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Abstract This project examined the performance of classical
and Bayesian estimators of four effect size measures for the
indirect effect in a single-mediator model and a two-mediator
model. Compared to the proportion and ratiomediation effect
sizes, standardized mediation effect-size measures were rela-
tively unbiased and efficient in the single-mediator model and
the two-mediator model. Percentile and bias-corrected boot-
strap interval estimates of ab/sY, and ab(sX)/sY in the single-
mediator model outperformed interval estimates of the
proportion and ratio effect sizes in terms of power, Type I
error rate, coverage, imbalance, and interval width. For the
two-mediator model, standardized effect-size measures were
superior to the proportion and ratio effect-size measures.
Furthermore, it was found that Bayesian point and interval
summaries of posterior distributions of standardized effect-
size measures reduced excessive relative bias for certain pa-
rameter combinations. The standardized effect-size measures
are the best effect-size measures for quantifying mediated
effects.
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Introduction

This research addresses three developing trends in social sci-
ences research: (1) the increasingly frequent use of mediation
models; (2) the growing awareness of the importance of effect
sizes for scientific progress, as shown by scientific journals
now demanding that researchers report effect-size measures in
their articles (Wilkinson & American Psychological
Association Task Force on Statistical Inference, 1999;
Vacha-Haase & Thompson, 2004); and (3) the increased in-
terest in Bayesian methods. Despite these trends, there is still
no preferred effect-size measure for the indirect effect, and
Bayesian estimation of effect-size measures has not been de-
scribed for mediation models. The first purpose of this article
is to investigate the statistical properties of two effect-size
measures that have not been investigated extensively in sim-
ulation studies thus far, and assess their performance com-
pared with the two most frequently used effect-size measures
in the substantive literature. The second purpose of this article
is to describe the computation and interpretation of Bayesian
point and interval summaries of effect-size measures in medi-
ation models, and to probe their frequentist properties in a
simulation study.

Effect-size measures for mediation models

Mediation analysis is conducted to understand the mech-
anisms through which one variable influences another.
The simplest case of mediation is the single-mediator
model, where an independent variable X affects a depen-
dent variable Y though a mediator M. This single-
mediator model with independent observations can be de-
scribed using three equations:

Y ¼ i1 þ cXþ e1 ð1Þ
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Y ¼ i2 þ c0Xþ bMþ e2 ð2Þ
M ¼ i3 þ aXþ e3 ð3Þ

and estimated using only equations 2 and 3, or only equa-
tions 1 and 3 (MacKinnon, 2008). There are two equivalent
ways to compute the mediation (indirect) effect in the above
model when M and Y are continuous and the model is esti-
mated using ordinary least squares regression or Maximum
Likelihood (ML) estimation. One can obtain the product of
the coefficients a and b, or subtract the direct effect from the
total effect c−c’. Most formulas for effect-size measures for
the indirect effect use the product of coefficients, ab, since
computing the mediated effect this way can easily be extended
to models with multiple mediators.

Adding a second mediator to the model will result in the
following equations:

Y ¼ i1 þ cXþ e1 ð4Þ
Y ¼ i2 þ c0Xþ b1M1 þ b2M2 þ e2 ð5Þ
M1 ¼ i3 þ a1Xþ e3 ð6Þ
M2 ¼ i4 þ a2Xþ e4 ð7Þ

where each mediator is predicted by X because each medi-
ator is intermediate between the X and Y variables. The two
mediators, M1 and M2, are usually permitted to co-vary. This
model is called the parallel two-mediator model, and the indi-
rect effect is represented as either a1b1+a2b2 or c−c’. The total
indirect effect of interest here is a1b1+a2b2.

If the independent and dependent variables have clear units
of measurement, e.g., pounds or words, then reporting the
indirect effect has a meaningful interpretation in terms of
pounds or words. If X and Y do not have intuitive units of
measurement, it is a good idea to report at least one effect-size
measure. Effect sizes for mediation are divided into effect
sizes for the individual paths in the indirect effect and effect
sizes for the overall indirect effect (MacKinnon, 2008).
Depending on the researcher’s substantive questions, there
are multiple effect-size measures for the single-mediator mod-
el one can choose from (MacKinnon, 2008; Preacher &
Kelley, 2011). If the study focuses on action theory (theory
underlying the a path) and conceptual theory (theory underly-
ing the b path), it may be of interest to report the correlation or
standardized regression coefficients for the a and b paths,
respectively. There are more options for reporting the effect
size of the indirect effect, and the ideal measure depends on
the substantive question. For example, the researcher could be
interested in reporting the portion of variance in Y explained
by the indirect effect (Fairchild, MacKinnon, Taborga, &
Taylor, 2009). One might also be interested in reporting the
proportion of the effect of X on Y that is mediated, and thus
might opt for proportion mediated as an effect-size measure.
Similarly, the focus of the study might be the comparison of

the magnitudes of the indirect and direct effects, and the ideal
effect size would be the ratiomediated. One could also choose
to standardize the indirect effect by the standard deviation of
the dependent variable alone, or by the standard deviations of
both the independent and dependent variables (Cheung, 2009;
MacKinnon, 2008). Recently, effect-size measures have been
proposed that quantify the maximum possible mediation ef-
fect that could have been achieved given the constraints of the
data and the proportion of that maximum effect that was ob-
tained in a given study (Preacher & Kelley, 2011). However,
these effect-size measures have been criticized for their lack of
rank preservation and were not recommended for use in any
set of models, including mediation models (Wen & Fan,
2015).

Reasons for the study

There have been many mediation effect-size measures pro-
posed, as well as multiple ways to define the meaning of an
effect size in a mediation model (MacKinnon, 2008; Preacher
& Kelley, 2011). The statistical properties of the proportion
and ratio mediated (Freedman, 2001; MacKinnon, Warsi, &
Dwyer, 1995), ab(sX)/sY (Cheung, 2009), and R2 (Fairchild,
MacKinnon, Taborga, & Taylor, 2009) have been studied in
simulation studies (Taborga, 2000); however, this is not the
case with ab/sY for the single-mediator model, and (a1b1+
a2b2)/sY, (a1b1+a2b2)(sX)/sY, the proportion, and the ratio me-
diated for the two-mediator model. It is known that standard-
ized regression coefficients are unbiased with sample sizes of
at least 50 (Yuan & Chan, 2011), that bootstrap intervals for
unstandardized ab (Mackinnon, Lockwood, & Williams,
2004), and ab(sX)/sY have coverage close to nominal value
(Cheung, 2007; 2009), and that the proportion mediated re-
quires large sample sizes, large effects, or both in order to have
unbiased point estimates and standard errors (Freedman,
2001; MacKinnon, Warsi, & Dwyer, 1995). However,
ab(sX)/sY is seldom reported by substantive researchers, and
the proportion mediated is still the most frequently reported
effect-size measure for mediation models, followed closely by
the ratiomediated. An online search with Google Scholar and
PsycInfo with the keywords Bmediation, mediated effect, pro-
portion mediated, ratio mediated, standardized mediated
effect^ was conducted in order to determine which effect-
size measures are reported most often. The vast majority of
studies that report a mediation analysis do not report an effect
size for the mediated effect, and out of all possible effect-size
measures for the indirect effect, only ratio and proportion
mediated seem to appear in the substantive literature
(Barreto & Ellemers, 2005; Chassin, Pitts, DeLucia, & Todd,
1999; Ilies & Judge, 2003; Ilies & Judge, 2005; Leigh, 1983;
MacKinnon, Johnson, Pentz, Dwyer, Hansen, Flay, & Wang,
1991; Sharkansky, King, King, Wolfe, Erickson, & Stokes,
2000; Stice, 2001; Tein, Sandler, Ayers, & Wolchik, 2006;
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Wolchik, West, Westover, Sandler, Martin, Lustig, Tein, &
Fisher, 1993).

This study will enhance the simulation literature by inves-
tigating the statistical properties of ab/sY for the single-
mediator model, and (a1b1+a2b2)/sY, (a1b1+a2b2)(sX)/sY, the
proportion, and the ratio mediated for the two-mediator mod-
el. Results will inform substantive researchers that have sam-
ple sizes smaller than 500 (and thus cannot report the
proportion or ratio mediated without risking bias and insta-
bility) about alternative effect-size measures of the indirect
effect that are unbiased, efficient, have intervals with desirable
statistical properties, and offer intuitive interpretations.

The focus of the studies

The first goal of the Monte Carlo studies in this article is to
determine which effect-size measures for the indirect effect
out of four candidates (the partially standardized mediated
effect, the fully standardized mediated effect, the proportion
mediated, and the ratio mediated) have point estimates with
low bias and high stability for a variety of combinations of
parameter values and sample sizes. The second goal is to
evaluate the interval properties (i.e., Type I error rate, power,
coverage, interval width, and imbalance) of two methods for
constructing confidence intervals for the same four effect-size
measures. The first two goals focus on classical (frequentist)
methods for parameter estimation. The third goal of this article
is to describe Bayesian methods as an alternative to classical
methods for effect size computation, and to subsequently
probe the statistical properties of Bayesian methods for com-
puting the four effect-size measures.

The partially standardized indirect effects for the single and
two-mediator models are as follows:

abps ¼ ab=sY ð8Þ
abps ¼ a1b1 þ a2b2ð Þ=sY ð9Þ

These effect sizes capture the size of the indirect effect in
terms of standard deviations of the dependent variable for a
one unit change in the independent variable. Instead of divid-
ing the indirect effect by the standard deviation of the depen-
dent variable Y, one could compute this effect-size measure by
first standardizing the dependent variable Y and simply com-
puting the indirect effect ab; the numerical value and interpre-
tation of this quantity would remain the same. When X is a
binary grouping variable, the indirect effect is in terms of
change in standard deviation units of Y between the two
groups, making this effect-size measure ideal for the case
where X represents randomization to one of two conditions.

Another standardized effect-size measure for the indirect
effect is the fully standardized indirect effect:

abfs ¼ ab sXð Þ=sY ð10Þ

abfs ¼ a1b1 þ a2b2ð Þ sXð Þ=sY ð11Þ

These effect-size measures give the magnitude of the indi-
rect effect in standard deviations of both the independent and
the dependent variables for a one standard deviation increase
in the independent variable. It is the effect of a standard devi-
ation increase in X on standard deviation units of Y.

Two effect sizes assessing the relative magnitude of the
indirect effect will also be compared. The proportion mediat-
ed is calculated by dividing the indirect effect by the total
effect for the single-mediator model (12) and for the two-
mediator model (13):

proportion ¼ ab= abþ c’ð Þ ð12Þ
proportion ¼ a1b1 þ a2b2ð Þ= a1b1 þ a2b2 þ c’ð Þ ð13Þ

This effect size is useful when one is interested in the pro-
portion of the total effect that is due to the indirect effect.What
seems like a small indirect effect might be relatively large
when compared to the total or direct effects, and conversely,
a seemingly large indirect effect might seem small once com-
pared to the total and direct effects. The interpretation of
proportionmediated is somewhat complicated in inconsistent
mediation models (when the direct and indirect effects are of
opposite signs), and further complicated by the addition of
multiple mediators. Another way to quantify the importance
of the mediation effect is to calculate the ratio of the indirect
effect to the direct effect. To do so, the indirect effect is divid-
ed by the direct effect (MacKinnon, 2008):

ratio ¼ ab=c’ ð14Þ
ratio ¼ a1b1 þ a2b2ð Þ=c’ ð15Þ

Equation 12 is the formula for the ratio mediated for the
single-mediator model and equation 13 is the formula for the
ratio mediated for the two-mediator model. The proportion
and ratiomediated can be computed for any mediation model;
however, they are not appropriate measures of effect size
when complete mediation is present (that is, c’ is equal to
zero). In this case, the proportion mediated is equal to one
and the ratio mediated is undefined. Furthermore, prior re-
search shows that the proportion and ratio mediated require
large sample sizes (500 and 5,000 if X in binary, respectively)
in order to have unbiased point estimates and standard errors
(MacKinnon,Warsi & Dwyer, 1995). Despite these issues, the
proportion and ratio mediated will be included in this study
because they are the two effect-size measures for the indirect
effect most commonly encountered in the substantive litera-
ture, which makes them a good reference point for evaluating
statistical properties of the remaining effect-size measures
tested in this study.

In addition to computing a point estimate, it is important to
compute an interval estimate of the effect size in order to
quantify the uncertainty about the estimate (Feingold, 2014;
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Kelley, 2005; Kraemer, 2014; Stapleton, Pituch&Dion, 2015;
Wilkinson &American Psychological Association Task Force
on Statistical Inference, 1999). The goal of the second Monte
Carlo study is to examine the statistical properties of interval
estimators of effect-size measures for the mediated effect. The
fact that the distribution of the product of two normal quanti-
ties is not normal has been well-documented (Craig, 1936;
Lomnicki, 1967; Springer & Thompson, 1966), and for this
reason methods outside of normal theory have been used to
construct interval estimates of the indirect effect (MacKinnon,
Lockwood, Hoffman, West & Sheets, 2002; MacKinnon,
Lockwood, and Williams, 2004). The distributions of effect-
size measures for the indirect effect are unknown, but given
that the indirect effect is one of the terms in their computation,
they are likely not normal. Thus normal theory would not be
ideal for computing interval estimates of effect-size measures
for the indirect effect.

One common non-parametric alternative to normal theory
is the bootstrap (Manly, 1997; MacKinnon, Lockwood, &
Williams, 2004; MacKinnon, 2008; Shrout & Bolger, 2002).
Bootstrap methods consist of resampling the observed data in
order to construct a distribution of the estimate of interest.
Once the estimate of interest has been calculated from the
desired number of samples, a confidence interval for the esti-
mate can be formed from the α/2 and (1- α/2) points of the
distribution. In the case of an effect size for the indirect effect,
bootstrapping would consist of sampling N observations with
replacement from the original sample of size N, calculating
the effect size, and repeating this procedure a large number of
times. After a large number of iterations a distribution of the
effect size has been formed, and the 95% confidence interval
is constructed from the 2.5% and 97.5% quantiles of the dis-
tribution. This method is called the percentile bootstrap or
Efron’s percentile method.

The percentile bootstrap assumes the existence of a trans-
formation that preserves the order of the parameter of interest.
However, such a transformation may not always exist, and
bias arises when the true value of the parameter does not
correspond to the median of the distribution of estimates
(Manly, 1997). Bias is handled by finding the proportion of
times p that the bootstrapped estimates exceed the sample
(observed) value of the estimate, and z0 which is the z value
that corresponds to this p-value. This method is called the
bias-corrected percentile bootstrap. The lower confidence lim-
it is then the estimate that just exceeds the proportion φ(2z0 +
zα/2) of all values in the bootstrap distribution of estimates.
The upper confidence limit for the estimate is the value that
exceeds a proportion φ(2z0 + z1 −α/2) in that same distribution
(Manly, 1997). Both the percentile and the bias-corrected
bootstrap methods have been found to work well in the con-
struction of intervals for the indirect effect (Biesanz, Falk, &
Savalei, 2010; Cheung, 2007; MacKinnon, Lockwood &
Williams, 2004). For this reason, and because they do not

require distributional assumptions, the percentile and bias-
corrected bootstrap are used to construct intervals for effect-
size measures for the indirect effect. Furthermore, there has
been a recent increase in the use of Bayesian methods in social
sciences due to the possibility of estimating models with
smaller sample sizes than those needed for maximum likeli-
hood estimation (Lee & Song, 2004), and because of the prob-
abilistic interpretations of parameters (van de Schoot &
Depaoli, 2014). Like any other parameter, effect-size mea-
sures can be computed in the Bayesian framework. Bayesian
methods with diffuse priors have been found to produce inter-
vals with satisfactory statistical properties for the indirect ef-
fect (Miočević, MacKinnon, & Levy, 2016), but have yet to be
used for computing effect-size measures for the mediated
effect.

The examination of effect-size measures for the single and
parallel two-mediator models will proceed in several Monte
Carlo studies focusing on the statistical properties of point and
interval estimates, and the potential of Bayesian methods for
effect size computation. For criteria other than statistical prop-
erties examined in this study that might influence the selection
of the effect-size measure for the indirect effect, see Preacher
and Kelley (2011) and MacKinnon (2008). The first set of
Monte Carlo studies in this project are evaluating classical
(frequentist) methods for computing effect-size measures for
the indirect effect. The second half of this article describes
Bayesian methods for effect size computation and uses a
Monte Carlo study to examine the frequentist properties of
Bayesian point and interval summaries of effect-size measures
on a small set of parameter combinations.

Monte Carlo studies of classical estimators

Several Monte Carlo studies were conducted in order to eval-
uate the statistical properties of classical (frequentist) point
and interval estimates of the four effect-size measures for the
mediated effect in the single-mediator model and the two-
mediator model. The purpose of the first Monte Carlo study
was to assess the bias and efficiency of frequentist point esti-
mates of effect-size measures for the single and two-mediator
models. Bias was defined as the difference between the esti-
mate and the population value of the effect size. Efficiency
was defined as the change in the value of an effect size from
one sample to another. It should be noted that MSE could also
be used as a measure of efficiency, as was done by Krull and
MacKinnon (1999). However, since bias is already an out-
come measure in this study, it was of interest to have an out-
come measure that only captures the variability of the effect-
size measures over repeated sampling. Therefore, in this arti-
cle a smaller value of the standard deviation (i.e., smaller
changes in the value of an effect size from one sample to the
next) corresponded to greater efficiency. Monte Carlo studies
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were also used to evaluate frequentist interval estimators of
effect-size measures for the single and parallel two-mediator
models. Example SAS code for all Monte Carlo studies in this
manuscript is available online at https://figshare.com/s/
8d48fed4a23fff78e2a3 .

Methods

Single-mediator model

In a study containing 320 combinations of parameters, SAS
software (Version 9.2 of the SAS System for Windows, Cary,
NC, USA) was used to conduct a simulation which calculated
bias, relative bias, and standard deviations of effect sizes over
1,000 replications. In the first simulation, all three variables
(X, M, and Y) were continuous, and the variance of X and
residual variances of M and Y were simulated with a value of
1. A macro was designed to loop through all combinations of
sample sizes (10, 50, 100, 500, and 1,000) and population
values for a, b, and c’ paths (0, 0.14, 0.39, and 0.59). The
population values of paths a, b, and c’ have been chosen to
correspond to approximately zero, small (2% of the variance),
medium (13% of the variance), and large (26% of the vari-
ance) effect sizes as described by Cohen (1988). Means of
bias, relative bias, and the standard deviations were obtained
for each combination over 1,000 replications.

Bias is not an ideal measure because it is affected by the
value of the effect-size measure; that is, bias will be smaller
only because the numerical size of the measure is smaller. A
better measure is relative bias which scales bias by the true
value of the effect (Krull & MacKinnon, 1999). Relative bias
is defined only for combinations that have non-zero paths for
the true effect. This study used the value of .05 as a cut-off
value for relative bias (half of .10, the value used by Kaplan
(1988)), and all values with relative bias above .05 were con-
sidered problematic. The standard deviation of the estimate
over replications was a measure of efficiency, where higher
standard deviation indicated a less efficient estimator.
Standardized bias was subsequently computed from the out-
put of the simulation by dividing the values of bias by the
standard deviations corresponding to the same combination
of parameter values and sample size. When comparing the
standardized bias of two effect-size measures, larger values
of standardized bias indicate that one effect-size measure has
more raw bias relative to its standard deviation than another
effect-size measure. Comparable values of standardized bias
for two effect-size measures indicate that the values of raw
bias of the two effect-size measures increase in comparable
amounts with increases in their inefficiency. In the second
simulation, M and Y remained continuous, while X was a
binary variable. The same parameter values were used in both

simulations, and the analyses from the first simulation were
repeated at the end of the second simulation.

The third and fourth simulations were designed to calculate
the empirical power, interval width, coverage, empirical Type
I error rate, and imbalance of percentile bootstrap and bias-
corrected bootstrap interval estimates of ab/sY, ab(sX)/sY, the
proportion mediated, and the ratio mediated for the single-
mediator model with continuous and binary X. A macro was
designed to loop through all combinations of sample sizes (50,
100, 500, and 1,000) and population values for a, b, and c’
paths (0, 0.14, 0.39, and 0.59). Empirical power was defined
as the percentage of confidence intervals for the effect-size
measure that did not contain zero when a true effect exists in
the population; values of 0.8 and higher were deemed desir-
able. Interval width was defined as the difference between the
upper confidence limit and the lower confidence limit; smaller
interval width indicates more precision of the estimate, how-
ever, since the four effect-size measures are not on the same
metric their interval widths cannot be directly compared, thus
decreasing interval widths with increases in sample size was
used as a criterion. Coverage was defined as the proportion of
confidence intervals that contained the true value of the effect-
size measure; in this study coverage closest to 0.95 was
deemed desirable. The empirical Type I error rate was the
percentage of confidence intervals that did not contain zero
when the true value of the effect-size measure in the popula-
tion was zero; a Type I error rate of .05 was the nominal level
in this study. Imbalance was defined as the disparity between
the true values that fall on the right side of the confidence
interval versus on the left side of it; imbalance closer to zero
was more desirable. In one of the simulations, X, M, and Y
were continuous, and in the other simulation X was binary.
Type I error rate and coverage were evaluated using Bradley’s
robustness criterion (1978), thus values of Type I error rate
between 0.025 and 0.075 were deemed appropriate, and
values of coverage between 0.925 and 0.975 were deemed
close to nominal level.

Two-mediator model

The simulations for the two-mediator model with continuous
X and binary X were conducted in a similar fashion as the
simulations for the single-mediator model. A macro was de-
signed to loop through different combinations of sample sizes
(10, 50, 100, and 500) and path parameters (for a1, b1, a2, and
b2: 0, 0.101, 0.314, and 0.577; for c’: 0, 0.131, 0.400, and
0.740) for each of the a1, a2, b1, b2, and c’ paths. The popula-
tion values of paths a, b, and c’ were chosen to correspond to
approximately zero, small (2% of the variance), medium (13%
of the variance), and large (26% of the variance) effect sizes as
described by Cohen (1988), and previously used in simulation
work by O’Rourke and MacKinnon (2015). As the inclusion
of additional paths in the two-mediator model substantially
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increases the number of possible combinations of parameters
and sample sizes, only those combinations where a1=b1 and
a2=b2 were used for this study, leading to 256 combinations.
Means of bias and relative bias, and the standard deviations
were obtained for each combination over 1,000 replications,
with standardized bias calculated from the simulation results.

An additional simulation was conducted to calculate em-
pirical power, interval width, coverage, empirical Type I error
rate, and imbalance of percentile bootstrap and bias-corrected
bootstrap interval estimates of abps, abfs, the proportion and
the ratio mediated for the two-mediator model over 1,000
replications. A macro was designed to loop through different
combinations of sample sizes (10, 50, 100, and 500) and path
parameters (for a1, b1, a2, and b2: 0, 0.101, 0.314, and 0.577;
for c’: 0, 0.131, 0.400, and 0.740) for each of the a1, a2, b1, b2,
and c’ paths. Empirical power, interval width, coverage, im-
balance, and Type I error rate were defined and calculated as
they were for the single-mediator model. In one of the simu-
lations, X, M1, M2, and Y were continuous, and in the other
simulation X was binary. As in the analysis of the single-
mediator model, Bradley’s robustness criterion (1978) was
used to evaluate Type I error rate and coverage. The results
of the analyses are presented below, along with explanations
of the findings.

Results

Single-mediator model

Bias and efficiency

For the single-mediator model with both continuous and bi-
nary X, the range of the values of bias for ab/sY and ab(sX)/sY
decreased as sample size increased from N = 10 to N = 1,000.
There was no such trend for the proportion and ratio mediat-
ed. Also, ab/sY and ab(sX)/sY showed a monotonic decrease in
bias as sample size increased, whereas the proportion and
ratio mediated did not.

Regardless of sample size, ab/sY and ab(sX)/sY had notice-
ably smaller ranges of relative bias than the proportion and
ratio mediated. A decrease in relative bias as sample size
increased was observed for ab/sY and ab(sX)/sY but not for
the proportion and ratio mediated (Fig. 1). For sample sizes
smaller than 500, ab/sY and ab(sX)/sY had fewer instances of
excessive relative bias than the proportion and ratiomediated.
This was also the case for sample sizes of 500 and 1,000 when
the direct effect was zero or small. When the direct effect was
medium and large and sample size was at least 500, none of
the effect-size measures had excessive relative bias.

The efficiency (stability) of effect-size measures was eval-
uated based on their standard deviations in the 1,000 simula-
tions for each combination of effect size and sample size. As

sample size increased, the ranges of standard deviation esti-
mates monotonically decreased for ab/sYand ab(sX)/sY, but not
for the proportion and ratio mediated, meaning that ab/sY and
ab(sX)/sY became more stable (efficient) with increased sam-
ple size. The ratio and proportion mediated were compara-
tively unstable (inefficient) regardless of sample size.

Standardized bias was computed by dividing the bias of an
effect-size measure by its standard deviation at each combina-
tion of parameter values and sample size. The four effect-size
measures had comparable ranges of standardized bias for all
sample sizes meaning that bias and efficiency were propor-
tional for all four effect-size measures. In other words, the
more biased an effect-size measure, the less efficient it was.
Conversely, effect-size measures that had low bias also had
small standard deviations.

Power

For both continuous and binary X and at all sample sizes, ab/
sY, and ab(sX)/sY had identical values of power that were
higher than power values for the proportion mediated at
c’=0 and 0.14, and higher than power for the ratio regardless
of value of c’. The values of power for the proportion medi-
ated became closer or equal to values of power for ab/sY, and
ab(sX)/sYwhen c’=0.39 and 0.59 and for larger values of a and
b. Power of the ratio mediated started to approach power of
the remaining three effect sizes when the direct effect was
large and N = 100. Larger sample size and values of a and b
for a given value of c’ corresponded with smaller differences
in power for the percentile bootstrap estimates of ab/sY,
ab(sX)/sY, and the proportion and ratio mediated. With con-
tinuous X, the bias-corrected bootstrap estimates of ab/sY and
ab(sX)/sY had the highest power at all sample sizes. The
proportion mediated had slightly lower power, and the ratio
mediated had the lowest power of all effect sizes.WhenXwas
binary, the bias-corrected bootstrap estimates of the ratio and
proportion mediated had higher power than the other effect-
size measures at N = 50, but at larger sample sizes ab/sY and
ab(sX)/sY had more power than the proportion and ratio me-
diated. The differences in power between the four effect-size
measures for both the percentile and the bias-corrected boot-
strap estimates were most pronounced when there was no
direct effect c’ and when c’=0.14, and at sample sizes smaller
than 500.

Type I error rate

The percentile bootstrap estimates of the four effect-size mea-
sures never had Type I error rates above 0.075, the upper limit
of the robustness criterion. In fact, all effect-size measures had
Type I error rate below 0.025 in approximately half of the
parameter combinations. For some combinations of parameter
values and sample sizes, the bias-corrected bootstrap estimates
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had Type I error rates above 0.075. This occurred more often
for the proportion and ratio mediated, but occurred less for
these effect sizes at larger sample sizes. All effect-size mea-
sures had instances of Type I error rate below 0.025 with bias-
corrected bootstrap interval estimation. Overall, with contin-
uous and binary X the Type I error rates for the percentile
bootstrap estimates of effect sizes were never excessive and
were often below 0.025, whereas the bias-corrected bootstrap
estimates produced instances of Type I error rate above 0.075.

Coverage

The percentile bootstrap interval estimates of ab/sY, ab(sX)/sY,
and the ratio mediated had coverage within or above the ro-
bustness criterion for all parameter combinations and at all
sample sizes examined in this study regardless of whether X
was continuous or binary. The proportionmediated had a few
instances of coverage below 0.925 when sample size was
smaller than 1,000.

Coverage below 0.925 was noticeably more prevalent with
the bias-corrected bootstrap estimates of effect-size measures.
The bias-corrected bootstrap estimates of the proportion and
ratio mediated had more instances of coverage below 0.925
than of ab/sY and ab(sX)/sY. An important finding is that cov-
erage is far more satisfactory when using the percentile boot-
strap than the bias corrected bootstrap for all effect sizes in the
single-mediator model with both continuous and binary X.

Interval width

Interval widths of percentile and bias-corrected bootstrap es-
timates of ab/sY and ab(sX)/sY were consistently lower than
interval widths of the proportion and ratiomediated in models
with continuous and binary X (Figs. 2). The discrepancy
between the effect-size measures was most noticeable when
c’=0 and 0.14, and for sample sizes smaller than 500.

However, the four effect-size measures are on different met-
rics, and thus their interval widths cannot be compared. Thus,
the criterion of decreasing interval width with increasing sam-
ple size (reflecting an increase in precision with increases in
sample size) is used to evaluate the effect sizes. The interval
width of the proportion and ratio mediated for a given com-
bination of parameter values did not consistently decrease
with increased sample size, meaning that increasing sample
size did not guarantee a more precise estimate for these two
effect-size measures. The findings indicate that interval esti-
mates of ab/sY and ab(sX)/sY became more precise as sample
size increased.

Imbalance

When the direct effect was zero and the ratio mediated was
undefined, the proportionmediated had the highest imbalance
of the effect sizes. At non-zero values of c’, the four effect-size
measures had comparable imbalance for most values of a and
b, and in cases where one effect-size measure had higher im-
balance than others, it was most often the ratio or the
proportionmediated. The findings for the bias-corrected boot-
strap were similar, and for most combinations of parameter
values, imbalance was higher for the bias-corrected bootstrap.
Furthermore, ab/sY and ab(sX)/sY had less imbalance than the
proportion and ratio mediated at small sample sizes and for
zero and small values of c’.

Overall, the evaluation of Type I error rate, power, cover-
age, interval width, and imbalance of percentile and bias-
corrected bootstrap interval estimates of four effect-size mea-
sures for the single-mediator model indicated that ab/sY and
ab(sX)/sY tended to outperform the proportion and ratio me-
diated on the five criteria, and that percentile bootstrap is pre-
ferred over bias-corrected bootstrap in terms of Type I error
rate, coverage, and imbalance.

Fig. 1 Trellis plot of relative bias for all effect size measures as a function of sample size for the single-mediator model. The letter markers indicate the
following: S codes medps, F codes medfs, P codes the proportion mediated, and R codes the ratio mediated
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Two-mediator model

Bias and efficiency

For the two-mediator model with continuous X, the range of
values of bias for (a1b1+a2b2)/sY, (a1b1+a2b2)(sX)/sY, and the
ratio effect sizes systematically decreased as sample size in-
creased from N = 10 to N = 500, whereas this was not the case
for the proportionmediated. When X was binary, the range of
values of bias decreased as sample size increased only for
(a1b1+a2b2)/sY and (a1b1+a2b2)(sX)/sY.

The range of relative bias decreased for all four effect-size
measures for the two-mediator model with continuous X.
When X was binary, the range of relative bias increased with
increasing sample size only for the standardized effect-size
measures. With continuous X for (a1b1+a2b2)/sY and (a1b1+
a2b2)(sX)/sY, relative bias of .05 was exceeded in certain pa-
rameter combinations when N=10 or 50 and a1=b1 and a2=b2
were zero or small; however, relative bias for these two effect-
size measures was below .05 for N = 100, 500 for all values of
coefficients. Thus, with continuous X the partially and fully
standardized indirect effects were unbiased at N=10 and 50 if
the effects were medium or large, and at N=100 and 500

regardless of the size of the effects. In addition, (a1b1+a2b2)/
sY and (a1b1+a2b2)(sX)/sY had much smaller relative bias
values than the proportion and ratio mediated. With binary
X, (a1b1+a2b2)/sY and (a1b1+a2b2)(sX)/sY had smaller relative
bias values than the proportion and ratio mediated, although
both (a1b1+a2b2)/sY and (a1b1+a2b2)(sX)/sY continued to have
relative bias values greater than 0.05 even at N = 500 (Fig. 3).

For both continuous and binary X standard deviations for
(a1b1+a2b2)/sYand (a1b1+a2b2)(sX)/sY decreased as sample size
increased, andwere relatively low (never exceeding 0.5).When
X was binary, the standard deviations of the proportion and
ratio mediated decreased as c’ increases, and the proportion
mediated becamemore efficient at larger sample sizes, whereas
the ratio mediated becomes less efficient as N increased.

For standardized bias, the pattern of results for the two-
mediator model with continuous and binary X differed from
the results found for the single-mediator model. For this mod-
el, both (a1b1+a2b2)/sY and (a1b1+a2b2)(sX)/sY had compara-
ble ranges of standardized bias. However, the ratio mediated
had a slightly larger range of standardized bias than both
(a1b1+a2b2)/sYand (a1b1+a2b2)(sX)/sY, and the proportionme-
diated had the largest range of standardized bias. It is interest-
ing to note that while standardized bias ranges stayed constant

Fig. 2 Trellis plot of interval width for percentile and bias-corrected
bootstrap estimates of all effect size measures as a function of sample
size for the single-mediator model. The letter markers indicate the

following: S codes medps, F codes medfs, P codes the proportion
mediated, and R codes the ratio mediated
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across sample size for both (a1b1+a2b2)/sY, (a1b1+a2b2)(sX)/sY,
and the ratiomediated, standardized bias actually increased as
sample size increased for the proportion effect size.

Power

Among the percentile bootstrap estimates of the four effect-
sizemeasures, (a1b1+a2b2)/sYand (a1b1+a2b2)(sX)/sY had con-
sistently higher power than the proportion and ratiomediated.
When X was continuous and c’=0.4, the proportion mediated
had identical power to the standardized effect-size measures at
sample sizes of at least 100, while power of the ratiomediated
was lower. For binary X, this trend occurred at sample sizes of
at least 500. At N = 50 and 100 the bias-corrected bootstrap
estimates of the effect size with the highest power depended
on the parameter values; for the majority of parameter combi-
nations, (a1b1+a2b2)/sY was the effect-size measure with the
highest power. At N = 500 and N = 1,000 the standardized
effect-size measures had the most power in the majority of
parameter combinations and the proportion mediated often
had identical power to the standardized effect-size measures,
while the ratio mediated had less power.

Type I error rate

The Type I error rates for all methods were lower than 0.025
for the percentile bootstrap estimates of all four effect-size
measures. The bias-corrected bootstrap estimates of the
proportion and ratio mediated had high Type I error rates
(equal to or above 0.07) at N = 50 and 100 when c’=0.131
for continuous X, and when c’=0.131 and 0.4 for binary X.
The bias-corrected bootstrap estimates of the standardized
effect-size measures had Type I error rates below 0.025 for
all parameter combinations and sample sizes tested in this
study.

Coverage

The percentile and bias-corrected bootstrap estimates of the
standardized effect-size measures never had coverage below
0.925 for the effect sizes and sample sizes examined in this
study. The percentile and bias-corrected bootstrap estimates of
the proportion and ratio mediated had coverage below 0.925
for certain parameter combinations, however, this occurrence
was less frequent for sample sizes of at least 500, for c’ of at
least 0.4, and for the percentile bootstrap intervals.

Interval width

Interval widths of percentile and bias-corrected bootstrap es-
timates of (a1b1+a2b2)/sY and (a1b1+a2b2)(sX)/sY were
consistently lower than interval widths of the proportion and
ratio mediated (Fig. 4). As previously noted, the effect-size
measures are on different metrics, thus making their interval
widths not comparable. However, the values of interval width
attained by the ratio mediated in certain parameter combina-
tions were larger than 2,000, which is a striking finding even
without using the interval width of other effect-size measures
as a comparison.

Imbalance

When c’=0 and the ratiomediated was undefined, the percen-
tile and bias-corrected bootstrap estimates of the proportion
mediated had the highest imbalance for the majority of param-
eter combinations. When c’=0.131 the ratio mediated had the
highest imbalance. With continuous X and for bias-corrected
bootstrap estimates with binary X, as the value of the direct
path and the sample size increased, the four effect-size mea-
sures all had lower imbalance and the effects size measure
with the highest imbalance changed from one parameter

Fig. 3 Trellis plot of relative bias for all effect size measures as a function of sample size for the two-mediator model. The letter markers indicate the
following: S codes medps, F codes medfs, P codes the proportion mediated, and R codes the ratio mediated
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combination to another with no discernible pattern. With bi-
nary X even at larger values of c’ and sample size, the
percentile bootstrap estimates of the proportion and ratio
mediated still tended to have more imbalance than the
standardized effect-size measures. When N = 100 or
smaller and the direct path was small or 0, the standard-
ized effect-size measures had lower imbalance than the
proportion and the ratio mediated. If X was continuous
and for binary X with the bias-corrected bootstrap, this
effect dissipated with larger sample sizes and larger
values of the direct path.

Discussion

In both the single and the two-mediator models, the standard-
ized effect-size measures had low bias and high efficiency,
which was not the case for the proportion and ratiomediated.
Also, the standardized effect-size measures had interval

estimates with high power, no excessive Type I error rates,
coverage within or above the robustness criterion, less imbal-
ance, and lower interval width, which was not the case for
interval estimates of the proportion and ratio mediated.
Bias-corrected bootstrap intervals had excessive Type I error
rates for certain parameter combinations, which has also been
found by Fritz, Taylor, and MacKinnon (2012).

Results from all Monte Carlo studies described in this arti-
cle are available online at https://figshare.com/s/
88e47e000e775c455475 .

Monte Carlo study of Bayesian estimators

Results from the Monte Carlo studies above have shown that
frequentist point and interval estimates for effect-size mea-
sures for mediation models can be biased and have unsatisfac-
tory interval properties unless the sample size and/or the ef-
fects are large. An alternative way of computing point and

Fig. 4 Trellis plot of interval width for percentile and bias-corrected
bootstrap estimates of all effect size measures as a function of sample
size for the two-mediator model. The letter markers indicate the

following: S codes medps, F codes medfs, P codes the proportion
mediated, and R codes the ratio mediated
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interval summaries for effect-size measures are to use
Bayesian methods. In the frequentist framework, there is often
a trade-off between the power and Type I error rate of a meth-
od, as the two vary together. This is most apparent in the case
of the bias-corrected bootstrap, which is an estimator that
tends to have high power, but also produces excessive Type
I error rates. With Bayesian methods, one can still obtain
meaningful information from a study without having to con-
sider Type I error rate and power (van de Schoot and Depaoli
2014). In the absence of prior information, Bayesian
methods for computing interval summaries of the unstan-
dardized mediated effect have comparable statistical prop-
erties to the distribution of the product and percentile boot-
strap confidence limits (Miočević, MacKinnon, & Levy,
2016). However, Bayesian methods for computing effect
sizes in mediation models have not been described before,
nor have the statistical properties of Bayesian point and
interval summaries of effect-size measures been evaluated
in Monte Carlo studies. The following paragraphs introduce
Bayesian methods as an alternative to classical methods for
effect size computation. This introduction is followed up by
a description of a small simulation study evaluating the rel-
ative bias of Bayesian point summaries and the coverage of
Bayesian interval summaries of the four effect-size mea-
sures for the parameter combinations where no frequentist
estimates of effect-size measures had satisfactory relative
bias. Note that this simulation study was smaller in scope
than other simulation studies in this project, and was de-
signed to probe the statistical properties of Bayesian
methods for effect size computation.

The primary distinction between Bayesian and frequentist
philosophies lies in their respective applications of the proba-
bility concept. In the Bayesian school of thought, probability
is a measure of uncertainty (Gelman, Carlin, Stern, & Rubin,
2004), and is thus subjective. In order to reflect the uncertainty
about parameters, the Bayesian framework places distribu-
tions around parameters. Thus, in the Bayesian framework,
the prior information, and the final estimate are both in distri-
bution form. The Bayes Theorem is expressed with the fol-
lowing formula:

p θ
�
�
�data

� �

¼ p θ; datað Þ
p datað Þ ¼

p θð Þp data
�
�
�θ

� �

p datað Þ ð16Þ

where p(θ|data) represents the posterior distribution, p(θ) is
the prior distribution placed on unknown parameters in the
model, p(data|θ) is the likelihood function, and p(data) is a
constant with respect to the parameter of interest, and can thus
be omitted in order to produce a simpler way to compute a
quantity proportional to the posterior distribution:

p θ
�
�
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� �
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�
�
�θ

� �

ð17Þ

In order to report a point summary for a parameter one
would compute the mean, median, or mode of the posterior
distribution of the given parameter. Interval estimates in the
Bayesian framework are called credibility intervals, and can
be either equal-tail or highest posterior density (HPD) inter-
vals. Equal-tail credibility intervals are computed by taking
the α/2th and the (1-α/2)th percentiles of the posterior distri-
bution for a parameter. The HPD intervals are constructed
based on the density of the posterior distribution, and obey
the rule that no value outside the HPD interval has a higher
probability than any value inside the HPD interval (Gelman,
Carlin, Stern, & Rubin, 2004). Given that the distribution of
the product is not symmetric and that all effect sizes are com-
puted by multiplying parameters, the HPD intervals seem like
a more promising method for summarizing the posterior dis-
tribution of the effect-size measures for the indirect effect than
the equal-tail credibility intervals. The most common criticism
of Bayesian methods states that the inclusion of a prior distri-
bution in the statistical analysis introduces subjectivity that
might lead the results away from reality, in the researcher’s
desired direction. However, one can use non-informative prior
distributions in a Bayesian analysis and thus obtain numerical
estimates that are fairly similar to results from the frequentist
analysis, but with different interpretations.

A simulation study was conducted to evaluate the potential
of Bayesian point summaries in the single and parallel two-
mediator models for parameter combinations at which
frequentist methods encountered issues (i.e., excessive relative
bias), while also making sure that the interval properties of
credibility intervals for the effect-size measures are satisfactory.
Both the point and interval properties of Bayesian summaries of
the posterior distributions of effect-size measures were evaluat-
ed, and the point estimates were compared to frequentist point
estimates in terms of relative bias. Combinations of parameter
values for the simulation were selected based on problematic
relative bias values from the Monte Carlo study of Classical
Estimators at N = 50. Furthermore, the coverage of equal-tail
and highest posterior density (HPD) credibility intervals of
effect-size measures was evaluated.

Method

The findings from theMonte Carlo study of Classical Estimators
indicate that for the single-mediator model there were six param-
eter combinations with excessive relative bias when X was con-
tinuous, and 11 when X was binary, and for the two-mediator
model there were 11 parameter combinations with excessive
relative bias when X was continuous, and ten when X was bina-
ry. The values of parameters in these 17 combinations for the
single-mediator model and the 21 combinations for the two-
mediator model are summarized in Tables 1 and 2.
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SAS software (Version 9.3 of the SAS System for
Windows) was used to conduct a simulation which calculated
relative bias of the mean and median of the posterior distribu-
tions of abps, abfs, the proportion and the ratiomediated at N =
50 for 17 combinations of population values for a, b, and c’
paths, and 21 combinations of population values of a1, a2, b1,
b2, and c’ paths. Equal-tail and HPD intervals were computed
for each iteration and coverage of both types of credibility
intervals was computed over 1,000 iterations. The adequacy
of coverage was assessed using Bradley’s robustness criterion
(1978), also used in the Monte Carlo study of Classical
Estimators. The prior distributions for all of the parameters
(coefficients a, b, c’, error variances of M and Y, in the
single-mediator model, and a1, a2, b1, b2, and c’, and error
variances of M1, M2, and Y in the two-mediator model) were
diffuse, as in Miočević and MacKinnon (2014). Regression
coefficients were assigned normal priors with a mean
hyperparameter equal to 0, and a precision hyperparameter
of 10-3. Residual variances were assigned inverse gamma
priors with the shape and inverse scale (denoted iscale in
SAS PROCMCMC) hyperparameters equal to 0.01. For more
on principles and applications of Bayesian mediation analysis,
see Yuan and MacKinnon (2009), Enders, Fairchild, and
MacKinnon (2014), and Miočević and MacKinnon (2014).
Example SAS code for all Monte Carlo studies in this manu-
script is available online at https://figshare.com/s/
8d48fed4a23fff78e2a3 .

Results

In the single-mediator model, a comparison between the
relative bias of frequentist estimates and Bayesian point
summaries (mean and median) indicated that on average
the mean of the posterior for the four effect-size measures
had slightly larger average relative bias than the
frequentist estimate, and the median of the posterior had
lower average relative bias than the frequentist estimate.
The reduction in relative bias in the posterior median rel-
ative to the frequentist estimate was most pronounced for
the proportion mediated, followed closely by the ratio
mediated. For the standardized effect-size measures the
mean of the posterior had up to .13 higher average rela-
tive bias than the corresponding frequentist estimate,
while the median of the posterior had lower average rel-
ative bias than the frequentist estimate in the majority of
parameter combinations. Thus, in the single mediator
model the median of the posterior of an effect-size mea-
sure is preferred over the frequentist estimate and the
mean of the posterior in terms of relative bias for the
parameter combinations in this study.

In the two-mediator model the average relative bias of
the median of the posteriors for the standardized effect

Table 2 Parameter values for the Study 3 simulation of the parallel
two-mediator model. The sample size is 50 in all conditions

a1=b1 a2=b2

Continuous X

c’=0 0 0.101

0.101 0

0.101 0.101

c’=0.131 0 0.314

0.101 0

c’=.4 0 0.101

0.101 0

c’=0.74 0 0.101

0.101 0

0.101 0.101

0.314 0.101

Binary X

c’=0 0 0.101

0.101 0

0.314 0.101

c’=0.131 0.101 0

c’=0.4 0 0.101

0.101 0

0.101 0.101

c’=0.74 0 0.101

0.101 0

0.101 0.101

Table 1 Parameter values for the Study 3 simulation of the single-
mediator model. The sample size is 50 in all conditions

a b

Continuous X

c’=0 0.14 0.14

c’=0.14 0.14 0.39

c’=0.39 0.14 0.14

0.14 0.59

0.39 0.39

c’=0.59 0.14 0.59

Binary X

c’=0 0.14 0.39

0.39 0.39

c’=0.14 0.14 0.14

0.14 0.39

0.14 0.59

0.39 0.14

c’=0.39 0.14 0.39

0.39 0.14

0.59 0.14

c’=0.59 0.14 0.39

0.39 0.59
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measures was lower than the relative bias of the corre-
sponding frequentist estimate for all parameter combina-
tions in this study. The relative bias of the mean of the
posterior for the standard effect-size measures had lower
average relative bias than the frequentist estimator in
some parameter combinations, however, as was found
for the single-mediator model, in the two-mediator model
the posterior median was a better choice than the posterior
mean in terms of relative bias. The average relative bias
of the median of the proportion and the ratio mediated
was lower than the relative bias of the corresponding
frequentist estimate in the majority of the parameter com-
binations. In all, the median of the posterior emerged as a
point summary with less relative bias than the mean of the
posterior, and in the majority of parameter combinations
in this study the median of the posterior also had lower
average relative bias than the corresponding frequentist
estimate of a given effect-size measure.

In addition to point summaries of the posterior distributions
of the effect-size measures, the coverage of equal-tail and
highest posterior density intervals for the same parameter
combinations was also evaluated. For the single-mediator
model the coverage of equal-tail credibility intervals was usu-
ally within 0.025 of the nominal value of 0.95, and for param-
eter combinations for which this was not the case, coverage
was above 0.975. Highest posterior density intervals had more
instances of coverage above 0.975 than equal-tail credibility
intervals. In the two-mediator model the majority of parameter
combinations had coverage above 0.975 for all effect-size
measures, except in a few instances where the proportion
mediated had coverage below 0.925. The proportionmediated
is the only effect-size measure that had instances of coverage
below 0.925 with both equal-tail and highest posterior density
intervals in both the single and the two-mediator model.
Results from all Monte Carlo studies in this project are avail-
able online at https://figshare.com/s/88e47e000e775c455475 .

Discussion

Overall, Bayesian methods seem to be a promising new way
to reduce relative bias of effect-size measures for the indirect
effect, while also maintaining some desirable interval proper-
ties. The findings of this small simulation study with N = 50
indicate that while Bayesian methods did not produce point
summaries of the proportion and the ratio mediated with sat-
isfactory relative bias in the single-mediator model, there is
evidence that Bayesianmethods can reduce the relative bias of
the proportion and the ratio mediated in the parallel two-
mediator model. Future work should address how including
prior information could be used to improve Bayesian estima-
tion of the effect-size measures.

Empirical examples

The following examples illustrate the kinds of interpretations
that can bemade using the effect sizes examined in this article.
The data for these empirical examples come from a prevention
study of anabolic steroid use among adolescents (Goldberg
et al., 1996; MacKinnon et al., 2001). The sample for the
analysis below consisted of 1,315 high school football
players, 46% of whom were in the treatment condition and
received a 14-session prevention program, and the remaining
54% of participants were in the control condition and received
a pamphlet on steroid use. The outcome of interest for the
empirical examples below was participants’ training self-effi-
cacy, and because the outcome was continuous and not mea-
sured in units that are readily interpretable, several effect sizes
were computed for the indirect effect.

Single-mediator model

For the single-mediator model, the indirect effect of treatment
(X) on training self-efficacy (Y) through team as an informa-
tion source (M) was considered. The observed values of a, b,
c, and c’ were 0.549, 0.174, 0.318, and 0.234 (respectively),
and the dependent variable Y had a standard deviation of
1.217. The indirect effect was statistically significant and
equal to 0.091, meaning that being in the treatment group
(X) resulted in a 0.091 point increase in training self-efficacy
(Y) through team as an information source (M).

Point estimates, point summaries of the posterior distribu-
tion, percentile and bias-corrected bootstrap limits, as well as
equal-tail and highest posterior density (HPD) intervals of
effect-size measures for the indirect effect (Table 3) were com-
puted using SAS System Version 9.3 for Windows. The fully
standardized indirect effect was not computed because X is
binary, and thus the partially standardized indirect effect has a
more intuitive interpretation. These estimates indicated that be-
ing in the treatment group resulted in an increase of 0.078 (or
0.081 and 0.80, if one chooses to report the mean and the
median, respectively, of the posterior distribution for the par-
tially standardized indirect effect) standard deviations in train-
ing self-efficacy through team as an information source. Also,
29% (or 35% and 30.3%, according to the mean and median of
the posterior distribution of the proportion mediated, respec-
tively) of the effect of treatment condition on training self-
efficacy was mediated by team as information source, and the
indirect effect in this model was 0.41 (or 0.72 and 0.43, accord-
ing to the mean and median of the posterior distribution of the
ratio mediated) times the size of the direct effect.

The interval estimates (and summaries) for the three effect-
size measures in the single-mediator model were consistent
with the conclusion of the significance test for the indirect
effect in that none of the intervals contained zero. Given the
results of the simulation, all three effect sizes had bootstrap
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intervals with satisfactory statistical properties, and thus all
could be reported. However, the intervals for the ratio medi-
ated have a somewhat confusing interpretation, given that the
intervals indicate that it is possible that the indirect effect is
less than 10% of the direct effect, and also more than twice as
large as the direct effect. This is an example of a situation
where the interval for the ratio mediated communicates that
it is possible that the indirect effect was smaller, equal to, or
larger than the direct effect.

Two-mediator model

For the case of a binary independent variable with two parallel
continuous mediators and one continuous outcome, the exam-
ple above can also be used to compute multiple effect sizes.
The multiple mediator hypothesis of the experiment was that
the effect of group (X) on training self-efficacy (Y) would be
mediated by team as an information source (M1) as well as
perceived severity of steroid use (M2). The observed values of
a1, b1, a2, b2, c, and c’were 0.549, 0.165, 0.440, 0.092, 0.318,
and 0.188 (respectively), and the dependent variable Y had a
standard deviation of 1.217. The indirect effect a1b1+a2b2
=0.131 was statistically significant, as determined by the per-
centile bootstrap intervals of the total indirect effect. Point
estimates, point summaries of the posterior distribution, per-
centile and bias-corrected bootstrap interval estimates, and
equal-tail and HPD intervals of three effect-size measures
were obtained using SAS System Version 9.3 for Windows
(Table 4). The fully standardized indirect effect was not com-
puted because X is binary, and the partially standardized indi-
rect effect is more interpretable in this situation.

The treatment increased training self-efficacy by 0.108
(0.105, according to the mean, and 0.106 according to the
median of the posterior distribution of abps) standard devia-
tions through team as information source (M1) and perceived
severity of steroid use (M2). The total indirect effect through
team as an information source and perceived severity of ste-
roid use was 41.1% (or 41.2% according to the mean, and

37.8% according to the median of the posterior distribution
of the proportion mediated) of the total effect of treatment on
training self-efficacy. The total indirect effect was 0.697 (or
0.526 according to the mean, and 0.598 according to the me-
dian of the posterior distribution of the ratio mediated) times
the size of the direct effect of treatment on training self-
efficacy (Table 4).

Not all interval estimates for the three effect-size measures
in the parallel two-mediator model were consistent with the
conclusion of the significance test for the indirect effect. The
percentile bootstrap interval for the ratio mediated contained
zero. Furthermore, the fact that the percentile bootstrap inter-
val for the proportionmediated had an upper limit greater than
1 illustrates a case when the proportionmediated is not bound-
ed, and thus can have a non-intuitive interpretation of the
indirect effect being more than 100% of the total effect.
Both the percentile and bias-corrected bootstrap confidence
intervals for the ratio mediated had lower limits below 1 and
upper limits above 1, which is an example of a case where the
mediated effect could be a fraction of the direct effect, equal to
the direct effect, and several times larger than the direct effect.

The above empirical example illustrates both the usefulness
of the standardized effect-size measures in a situation where the
outcome is in units that are not easy to interpret, and the issues
associated with interpreting the proportion and ratio mediated
when their interval estimates are excessively wide.

General discussion

Summary of findings

In the single-mediator model, ab/sY and ab(sX)/sY have satis-
factory relative bias levels, whereas the proportion and ratio
mediated have large relative bias in the majority of combina-
tions of sample size and parameter values. For some parameter
combinations at which no effect-size measures in the Monte
Carlo study of classical estimators had relative bias below .05,

Table 3 Effect sizes for the indirect effect from group (X) on training self-efficacy (Y) through team as information source (M)

Effect size Point estimates
freq
post mean post median

Percentile bootstrap Bias-corrected bootstrap Bayesian equal-tail credibility
intervals

Bayesian HPD credibility
intervals

abps 0.078
0.081
0.080

[0.028, 0.135] [0.028, 0.135] [0.037, 0.135] [0.033, 0.129]

Proportion 0.290
0.350
0.303

[0.103, 0.789] [0.116, 0.870] [0.139, 0.789] [0.122, 0.678]

Ratio 0.408
0.719
0.435

[0.085, 2.550] [0.091, 2.727] [0.151, 3.070] [0.122, 2.026]

freq frequentist estimate, post mean posterior mean, post median posterior median, HPD highest posterior density
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Bayesian methods offered point summaries with satisfactory
relative bias. The stability of the four effect-size measures in
the single-mediator model depends on the size of the coeffi-
cients and sample size.

In the two-mediator model, the standardized effect-size
measures have lower relative bias than the proportion and
ratio mediated. Effect sizes (a1b1+a2b2)/sY and (a1b1+
a2b2)(sX)/sY were found to be efficient at all sample sizes,
and become more efficient as sample size increases, whereas
efficiency of the proportion and ratio mediated effect sizes
does not change in a predictable manner with increased sam-
ple size. The percentile and bias-corrected bootstrap had sat-
isfactory interval properties for standardized effect-size mea-
sures, and Bayesian equal-tail and highest posterior density
credibility intervals emerged as promising alternatives for in-
terval computation. Findings from prior literature were sup-
ported in that the bias-corrected bootstrap intervals had exces-
sive Type I error rates in some situations (Fritz, Taylor, &
MacKinnon, 2012), and in that bootstrap methods had satis-
factory coverage for the fully standardized indirect effect
(Cheung, 2009).

Further considerations

Ideally, a researcher will choose a meaningful effect size with
the least bias and most stability. In light of these findings, a
general recommendation for the single-mediator model with
continuous X would be to choose either ab/sY or ab(sX)/sY,
and to use (a1b1+a2b2)/sY or (a1b1+a2b2)(sX)/sY for the
two-mediatormodel. In the single-mediator model with binary
X, one would opt for ab/sY, and (a1b1+a2b2)/sY is recom-
mended for the two-mediator model. Although ab(sX)/sY and
(a1b1+a2b2)(sX)/sYperformed adequately, the fully standard-
ized effect size is based on change for a standard deviation in
X and so for a study with binary X, the fully standardized
effect size would not offer a more intuitive interpretation than
the raw indirect effect or the other effect sizes in this study

(Hayes, 2013; MacKinnon, 2008). This situation highlights
the importance of interpretation for the selection of an effect-
size measure. When choosing an effect-size measure to repre-
sent the indirect effect, one should pick the effect-size measure
that answers the research question most accurately. If one is
interested in the standardized change produced in Y by X
through M, then either ab/sY (for situations where X is binary
or has an easily interpretable scale) or ab(sX)/sY (for cases
where X is continuous and has a scale that is not intuitive to
the reader) are ideal.

Some authors have criticized standardized effect-size mea-
sures for their dependence on factors that influence the vari-
ance of the sample, such as study design, sampling strategy,
and choice of covariates (Greenland, Schlesselman, & Criqui,
1986). It was later pointed out that standardized coefficients
could be useful in comparing effects of one variable in differ-
ent studies if the compared coefficients are adjusted for the
same covariates, if the variable is normally distributed, and if a
common multiplier and pooled standard deviation are used to
standardize all effects that are being compared (Greenland,
Maclure, Schlesselman, Poole, & Morgenstern, 1991). The
proportion and ratio mediated have clear and useful interpre-
tations, however, given their bias and instability, the
proportion mediated is not a good choice unless sample size
is above 500 (for continuous X), and the ratio mediated is a
poor choice unless sample size is above 2,000 (for continuous
X), or above 5,000 (for binary X) (MacKinnon, Warsi &
Dwyer, 1995).

If one wishes to plan the sample size of a study based on the
availability of unbiased and efficient effect-size measures for
the indirect effect and the research question can only be an-
swered with the ratio mediated, one should be mindful of the
expected size of c’ since this effect-size measure is only unbi-
ased for c’≥0.39 and sample sizes of at least 500. Effect sizes
are generally computed after the mediation analysis, thus the
sizes of the estimates are known. The findings from these
studies provide guidelines for the optimal effect size for a

Table 4 Effect sizes for the indirect effect from group (X) on training self-efficacy (Y) through team as information source (M1) and perceived severity
of steroid use (M2)

Effect size Point estimate
freq
post mean post median

Percentile bootstrap Bias-corrected bootstrap Bayesian equal-tail credibility
intervals

Bayesian HPD credibility
intervals

Medps 0.108
0.105
0.106

[0.059, 0.183] [0.046, 0.161] [0.054, 0.154] [0.052, 0.151]

Proportion 0.411
0.412
0.378

[0.193, 1.055] [0.190, 0.950] [0.163, 0.853] [0.153, 0.734]

Ratio 0.697
−0.526
0.598

[−1.986, 4.915] [0.137, 5.213] [0.186, 3.308] [0.133, 2.484]

freq frequentist estimate, post mean posterior mean, post median posterior median, HPD highest posterior density
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given value of sample size; however, one should always keep
the meaning and interpretation of these effect-size measures in
mind. Another potential application of the findings from this
study is meta-analyses: summarizing the findings of numerous
mediation studies may require converting all the effect sizes
into the same metric, one that is least biased and most stable.

Regarding software, all effect-size measures, confidence
intervals using percentile and bias-corrected bootstrap from
this study for the single and two-mediator models can be com-
puted using PROCESS (Hayes, 2013). Furthermore, the code
for obtaining frequentist point estimates, bootstrap confidence
limits, and Bayesian point and interval summaries of effect-
size measures in this study is also available from the first
author upon request. All effect-size measures for the single-
mediator model can be computed using the mediate function
in the R package MBESS (Kelley, 2007a, b). All effect-size
measures in this paper can also be computed usingMplus, and
it is possible to obtain bootstrap estimates as well as point
summar i e s and c r ed ib i l i t y i n t e rva l s u s ing the
ESTIMATOR=BAYES option. There are two ways to obtain
the standardized effect-size measures in Mplus; one is to com-
pute the indirect effect and ask for STDY and STDYX stan-
dardization, and the second way would be to label the vari-
ances of X and Y and use these values in the MODEL
CONSTRAINT statement to obtain ab/sY, ab(sX)/sY for the
single-mediator model and (a1b1+a2b2)/sY and (a1b1+
a2b2)(sX)/sY for the two-mediator model.

Analytic solutions for standard errors of each effect size for
the mediation effect may confirm and explain findings from
simulation studies and strengthen recommendations about the
usefulness of particular effect-size measures in meta-analyses
of mediation models. However, confidence intervals based on
an assumed normal distribution for an effect-size measure and
the corresponding analytic formula for the standard error of
the effect-size measure may not be accurate, thus making the
bootstrap method ideal. Like normal theory confidence limits,
interval estimates obtained using the bootstrap methods still
have an interpretation in terms of repeated sampling, and in
order to interpret results in terms of probability one needs to
use Bayesian methods to construct credibility intervals for
effect-size measures (Miočević & MacKinnon, 2014; Yuan
& MacKinnon, 2009). To the best of our knowledge, this
project contains the first study that evaluates the usefulness
of Bayesian methods in effect size computation, and possible
extensions of this line of research are to evaluate different
priors from the ones considered in this study. It is also impor-
tant for future research to examine whether effect-size mea-
sures are unbiased and efficient with more than twomediators,
in multilevel mediation models (Stapleton, Pituch & Dion,
2014), and in path analysis models.

In summary, this research and prior studies point to the
standardized effect sizes as the best mediation measures.
Prior research has demonstrated that for individual paths in

the mediated effect, correlations and standardized path mea-
sures are generally unbiased and accurate (Fairchild et al.,
2009; Taborga, 2000). It is important to keep in mind that
other proposed promising effect-size measures for the entire
mediation effect also have limitations such as the instability of
the ratio and proportion mediated (MacKinnon, Warsi &
Dwyer, 1995; MacKinnon, 2008), the possibility of negative
and non-intuitive values for R2 (de Heus, 2012; Fairchild
et al., 2009) and most recently the lack of monotonicity for
κ2 (Wen & Fan, 2015). As a result, it is important to consider
the possible limitations of the standardized indirect effect-size
measures. Asmentioned above, one limitation of the standard-
ized effect-size measures is either restricted or excessive var-
iability in Y, and also X if the fully standardized measure is
used. However, this limitation is also present for simpler
effect-size measures such as the d effect-size measure for the
difference between two independent groups. In addition, there
are not yet guidelines for small, medium, and large standard-
ized indirect effects though links with literature on the d effect
size may shed light on this topic. Perhaps the usefulness of
these new effect-size measures is best evaluated by application
to actual research data. In this paper, the standardized effect-
size measures for the indirect effect are generally unbiased in
single and multiple mediator models, have a clear interpreta-
tion, and can be extended to more complicated models.
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