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ABSTRACT
In a data streaming model, records or documents are pushed from 
a data owner, via untrusted third-party servers, to a large number of 
users with matching interests. The match in interest is calculated 
from the correlation between each pair of document and user query. 
For scalability and availability reasons, this calculation is delegated 
to the servers, which gives rise to the need to protect the privacy of 
the documents and user queries. In addition, the users need to guard 
against the eventuality of a server distorting the correlation score of 
the documents to manipulate which documents are highlighted to 
certain users.

In this paper, we address the aforementioned privacy and veri-
fiability challenges. We introduce the first cryptographic scheme 
which concurrently safeguards the privacy of the documents and 
user queries in such a data streaming model, while enabling users 
to verify the correlation scores obtained. We provide techniques 
to bound the computation demand in decrypting the correlation 
scores, and we demonstrate the overall practicality of the scheme 
through experiments with real data.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing; H.2.7 [Database Adminis-
tration]: Security, integrity, and protection

Keywords
Vector product, correlation computation, verifiability, privacy

1. INTRODUCTION
Data streaming applications like Web access analysis, profile-

driven marketing, environment sensing, stock trading and online 
bidding are now commonplace, driven by the widespread adoption 
of mobile devices and RFID technology. Such applications can 
generate high volume of data, which are often streamed to an in-
termediary for query processing and analysis to produce aggregate
∗The author carried out this work at the Singapore Management 
University.

results for end-user consumption. As the intermediary may not be
trusted by the data owner/generator or the end-users, the data and
queries need to be protected.

To motivate our data streaming setting, suppose that Figure 1
depicts the system model of a surveillance application. There are
three parties in the model – a data Owner, one or more Servers,
and many Users. The Owner operates various security check-
points of a country or sensitive installation. Here, a picture of the
face is taken of each visitor passing through a checkpoint. From the
picture, a feature vector of the relative position, size and shape of
the eyes, nose, jaw, etc. are automatically extracted. The original
picture and feature vector form a document d that is streamed to a
shared Server. One of the Users is an intelligence agency which
is monitoring a list of subjects. The intelligence agency is likely
to have pictures of each subject; the feature vector extracted from
each picture is registered with the Server as a standing query q.
The Server computes the correlation score between d and q, and
returns the score along with the document identifier to the agency.
The k documents that best match the query are displayed on the
agency’s alert screen. Since the Server is administered by another
agency or an outsourced service provider whose operators may not
have appropriate security clearances, the following system and se-
curity requirements become necessary:
• Query privacy. The feature values in q must be known only

to the particular User who issued it. The reason is while the
original picture cannot be reconstructed directly from q, an
adversary could extract feature vectors from his own pictures
and attempt to match them against q to discover what the
intelligence agency is interested in. Furthermore, the actual
correlation score between d and q should be available only
to the issuing User. Neither the Owner who possesses d,
the Server that computes the score nor other users can be
allowed to deduce q.
• Document privacy. The feature values in d must not be re-

vealed to the Server, so as to prevent an adversary from
matching d against his own pictures. To safeguard the rights
of the visitors who have their pictures taken, the Owner may
selectively restrict the features in d that various Users are
allowed to query over.
• Verifiability. Without direct access to d, the User who is-

sued q would want to verify the correlation score between d
and q. This is to guard against an adversary at the Server
manipulating the score of d to elude detection by the User.
• Result ranking. In order to identify the k most promising

document matches, the User needs to be able to retrieve the
actual correlation score for each d.

The system and security requirements of our data streaming model
exceed the capability of existing schemes in the literature. In the
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Figure 1: Data Streaming Model

data stream security literature, verifiability and privacy have been
addressed separately. The former includes [12] which allows users
to verify the arrival, removal and update of data falling within a
selection range on an attribute, and [7] for authenticating selection-
aggregation queries over an attribute of interest. Privacy in data
streaming has been achieved through randomization [1] and anonymiza-
tion [2]. In cryptography, the most relevant line of work is predi-
cate encryption that supports the inner product of two vectors, e.g.,
[6]. However, predicate encryption schemes are not designed for
our data streaming model in which the document vector d and the
query vector q are generated by different parties and must be kept
secret from each other.

CONTRIBUTIONS In this paper, we propose a Cryptographic
Verifiable and Private Monitoring (CVPM) scheme to enable our
data streaming model in Figure 1 which satisfies the aforemen-
tioned security requirements. In CVPM, each User encrypts her
standing query vectors to safeguard their privacy; the encrypted
query vectors are lodged with the Server. Whenever the Owner
has a document to release, he generates for it an encrypted docu-
ment vector which is distributed to the Server. Upon receiving a
new encrypted document vector d, the Server computes the pro-
tected correlation coefficient v = q·d for each query q, and outputs
v to the issuing User. The User then deciphers the output to obtain
and verify the correlation score.

To the best of our knowledge, our scheme is the first for the
data streaming model that concurrently achieves verifiability and
privacy protection. Specifically, it ensures that the document vec-
tors cannot be exploited by the Server or the User, other than for
computing correlation scores. In addition, neither the Owner nor
the Server gains an advantage in compromising the privacy of the
user queries. Finally, the Server cannot tamper with the document
correlation scores without being detected by the User. Through
extensive experiments involving real datasets, we also demonstrate
the practicality of CVPM for a broad spectrum of applications.

2. RELATED WORK
Data stream security has been studied extensively in various re-

search communities. Table 1 summarizes the characteristics of the
most relevant ones with respect to the system and security require-
ments identified in the Introduction.

In [8], Lindner and Meier discuss general security concerns in
architecting a data stream management system. To safeguard the
privacy of data streams, [1] proposes to inject randomized noise.
The condensation scheme in [2] to achieve anonymization supports
incremental update, and is applicable to data streams. [3] and [11]
introduce protocols for a server to search a stream for files that
contain given query keywords; the protocols protect the privacy of
the query, but not the data stream.

Verifiability has been addressed by a different group of stud-
ies. These include [12] which allows users to verify the arrival,
removal and update of data falling within a selection range on an
attribute, [7] for authenticating selection-aggregation queries over
an attribute of interest, and [10] for verifying the output of aggre-
gation functions like MAX and SUM. None of the above schemes

Symbol Meaning
d Document vector
kd Bit length of each coordinate in d
q Query vector
kq Bit length of each coordinate in q
m Dimensionality of d and q
mq Number of coordinates that the User specified in q
v v = q · d is the score of d given q
n n = p1p2 where p1, p2 are distinct, large prime

numbers
G,GT Multiplicative groups of order n
ê Bilinear map ê : G×G→ GT
G1 Subgroup of G, of order p1
G2 Subgroup of G, of order p2
H(.) A one-way hash function

Table 2: Notation

support the correlation computation that we need. Moreover, they
provide either privacy or verifiability, but not both.

Among existing cryptographic protocols, the ones that support
inner product, which is what the common correlation coefficients
entail, are most relevant to our problem setting. The rest of this
section focuses on those schemes and explains why they do not
meet our requirements.

In the predicate encryption scheme proposed in [6], an entity
possessing a secret key token associated with a vector x can decrypt
a public key encryption ciphertext associated with another vector y
on the condition that x · y = 0. The scheme is not suitable for our
data streaming model because it does not protect the privacy of x
against the token holder (the Server in our context), who can infer
x by choosing any y and producing a ciphertext with the public
key. Note that in our model, we require the privacy of both vectors
against the Server.

The above privacy issue is addressed by the symmetric-key pred-
icate encryption scheme in [13]. Here, the generation of both the
secret token for x and the ciphertext associated with y require se-
cret inputs; this prevents the token holder from generating cipher-
text for his chosen y. However, this scheme requires a one-to-one
mapping between the secrets used for encrypting x and y, whereas
our data streaming model requires a one-to-many mapping as the
Owner’s data stream serves multiple Users simultaneously.

Our problem setting is also related to privacy-preserving scalar
product schemes such as [5, 15]. These schemes are built on an
interactive protocol in which two parties, each holding a secret in-
put, co-compute the scalar product without revealing their inputs to
each other. They do not permit the computation to be carried out by
an untrusted intermediary (the Server) though, a key requirement
of our data streaming model. There is also no provision to check
whether the scalar product is computed correctly.

3. CRYPTOGRAPHIC VERIFIABLE AND
PRIVATE MONITORING SCHEME

In this section, we introduce our CVPM scheme for the data
streaming model. Table 2 summarizes the frequently used nota-
tions, which will be explained as they are used.

3.1 Overview
As shown in Figure 1, our data streaming model comprises a

set of Users who issue standing queries q, an Owner who gen-
erates a stream of documents d, and one or more Servers that
match q with d. The Server may also enforce access policies on
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Query Document Result
Scheme Privacy Privacy Verifiability Ranking
Random noise injection [1] No Yes No No
Data condensation [2] No Yes No No
Classifier training on data stream [14] No Yes No No
Keyword search on file stream [3], [11] Yes No No No
Authenticate streamed data [12] No No Yes No
Authenticate selection-aggregation queries [7] No No Yes No
Authenticate aggregation functions [10] No No Yes No

Table 1: Properties of Existing Security Schemes for Data Streaming Model

which features in d can be queried by particular users. Our CVPM
scheme is made up of six algorithms that are executed by the parties
in the model: Setup, UserReg, QueryGen, DataGen,
ServPro and UserDec.

Owner first runs Setup to initialize the cryptographic setting
shared by all participants and generate its own secret key. To join
the system, a User first registers with the Owner. If the User sat-
isfies the admission policy, the Owner executes UserReg to (i)
produce a secret for the User to encrypt her queries, and (ii) pro-
duce a secret that enables the Server to process the User’s queries
subsequently. Based on her interest, the User runs QueryGen to
generate the encryption Qu of her query q and deposits Qu with
the Server. No two users share the same secret. This ensures that
the encrypted queries are user-specific; in other words, identical
queries from two users would lead to different encrypted queries.

At runtime, the Owner generates a stream of documents as well
as the corresponding document vectors. For each newly published
document vector d, the Owner runs DataGen to produce an en-
crypted document vector D for the Server; D is common to all the
Users in the system. The Server then executes ServPro for each
registered query Qu and returns the encrypted correlation score v
to the corresponding User.

On receiving the response, the User runs UserDec with her
secret to recover v. We provide constraints that bound the search
space for v, so that its decryption is computationally feasible. A
User cannot use her secret to decrypt correctly the encrypted scores
intended for other users.

Adversarial model & security objectives The adversary could be
a Server that executes the protocol honestly but is curious to know
the document features and user queries, or cheats in computing the
document scores. The adversary could also be an unauthorized
party who managed to intercept and issue messages in the system.
We assume the adversary is rational in that it does not run denial-
of-service attacks. The security objectives include query privacy,
document privacy and verifiability, as defined in the Introduction.

3.2 Solution Construction
Setup The Owner carries out the following initialization steps. It
first generates two cyclic groups G and GT , both of order n = p1p2
where p1, p2 are distinct prime numbers, and g is a generator of G.
Furthermore, there exists a non-degenerate and efficient bilinear
mapping ê : G×G→ GT . Hence, G = 〈g〉 and GT = 〈ê(g, g)〉.
The Owner computes g1 = gp2 , g2 = gp1 , and h1 = ê(g1, g1),
h2 = ê(g2, g2). Let G1 = 〈g1〉 and G2 = 〈g2〉 denote two sub-
groups in G of order p1 and p2, respectively. The Owner then
selects x randomly from Zn, denoted as x ∈R Zn. The secret key
of the Owner is sk = (g1, h1, x). It publishes (G, g, n, g2, h2) to
enable the Server and Users to perform group operations in G.

User Registration The Owner executes Algorithm UserReg de-
scribed in Figure 2 to initialize the User’s state with {Au, hu,Ku},
and to update the Server with Bu.

Algorithm: UserReg
Input: sk; Output: {Bu} to Server, {Au, hu,Ku} to User

1. Select au, bu∈RZn such that au+bu=x mod n.
2. Compute Au = gau and Bu = gbu .
3. Select ku ∈R Zn; compute hu = hku1 and Ku = gku1 .
4. Securely send Bu to the Server; securely send
{Au, hu,Ku} to the User.

Figure 2: User Registration by the Owner

Query submission With {Au, hu,Ku} from the Owner, the User
initializes her standing query request q = {qi}mi=1 where qi ∈
[0, 2kq ) ⊆ Zp1 , according to her interests; kq is the bit length of
each coordinate in q. She deposits the encryption Qu of q with the
Server as a standing query over the data stream. The algorithm for
the User’s query generation is described in Figure 3.

Algorithm: QueryGen
Input: Ku, q = {qi}mi=1; Output: Qu to Server, r to User

1. Choose a random vector r = {ri}mi=1 with ri ∈ Zn.
2. Compute vector Qu = {Qi}mi=1 where Qi = K

qi
u g

ri
2 for

every i ∈ [1,m].
3. Securely send Qu to the Server.

Figure 3: Query Generation by Users

Data encryption For each document vector d = {di}mi=1 where
di ∈ [0, 2kd) ⊆ Zp1 and kd is the bit length of the coordinates in d,
the Owner prepares an encrypted document vector D by running
Algorithm DataGen described in Figure 4. D is the common doc-
ument ciphertext for all the users in the system. In the algorithm,
the Owner encrypts each di with a random number ti derived from
a fresh seed r, and H(.) is a secure one-way hash function.

Algorithm: DataGen
Input: sk, d = {di}mi=1; Output: {D, C} to Server

1. Choose r ∈R Zn and compute C = gr .
2. Set ti = H(i, ê(gr, gx)) for every i ∈ [1,m].
3. Compute D = {Di}mi=1 where Di = g

di
1 g

ti
2 .

4. Send {D, C} to the Server.

Figure 4: Data Generation by the Owner

Server processing On receiving encrypted document vector D, the
Server executes Algorithm ServPro shown in Figure 5 for all
the users in its service domain. Given registered standing query
Qu from a User, the algorithm first computes a ciphertext of the
correlation score for the User, i.e., an encrypted form of the inner
product of d and q. Then, it computes a partial result to aid the
User in deciphering the correlation score.
User decryption The User executes Algorithm UserDec in Fig-
ure 6 to get the final correlation score v. With each coordinate in
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Algorithm: ServPro
Input: {D, C}, {Qu, Bu}; Output: {W,C,C1} to User

For every standing query Qu, perform the following steps:

1. Compute wi = ê(Di, Qi) ∀1 ≤ i ≤ m; then compute
W =

∏m
i=1 wi.

2. Compute C1 = ê(C,Bu).
3. Send {W,C,C1} to the User.

Figure 5: Correlation Computation by the Server

d and q having bit length kd and kq respectively, v is in the range
of [0, 2kd+kq ·mq) where mq ≤ m is the number of coordinates
that the User specified in q. However, the User may predefine
a threshold t to filter out documents with low correlation scores,
which signify that they are too dissimilar to the User’s interest and
can be discarded without examination. This limits the search for v
to a narrower range [t, 2kd+kq ·mq) in Step 5. Note that t is chosen
by and known only to the User.

Furthermore, when the document streaming rate is high, the User
may wish to monitor only the top-k documents within a sliding
window (of the most recent documents, or of documents that ar-
rived within the last several seconds). The correlation score vk of
the k-th highest ranking document provides another threshold to
limit the search for v. Therefore, the User only needs to search for
the score v of the new document within a bounded range:

v ∈ [max{t, vk}, 2kd+kq ·mq) (1)

The constraints in the formula enable the User to avoid a full dis-
crete logarithm computation for v, by exploiting secret application-
specific values t, vk and mq which only the User knows. If v
is found, the User may request for the actual document from the
Owner; otherwise, the User ignores the document.

Algorithm: UserDec
Input: {W,C,C1}, {r, hu, Au}; Output: v

1. Compute C2 = ê(C,Au) and s = C1C2.
2. For 1 ≤ i ≤ m, compute ti = H(i, s).
3. Compute R =

∑m
i=1 riti.

4. Compute W ′ = W/hR2 .
5. Check whether there exists v ∈ [max{t, vk}, 2kd+kq · mq)

such that hvu = W ′, t is a relevance threshold, vk is the score
of the current k-th result document, and mq is the number of
coordinates used in q.

Figure 6: User Decryption

Where the Owner has specified access policies,W in Algorithm
ServPro and R in Algorithm UserDec would aggregate over
only features that the User is authorized to query.

Finally, if any input parameter to UserDec has been tampered
with, with overwhelming probability R would not match, so W ′

would have order n and there exists no v that satisfies hvu =W ′.

3.3 Decryption of Document Score
The UserDec algorithm requires a discrete logarithm in Step 5

to get the document score v. Although general discrete logarithm
is considered to be intractable for a large cyclic group, it is feasi-
ble for the User to find v within the restricted range in Formula 1
with t, vk and mq which are known only to her. If the range for v
is narrow, the User can pre-generate a look-up table for v. If not,
the User executes the baby-step giant-step procedure, with space
and time complexities O(

√
2kd+kq ·mq), to find v. In our target

applications, typically the number of features that Users specify in

queries satisfies mq � m and is within a hundred or two. More-
over, kd and kq are also small. Thus, we expect the time and space
complexity of the baby-step giant-step procedure to be tolerable.
Additionally, the optimization opportunities described below often
allow the discrete logarithm computation to terminate early. We
will validate the practicality of the optimized UserDec algorithm
through experiments in Section 4.

3.3.1 Optimizing Document Score Decryption
There exist several algorithms for solving the discrete logarithm

problem, such as the baby-step giant-step algorithm, the Pohlig-
Hellman algorithm and the index-calculus algorithm [9]. Although
the latter two are superior in asymptotic time complexity, they are
difficult to optimize to take advantage of the constraints expressed
in Formula 1. Instead, we pick the baby-step giant-step algorithm
for the User’s discrete logarithm computation. The optimization
works as follows to find v ∈ [max(t, vk), 2

kd+kq ·mq) satisfying
hvu =W ′ in the UserDec algorithm.

Let τ =
⌈√

2kd+kq ·mq

⌉
and v = c1 · τ + c0 for some

0 ≤ c1 < τ and 0 ≤ c0 < τ . Thus, h−c1τu W ′ = hc0u . The
User creates beforehand a lookup table for 〈hc0u , c0〉 with hc0u as
search key, for 0 ≤ c0 < τ . For each v, the User iteratively checks
whether h−c1τu W ′ exists in the lookup table, decrementing c1 from
τ − 1 down towards bmax(t, vk)/τc. The procedure can be sus-
pended after any iteration; as long as c1 is kept, the procedure can
be resumed subsequently.

Suppose that the User has a set of top-k documents in place
when he obtains the answerW ′ for a new document d. He needs to
evaluate immediately whether its score v falls within [max(t, vk),
2kd+kq · mq). If so, d replaces one of the earlier documents in
the top-k result. If not, the User has established an upper bound
v = vk for v. The User also knows the earliest that d may be
considered for the top-k result again is when one of the current
top-k documents expires and vk changes.

Now suppose that in between document arrivals, the User has
several documents di for which the upper bound score vi = vk. In-
stead of recovering the actual score vi for each of those documents
in turn, the User will lower their vi’s uniformly (by decrementing
c1 in the computation of their document scores in unison). This
allows the User to fully decrypt the higher document scores first,
and discover the more relevant candidates that are likely to replace
the next expiring document in the top-k result.

3.3.2 Computing Document Score in Memory Con-
strained User Devices

The optimization in Section 3.3.1 limits the search for the doc-
ument score as expressed in Formula 1, and is particularly helpful
when 2kd+kq ·mq is large. However, the size of the lookup table
remains at d

√
2kd+kq ·mq e entries, which may exceed the avail-

able memory in user devices that are severely resource-constrained.
We now discuss how our extended baby-step giant-step procedure
trades computation for memory space in finding v ∈ [max(t, vk),
2kd+kq ·mq) such that hvu ≡W ′ for given hu and W ′.

The User begins by allocating a lookup table within the available
memory space. Let τ denote the number of entries in the table. We
represent v as a polynomial v = cατ

α + cα−1τ
α−1 + . . . + c0,

where α =
⌊
logτ (2

kd+kq ·mq)
⌋

and ci ∈ [0, τ) ∀i ∈ [0, α].

Thus, h−(cατ
α−1+...+c1)τ

u W ′ = hc0u . As before, the User pop-
ulates the lookup table for 〈hc0u , c0〉 with hc0u as search key, for
0 ≤ c0 < τ . Following that, the User iteratively checks whether
h−iτu W ′ exists in the lookup table, decrementing i from τα − 1
towards bmax(t, vk)/τc.
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3.4 Compressing Document & Query Vectors
In certain applications, the document vector d and query vec-

tor q are expected to contain mostly zero coordinates. One such
example is the vector space model for text retrieval [16], where
each feature corresponds to a dictionary word. Since most of the
documents and queries contain only a very small subset of the dic-
tionary words, only a small number of coordinates in the document
and query vectors are non-zero. In this situation, the Owner may
leave out some of the zero coordinates in d, so that the Server
can exclude them from query processing. This reduces the server
processing overhead, at the expense of exposing the dropped co-
ordinates in d. Likewise, the User may drop some of the zero
coordinates in q. The concrete scheme is as follows.

For each d, the Owner creates a certified Bloom filter [4] on the
index position of the non-zero coordinates in d. After that, those
zero coordinates whose index gets a false positive on the Bloom
filter must also stay in d; the remaining zero coordinates whose
index gets a negative on the Bloom filter may be omitted.

As proposed in [4], a Bloom filter is designed to support mem-
bership checks on a set F of f key values, F = {F1, F2, . . . , Ff}.
To construct a Bloom filter with φ bits, we choose ρ independent
hash functions H1, H2, . . . , Hρ, each with a range of [1, φ]. For
each value Fi ∈ F , the filter bits at positionsH1(Fi),H2(Fi), . . .,
Hρ(Fi) are set to 1. To check whether a given F is in F , we ex-
amine the bits at H1(F ), H2(F ), . . . , Hρ(F ). If any of the bits is
0, F cannot possibly be in F ; otherwise there is a high probability
that F is in F . In other words, the Bloom filter admits controlled
false positive rates but no false negatives. The false positive rate is

FP =

(
1−

(
1− 1

φ

)ρf)ρ
≈
(
1− e−ρf/φ

)ρ
(2)

Mathematically, FP is minimized for ρ = φ ln 2/f . Since ρ must
be an integer, we will use ρ = bφ ln 2/fc. Given the value of f
and the target FP rate, we can thus set ρ and φ accordingly.

Applying the Bloom filter to our setting, f corresponds to the
number of non-zero coordinates in d, and the number of false pos-
itives is FP × (m−f). Thus, the Server sees f +FP × (m−f)
remaining coordinates in d. Together with the parameters φ and
ν, the Server can deduce the value of f , i.e., the actual number of
non-zero coordinates among the remaining coordinates. If we want
to prevent that, then the index positions of some of the zero coor-
dinates should go into the Bloom filter too, so that f yields only a
loose upper bound on the number of non-zero coordinates.

Likewise for q, the User may randomly drop some of the zero
coordinates. The remaining coordinates, along with their index po-
sitions, are submitted to the Server.

In processing a document d against a query q, the Server eval-
uates the inner product q · d only over the common coordinates in
q and d that are accessible to each User. Along with the answer
W ′, the Server returns the index positions I that are in q but have
been omitted from d, as well as the certified Bloom filter. The user
can verify I against the Bloom filter, which by construction will
not produce false positives on the indices in I.

4. EMPIRICAL VALIDATION
In this section, we evaluate the overall practicality of our CVPM

scheme, and the effectiveness of the optimization techniques intro-
duced in Section 3.3.1 in particular.

4.1 Experiment Set-Up
Datasets: To ensure that our observations are generalizable, we
have run CVPM on several datasets. Here we report on two real

datasets from the UCI KDD Archive1. The datasets are picked be-
cause they vary from each other in key properties that stress differ-
ent algorithms in CVPM. The first, Corel Image, contains feature
vectors extracted from 68,040 photo images. Each feature vector is
a point in 32-dimensional HSV color space, so m = 32. We dis-
cretize every dimension into 28 integer values. The feature vectors
contain many zero coordinates, and the correlation between feature
vectors are generally low. The dataset relates closely with the main
motivating application in Section 1.

The second dataset, US Census, is a discretized version of part
of the data collected in the 1990 U.S. census. The dataset includes
2,458,285 records (vectors), each with m = 68 attribute values.
All the attributes are in the range [0, 20]. The correlation between
vectors are high, relative to that in the Corel Image data. The data
in this collection essentially are user profiles, hence they simulate
the user profile matching application described in the Introduction.

Methodology: For both datasets, we extract 100 vectors randomly
to be user queries. The rest of the vectors are shuffled and fed
into the document stream from the Owner. The arrival rate is λ
documents/minute. The User maintains a sliding window of the
documents that arrived in the lastw hour, and the k documents with
the highest correlation scores in this window constitute the query
result. For each experiment setting, the performance measures are
averaged across the 100 queries.

We implemented the CVPM scheme in C language, on the PBC
cryptography library from Stanford University2. The experiments
are run on a MacBook Pro with 2.8 GHz Intel Core i7 CPU and 8
GB of main memory.

Metrics: Our primary performance metrics include: (a) the average
time taken by the Owner in executing the DataGen algorithm on a
new document; (b) the average time taken by the Server to execute
the ServPro algorithm for each document-query pair; and (c) the
average time taken by the User to run the UserDec algorithm and
update her top-k result upon a document arrival, with and without
the optimization described in Section 3.3.1.

4.2 Corel Image Experiment
For the Corel Image data, we set the sliding window w to one

hour and vary λ from 1 to 30 documents/minute. Referring to For-
mula 1, the threshold t is set to 0, so pruning of the search space
for the correlation score v of a new document relies solely on vk,
the correlation score of the k-th result document. Figure 7(a) plots
the average user execution time per query for k = 10, 20, 40 and
60. The figure also gives the execution time of ‘No Opt’, which
disables the optimization techniques in Section 3.3.1.

With a larger k, vk becomes lower. If the correlation score v
of an arriving document is below vk, the User will have to execute
more iterations in the baby-step giant-step algorithm before she can
conclude that the new document is not (yet) eligible for the top-k
result. This explains why a larger k lengthens the execution time.
For a fixed k setting, the execution time drops as λ increases. The
reason is that the sliding window accumulates more documents, in
the process pushing up the k-th highest correlation score and nar-
rowing the search space for v. The execution time is bounded from
below by the cost of the bilinear pairing operation ê(., .) (indicated
by the dotted horizontal line). In the worst case, the User executes
the baby-step giant-step algorithm until v is discovered, so the ex-
ecution time is bounded from above by the ‘No Opt’ method.

The execution time incurred by the Owner and Server are sum-
marized in Table 3. The cost of the DataGen algorithm, incurred

1http://kdd.ics.uci.edu/databases/
2http://crypto.stanford.edu/pbc/
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Dataset Owner Server
Corel Image 217.80 275.56
US Census 449.82 576.19

Table 3: Owner and Server Processing Times (msec)

once for every new document, is just over 200 msec; this cost is
dominated by the exponentiation operations in Step 3 of the algo-
rithm. The cost of the ServPro algorithm is incurred once for
every document-query pair and stands at 275 msec; this cost is
dominated by the bilinear pairing operations in Step 1 of the al-
gorithm. These performance levels can be maintained for higher
data rates by employing multiple CPUs.

4.3 US Census Experiment
Turning to the US Census data, we again set the sliding win-

dow w at one hour. Here λ varies from 1 to 10 documents/minute.
The average user execution time per query is summarized in Fig-
ure 7(b). The qualitative behavior of CVPM observed here is the
same as in the previous experiment. Quantitatively, the execution
times are lower now because the narrower feature domains (i.e.,
smaller kd and kq values in Formula 1) constrain the search space
for the correlation score v of arriving documents.

Finally, the corresponding execution time of the Owner and Server
are reported in Table 3. Both are higher than in the previous exper-
iment, on account of the larger number of features in this dataset –
m = 68 – compared to m = 32 in the Corel Image data.

4.4 Summary of Experiment Results
Besides the Corel Image and US Census data, we have also ex-

perimented with several other datasets like the Insurance Company
Benchmark, also available from the UCI KDD Archive. The com-
mon observations across the experiments are as follows:

• The optimization arising from Formula 1 is particularly ef-
fective with high document rate λ, large sliding window w
or low k settings, as they tend to raise the correlation score
vk of the k-th result document.

• The User cost is sensitive to the number of features and their
domain sizes. If there are many features with large domains,
it may be necessary to bucketize the feature values; effec-
tively, this induces a coarser resolution on the features.

• Where the feature vectors have high dimensionality, it may
be necessary to parallelize the computation at the Owner and
Server. This is straightforward to implement, as the compu-
tation on different coordinates in the document vector can be
carried out independently.

• CVPM delivers acceptable performance for many practical
application settings, with sub-second execution time for ev-
ery party in the data streaming model.

5. CONCLUSION
In this paper, we formulate the security requirements in a data

streaming model. The model employs an untrusted server to com-
pute the correlation scores between documents streamed from the
data owner, and the standing queries issued by users. The corre-
lation computation translates to an inner product of the respective
document and query vectors. We present the first cryptographic
scheme that concurrently safeguards the privacy of the documents
and queries, while enabling users to verify the correctness of the
correlation scores received. Through extensive experiments, we
demonstrate that the proposed scheme achieves practical execution
time for a wide spectrum of application settings.
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