produced by various numbers of iterations, shown
in Figures 4.11, 4.12 and 4.13. Two iterations were used, as the result converges with
those obtained from differing numbers of iterations to within a fraction of a percent
in Eflow

T , and a few percent in ΣET , whilst avoiding the inflation of statistical error
with increasing numbers of iterations (this dependency is discussed in Section 4.5.9).
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Figure 4.11: EflowT distributions comparing the data unfolded separately with 1, 2, 3
and 10 iterations; all examples use a reweighted Pythia 6 AMBT1 unfolding
matrix, for a) minimum bias, and b) di-jets.

4.5.6 Treatment of one-sided events

Due to the event selection criteria detailed in Section 4.2, there are four possible com-
binations of event: both reconstructed and truth pass; only truth passes (“missed”);
only reconstructed passes (“fake”); and neither pass. The first case is fully accounted
for in the smearing matrix, and the last is completely excluded from Equation (4.9).
Though the missed and fake events are present in Figure 4.9 (bins 18 on the y and x
axes, respectively), this is purely a feature of design on Imagiro’s part; they do not
feature explicitly in the smearing matrix Sij used to unfold the data, and instead
require separate appraisal.

If an event is selected at the truth level only, a correction is applied to each of
the unfolded ΣET bins. The correction factor is the efficiency, εi, of a given ΣET
truth bin, calculated from the distribution of missed events in truth:

εi = ΣnR
j=1P (Rj|Ti) (4.10)

Here nR is the number of reconstructed events, and the efficiency is essentially
the probability that an event in bin i of the prior distribution has a partner in any
bin of the reconstructed distribution. This factor alters Equation (4.9) such that:
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Figure 4.12: Minimum bias ΣET distributions comparing the data unfolded separately
with 2, 3 and 10 iterations; all examples use a Pythia 6 AMBT1 unfolding
matrix. (a) 0.0 < |η| < 0.8; (b) 0.8 < |η| < 1.6; (c) 1.6 < |η| < 2.4; (d) 2.4
< |η| < 3.2; (e) 3.2 < |η| < 4.0; (f) 4.0 < |η| < 4.8.
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Figure 4.13: Di-jet ΣET distributions comparing the data unfolded separately with 2, 3
and 10 iterations; all examples use a Pythia 6 AMBT1 unfolding matrix. (a)
0.0 < |η| < 0.8; (b) 0.8 < |η| < 1.6; (c) 1.6 < |η| < 2.4; (d) 2.4 < |η| < 3.2;
(e) 3.2 < |η| < 4.0; (f) 4.0 < |η| < 4.8.
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n(Cdata
i ) = 1

εi

∑
j

P (TMC
i | RMC

j )n(Rdata
j ) (4.11)

This procedure is performed after each iteration, thus reducing the dependency
of the correction on the choice of prior.

If an event is selected at the reconstructed level only, it is migrated from the
reconstructed bin into the fake bin (represented by bin 18 on the x−axis in Figure 4.9).
This bin is included in Equation (4.8), such that a given reconstructed event has a
probability of originating from the fake bin. The probability that a given data event
is removed is determined from the fake ΣET spectrum in the MC, which is itself
determined from the smearing matrix. For example, if there are more fake events
with ΣET = 1 GeV than ΣET = 10 GeV then it is more probable that an event
will be removed from the former than the latter bin. Since no truth information
is available for fake events, this correction is somewhat ad-hoc and dependent on
the choice of MC. To counter this, the MC is first reweighted to the data before
unfolding. The results of this method are discussed in the following section.

4.5.7 Closure tests

To assess that the Imagiro framework works as expected and does not introduce
any spurious bias, simple closure tests9 are shown in Figure 4.14 and Figure 4.15.
These were performed using two statistically independent, reweighted Pythia 6
AMBT1 samples: the first is unfolded using a matrix constructed from the second, and
compared to its truth. The results agree within statistical error, demonstrating that
no bias of this type is present.

The importance of reweighting the MC to the data becomes more apparent when
considering the treatment of fake events; if the MC provides an inaccurate description
of the fake distribution, a bias will be introduced in the correction procedure. Ideally
the unfolding process should remove any dependency on the type of event (nominal
or otherwise) used to populate the smearing matrix; if the nominal reconstructed

9The usage of the term ‘closure test’ varies, but it is generally a measure of whether two results
coincide within the relevant uncertainties.
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Figure 4.14: Minimum bias selection. Pythia 6 AMBT1 reconstructed unfolded with a
statistically independent Pythia 6 AMBT1 unfolding matrix compared with
Pythia 6 AMBT1 truth. The red histogram in the ratio distribution shows
the statistical error on the unfolded data, while the black histogram shows
the degree of closure. The distributions are plotted in the following |η| bins:
(a) 0.0 < |η| < 0.8; (b) 0.8 < |η| < 1.6; (c) 1.6 < |η| < 2.4; (d) 2.4 < |η| <
3.2; (e) 3.2 < |η| < 4.0; (b) 4.0 < |η| < 4.8.
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Figure 4.15: Di-jet selection. Pythia 6 AMBT1 reconstructed unfolded with a statistically
independent Pythia 6 AMBT1 unfolding matrix compared with Pythia 6
AMBT1 truth. The red histogram in the ratio distribution shows the statistical
error on the unfolded data, while the black histogram shows the degree
of closure. The distributions are plotted in the following |η| bins: (a) 0.0
< |η| < 0.8; (b) 0.8 < |η| < 1.6; (c) 1.6 < |η| < 2.4; (d) 2.4 < |η| < 3.2; (e)
3.2 < |η| < 4.0; (b) 4.0 < |η| < 4.8.
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Pythia 6 AMBT1 sample is unfolded with a reweighted Pythia 6 AMBT1 matrix and
compared with the nominal Pythia 6 AMBT1 truth, it should return complete closure.

However, as shown in Figure 4.16, biases of up to ∼ 35% are observed in tests
of this type with di-jet data. To investigate this, it was first noted that the di-jet
sample contained many more (approximately a factor of 10) fake events than in
the minimum bias sample. By setting the fake event weight equal to 1 — in effect,
removing the effects of mis-modelling by replacing the fake distribution with a
uniform distribution — the bias was reduced to at most 4% (Figure 4.17), indicating
that the treatment of fake events was largely responsible for the non-closure. This
confirmed the necessity of reweighting the MC to the data; if the unfolding were to
be performed without reweighting, the choice of model (which dictates the shape
of the fake event distribution) would introduce large biases immune to removal
via successive iterations. Therefore, considering that the MCs’ descriptions of the
forward region are unconstrained by data, it was deemed instructive to improve them
as best as possible by reweighting to real data before unfolding.

4.5.8 Physics model dependence

Whilst the reweighting and iterative procedures reduce the dependence of the unfolded
distribution on the MC’s modelling of the ΣET spectrum, it is possible that further
dependencies on variables contributing to the ΣET exist. Ideally the aforementioned
procedures would ensure closure when unfolding one MC with a smearing matrix
filled with another MC; the detector simulation is the same for both, and iterations
should reduce the dependency on a given model’s ΣET spectrum. Figure 4.18 shows
an example MC closure test in minimum bias data: here, Pythia 6 DW is unfolded
with a Pythia 6 AMBT1 unfolding matrix. The reasoning behind the choice of Pythia
6 DW is discussed shortly, but the same tests were performed using a variety of models,
some of which — such as an older version of H++— are not included in further
comparisons due to their being superseded by more recent versions. The residual
model dependence is given by the non-closure, which ranges from 14% in the highest
ΣET bin in the first |η| bin to as large as 32% in the highest ΣET bin in the last
|η| bin. Ideally the unfolded result should agree within statistical error, which is at
most 4%.
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Figure 4.16: Di-jet selection. The nominal reconstructed Pythia AMBT1 is unfolded with
a reweighted Pythia AMBT1 unfolding matrix and compared with Pythia
AMBT1 truth. The distributions are plotted in the following |η| bins: (a) 0.0
< |η| < 0.8; (b) 0.8 < |η| < 1.6; (c) 1.6 < |η| < 2.4; (d) 2.4 < |η| < 3.2; (e)
3.2 < |η| < 4.0; (b) 4.0 < |η| < 4.8.
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Figure 4.17: Di-jet selection. The nominal reconstructed Pythia AMBT1 is unfolded with
a reweighted Pythia AMBT1 unfolding matrix and compared with Pythia
AMBT1 truth; fake event weights are set equal to 1. The distributions are
plotted in the following |η| bins: (a) 0.0 < |η| < 0.8; (b) 0.8 < |η| < 1.6; (c)
1.6 < |η| < 2.4; (d) 2.4 < |η| < 3.2; (e) 3.2 < |η| < 4.0; (b) 4.0 < |η| < 4.8.
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This discrepancy can be reasoned in terms of the ET of the topoClusters that
contribute to the ΣET . Due to material interactions, low ET topoClusters lose
more energy before reaching the calorimeter, and thus their contribution to the ΣET
requires a larger correction. For a given ΣET , one model might predict a large number
of low ET particles, and another a small number of high ET particles, resulting in
different detector responses. This feature is shown in Figure 4.19 for minimum bias
data. Here the ET -weighted |ET |, normalised to the integral of the distribution, is
plotted: this gives the fractional contribution of clusters of a given ET to the sum
over events of the ΣET . In the region |η| < 2.4 all the MC models agree with the
data reasonably well. However, in the region |η| > 2.4 the data predict a softer ET
spectrum than the models, and their spread is quite large: H++ and Pythia 6 AMBT1
differ at the 20% level. The same distribution is plotted in Figure 4.20 for events
with ΣET > 15 GeV, in order to assess the description of events with high ΣET . A
similar relationship between Pythia 6 AMBT1 and the data is observed; however, here
Pythia 6 DW displays the largest deviation from the nominal model. The same tests
are shown for di-jet data in Figure 4.21 and Figure 4.22. It is noted that Pythia
6 AMBT1 is slightly softer than the data in the region |η| < 3.2, but agrees well in
the forward region. The largest deviation from the nominal model is given by H++
UE7-2; the difference is even bigger than that between Pythia 6 AMBT1 and data.

As a result of the distributions shown in Figures 4.18-4.22, and after conducting
many combinations of closure tests similar to Figure 4.18 in both channels, Pythia
6 DW was used to gauge the model dependence in minimum bias, and H++ UE7-2 for
di-jet data. The values for the systematic uncertainty itself were derived by unfolding
the data with these models and comparing to the data unfolded with Pythia 6
AMBT1, as discussed in Section 4.6.2.

Finally, Appendix A describes a study into how the model dependence varies
as a function of various truth particle momentum cuts and potential cluster energy
cuts. The nominal cuts (200 MeV for neutral particles and 500 MeV for charged
particles) and maintaining no cluster energy cut were found to yield the smallest
model dependence.



Measuring the transverse energy flow 104

|η|
0 10 20 30 40 50 60

T
EΣ

ev
t

dN ×
ev

t
N1

-610

-510

-410

Truth

Unfolded

| < 0.8η0.0 < |

 (GeV)TEΣ
0 10 20 30 40 50 60

T
R

U
T

H
U

N
F

O
LD

E
D

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

(a) 0.0 < |η| < 0.8

|η|
0 10 20 30 40 50 60

T
EΣ

ev
t

dN ×
ev

t
N1

-610

-510

-410

Truth

Unfolded

| < 1.6η0.8 < |

 (GeV)TEΣ
0 10 20 30 40 50 60

T
R

U
T

H
U

N
F

O
LD

E
D

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

(b) 0.8 < |η| < 1.6

|η|
0 10 20 30 40 50 60

T
EΣ

ev
t

dN ×
ev

t
N1

-610

-510

-410

Truth

Unfolded

| < 2.4η1.6 < |

 (GeV)TEΣ
0 10 20 30 40 50 60

T
R

U
T

H
U

N
F

O
LD

E
D

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

(c) 1.6 < |η| < 2.4

|η|
0 10 20 30 40 50 60

T
EΣ

ev
t

dN ×
ev

t
N1

-610

-510

-410

Truth

Unfolded

| < 3.2η2.4 < |

 (GeV)TEΣ
0 10 20 30 40 50 60

T
R

U
T

H
U

N
F

O
LD

E
D

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

(d) 2.4 < |η| < 3.2

|η|
0 5 10 15 20 25 30 35 40 45 50

T
EΣ

ev
t

dN ×
ev

t
N1

-610

-510

-410

Truth

Unfolded

| < 4.0η3.2 < |

 (GeV)TEΣ
0 5 10 15 20 25 30 35 40 45 50

T
R

U
T

H
U

N
F

O
LD

E
D

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

(e) 3.2 < |η| < 4.0

|η|
0 5 10 15 20 25 30 35 40

T
EΣ

ev
t

dN ×
ev

t
N1

-610

-510

-410

Truth

Unfolded

| < 4.8η4.0 < |

 (GeV)TEΣ
0 5 10 15 20 25 30 35 40

T
R

U
T

H
U

N
F

O
LD

E
D

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

(f) 4.0 < |η| < 4.8

Figure 4.18: Pythia 6 DW reconstructed unfolded with a Pythia 6 AMBT1 unfolding
matrix compared with Pythia 6 DW truth, in minimum bias. The red
histogram in the ratio distribution shows the statistical error on the unfolded
data, while the black histogram shows the degree of model dependence. The
distributions are plotted in the following |η| bins: (a) 0.0 < |η| < 0.8; (b)
0.8 < |η| < 1.6; (c) 1.6 < |η| < 2.4; (d) 2.4 < |η| < 3.2; (e) 3.2 < |η| < 4.0;
(b) 4.0 < |η| < 4.8.
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Figure 4.19: Distribution of 1
EtotT

× EtotT
d|ET |

, where EtotT is the sum over events of the

detector level ΣET , and ET is the detector level cluster transverse energy in
minimum bias in the following |η| bins: (a) 0.0 < |η| < 0.8; (b) 0.8 < |η| <
1.6; (c) 1.6 < |η| < 2.4; (d) 2.4 < |η| < 3.2; (e) 3.2 < |η| < 4.0; (b) 4.0
< |η| < 4.8.
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Figure 4.20: Distribution of 1
EtotT

× EtotT
d|ET |

, where EtotT is the sum over events of the

detector level ΣET , and ET is the detector level cluster transverse energy
in minimum bias with ΣET > 15 GeV, in the following |η| bins: (a) 0.0
< |η| < 0.8; (b) 0.8 < |η| < 1.6; (c) 1.6 < |η| < 2.4; (d) 2.4 < |η| < 3.2; (e)
3.2 < |η| < 4.0; (b) 4.0 < |η| < 4.8.
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Figure 4.21: Distribution of 1
EtotT

× EtotT
d|ET |

, where EtotT is the sum over events of the

detector level ΣET , and ET is the detector level cluster transverse energy
in di-jet events in the following |η| bins: (a) 0.0 < |η| < 0.8; (b) 0.8 < |η| <
1.6; (c) 1.6 < |η| < 2.4; (d) 2.4 < |η| < 3.2; (e) 3.2 < |η| < 4.0; (b) 4.0
< |η| < 4.8.
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Figure 4.22: Distribution of 1
EtotT

× EtotT
d|ET |

, where EtotT is the sum over events of the

detector level ΣET , and ET is the detector level cluster transverse energy in
di-jet events with ΣET > 15 GeV, in the following |η| bins: (a) 0.0 < |η| <
0.8; (b) 0.8 < |η| < 1.6; (c) 1.6 < |η| < 2.4; (d) 2.4 < |η| < 3.2; (e) 3.2
< |η| < 4.0; (b) 4.0 < |η| < 4.8.
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4.5.9 Statistical error propagation

Before unfolding is performed, the statistical uncertainty on a given |η| bin in an
Eflow
T distribution is calculated as the error on the mean of its corresponding ΣET

distribution. After unfolding is performed, the same uncertainty is dependent on the
unfolding parameters.

The statistical errors on the MC and data ΣET distributions are propagated
through the unfolding process according to the following error matrix:

∂n̂(Ci)
∂n(Dj)

= Sij +
nD∑
k=1

Sikn(Dk)
 1
P (Ti)

∂P (Ti)
∂n(Dj)

−
nC∑
l=1

εl
P (Tl)

∂P (Tl)
∂n(Dj))

Slk

 (4.12)

Here, n̂(Ci) is the corrected data distribution, Sij the smearing matrix, nD (nC)
are the number of uncorrected (corrected) events, P (Ti) the prior distribution, and
n(Dj) the uncorrected data distribution. As described in Section 4.5.6, εl represent
efficiencies used to treat missed and fake events. Since the second part of the
expression contains partial derivatives, it vanishes if only a single iteration is applied
and the error is just given in terms of the smearing matrix ( ∂n̂(Ci)

∂n(Dj)
= Sij). Notably,

the error matrix depends on ∂P (Ti)
∂n(Dj)

, which is ∂n̂(Ci)
∂n(Dj)

from the previous iteration

(as expected, the prior is replaced by the unfolded distribution). As such, this matrix
takes into account the evolution of the statistical error with the number of iterations.

The error matrix is used to obtain the covariance matrix on the unfolded distri-
bution, V (n̂(Ck), n̂(Cl)), via the following expression:

V (n̂(Ck), n̂(Cl)) =
nD∑
i,j=1

∂n̂(Ck)
∂n(Di)

V (n(Di), n(Dj))
∂n̂(Cl)
∂n(Dj)

(4.13)

Where V (n(Di), n(Dj)) is the covariance matrix of the uncorrected distribution.
Example covariance matrices are given in Figure 4.23 for the minimum bias sample.
Strong positive correlations are noted in all |η| bins, as may be expected. The
diagonal of a covariance matrix is the variance, or the squared statistical error; from
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these matrices, the final unfolded statistical uncertainty can therefore be extracted.
These errors are displayed on all distributions in Section 4.7.
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Figure 4.23: Minimum bias covariance matrices, after 2 iterations, in the following |η|
bins: (a) 0.0 < |η| < 0.8; (b) 0.8 < |η| < 1.6; (c) 1.6 < |η| < 2.4; (d)
2.4 < |η| < 3.2; (e) 3.2 < |η| < 4.0; (b) 4.0 < |η| < 4.8. Note that the
axes correspond to the bin number of the unfolded distribution and not
the units of the input variable. The magnitude in each bin, denoted by
the logarithmic scale rainbow bar, indicates the (non-physical) size of the
covariance.



Measuring the transverse energy flow 112

4.6 Systematic uncertainties

The treatment of the statistical uncertainty (Section 4.5.9) and of one of the main
sources of systematic uncertainty — the model dependence from unfolding (Sec-
tion 4.5.8) — have already been discussed. This section details the remaining two
dominant sources of systematic uncertainty common to both the inclusive pp and
di-jet analyses: the MC’s simulation of the energy response to low energy particles,
and the MC’s description of the ATLAS detector material. An additional source of
systematic uncertainty, related to the measurement of jet energies and hence relevant
to the di-jet analysis, is also described.

The following possible sources of systematic uncertainty were found to be negligibly
small (O(0.1%)): pile-up, cluster energy resolution, contributions from noise and
beam-induced backgrounds, simulation of the trigger selection, simulation of the
primary vertex position, and simulation of the position of the FCal.

4.6.1 Calorimeter energy response

To improve its description of the simulated detector response to low energy particles,
topoClusters in the MC used to unfolding the data are scaled by a factor 1+α, which
depends on the topoCluster η (described in Section 4.4.2, with the scaling factors
shown in Table 4.3). The systematic uncertainties associated with measuring α —
calculated, for example, by varying the π0 fit range and the background shape — are
used to determine the systematic uncertainty of the MC’s response to EM particles.

The uncertainty on the response to hadronic particles is determined separately
for particles in the inner detector (taken here as |η| < 2.4), where the tracking
information can be used to cross-check calorimeter measurements, and for particles
in the calorimeters outside the inner detector. In the former case, a study of the
ratio of the inner detector track measurement to the calorimeter energy measurement
of isolated charged pions [50] is used. The uncertainty is calculated by taking the
difference between data and MC in p and η bins: it is found to be 3.5% for |η| < 0.8
and 5% for 0.8 < |η| < 2.4. For |η| > 2.4, the uncertainty is determined from the
difference between data and MC in test-beam studies of charged pions [51]. This
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yields a one-sided uncertainty for hadrons of +5% for 2.5 < |η| < 3.2 and +9% in
the remaining η-space (3.2 < |η| < 4.8).

Finally, an average of the EM and hadronic uncertainties is calculated according
to Pythia 6 AMBT1’s prediction of the relative contribution of the two particle types
to the ΣET (Figure 4.24a). This combined error represents a 1σ deviation from the
standard scaling factor α. The final error is calculated by scaling all topoClusters
by ±1σ, unfolding each ΣET distribution, and comparing to the nominal unfolded
value. This is shown in terms of the Eflow

T in Figure 4.24b.
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Figure 4.24: Figure (a) displays the relative contributions to the EflowT from EM and
hadronic particles, according to Pythia 6 AMBT1. Figure (b) shows the
nominal unfolded data EflowT (black) compared to EflowT distributions where
the topoClusters are scaled according to the systematic errors discussed in
the text; the ratio distribution gives the final systematic error on the energy
response. Both figures show minimum bias data.

4.6.2 Model dependence

The model dependent systematic uncertainty is determined by comparing the results
of unfolding the data with the nominal MC sample (Pythia 6 AMBT1) with the results
from unfolding with the MC tune expected to return the largest discrepancy, according
to closure tests and spectra comparisons (Section 4.5.8). Such tests are shown in
terms of the Eflow

T for minimum bias (Figure 4.25a) and di-jet data (Figure 4.25b),
with the ratio giving the fractional deviation from the nominal unfolding. In minimum
bias both H++ UE7-2 and Pythia 6 DW are compared to the nominal in order to
confirm that, on average, Pythia 6 DW returns the largest deviation. In di-jet data
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only H++ UE7-2, which produced the largest model dependence in the aforementioned
tests, is considered.

Ratio distributions equivalent to the Eflow
T ratios, but in terms of ΣET instead,

are shown in Figures 4.26 and 4.27 for minimum bias and di-jet data, respectively.
The model dependent systematic uncertainty in each bin is equal to the deviation
from the nominal, and the final result is symmetrised to account for the possibility
that the bias operates in a the opposite direction.
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Figure 4.25: Figure (a): minimum bias data EflowT , unfolded using Pythia 6 AMBT1, DW
and H++ UE7-2 separately. Figure (b): di-jet data EflowT , unfolded using
Pythia 6 AMBT1 and H++ UE7-2 separately.

4.6.3 Detector material

Since particles contributing to the ΣET lose energy by material interactions, it is
important that the MC used in corrections provides an accurate description of not
only the detecting medium, but also the material upstream of the calorimeters.

To this end, comparisons are made between the nominal Pythia 6 AMBT1 sample
and an “extra material” sample with exactly the same physics model but a different
simulation of the ATLAS detector. A similar extra material sample is described in
section 3 of reference [52]; specifics of the sample used here are listed below.

• In the inner detector:
– an extra 5% of material added to the entire inner detector
– an extra 20% of material added to the pixel and SCT services
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Figure 4.26: Ratio of minimum bias data ΣET distributions, unfolded using Pythia 6 DW
and H++ UE7-2 separately, to the same distribution unfolded using Pythia
6 AMBT1, in the following |η| bins: (a) 0.0 < |η| < 0.8; (b) 0.8 < |η| < 1.6;
(c) 1.6 < |η| < 2.4; (d) 2.4 < |η| < 3.2; (e) 3.2 < |η| < 4.0; (b) 4.0 < |η| <
4.8.
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Figure 4.27: Ratio of di-jet data ΣET distributions unfolded using H++ UE7-2 to the
same distribution unfolded using Pythia 6 AMBT1, in the following |η| bins:
(a) 0.0 < |η| < 0.8; (b) 0.8 < |η| < 1.6; (c) 1.6 < |η| < 2.4; (d) 2.4 < |η| <
3.2; (e) 3.2 < |η| < 4.0; (b) 4.0 < |η| < 4.8.
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– 0.15X0 added to the end of the SCT/TRT endcap, and the inner detector
endplate

• In the central calorimeter services:
– 0.1
sin(θ)X0 added in the barrel cryostat before the calorimeter

– 0.05
sin(θ)X0 added between the barrel pre-sampler and strips

– an increase in the density of material in the endcap crack (1.475 < |η| < 1.8)
• In the forward region:

– an increased thickness in one tube of the cryocylinders
– a change of density in the pump material

Here X0 is the usual radiation length for electromagnetic particles. Figure 4.28
compares the Eflow

T produced from the nominal and extra material samples, separately
for the minimum bias and di-jet data sets. The resulting uncertainty depends on
the |η| region — though generally at the level of 2—4%, it increases up to 6% in the
regions where calorimeter sub-systems overlap. This uncertainty is symmetrised to
account for the possibility that the MC simulation either under or overestimates the
amount of material.

|η|
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 [G
eV

]
φdηd
T

EΣd ×
ev

t
N1

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Nominal material

Extra material

|η|
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

N
O

M
IN

A
L

E
X

T
R

A

0.94
0.95
0.96
0.97
0.98
0.99

(a) Minimum bias

|η|

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 [
G

eV
]

φdηd
T

EΣd ×
ev

t
N

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Nominal Material

Extra Material

|η|
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

N
o

m
in

al
E

xt
ra

 m
at

er
ia

l

0.9
0.92
0.94
0.96
0.98

1
1.02
1.04

(b) Di-jets

Figure 4.28: Distributions comparing the nominal Pythia 6 AMBT1 reconstructed EflowT

with the extra material Pythia 6 AMBT1 reconstructed EflowT , in (a) mini-
mum bias and (b) di-jet data.
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4.6.4 Jet energy scale

The jet energy scale (JES) provides a systematic uncertainty on the measured
jet energy, detailed calculations of which have been performed with the ATLAS
detector [53]. Similar to the calibration method discussed in Section 4.4.4, it applies
a correction to the raw jet energy. Therefore, an incorrect JES can alter the number
of events passing the requirement that two jets with ET > 20 GeV are present. The
same is not true at the particle level, for which no JES is applicable; as such, it
will not be accounted for by the unfolding. The effect of an incorrect JES is tested
by performing the unfolding with the jet ET shifted up and down by an η− and
ET−dependent uncertainty function (described in reference [54]), compared with
the nominal value. In the Eflow

T it is found to be 1.6% in the most central bin
(|η| < 0.8), decreasing to 0.13% in the most forward bin. In the ΣET the effect is
almost negligible, and is ignored altogether for |η| > 2.4.
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4.7 Results

The final unfolded Eflow
T distributions are shown in Figures 4.29a and 4.29b. The

statistical and systematic errors, combined in quadrature, are denoted by the green
band; the systematic errors are always larger than the statistical, of the order O(10).
In the minimum bias data a convexed distribution is observed — this is due to the
truth p cuts, which remove relatively more particles from the central than forward
region, where particles have a generally higher p. This effect is not as explicit in the
di-jet data, which show a steadily falling distribution outside the most central |η|
bin. According to Pythia 6 AMBT1, the truth p cuts remove ∼ 18% of events; in the
equivalent |η| bin in minimum bias, it is ∼ 25%. The difference here is due to the
accepted di-jet events having a higher mean particle p, since the selection criteria
biases towards small impact-parameter (“head-on”) pp collisions and hence a harder
scatter.

Comparisons with specific tunes of the models described in Section 2.7 are
made. In the minimum bias distribution, both Pythia 6 AMBT1 and Pythia 6
AUET2B:CTEQ6L1 predict the data very well in the first two |η| bins, and within error
in the third. However, they fair less well for |η| > 2.4, with the prediction falling
lower by at least an additional error sigma. This can be expected, since both these
tunes were constrained by LHC data in the central region only. Conversely, H++
UE7-2 and Pythia 8 4C (which is also tuned to early ATLAS minimum bias data)
over-predict in the central region, but achieve a better description in the forward
region. It is worth noting, however, that both models predict a larger Eflow

T overall,
and as such neither provides a reliable description of the relative central-forward
activity. Interestingly, EPOS delivers the best overall description; in particular, it
is closest to the data in the most forward |η| bin. In the central region at least,
its success can be attributed to its having been tuned to LHC minimum bias data.
Finally, despite being an older tune, Pythia 6 DW provides a reasonable description
of the |η| dependence; however, it significantly under-predicts the overall activity.

In the forward region, a similar relationship between data and MC is observed in
the di-jet distribution as with the minimum bias: all models tend to under-predict
the degree of activity. Here, however, only Pythia 6 DW lands within error (in the
most forward two |η| bins); EPOS now performs worst of all, most likely because
it has never been tuned to underlying event data. The Pythia 6 AUET2B:CTEQ6L1
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Figure 4.29: Unfolded EflowT distribution compared to various MC models and tunes for
(a) the minimum bias selection and (b) the di-jet selection in the transverse
region. The filled band represents the total uncertainty on the unfolded
data.
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does feature tuning to ATLAS underlying event data — naïvely, one would expect
it to provide the best description. This is not the case, however, with Pythia 8 4C
performing better on average over all |η|.

The ratio of the minimum bias and di-jet results is shown in Figure 4.30. All
systematic uncertainties except the physics model dependence and the jet energy
scale are taken as correlated between the two distributions, and hence partially
cancel in the ratio. In part, the ratio is > 1 in every |η| bin because di-jet events,
on average, contain higher p particles. However, the truth p cuts are not the whole
story — removing them (shown in dark, dashed orange and denoted “no p cuts”)
does not result in a flat ratio. The additional contribution to the di-jet data could
originate from particles associated with the hard-scatter phase-space leaking into
the transverse region.

Generally, both Pythia 6 AMBT1 and AUET2B:CTEQ6L1 predict the drop-off with
|η| most accurately. The remaining models bracket the data.
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Figure 4.30: Unfolded EflowT distribution in the di-jet data transverse region divided by
that in the minimum bias data, compared to various MC models and tunes.
The filled band represents the total uncertainty on the unfolded data.

The final unfolded ΣET distributions are shown in Figures 4.31 and 4.32 for
minimum bias and di-jet data, respectively. In both cases the data show a harder
(higher mean) ΣET spectrum than the MC as the measurement moves from central
to forward |η|. A broader distribution is observed in the data for |η| < 3.2 than
in the forward region, implying that central events display more event-by-event
variation in their ΣET . This feature is predicted by the various MC models and
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tunes; however, again, the overall description in the forward region is poor. The
exception here is Pythia 6 DW in the di-jet distributions, which provides the best
agreement overall, even describing the higher mean ΣET peak in the forward region.
This improved description may be partially due to DW being a result of tuning to
Tevatron underlying event data. Again, in the minimum bias data, Pythia 6 AMBT1
describes the central distributions best.

4.7.1 Diffractive variations

In order to probe the dependency of the Eflow
T on the relative fractions of diffractive

contributions, Figure 4.33 compares the unfolded minimum bias data to Pythia
8 4C with the default diffractive cross-sections (50.9 mb, 12.4 mb and 8.1 mb for
non-diffractive, single-diffractive and double-diffractive processes, respectively), and
to separate predictions by the same model with the diffractive components from
the nominal sample either weighted by two or by a half, effectively doubling or
halving the single- and double-diffractive contributions. Since diffractive events
contain less activity than non-diffractive events, the observation that halving the
diffractive component increases the Eflow

T — and vice-versa — is expected. However,
the |η|−dependence is seen to be independent of the relative diffractive fractions;
as such, it is concluded that variations in diffraction do not significantly effect the
Eflow
T shape.

4.7.2 PDF variations

As discussed in Section 2.4.2, the choice of PDF used to model the non-perturbative
component of the QCD cross-section can alter a given MC’s prediction of the overall
activity and |η|−dependence. Furthermore, it is necessary to constrain certain choices
in the construction of a PDF to data.

To this end, Figure 4.34 shows the unfolded minimum bias and di-jet data
compared to a group of Pythia 8 A2 tunes. Here, the tunes are built on two PDF
sets — MSTW2008LO and CTEQ6L1. First, the two tunes are compared directly; it is
observed, in both datasets, that tuning parameters to MSTW2008LO (dashed blue)
increases the overall activity relative to CTEQ6L1 (solid green). Next, the PDF
sets are compared directly by keeping the CTEQ6L1 tune parameters constant, but
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Figure 4.31: Unfolded ΣET distributions compared to various MC models and tunes
for the minimum bias selection in the transverse region in the following |η|
regions: (a) 0.0 < |η| < 0.8, (b) 0.8 < |η| < 1.6, (c) 1.6 < |η| < 2.4, (d)
2.4 < |η| < 3.2, (e) 3.2 < |η| < 4.0 and (f) 4.0 < |η| < 4.8. The filled band
in each plot represents the total uncertainty on the unfolded data.
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(c) 1.6 < |η| < 2.4
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Figure 4.32: Unfolded ΣET distributions compared to various MC models and tunes for
the di-jet selection in the transverse region in the following |η| regions: (a)
0.0 < |η| < 0.8, (b) 0.8 < |η| < 1.6, (c) 1.6 < |η| < 2.4, (d) 2.4 < |η| < 3.2,
(e) 3.2 < |η| < 4.0 and (f) 4.0 < |η| < 4.8. The filled band in each plot
represents the total uncertainty on the unfolded data.
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Figure 4.33: Unfolded EflowT distribution in the minimum bias data compared to Pythia
8 4C with the nominal diffractive cross-sections, as well as enhanced and
suppressed diffractive cross-sections. The filled band represents the total
uncertainty on the unfolded data.

switching the PDF set from CTEQ6L1 to MSTW2008LO (dashed red), and comparing
with the default CTEQ6L1 tune. Switching the PDF set to MSTW2008LO decreases the
activity in the central region, and increases it in the forward region. This can be
reasoned in terms of the MSTW2008LO gluon PDF (Figure 4.34c), which features an
increase in both high- and low-x gluon densities with respect to the mid-x region.
As such, conservation of momentum dictates that there will be more particles with
large longitudinal p and hence more forward activity.

As a final test, the PDFs’ description of the relative forward to central activity is
examined by scaling the default CTEQ6L1 tune such that it agrees with MSTW2008LO
in the most central |η| bin (dashed green). This removes any increase (decrease) of
activity in the forward region caused by an increase (decrease) of overall activity. The
result is to pull the CTEQ6L1 tune further away from the data in the forward region;
as such, it is concluded that MSTW2008LO provides not only the best description
overall, but also specifically in the forward region.

In addition, comparisons are made between the minimum bias Eflow
T and three

Pythia 6 AMBT2B tunes [56] — two that use the above PDF sets (MSTW2008LO and
CTEQ6L1) and another that uses a new PDF set, CTEQ66c. Unlike the MSTW2008LO
and CTEQ6L1 sets, CTEQ66c includes heavy flavour contributions from c−quarks.
This is expected to increase the particle multiplicity in the forward region [57], as
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Figure 4.34: Unfolded EflowT distributions compared to Pythia 8 with variations on
the MSTW2008LO and CTEQ6L1 PDFs used, as discussed in the text for (a)
the minimum bias selection and (b) the di-jet selection. The filled band
represents the total uncertainty on the unfolded data. (c) The MSTW2008LO
and CTEQ6L1 gluon PDFs for a low momentum transfer of Q2 = 4 GeV.
The y−axis is the product of the gluon’s longitudinal momentum fraction
x and the distribution function f(x,Q2), versus longitudinal momentum
fraction x. This graph was made using the Durham HepData project [55].
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heavy flavour content increases the parton density at high−x. However, as shown in
Figure 4.35a, the activity is lower overall when compared to the standard CTEQ6L1
PDF (the tune parameters are kept constant to allow direct comparison between the
PDFs). This can again be explained in terms of the gluon PDFs, which are shown in
Figure 4.35b: while the CTEQ66c PDF does have a slightly higher gluon fraction at
high−x, it is much lower over the rest of the x−range. However, the |η|−dependence
is improved with respect to both the standard CTEQ6L1 and MSTW2008LO PDFs.
Finally, in terms of the AMBT2B tune performance, the MSTW2008LO variation once
again provides a comparatively better description than CTEQ6L1.
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Figure 4.35: Figure (a) shows the unfolded minimum bias EflowT compared with Pythia
6 AMBT2B tunes, using the MSTW2008LO, CTEQ6L1 and CTEQ66c PDF sets.
Figure (b) shows the CTEQ6L1 and CTEQ66c gluon PDFs for a low momen-
tum transfer of Q2 = 4 GeV. The y−axis is the product of the gluon’s
longitudinal momentum fraction x and the distribution function f(x,Q2),
versus longitudinal momentum fraction x. This graph was made using the
Durham HepData project [55].



Measuring the transverse energy flow 128

4.8 Summary

Measurements of the Eflow
T and ΣET distributions as a function of |η| in pp collisions

have been conducted, for two event classes: one requiring, though not exclusively, the
presence of low transverse momentum particles (minimum bias) and one requiring
the presence of high transverse momentum particles (di-jets). To quantify the
contribution from the underlying event to the total transverse energy, in the di-jet
data the measurements are made in the region transverse in φ to the hard scatter.
Both measurements include all charged particles with p > 500 MeV and all neutral
particles with p > 200 MeV, and are the first of their type to utilise the entire
acceptance (|η| < 4.8) of the ATLAS calorimeters. This allows the overall properties
of inclusive pp collisions and the underlying event to be probed.

After using an iterative Bayesian unfolding to correct for detector effects, the
results were compared to various MC models and tunes. In general all MC models
under-predict the quantity of energy in the forward region with respect to the central
region by 20-30%, with the exception of the EPOS model in minimum bias data and
Pythia 6 DW tune in di-jet data. However, in minimum bias data the Pythia 6 DW
tune underestimates the overall energy by 20-30%. In tests using the Pythia 8 4C
tune, altering the contributions from diffractive processes was found to not change
the relative central-forward Eflow

T . The PDF dependence was tested using the Pythia
8 A2 series of tunes: it was found that the relative central-forward description is
improved if MSTW2008LO PDFs are used instead of CTEQ6L1 PDFs. Finally, the effect
of including contributions from intrinsic charm using the CTEQ66c PDF was not
found to improve the description with respect to the nominal CTEQ6L1 PDF.

The results from these measurements are currently being used to constrain new
ATLAS MC tunes. With the instantaneous luminosities at the LHC expected to
increase even further when it commences with pp collisions at 14 TeV, these tunes
will provide a much needed description of the relative forward-central contributions
from pile-up and the underlying event, and ultimately facilitate more accurate
measurements of low cross-section processes.



Chapter 5

A new technique for model
independent missing transverse
energy searches

“Mark Foley was right — there are no ghosts in this town.”
— Andrew Falkous

In addition to making measurements about the electroweak symmetry breaking
scale, the LHC also provides the necessary energy to study above it. This chapter
introduces a new technique for performing searches for large missing transverse
energy ( 6ET ) final states, which as discussed in Section 2.6 are a typical signature of
physics beyond the Standard Model. Its strength lies in that it essentially measures
well known SM processes, allowing the results to be interpreted independently of a
specific “beyond the Standard Model” (BSM) theory. Furthermore, its measurements
are made in terms of a ratio, allowing for the cancellation of correlated systematic
uncertainties.

The measurement is conducted by selecting SM Z → νν̄ and Z → µ+µ− final
states with a large 6ET and a jet. In the Z → νν̄ channel the jet requirement is
necessary to ensure a Z → νν̄ candidate is selected, as otherwise there would be no
observable net change in the transverse energy. For large 6ET BSM signatures the
same is true, as the decay products are also invisible to the detector. As such the
Z → νν̄ and BSM final states are equivalent; using Z → νν̄ candidates to perform

129
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the measurement therefore excludes them as a potential source of background. Events
in the Z → µ+µ− channel can also be selected by the same method, provided that the
muons are not included in the 6ET calculation. The expected SM ratio of branching
fractions between the Z → νν̄ and Z → µ+µ− channels describes the benchmark for
the measurement, explained in detail in the following section.

Due to time constraints the analysis itself is performed with Monte Carlo samples
only, and as such the results should be interpreted as a proof of principle of the
technique rather than a final measurement.

5.1 Z → ll production at the LHC

The primary Z boson production mechanism at the LHC is via the Drell-Yan
channel, which involves qq̄ annihilation: qq̄ → Z0/γ∗ → l+l−, shown in Figure 2.6b
(Section 2.5). At next-to-leading order (NLO), the process may involve initial state
radiation (ISR) from gluons (Figure 5.1a) and may occur through gluon scattering,
yielding a jet in the final state (Figure 5.1b). This latter process can continue to
increasing orders, such that multiple jets can accompany the leptonic final state,
though the cross-section decreases with increasing orders.

q l+

l−

Z0/γ∗

q̄

g

(a) Z production with ISR

q
l+

l−

g

Z0/γ∗

q

q

(b) Z production via gluon scattering

Figure 5.1: Next-to-leading order Drell-Yan Z boson production, showing (a) an initial
state gluon and (b) production through gluon scattering, termed a “Z + 1
jet” process.

The total production cross-sections for various SM processes as a function of
centre-of-mass energy

√
s, calculated to NLO accuracy with perturbative QCD, are

shown in Figure 5.2. For LHC energies of
√
s = 7 TeV, the total Z cross-section is

≈ 30 nb, while the equivalent W cross-section is approximately three times larger;
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this point will become more pertinent later. The Z → l+l− branching fraction, which
represents the ratio of the Z → l+l− cross-section to the total Z → X cross-section,
where X represents all allowed final states, is approximately 3.37% [58] for each of
the muon, electron and tau channels.

As described in Section 2.5, the electroweak interaction also couples with neutrinos.
The total Z → νν̄ branching fraction, where ν is any flavour of neutrino, is much
larger than that of the µ+µ− channel, with a value of approximately 20% [58].
Since neutrinos can not be directly detected, the Z → νν̄ cross-section was originally
measured in e+e− collisions by subtracting the measured partial cross-sections (Z → ll

and Z → hadrons) from the total measured cross-section, obtained from line fits to
the cross-section shape as a function of Z invariant mass [59].

The differing branching fractions between the neutrino and muon channels is
a result of summing over the three neutrino flavours in the SM and the difference
between the Z → νν̄ and Z → l+l− coupling strengths. Taking the ratio of these
branching fractions yields a value of approximately 5.94:

Γ(Z → νν̄)
Γ(Z → µ+µ−) ≈ 5.94 (5.1)

Here Γ(Z → νν̄) represents the total branching fraction for Z → νν̄ processes.
Experimentally this can be measured by using final states with jets to select Z → νν̄

events and placing requirements on the reconstructed di-muon invariant mass to
select Z → µ+µ− events. Provided BSM particles interact with SM particles but
interact only weakly with visible baryonic matter, at the detector level their presence
would be inferred from a large 6ET and a final state jet from, for example, quark initial
state radiation. As such these events can satisfy the selection criteria for Z → νν̄

events, detailed below. This would cause an increase in the ratio in Equation (5.1).
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Figure 5.2: Standard Model cross-sections for a range of centre-of-mass energies, including
the Tevatron and LHC. Taken from [60].
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5.2 Definition of hadron level variables

The ALPGEN generator is used to produce Z → νν̄ and Z → µ+µ− Monte Carlo (MC)
events at NLO, providing final states with n−jets, where 0 ≤ n ≤ 5. The six samples
are then weighted according to their relative cross-sections and combined.

The 6ET is equal to the vector sum of the Z boson decay products, plus any
additional muons and neutrinos in the event. This best reflects the reconstructed
level 6ET vector, which in the Z → µ+µ− case would not include the undetected
neutrinos and omits muons. The lead jet is defined as the highest pT jet in the event,
which is taken to be the jet recoiling off the Z boson decay products.

5.3 Selection criteria

Due to time restrictions preventing a rigorous appraisal from being conducted, the
event Z → νν̄ selection criteria used here is based on a previous analysis conducted
by ATLAS, searching for final states with large 6ET and a single jet [61].

5.3.1 Hadron level selection

To select a Z → νν̄ event, the following fiducial region is constructed:

• A primary vertex with at least 2 (pT > 0.4 GeV) tracks
• Lead jet pT > 120 GeV and |η| < 2.0
• 6ET > 120 GeV
• No more than two jets with pT > 30 GeV and |η| < 4.5
• ∆φ between the second jet and the 6ET , ∆φjet2,6ET > 0.5
• No electrons or muons in the event

All hadron level jets are constructed using the anti-kT algorithm with a jet
radius R = 0.4. The lead jet and 6ET requirements ensure a high energy leading
jet and large 6ET . While technically it is instructive to require only a single jet
to minimise background contributions from di-jet events, a second jet is allowed
to increase the number of selected events, which needs to be as large as possible
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to make measurements in the statistically impoverished high 6ET (6ET > 400 GeV)
region. To ensure that the second jet is not from di-jet production with the leading
jet, a ∆φ requirement is placed between it and the 6ET vector. Finally, to remove
contamination from Z → l+l− and W → lν events, which would be present in real
data, no final state electrons or muons are allowed.

To select Z → µ+µ− events, the same criteria is applied with the exception of
the muon veto. In addition, two oppositely charged muons with pT > 20 GeV and
|η| < 2.5 and invariant mass 66 < MZ < 116 GeV are required. This cut helps reflect
the reconstructed level selection.

5.3.2 Reconstructed level selection

At the reconstructed level, the 6ET is constructed by calculating the vector sum over
all topological clusters (topoClusters) and taking the transverse component of the
resulting energy. This is performed using calibrated topoClusters to account for
energy losses in the detector, and does not include the contribution from muons; the
latter is required because otherwise the 6ET in Z → µ+µ− events would be zero.

To select Z → νν̄ events, the same fiducial region as the hadron level is used. In
addition, all events are required to pass an inclusive 6ET trigger [62] requiring a 6ET
> 60 GeV at Event Filter. This trigger was found to be approximately 98% efficient
for 6ET > 120 GeV [61], and hence an 6ET cut of 120 GeV is chosen. Furthermore,
standard ATLAS event cleaning is performed to better ensure a genuine collision
event is selected. All jets are constructed using the anti-kT algorithm (R = 0.4) with
the leading jet required to pass additional requirements on its electromagnetic, fem,
and charged fraction, fch, where:

fem = Eem
Eem + Ehad

> 0.1 (5.2)

And:



A new technique for model independent missing transverse energy
searches 135

fch =
∑Ntracks pT

pjetT
> 0.02 (5.3)

Here Eem, Ehad represent the jet energies measured in the electromagnetic (EM)
and hadronic calorimeters; ∑Ntracks pT is scalar sum of the pT of the tracks associated
with the primary vertex within a cone of radius R = 0.4 around the jet axis, and
pjetT is the jet pT as measured by the calorimeters. These requirements reduce the
probability that the lead jet is produced by a cosmic ray or beam-background muon
interacting with the calorimeters.

To enforce the veto on the presence of muons and electrons, requirements are
placed on their reconstruction to better ensure that the detector level objects corre-
spond to their true counterparts. To facilitate track reconstruction, both are required
to originate from the inner detector (|η| < 2.5 for muons and |η| < 2.47 for electrons).
Electron candidates are required to have pT > 20 GeV and satisfy loose identification
criteria, leading to a more stringent veto. Muon candidates are required to have
pT > 7 GeV, be identified in both the inner detector and muon spectrometer, and
satisfy isolation criteria: the scalar sum of all tracks in a cone of radius R = 0.2
around (and excluding) the muon must be less than 1.6 GeV.

To select Z → µ+µ− events, two oppositely charged muons with pT > 20 GeV,
|η| < 2.5 and invariant mass 66 < MZ < 116 GeV are required. In addition, the
same selection criteria as for Z → νν̄ candidates is required with the exception of
the muon veto.

5.4 Background and signal

The dominant SM background process that can pass the Z → νν̄ selection cuts is
from W → lν events where the lepton has either failed reconstruction or passed
outside the acceptance. This hypothesis is corroborated by Figure 5.2, which shows
that the W production cross-section at the LHC is approximately three times that
of the Z; after accounting for the differing leptonic branching fractions [58], this
increases to approximately a factor of ten. Further SM backgrounds include, in
decreasing order of cross-section: single or pair production of top quarks, multĳet
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production, beam-induced background muons and di-boson production. Figure 5.3
shows MC predictions of the 6ET in Z → νν̄, Z → µ+µ− and W → lν events at the
hadron and reconstructed levels, after all selection cuts. The uncertainties in both
distributions are purely statistical. To estimate their contribution to the background,
the W → lν events are required to pass the same selection criteria as Z → νν̄ events.
It is worth noting that in previous 6ET searches the Z → νν̄ and Z → µ+µ− channels
are also considered as backgrounds.

The Z → νν̄ channel is predominant at both levels, indicating that the selection
criteria is effective in selecting Z → νν̄ candidates. In the Z → µ+µ− channel, the
kinematic and invariant mass requirements placed on potential Z → µ+µ− candidates
causes a further reduction of the number of events. At the hadron level, the W → lν

channel is higher than the Z → µ+µ− channel in the first two bins, but falls off more
quickly as the 6ET increases. At the reconstructed level, however, theW → lν channel
is higher than the Z → µ+µ− channel in all bins. This reflects both the requirement
of the Z → µ+µ− candidate, which is subject to the muons’ reconstruction efficiency,
and the reduced strength of the W → lν muon veto at the reconstructed level, which
is also dependent on the same effect. This is discussed in more detail in the following
section.

In addition, to test the technique’s sensitivity to BSM physics, an example dark
matter candidate sample is included in Figure 5.3. The sample was produced using
the MadGraph generator [63] and represents the qq̄ → χχ production of M = 200
GeV dark matter particles via interaction with SM quarks or gluons (more detailed
information can be obtained from reference [61]). Here, events are required to pass
the Z → νν̄ selection. It is noted that while the small cross-section for this process
results in a lower overall 6ET than the SM channels, the drop-off with increasing 6ET
is much smaller. For higher 6ET values (300 <6ET < 400 GeV) it is equivalent to the
Z → µ+µ− channel at the reconstructed level, and for the highest bin ( 6ET > 400
GeV) it is fractionally higher at the hadron level and approximately a factor of two
larger at the reconstructed level.
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(b) 6ET in reconstructed level events

Figure 5.3: ALPGEN MC 2011 predictions of the number of events from Z → νν̄, Z →
µ+µ−, W → lν and qq̄ → χχ processes after all analysis selection cuts, as a
function of (a) truth and (b) reconstructed 6ET . For the purposes of future
data-MC comparison, these histograms are scaled by the total 2011 data
integrated luminosity (

∫
Ldt = 4.7 fb−1).

5.5 Results

To test how well the hadron level MC reproduces the expected ratio of cross-sections
between Z → νν̄ and Z → µ+µ− candidates, Figure 5.4a shows their ratio as
a function of 6ET with an equivalent selection applied in both channels: events
are required to have a Z → νν̄ or Z → µ+µ− candidate with invariant mass
66 < MZ < 116, a leading jet with pT > 40 GeV and 6ET > 40 GeV. On average
the result is slightly larger than the expected value (Equation (5.1)), and features a
dependency on the 6ET . This is thought to be due to the difference in the Z → νν̄

and Z → µ+µ− invariant mass spectra, the latter of which — despite the invariant
mass requirement — includes contributions from virtual γ∗ and Z interference. The
equivalent distribution at the reconstructed level is not shown, as it is not possible to
place an invariant mass requirement in the Z → νν̄ channel. Again, the uncertainties
shown in these and all following distributions are purely statistical.

The same distribution after all analysis cuts, at both the hadron and reconstructed
levels, is shown in Figure 5.4b. The ratio at both levels increases significantly with
respect to Figure 5.4a. This is due to the requirement of a Z boson candidate in the
Z → µ+µ− channel only, which is necessary at the reconstructed level to reflect the
selection that would be required in real data, and at the hadron level to ensure the
selection is as close as possible to the reconstructed selection. The hadron level now
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reflects the selection necessary to perform corrections, which must account for the
requirements placed at the reconstructed level. A significant discrepancy between
the hadron and reconstructed level predictions is also observed, ranging from 25%
in the first 6ET bin to over 30% in the highest, as shown in the ratio between the
hadron and reconstructed distributions (lower panel). This provides an estimate of
the correction factor necessary to correct real data back to the hadron level. Most of
this discrepancy can be accounted for by the muon identification and reconstruction
efficiency, which amounts to ∼ 90% per muon [64] and hence ∼ 80% per Z → µ+µ−

candidate. The correction factor is not flat across the 6ET spectrum, however, with
the high 6ET region showing the largest discrepancy. Further work is required to
determine a reason for this 6ET dependency.
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Figure 5.4: Figure (a) shows the hadron level ratio of Z → νν̄ to Z → µ+µ− cross-
sections where only a Z boson candidate is required in each channel. Figure
(b) shows the same ratio at both the hadron and reconstructed levels after
all analysis selection cuts.

To investigate the effect of W → lν background on the measurement, Figure 5.5
shows the ratio of cross-sections between Z → νν̄ plus W → lν candidates to
Z → µ+µ− candidates as a function of 6ET , in blue (red) at the hadron (reconstructed)
levels. This provides an estimate of how the measurement would look in data if
no signal events were present. As expected, including W → lν events increases the
ratio at both the hadron and reconstructed levels (by approximately 10% and 20%,
respectively). The effect is more pronounced at the reconstructed level, where, due to
the aforementioned muon reconstruction inefficiencies, the muon veto is less effective.

Finally, to test the sensitivity of the measurement to the presence of dark matter
particles in the presence of this background, Figure 5.5 also shows the ratio of cross-
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sections between Z → νν̄ plus W → lν plus dark matter candidates to Z → µ+µ−

candidates, in green (purple) at the hadron (reconstructed) levels. This provides an
estimate of how the measurement would look in data if signal events were present.
The dark matter signal at both levels causes an increase across all bins with respect
to the background-only prediction, with an ∼ 20% increase for 6ET > 400 GeV. The
statistical error, however, limits a more precise calculation of the actual deviation.
The lower panel shows the ratio between the hadron and reconstructed predictions,
separately for the background-only (blue) and background plus signal scenarios
(green). The two are almost exactly the same, indicating that the correction factor
is independent of the presence of signal. This is an important result, as it shows
that the correction procedure is not biased by the choice of signal model. It can
be explained in terms of the the muon reconstruction efficiency, which affects both
the Z → νν̄ and dark matter candidate selection approximately equally and hence
cancels in their ratio.
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Figure 5.5: The ratio of Z → νν̄ plus background (W → lν) to Z → µ+µ− cross-sections
at the hadron (blue) and reconstructed (red) levels, and their ratio (lower blue
distribution). Also shown is the ratio of Z → νν̄ plus background (W → lν)
plus signal (qq̄ → χχ) to Z → µ+µ− cross-sections, at the hadron (green)
and reconstructed (purple) levels, and their ratio (lower green distribution).

5.5.1 Discussion

The results presented here provide an MC-based proof of principle of this method.
As expected, the contribution from background is large across the 6ET range; in fact,
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the effect would be even greater if all further backgrounds mentioned in Section 5.4
were included. At higher 6ET values, however, the contribution from signal becomes
more prominent, inducing a clear increase in the Z → νν̄ to Z → µ+µ− ratio.

The estimate of the correction factor necessary to bring the reconstructed MC
(and real data) back to the hadron level is mostly accounted for in terms of muon
reconstruction efficiencies. The unfolding technique described in the previous analysis
(Section 4.5) could, for example, be used to perform such corrections. When applied
to real data, this would enable direct comparison between experiment and theory
independent of the detector used to record the data.

To complete the analysis, a thorough assessment of the potential backgrounds and
systematic uncertainties would be performed. Those uncertainties correlated between
the Z → νν̄ and Z → µ+µ− channels, such as the jet energy scale uncertainty, would
cancel when calculating their ratio. This would yield a more accurate result than
non-ratio based measurements. When correcting the data back to the hadron level,
the background could either be subtracted directly, using data-driven estimates, or,
as in this study, included in the MC sample used in the unfolding.

Finally, the statistical accuracy of the measurement as a whole would be improved
by both increasing the number of generated MC events and by including the contribu-
tion from Z → e+e− events in the denominator of Equation (5.1). The latter would
require a more involved selection criteria than in the Z → µ+µ− channel, which
could be achieved by using existing ATLAS measurements as points of reference.
Before conducting the study in data the statistical significance in the high 6ET region
would need to be estimated first, potentially by using the distributions in Figure 5.3.

5.6 Summary

A new technique for performing model independent 6ET searches has been presented.
It infers the presence of new particles with large 6ET from a deviation in the ratio of
SM branching fractions between Z → νν̄ and Z → µ+µ− candidates. Preliminary
MC studies indicate that the measurement is sensitive to the presence of an example
dark matter candidate in a high background environment, causing a ∼ 20% shift from
SM expectations for 6ET > 400 GeV. Furthermore, the correction factor necessary to
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correct the reconstructed level to the hadron level was found to be independent of
the presence of signal.



Chapter 6

Measuring the inner detector
trigger tracking efficiency

“Probe the earth to see where your main roots run.”
— Henry David Thoreau

The high event rate at the LHC presents a challenging environment from which to
extract interesting physics signatures. At the online level it is necessary — when all
LHC bunches are filled — for the ATLAS trigger to reduce the 40 MHz bunch crossing
rate to the 500 Hz output rate that can be written to disk offline. As a result the
ATLAS High Level Trigger (HLT) algorithms must be fast and efficient to ensure that
both interesting and rare physics events are not lost. Monitoring the performance of
the inner detector (ID) trigger algorithms — responsible for reconstructing tracks
from signatures such as muons, electrons and final states containing b-quarks — is
therefore an important check of ATLAS data taking efficiency.

6.1 Inner detector monitoring

There are two main categories of event reconstruction — online and offline. The
online reconstruction is performed by the HLT algorithms, which operate during
ATLAS data taking and are consequently restricted to limited latencies: ∼ 10ms at
level 2 (LVL2) and ∼ 1s at event filter (EF). The offline reconstruction is performed

142
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after ATLAS has finished taking data, allowing its algorithms to utilise a complete
description of the detector and all the information provided by its sub-systems.

Numerous studies comparing the track reconstruction performance of the ID
trigger with respect to the offline reconstruction have been conducted [65, 66]. A
version of the code used to perform these analyses is also employed at the first stage
of data reprocessing, forming part of an automated framework that monitors the ID
trigger performance. This allows the efficiency of a given algorithm to be quickly
determined without having to wait for the data to complete the various stages of
checks necessary to ensure the highest quality for the analysis level.

This analysis makes a performance measurement without being biased — and
hence essentially blinded — by the offline reconstruction. It therefore represents the
first “true” measurement of the ATLAS ID trigger algorithm reconstruction efficiency.
This important point is explained more clearly in terms of how the reconstruction
efficiency is defined (Section 6.1.3). The code developed for the analysis has also
been adapted to operate automatically at the first stage of data reprocessing.

To make a performance measurement of the ID without such a bias, only online
information is used. This is performed by using objects defined at the EF, instead of
fully reconstructed offline objects, as the reference sample with respect to which the
efficiency is measured. Furthermore, the following criteria are necessary for a given
EF object to be used to measure the ID trigger tracking efficiency:

• it is not required to have been reconstructed by the ID trigger algorithms
• it is a track belonging to a physics signature and hence should have been

reconstructed by the ID algorithms

To meet these requirements, the following analysis utilises the “tag and probe”
method, described below.

6.1.1 Tag and probe method

The tag and probe technique employed here uses standard candle SM processes
to select reference ‘probe’ tracks from a properly ‘tagged’ sample of events. The
tag track is required to have tracks in both the inner detector and an independent
detector, while the probe track is required to be reconstructed in the independent
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detector only (Figure 6.1). The tag and probe candidates used in this analysis are
muons from both J/Ψ → µ+µ− and Z → µ+µ− decays, treated separately. As
such, the muon spectrometer is used as the independent detector. Muons provide
a clean signature with which to make measurements, as they radiate much less
bremsstrahlung than, say, electrons1. To form a tag and probe pair, the candidates
must have an invariant mass close to the J/Ψ or Z mass. This, combined with the
requirement of a tag track, helps to ensure that the probe track represents the muon
spectrometer component of a muon produced from a J/Ψ or Z resonance decay.
Since these particles’ invariant masses differ by a factor of 30 (MJ/Ψ ≈ 3.1 GeV),
measuring their decay products allows the efficiency to be calculated over a wide
range of momenta.

Figure 6.1: Simplified transverse view of the ATLAS detector. The inner circle repre-
sents the inner detector, and the green doughnut the muon spectrometer.
Red arrows indicate muon tracks, black arrows indicate ID tracks, and the
turquoise triangle represents the probe muon RoI within which the efficiency
is determined.

6.1.2 Candidate selection

As outlined previously, it is necessary that the trigger used to select the J/Ψ→ µ+µ−

and Z → µ+µ− candidates places an ID requirement only on the tag muon; specifically,
this requirement ensures that the tag muon candidate has tracks in both the ID and
muon spectrometer and that these tracks are matched. This matching process is

1The probability of bremsstrahlung emission is proportional to 1/m2 of the incoming charged particle.
Since mµ ≈ 100me, a muon is approximately 104 times less likely to radiate via bremsstrahlung.
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specific to the muon reconstruction algorithm used (see [67] for a full description
and performance review of ATLAS muon reconstruction algorithms), but the general
process is to propagate all ID tracks with sufficient momentum out to the first station
in the muon spectrometer and perform a match χ2 using the difference between any
nearby segment and the predicted extrapolation. Tracks passing this selection can
then be defined as good muon objects and used as tag candidates.

The probe muon is required to have a track only in the muon spectrometer,
not the ID. The direction of flight and the transverse impact parameter, d0, must
therefore be obtained by extrapolation to the interaction point. The extrapolation
attempts to take into account energy losses of the muon in the upstream material (eg.
calorimeters). This is not perfect, however, leading to differences in the extrapolated
d0 and the value obtained from direct measurement by the ID.

Furthermore, the pT resolution is strongly dependent on which detector sub-
system is used to measure it. For ID muons with 4 < pT < 20 GeV the resolution
is dominated by multiple scatters, and has a value of σpT /pT ≈ 2%. For muon
spectrometer tracks, the resolution is most dependent on energy loss fluctuations
for pT < 10 GeV (low−pT ), and multiple scatters for pT > 10 GeV (high−pT ). For
low−pT muon spectrometer tracks this results in a resolution of σpT /pT ≈ 5% [67].
As such, stand-alone muon spectrometer tracks suffer from worse measurement than
their combined counterparts, since the latter uses the better measured ID track
parameters to calculate the pT .

To form a di-muon candidate, the tag and probe pair is required to pass a set
of selection criteria: explicitly, the two muons must have opposite signed charge,
originate from separate RoIs within the ID, and the invariant mass of the di-muon
pair must fall within a window centred on the mass of the intended meson or gauge
boson candidate (exact values are given in Table 6.1). Note that the separate RoI
and invariant mass requirements ensure that the di-muon pair is not made by a
tag muon and its own muon spectrometer track, the latter of which can be poorly
measured and thus mimic a separate probe track.

If these requirements are satisfied, the muon pair are deemed to have been products
of a genuine J/Ψ→ µ+µ− or Z → µ+µ− decay; as a sanity check, Figure 6.2 shows
invariant mass plots for each decay type in data and MC. The MC used here represents
signal events generated by the Pythia 6 (Pythia 8) models for the J/Ψ→ µ+µ−
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(Z → µ+µ−) channels. Though displaying clear peaks at the respective invariant
masses, data and MC do not agree well, with the data having a broader distribution
in both channels. This suggests the presence of background in the data sample, which
may falsely alter the efficiency. This is investigated quantitatively in Section 6.1.4.
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Figure 6.2: The tag and probe invariant mass spectrum, for (a) J/Ψ→ µ+µ− and (b)
Z → µ+µ− candidates. The MC used in figure (a) represents prompt J/Ψ
decays (though the invariant mass spectrum should not be dependent on
lifetime). In both cases the MC is normalised to the integral of the data, and
the range is restricted by the trigger invariant mass requirement.

probe pT (GeV) probe |η| qµ1 · qµ2 M tag−probe
inv (GeV)

J/Ψ > 4.0 < 2.5 < 0 2.5 < M tag−probe
J/Ψ < 3.4

Z > 10.0 < 2.5 < 0 71.2 < M tag−probe
Z < 111.2

Table 6.1: Numerical values for tag and probe di-muon (J/Ψ → µ+µ− or Z → µ+µ−)
candidate selection.

6.1.3 Calculating the track reconstruction efficiency

If a di-muon candidate is selected, the efficiency of the L2 and EF reconstruction
algorithms can be measured. The base requirement for a given algorithm to be
considered efficient is that it successfully reconstructed a suitable ID track in the
probe RoI. Initially this was tested by applying a matching requirement in terms
of (η, φ) between the probe and any potential ID track candidate. However, it was
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found that the large measurement errors on the J/Ψ probe muon φ variable resulted
in ID track candidates being missed, producing a falsely low efficiency.

To circumnavigate the dependency of the efficiency on the probe muon resolution,
a given algorithm is considered efficient if it provides an ID track from the probe
RoI that forms a J/Ψ or Z di-muon candidate with the tag track. The criteria to
form an ID-tag di-muon candidate are:

• the ID track is required to originate from the probe RoI
• the ID-tag pair are required to pass an invariant mass cut: 1.5 < M tag−ID

J/Ψ < 6.2
GeV and 60.0 < M tag−ID

Z < 120.0 GeV for the J/Ψ → µ+µ− and Z → µ+µ−

channels respectively

The invariant mass cuts are looser than those for the tag and probe selection
(Table 6.1); this is to ensure that the matching is less dependent on the ID (or tag)
track parameter resolutions. To determine the exact values, Figure 6.3 shows the tag
and probe invariant mass (M tag−probe

J/Ψ ) versus the tag and ID track invariant mass
(M tag−ID

J/Ψ ) for the IDSCAN and Strategy A algorithms in 2011 (
√
s = 7 TeV) and

2012 (
√
s = 8 TeV) pp collision data, respectively. The first bin on the M tag−ID

J/Ψ axis
represents inefficiencies — if M tag−ID

J/Ψ = 0, then the tag has not managed to find a
match; that there are approximately twice as many entries in this bin for Strategy A
indicates that it is less efficient than IDSCAN, which is indeed observed in the final
results.
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Figure 6.3: The tag and probe invariant mass spectrum versus the tag and ID track
invariant mass spectrum in the J/Ψ→ µ+µ− channel, for (a) IDSCAN 2011
and (b) Strategy A 2012 data. The z−axis shows the number of tag and
probe pairs per event, on a logarithmic scale.
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The entries in the third bin on the same axis (0.2 < M tag−ID
J/Ψ < 0.3 GeV) represent

cases where the tag track has been matched to its own ID track, yielding an invariant
mass for the pair of M tag−ID

J/Ψ ≈ 2Mµ ≈ 0.21 GeV. This is possible if the two muon
RoIs overlap — a common occurrence in J/Ψ decays, which, due to their small mass,
tend to have a significant longitudinal boost. Therefore this bin is also considered as
inefficient, placing the lowest possible matching cut at around M tag−ID

J/Ψ > 300 MeV.

The region between this bin and the peak around the J/Ψ mass on the M tag−ID
J/Ψ

axis is populated by potential ID-tag candidates. Hypothetically all these pairs
could be considered as successful matches — a separate ID track has been found,
and the resulting pair may have an invariant mass away from the J/Ψ mass due
to resolution effects on either or both of the tracks. However, it was found that
treating all the candidates in this region as efficient renders the measurement more
dependent on tracks not originating from the J/Ψ candidate. As such, the final cut
values were chosen to minimise this effect whilst also being loose enough to minimise
the dependency of the efficiency on resolution effects.

In the Z → µ+µ− channel the matching criteria is less dependent on resolution
effects — the ID track pattern recognition algorithms are ideally suited to high−pT
reconstruction, and tracks of this type traverse a greater distance in the muon
spectrometers and hence register more hits in the tracking chambers. It was found
that the efficiency was largely independent of the chosen cuts, varying by as little
as 0.01% over a wide range. As such the actual values are somewhat arbitrary, and
were chosen to safely ensure that any residual resolution effects (the resolution is
inversely dependent on the track curvature, which is small for high−pT tracks) are
accounted for.

The efficiency is defined as:

εID = NID+tag

Ntag

(6.1)

Here NID+tag is equal to the total number of ID-tag pairs, and Ntag is equal to
the total number of tag and probe candidates. The benefit of using EF instead of
offline muons is apparent from Equation (6.1) — if an offline muon was required
in the denominator, then εID would be defined in terms of events that had passed
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the full reconstruction. This biases the final efficiency, since an inefficient event at
(say) L2 may not pass the requirements after full reconstruction; thus, despite being
inefficient, it would not be included in Equation (6.1).

6.1.4 Systematic uncertainties

It is possible that a background muon, such as those originating from decays in flight
of light mesons and from semi-leptonic b− and c−hadron decays, forms a tag muon
and hence a tag and probe pair. This can alter both the numerator and denominator
in Equation (6.1).

To test and assign a suitable systematic uncertainty to this effect in the 2011 data
sample, a measurement of the background is performed. Since discrepancies between
the data and MC invariant mass spectra are thought to be due to contributions from
background, the J/Ψ and Z invariant mass spectra are used to model and hence
provide a handle on this background.

The J/Ψ→ µ+µ− channel is considered first, as the discrepancy between data
and MC is more prominent. As a first step, signal J/Ψ → µ+µ− MC is used to
perform a fit over the entire tag and probe invariant mass range allowed by the
trigger used to select the events in data (2.5 < M tag−probe

J/Ψ < 4.3 GeV), shown in
Figure 6.4a. The function with the smallest χ2/degree of freedom fit was found to
be a convolution of a Gaussian and a Breit-Wigner.

With the shape of the signal peak determined, this functional form is used to fit
the signal in data, with a polynomial of varying orders used to fit the background
(Figure 6.4b). The background function with the smallest χ2/degree of freedom fit
to the signal plus background was found to be a parabola. Figures 6.4c and 6.4d
show separately both the efficiency and the signal to signal plus background ratio
(S/(S +B)) as a function of invariant mass.

From these distributions the efficiency as a function of S/(S + B) is obtained,
in the following manner: using Figure 6.4c, the S/(S + B) values are grouped
into bins of width 0.1, for 0 < S/(S + B) < 1. In a given S/(S + B) bin the
efficiency is then obtained by separately summing the numerator and denominator
values corresponding to the invariant mass of each point in the bin, as given by the
numerator and denominator histograms used to make Figure 6.4d, and dividing the
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two sums. The statistical uncertainty on the efficiency is calculated using binomial
error propagation, as the numerator and denominator histograms contain correlated
entries. In both cases the bins with M tag−probe

J/Ψ > 4.0 are excluded as the fit obtained
in Figure 6.4a does not describe the shape of the distribution well in this region. The
resulting distribution yields the efficiency as a function of S/(S + B), as shown in
Figure 6.4e. A linear extrapolation is then performed to obtain the efficiency given a
hypothetical “pure” sample (100% signal).

From Figure 6.4e a constant systematic error is derived by calculating the average
efficiency (in the analysis range 2.5 < M tag−probe

J/Ψ < 3.4 GeV) and taking the difference
with the pure signal efficiency, yielding a value of ∼ 0.4% in each variable bin at L2
and 0.3% at EF. When determining the efficiency as a function of the probe muon
pT , however, the systematic derivation was performed separately in two bins of probe
muon pT : 0 < pprobeT < 8 GeV and 8 < pprobeT < 13 GeV. Since the algorithms are
suited to high−pT reconstruction, it was hypothesised that the efficiency would be
less background dependent in the region 8 < pprobeT < 13 GeV. This is confirmed,
with the Strategy A systematic uncertainty found to be ∼ 0.8% (∼ 0.5%) in the
0 < pprobeT < 8 GeV region and ∼ 0.1% (∼ 0.05%) in the 8 < pprobeT < 13 GeV region
at L2 (EF). A similar relationship is found in the other algorithms at L2 and EF.

The same process is repeated for 2012 data and MC, as shown in Figure 6.5,
yielding a slightly larger systematic value of ∼ 1% at L2 and ∼ 0.6 at EF. These
larger values suggest a higher level of background in the 2012 data than 2011; this
may be a result of the higher instantaneous luminosities at which the LHC ran in
2012, resulting in more pile-up vertices, which may in turn lead to a higher probability
that a track from these additional vertices mimics one of the J/Ψ tracks.

To finalise the study, the process was repeated in both 2011 and 2012 data with
an offline track required to be matched to the probe. This translates to an offline
track being required in the denominator of Equation (6.1), causing the efficiency to
be defined in terms of the offline reconstruction. This is necessary when measuring
the efficiency as a function of d0 or z0, as the probe parameters are determined via
extrapolation and hence inaccurate. Figure 6.6 shows this efficiency as a function of
the signal to signal plus background ratio for each year. It is much less dependent
on the fraction of background, varying by ∼ 0.01% (< 0.01%) in 2011 and ∼ 0.2%
(∼ 0.02%) in 2012 at L2 (EF). This indicates that the efficiency is less dependent
on the presence of a J/Ψ candidate if an offline track is required. In all cases
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this systematic uncertainty was found to be negligible (< 0.1%) for Z → µ+µ−
candidates.

In addition, the systematic effect of varying the tag-ID matching cut was estimated
by comparing the efficiency with respect to invariant mass between the nominal cut
values and slightly tightened (2.0 < M tag−ID

J/Ψ < 5.7 GeV and 70 < M tag−ID
Z < 110

GeV) and slightly loosened (1.0 < M tag−ID
J/Ψ < 6.7 GeV and 50 < M tag−ID

Z < 130
GeV) versions, shown in Figure 6.7. The cut variations were chosen so as to
avoid cutting too deeply into the M tag−ID

J/Ψ invariant mass peak (Figure 6.3). The
resulting systematic uncertainty, obtained separately for each variable using similar
distributions, is ∼ 0.4% and ∼ 0.1% for J/Ψ at L2 and EF for both years, with
smaller values for the measurements with respect to offline tracks. It is noted that
the uncertainty obtained from the looser cut is larger than that from the tighter cut,
due to the presence of more background events. This systematic is again found to
be negligible for Z candidates.

To obtain the total systematic uncertainty on the upper-bound, the systematic
obtained from the tighter cut is added in quadrature with that obtained from the
background systematic. The lower-bound is equal to the systematic obtained from
the looser cut only.

6.1.5 Results

The L2 and EF track reconstruction efficiencies as a function of various probe and
event variables, for both J/Ψ and Z → µ+µ− candidates, are shown in Figures 6.8-
6.14. In all distributions at L2 the IDSCAN algorithm is shown for 2011, with
the Strategy A and B labels referring to the 2012 implementations of IDSCAN
and SiTrack, respectively. As discussed in Section 3.3.1, the Strategy A (IDSCAN)
algorithm is the primary L2 algorithm for muon reconstruction; however, for reasons
that will be discussed shortly, the Strategy B algorithm was ultimately used as the
lead L2 algorithm in 2012. Results from the offline-like algorithm, Strategy C, are also
shown, with an overview given after the main discussion. In all figures the efficiency at
the EF level averages at 99% in 2011 and 99.2% in 2012 for J/Ψ→ µ+µ− candidates.
For Z → µ+µ− candidates it is 100% for both years. As such the EF distributions
are only discussed if some dependency on the plotted variable is observed. The
data used here represent the complete integrated luminosity in 2011 (4.9 fb−1) and
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(b) J/Ψ→ µ+µ− MC 2011
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(c) S/(S+B) as a function of M tag−probe
J/Ψ
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(d) Efficiency as a function of M tag−probe
J/Ψ
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Figure 6.4: Figure (a) shows the invariant mass of signal J/Ψ→ µ+µ− MC 2011 IDSCAN
tag and probe pairs. The shape is fit with a convolution of a Gaussian and a
Breit-Wigner function. Figure (b) shows the invariant mass of J/Ψ→ µ+µ−

data 2011 IDSCAN tag and probe pairs. The signal peak is fit with a
convolution of a Gaussian and a Breit-Wigner, and the background shape fit
with a parabola. Figure (c) shows S/(S+B) as a function of M tag−probe

J/Ψ , and
Figure (d) shows the IDSCAN track reconstruction efficiency as a function
of M tag−probe

J/Ψ . In both these figures the x−axis range is limited to 4 GeV, as
the fit defined in (a) does not describe the signal shape for M tag−probe

J/Ψ > 4
GeV. Finally, Figure (e) shows the efficiency as a function of S/(S+B). A
linear fit is made to the data and extrapolated to the “pure-signal” scenario,
S/(S +B) = 1.
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(a) J/Ψ→ µ+µ− data 2012
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(b) J/Ψ→ µ+µ− MC 2012
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(c) S/(S+B) as a function of M tag−probe
J/Ψ
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Figure 6.5: Figure (a) shows the invariant mass of signal J/Ψ→ µ+µ− MC 2012 Strategy
A tag and probe pairs. The shape is fit with a convolution of a Gaussian and a
Breit-Wigner function. Figure (b) shows the invariant mass of J/Ψ→ µ+µ−

data 2012 Strategy A tag and probe pairs. The signal peak is fit with a
convolution of a Gaussian and a Breit-Wigner, and the background shape fit
with a parabola. Figure (c) shows S/(S+B) as a function of M tag−probe

J/Ψ , and
Figure (d) shows the Strategy A track reconstruction efficiency as a function
of M tag−probe

J/Ψ . In both these figures the x−axis range is limited to 4 GeV, as
the fit defined in (a) does not describe the signal shape for M tag−probe

J/Ψ > 4
GeV. Finally, Figure (e) shows the efficiency as a function of S/(S+B). A
linear fit is made to the data and extrapolated to the “pure-signal” scenario,
S/(S +B) = 1.
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Figure 6.6: Figure (a) shows the IDSCAN track reconstruction efficiency as a function
of signal over signal plus background, in 2011 data, when an offline track is
required to be matched to the probe. Figure (b) shows the equivalent for
Strategy A in 2012 data.
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(a) Efficiency versus invariant mass in 2011
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Figure 6.7: Figure (a) shows the IDSCAN reconstruction efficiency in data as a function
of tag and probe invariant mass. Figure (b) shows the equivalent for Strategy
A. The black distribution corresponds to tag candidates matched with the
nominal (1.5 < M tag−ID

J/Ψ < 6.2 GeV) matching cut; the red distribution
corresponds to a tighter matching requirement (2.0 < M tag−ID

J/Ψ < 5.7 GeV);
and the magenta distribution corresponds to a looser matching requirement
(1.0 < M tag−ID

J/Ψ < 6.7 GeV).
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approximately the same from the 2012 data set. As such, the effects of pile-up are
present and can be measured.

For low probe pT muons (4 < pT < 13 GeV), shown in Figure 6.8, Strategy A
features a sharp drop in efficiency, lowering the average efficiency to ∼ 92%. This is
not observed in its 2011 equivalent, which returns an approximately flat efficiency
of ∼ 97%. Insight into the cause of this drop was obtained via co-operation with a
separate analysis group measuring the Bs lifetime using Bs → J/Ψφ decays. The
measured mean lifetime was found to be substantially shorter in 2012 than 2011
data, with a fractional difference of ∼ 10%. This indicated that a significant number
of delayed J/Ψ decays2 were being missed from the calculation. Since decays of
this type are displaced from the primary vertex, the efficiency with respect to the
probe track d0 was examined (Figure 6.9). Here an offline track matched to the
probe track is used to obtain the d0, as the probe track suffers from poor resolution;
the systematic uncertainty on each point is smaller, as discussed in Section 6.1.4.
The Strategy A efficiency is strongly dependent on d0, dropping as low as 80% for
0.5 < d0 < 1.5 mm, while its 2011 equivalent remains flat (within errors). A similar
relationship is observed in Strategy A in terms of the offline track displacement along
the beamline, z0, though the dependency is not as great (Figure 6.10).

To ascertain the cause of the efficiency loss, an investigation into the Strategy
A pattern recognition software was conducted. It was found that the requirement
placed on the z-position of track hits used to construct vertices was too severe,
causing many displaced vertices to be missed. As mentioned in Section 3.3.1 this
was initially tightened when moving from IDSCAN to Strategy A to ensure high−pT
tracks would not be missed in the increased pile-up environment. As such the
Strategy B algorithm, which maintained a flat efficiency of ∼ 98%, was used as the
default for low−pT muon tracking and analysis in 2012.

To determine if the efficiency has any geometrical dependence, Figures 6.11
and 6.12 show the efficiency with respect to the probe track η and φ variables,
respectively. In the J/Ψ→ µ+µ− channel the efficiency is generally flat for |η| < 1.0,
but drops are observed in all algorithms at L2 and EF in the bins 1.0 < |η| < 1.2. This
corresponds to the crack region described in Section 3.2.1, which causes poor track
resolution. The same effect is not observed in the Z → µ+µ− channel in all algorithms

2Delayed (long-lifetime) decays can occur if the J/Ψ is significantly boosted, and hence subject to
time dilation proportional to the boost.
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at L2 except Strategy B, and completely absent at EF. This may be expected, since
high−pT muons are less affected by energy loss through material interactions. Here,
however, there is some dependency at high pseudorapidity, which corresponds to the
pixel, SCT and TRT end-caps. As shown in Figure 3.2 in Section 3.2.1, the end-cap
granularity decreases at high η; this affects high−pT muons more than low−pT as
their tracks curve less, resulting in fewer detector hits.

The near hermetic coverage in the azimuthal plane results in an efficiency in-
dependent of φ for all algorithms except Strategy B in the Z → µ+µ− channel
(Figure 6.12). It is therefore deduced that the Strategy B algorithm has some implicit
geometric dependency, possibly due to its use of combinations of various detector
layers (described in Section 3.3.3).

Figure 6.13 shows the efficiency as a function of the mean number of pp inter-
actions per bunch crossing, < µ >. This variable provides a handle on how the
efficiency depends on the number of additional pile-up vertices, and can be compared
directly between the two years. As can be seen in Figure 6.13b, IDSCAN featured
a decreasing efficiency with increasing < µ > for high−pT muons. This motivated
the aforementioned tightening of the cuts utilised by Strategy A, resulting in a flat
efficiency for all < µ > in 2012. Therefore while this optimisation mistakenly caused
a drop in efficiency for low−pT muons, it correctly increased it at high−pT . A smaller
dependency, relatively speaking, is seen in the J/Ψ→ µ+µ− channel at L2.

The efficiency as a function of the number of offline reconstructed vertices per
event is shown in Figure 6.14. This variable is similar to < µ > in that it provides a
measure of the pile-up dependency; however, as there were changes in the vertexing
algorithms between 2011 and 2012, a direct comparison between the two years is
not possible. As may be expected, the Z → µ+µ− distributions reflect their < µ >

equivalents, with a drop-off in efficiency observed for IDSCAN in 2011. A similar
dependency is also observed in the J/Ψ→ µ+µ− channel for IDSCAN, varying by
approximately 4% as the number of vertices increases. The overall variation is smaller
in Strategy A in both channels, again due to the optimisation. By comparison with
Strategy B, Strategy A is more sensitive to the number of vertices as it begins its
track pattern recognition by finding the vertex z−position. This is reflected in the
flat efficiency produced by Strategy B.
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In almost all distributions in both channels the Strategy C algorithm maintains a
flat efficiency of ∼ 98% for J/Ψ→ µ+µ− and ∼ 99% for Z → µ+µ−. This reflects
the fact that it employs the offline software pattern recognition techniques similar to
the EF software. It does however display the η−dependence observed in the other
algorithms.

 [GeV]
T

Probe p

4 5 6 7 8 9 10 11 12 13

E
ffi

ci
en

cy
 [%

]

80

85

90

95

100

Strategy A (Data 2012)

Strategy B (Data 2012)

Strategy C (Data 2012)

IDSCAN (Data 2011)
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(c) J/Ψ→ µ+µ−, EF
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Figure 6.8: The ID muon track reconstruction efficiency as a function of the probe muon
pT , in (a,c) J/Ψ→ µ+µ− at L2 and EF; and (b,d) Z → µ+µ− at L2 and EF.
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(a) J/Ψ→ µ+µ−, L2
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(b) Z → µ+µ−, L2
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(c) J/Ψ→ µ+µ−, EF
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Figure 6.9: The ID muon track reconstruction efficiency as a function of the offline track
(matched to the probe) d0, in (a,c) J/Ψ→ µ+µ− at L2 and EF; and (b,d)
Z → µ+µ− at L2 and EF.
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(a) J/Ψ→ µ+µ−, L2
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(b) Z → µ+µ−, L2
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(c) J/Ψ→ µ+µ−, EF
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Figure 6.10: The ID muon track reconstruction efficiency as a function of the offline
track (matched to the probe) z0, in (a,c) J/Ψ→ µ+µ− at L2 and EF; and
(b,d) Z → µ+µ− at L2 and EF.
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(a) J/Ψ→ µ+µ−, L2
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(b) Z → µ+µ−, L2
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(c) J/Ψ→ µ+µ−, EF
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Figure 6.11: The ID muon track reconstruction efficiency as a function of the probe
muon η, in (a,c) J/Ψ→ µ+µ− at L2 and EF; and (b,d) Z → µ+µ− at L2
and EF.
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(a) J/Ψ→ µ+µ−, L2
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(b) Z → µ+µ−, L2
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(c) J/Ψ→ µ+µ−, EF
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Figure 6.12: The ID muon track reconstruction efficiency as a function of the probe
muon φ, in (a,c) J/Ψ→ µ+µ− at L2 and EF; and (b,d) Z → µ+µ− at L2
and EF.
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(a) J/Ψ→ µ+µ−, L2
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(b) Z → µ+µ−, L2
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(c) J/Ψ→ µ+µ−, EF
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Figure 6.13: The ID muon track reconstruction efficiency as a function of < µ >, the
mean number of pp interactions per bunch crossing, in (a,c) J/Ψ→ µ+µ−

at L2 and EF; and (b,d) Z → µ+µ− at L2 and EF.



Measuring the inner detector trigger tracking efficiency 163

Number of vertices

0 5 10 15 20 25 30

E
ffi

ci
en

cy
 [%

]

80

82

84

86

88

90

92

94

96

98

100

Strategy A (Data 2012)

Strategy B (Data 2012)

Strategy C (Data 2012)

IDSCAN (Data 2011)

(a) J/Ψ→ µ+µ−, L2
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(b) Z → µ+µ−, L2
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(c) J/Ψ→ µ+µ−, EF
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Figure 6.14: The ID muon track reconstruction efficiency as a function of the number
of offline reconstructed vertices per event, in (a,c) J/Ψ→ µ+µ− at L2 and
EF; and (b,d) Z → µ+µ− at L2 and EF.
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6.2 Summary

The muon track reconstruction efficiency for the inner detector High Level Trigger
algorithms has been measured using pp collision data collected by the ATLAS
detector at

√
s = 7 TeV and

√
s = 8 TeV. The efficiency is calculated using the

tag and probe method to select muons from J/Ψ→ µ+µ− and Z → µ+µ− decays,
with a given inner detector algorithm considered efficient if it provides a suitable
track to form a J/Ψ → µ+µ− or Z → µ+µ− candidate with the tag muon. This
yields measurements unbiased by the offline reconstruction, the first of their type
with ATLAS. Furthermore, the analysis code is installed at the first stage of data
reprocessing as part of an automated monitoring framework.

The average efficiencies for J/Ψ→ µ+µ− candidates in 2011 (
√
s = 7 TeV) and

2012 data (
√
s = 8 TeV) are shown in Table 6.2. The uncertainties account for

deviations in the efficiency as a result of background, the choice of matching cut and
the statistical uncertainty.

The average efficiencies for Z → µ+µ− candidates in 2011 and 2012 data are
shown in Table 6.3. The statistical and systematic uncertainties are found to be
negligible (< 0.1%).

J/Ψ→ µ+µ− Level 2 (%) Event Filter (%)
2011 96.9+0.4

−0.6 98.7+0.1
−0.3

2012 97.5+0.4
−1.1 98.8+0.1

−0.6

Table 6.2: Numerical values for the Level 2 and Event Filter reconstruction efficiency in
2011 and 2012 data for low−pT muons.

Z → µ+µ− Level 2 (%) Event Filter (%)
2011 99.6 100
2012 99.7 100

Table 6.3: Numerical values for the Level 2 and Event Filter reconstruction efficiency in
2011 and 2012 data for high−pT muons.



Chapter 7

Conclusions

With the LHC having delivered its final pp collisions in February 2013, it now
enters an upgrade phase with the aim of commencing collisions at

√
s = 14 TeV in

2015. During these first years of operation the LHC surpassed many expectations,
delivering a total integrated luminosity of over 29 fb−1, of which the ATLAS detector
successfully recorded approximately 27 fb−1. This has come at a price, however, with
the number of additional interactions per pp bunch crossing steadily increasing as
the LHC achieved higher luminosities, peaking at approximately 38 in 2012. The
main body of this work represents a small part of the collective effort to efficiently
record and accurately model the events in this environment.

To this aim, measurements of the contribution to the total transverse energy
from both pile-up and the underlying event in the entirety of the ATLAS detector
have been presented. The measurements were corrected for detector effects, yielding
hadron-level distributions that can be directly compared with current Monte Carlo
predictions. In general all Monte Carlo models and tunes under-predict the quantity
of transverse energy in the forward region with respect to the central region by 20-
30%. The degree of diffraction was not found to alter the central-forward ratio, and
a preferred Parton Distribution Function was shown to reduce the central-forward
discrepancy. These results are being used to build new Monte Carlo tunes that, for
the first time, constrain the central-forward contributions from both pile-up and the
underlying event. This is an essential step for any LHC analysis that is dependent
upon Monte Carlo predictions of non-perturbative QCD.

In the spirit of the LHC as a discovery machine, a new technique designed to be
sensitive to new physics processes has been presented. Utilising well known Standard
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Model processes, it infers the presence of new particles with large 6ET and jet final
states from a deviation in the ratio of branching fractions between Z → νν̄ and
Z → µ+µ− candidates. The strength of this technique over existing methods lies in
its model independent approach — it is essentially sensitive to any new particle with
a high 6ET plus jet final state. Furthermore, as the measurement is defined in terms
of a ratio, correlated systematic uncertainties would cancel, yielding a more accurate
measurement. This is particularly important in searches for new particles, which
typically have very small cross-sections.

Preliminary Monte Carlo studies indicate that the measurement is sensitive to
the presence of an example dark matter candidate in a high background environment,
causing a ∼ 20% shift from Standard Model expectations for 6ET > 400 GeV. An
estimate of the correction factor necessary to bring the reconstructed Monte Carlo
back to the hadron level is performed, and found to be largely dependent on the
muon reconstruction efficiency. When applied to real data and with all sources of
background and systematic uncertainty considered, this technique would potentially
facilitate accurate measurements of physics beyond the Standard Model.

Finally, a detailed analysis of the efficiency with which the inner detector trigger
algorithms reconstruct muon tracks has been presented. It utilises the tag and
probe technique to select reference muons, against which an unbiased measure of the
inner detector track reconstruction efficiency is obtained. In general the High Level
Trigger algorithms maintain an efficiency of between 96% to 100%, depending on the
reconstruction level and pT of the reference muon. However, a drop in efficiency in
the leading Level 2 algorithm at low muon pT is observed in the 2012. This was found
to be due to an optimisation of its parameters for high pT track reconstruction. To
facilitate a quick response to such issues, the software used to conduct this analysis is
installed at the first stage of ATLAS data reprocessing, forming part of an automated
performance monitoring framework.



Appendix A

Model dependence as a function of
various cuts

“If you’re going to do a job, do it properly.”
— Old proverb

The extent of the model dependence in the corrections may depend on the truth
particle p cuts. In order to investigate this Figure A.1 shows the data corrected back
to different truth level definitions using H++ UE7-2 and Pythia 6 AMBT1. Here, as
opposed to the more involved unfolding technique applied to obtain final analysis
results, the bin-by-bin correction method is used, which multiplies the data in each
|η| bin by the ratio of hadron to reconstructed level entries in the same bin. As
we deviate from the default cuts the model dependence in the most central |η| bins
increases. For harder p cuts the UE7-2 correction reduces with respect to the AMBT1
correction factor; the harder the cut the more the correction procedure has to account
for particles that are not in the truth definition but that do contribute to the Eflow

T

at the cluster level. For UE7-2 there are generally more soft particles so this effect
results in an under correction as compared to AMBT1 as the p cut is increased. For
lower p cuts UE7-2 has a larger correction for the reasons discussed above.

In order to determine whether making a minimum |E| cut on the individual
clusters and whether excluding both low |E| clusters and low p truth particles affects
the model dependence, Figure A.2 shows the data corrected back to varying truth
level cuts with varying cluster |E| cuts applied. Due to the large variation in particle
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response it is difficult to determine the best set of cuts when attempting to exclude
lower energy particles. With the cuts used in this example the model dependence
increases as harder cuts are made.
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Figure A.1: EM-scale topoCluster EflowT comparisons, correcting H++ UE7-2 using Pythia
6 AMBT1 and vice-versa using the bin-by-bin (BBB) method, in minimum
bias data for the following hadron level selection cuts: (a) charged p > 400
MeV; neutral p > 100 MeV (b) charged p > 600 MeV; neutral p > 300 MeV.
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(b) pchargedT > 400 MeV, pneutralT > 100 MeV,
Etopo > 200 MeV
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Figure A.2: EM-scale topoCluster EflowT comparisons, correcting H++ UE7-2 using Pythia
6 AMBT1 and vice-versa, using the bin-by-bin method (BBB), in minimum
bias data for the following hadron and reconstructed level cuts: (a) charged
p > 500 MeV; neutral p > 200 MeV; no topoCluster |E| cut (b) charged p >
500 MeV; neutral p > 200 MeV; topoCluster |E| > 200 MeV (c) charged p
> 800 MeV; neutral p > 500 MeV; topoCluster |E| > 500 MeV (d) charged
p > 1 GeV; neutral p > 700 MeV; topoCluster |E| > 700 MeV.
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