
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

4-2014

Latent factor transition for dynamic collaborative
filtering
Chengyi ZHANG
Simon Fraser University

Ke WANG
Simon Fraser University

Hongkun YU

Jianling SUN

Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons

This Conference Paper is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
ZHANG, Chengyi; WANG, Ke; YU, Hongkun; SUN, Jianling; and LIM, Ee Peng. Latent factor transition for dynamic collaborative
filtering. (2014). SIAM Conference on Data Mining (SDM2014). Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1977

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/19448919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1977&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1977&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1977&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1977&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1977&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Latent Factor Transition for Dynamic Collaborative Filtering

Chenyi Zhang∗† Ke Wang†§ Hongkun Yu∗† Jianling Sun∗ Ee-Peng Lim‡

Abstract

User preferences change over time and capturing such
changes is essential for developing accurate recom-
mender systems. Despite its importance, only a few
works in collaborative filtering have addressed this is-
sue. In this paper, we consider evolving preferences and
we model user dynamics by introducing and learning a
transition matrix for each user’s latent vectors between
consecutive time windows. Intuitively, the transition
matrix for a user summarizes the time-invariant pat-
tern of the evolution for the user. We first extend the
conventional probabilistic matrix factorization and then
improve upon this solution through its fully Bayesian
model. These solutions take advantage of the model
complexity and scalability of conventional Bayesian ma-
trix factorization, yet adapt dynamically to user’s evolv-
ing preferences. We evaluate the effectiveness of these
solutions through empirical studies on six large-scale
real life data sets.

Keywords: Latent factor transition; Preference evolv-
ing; Dynamic recommendation

1 Introduction

A founding principle of collaborative filtering is that if
two users share similar interests on some items, they also
likely share similar interests on other items. This simple
preference propagation model from one item to another
is challenged when user behaviors change over time.
For example, a user rated cartoon movies at earlier
years, then action movies some years later, and romantic
movies more recently, and for another user, such a
path of changes may be different. Another changing
scenario voiced in [9] is that user’s expertise level may
upgrade from amateur to connoisseur over time. In both
cases, the exact change in preferences depends on the
user because such changes are a reflection of user’s life
experiences. As a result, even though two users rated
cartoon movies similarly some years ago, they may rate
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Figure 1: Evolution of user i’s preferences

the same movie differently or like very different kinds
of movies at a later time. In this situation, it is largely
irrelevant to predict current preferences based on the
similarity of preferences a few years ago.

On the other hand, it is possible that, for other
users, the similarity of past preferences remains a good
indicator of the similarity of current preferences. There-
fore, it does not work to simply partition the rating data
by time and learn a model using the data in each par-
tition. This method not only misses the dependence of
preferences for some users across time windows, but also
accelerates the well known data sparsity problem. In ad-
dition, as pointed out in [6], temporal dynamics in rec-
ommendation are different from concept drift studied in
machine learning [16]. In the case of recommendation,
the evolution of each user’s behaviors is determined by a
potentially different set of factors, and there is no single
global concept to be learnt.

1.1 Our Contributions We assume that user pref-
erences evolve gradually: the preference of user i at time
t depends on the preference of the user at time t − 1.
Such temporal dependence is the basic idea of many
statistical dynamic approaches such as hidden Markov
model [3] and Kalman filter [5]. We model the temporal
dependence for each user i through a D ×D transition
matrix Bi, where D is the dimensionality in the latent
space: the latent vector Uit of user i at time t is a linear
combination, specified by the rows of Bi, of the user’s
latent vector Ui,t−1 at time t − 1, that is, Uit has the
mean BiUi,t−1. This relationship is illustrated in Fig.
1. Intuitively, Bi captures the time-invariant pattern of
the evolution for user i. For example, if user i increas-



ingly prefers the movies directed by James Cameron
over time, the entry (j, j) in Bi will have a value larger
than 1, assuming that the jth latent factor corresponds
to James Cameron. The conventional static model can
be treated as the special case of having the identity tran-
sition matrix Bi. Learning the transition matrices that
help predict unknown ratings in the next time point is
the main task in this paper.

The contributions of this paper are as follows: (1)
We propose temporal probabilistic matrix factorization
(TMF) and its fully Bayesian treatment model (BTMF),
by incorporating a transition matrix into the conven-
tional matrix factorization methods. This approach pro-
vides a clean solution by capturing temporal dynamics
through the transition matrix and leveraging the prin-
cipled Bayesian matrix factorization methodology. (2)
We present gradient descent and MCMC to infer the pa-
rameters and transition matrices of these two models.
(3) We conduct extensive experiments on six large-scale
data sets. The empirical results demonstrate appealing
improvements over the conventional matrix factoriza-
tion and the state-of-the-art time-aware methods.

Although predicting the future rating is the focus in
this paper, the learnt transition matrices have other ap-
plications. For example, since the transition matrix for
a user captures the time-invariant aspect of user’s evolu-
tion patterns, we can group users using learnt transition
matrices as the features and develop a customized rec-
ommendation strategy for each group. A further inves-
tigation of this topic is beyond the scope of this paper.

1.2 Related Work The latent factor model [7, 8],
especially matrix factorization [12, 13, 14, 20], has been
extensively and effectively used in collaborative filter-
ing. The idea underlying these models is that user pref-
erences are determined by a latent user vector and a
latent item vector in a low dimensional space that cap-
tures the intrinsic structure of users’ interests. [13] in-
troduced the probabilistic matrix factorization (PMF)
model which scales linearly and performs well on large
and sparse data sets. Bayesian approaches address the
weakness of requiring much parameter tuning in stan-
dard matrix factorization. [12] presented Bayesian prob-
abilistic matrix factorization (BPMF) model, extending
PMF to a fully Bayesian treatment that achieves signif-
icantly higher prediction accuracy than PMF. Another
focus in the literature is improving recommendation ac-
curacy by incorporating additional information, such as
side information [11], content information of items [17],
and social networks [4]. However, all the above meth-
ods only learn a global model from a series of unordered
ratings without considering the evolution of users’ pref-
erences over time.

[2] uses a time weighting scheme for a similarity
based collaborative filtering approach, which decays the
similarities to previously rated items as time difference
increases at the prediction time. As discussed above, the
time decay scheme may miss a long-term effect for some
users. Our method learns the temporal dependence
from the whole set of ratings without limiting any part
of the data. [19] proposed the user-item-time tensor fac-
torization to model temporal effects. In a recommender
system, the time dimension is a local effect and should
not be compared across all (user,item) pairs [18]. [18]
used a graph connecting users, items, and sessions to
model users’ long-term preferences and short-term pref-
erences. [15] modeled temporal effects using Kalman
filtering with a transition process parameter for each
user similar to our transition matrix, but their transi-
tion parameters are time-dependent and user-supplied,
and their model was evaluated only on generated data.
Clearly, specifying such parameters for all users at all
time points is impractical. In contrast, our transition
matrices are time-invariant and are learnt automatically
by the model from observed data. [1] further extended
[15] in the scenario of temporal adoption.

Our work is most related to [6], which presented
the first temporal model for the matrix factorization ap-
proach by introducing time-variant biases for each user
and each item. The time-variant biases are the differ-
ences at each time window, but do not summarize the
underlying pattern for such differences. This approach
works for prediction only if two windows share similar
biases. In contrast, our time-invariant transition matri-
ces capture properties that are independent of time, and
thus, can be used for prediction in a new time window.
Beyond prediction, time-invariant properties also helps
understand the mechanism that underpins the temporal
dynamics. More discussions on this point will be given
in Section 2.1.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the temporal probabilistic matrix fac-
torization. Section 3 extends the temporal probabilistic
matrix factorization to its fully Bayesian model. Sec-
tion 4 presents our experimental studies. Finally, we
conclude the paper.

2 Temporal Probabilistic Matrix Factorization

We present the temporal probabilistic matrix factoriza-
tion (TMF) to model user temporal dynamics. We as-
sume that time is represented by a series of consecutive
time windows. Matrix factorization models map both
users and items to a joint latent factor space of a low di-
mensionality D, such that ratings are modeled as inner
products in that space. Suppose we have M items, N
users, S time windows, and rating values from 1 to K.
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Figure 2: Graphical representations of TMF (left) and BTMF (right), with parameters and hyperparameters of
time window t and t+ 1 shown only

Let Rijt denote the rating of user i for item j at time
window t, U ∈ RD×N×S and V ∈ RD×M×S denote la-
tent user and latent item (factor) hypermatrices, with
column vectors Uit and Vjt representing user-specific
and item-specific latent (factor) vectors, which describe
user’s interests and item’s features, at time window t,
respectively.

2.1 Introducing Transition Matrix We assume
that there is a temporal dependence between the latent
user vectors Uit and Ui,t−1 and we model this depen-
dency by a transition hypermatrix B ∈ RN×D×D for all
users. In particular, Bi, the D×D transition matrix for
user i, models the transition of user i’s preferences in the
latent space from the previous time window to the next;
so we expect Uit to have the mean BiUi,t−1. In plain
English, this says that for each user i, the jth latent
factor in the next time window is a linear combination,
as specified by the jth row of Bi, of the latent factors
in the previous time window. As each latent factor cap-
tures some intrinsic feature of items (e.g., movie’s genre,
movie’s director, etc.), Bi captures the time-invariant
aspect of the user i’s evolution in this intrinsic feature
space. It makes sense not to model this dependency for
items since item’s features are stable and less correlated.

For example, consider the D = 2 latent space. The

identity transition matrix

[
1 0
0 1

]
represents a stable

latent user vector that does not change much over time;

the transition matrix

[
0 1
1 0

]
represents the alternating

changing pattern between two latent user vectors (a, b)

and (b, a); the transition matrix

[
1.1 0
0 1

]
represents a

gradual shift pattern toward the first factor. In a higher

dimensional latent space, a different subspace could
undergo a different pattern, therefore, several patterns
could occur at the same time.

At the current time t, we learn the latent user
vector Uit and latent item vector Vjt for each user i
and each item j, as well as the transition matrix Bi
from all the ratings collected up to time t. With the
learnt parameters, we can predict the rating of the user
i on the item j at a future time window by the rule
R∗ij = (BiUit)

TVjt. The model performance is measured
by the root mean squared error (RMSE) on the testing
set {Rij}:

(2.1) RMSE =

√∑
i,j(Rij −R∗ij)2

n
where n is the number of ratings in the testing set.
Using all the ratings collected up to the current time
t helps capture the long-term effect discussed in Section
1 while modeling temporal changes through transition
matrices. As the current time advances to the time t+1,
the above learning process is repeated on all the ratings
collected up to time t+ 1. The choice of the granularity
of time dictates the trade-off between the freshness of
updates and the efficiency of learning.

2.2 Modeling We develop a temporal probabilistic
model with Gaussian observation noises to learn the
parameters U , V , and B. This is done by extending the
conventional probabilistic matrix factorization (PMF)
model [13] with the transition hypermatrix B. The
conditional distribution over the observed ratingsR is

(2.2) p(R|U, V, σ) =

S∏
t=1

N∏
i=1

M∏
j=1

[N (Rijt|UTitVjt, σ2)]Iijt

where N (x|µ, σ2) is the probability density function of
the Gaussian distribution with mean µ and variance σ2,



and Iijt is the indicator variable that is equal to 1 if user
i rated item j at time window t and equal to 0 otherwise.

As in [13], we place zero-mean spherical Gaussian
priors on latent item vectors in V :

p(V |σV ) =

S∏
t=1

M∏
j=1

p(Vjt|σV ) =

S∏
t=1

M∏
j=1

N (Vjt|0, σ2
V I)

(2.3)

To model latent user vectors in U , we place Gaus-
sian priors with mean BiUi,t−1 on latent user vectors
Uit to model the temporal dependence of time window
t on time window t− 1:

(2.4) p(Uit|Bi, Ui,t−1, σU ) = N (Uit|BiUi,t−1, σ2
UI)

where p(Ui1|Bi, Ui0, σU ) = N (Ui1|0, σ2
UI) by defining

Ui0 = 0. Integrating out variables i and t gives:

p(U |B, σU ) =

S∏
t=1

N∏
i=1

p(Uit|Bi, Ui,t−1, σU )

=

S∏
t=1

N∏
i=1

N (Uit|BiUi,t−1, σ2
UI)

(2.5)

The latent transition matrix Bi is placed with
matrix-variate normal distributionMN (Z,Σ,Ω) where
Z is a matrix containing the expectation of each element
of Bi, and Σ,Ω are two covariance matrices. In this
case, we set Z = I, i.e., a D ×D identity matrix , and
Σ = Ω = σBI :

(2.6) p(B|σB) =

N∏
i=1

MN (Bi|I, σBI, σBI)

2.3 Inference Following Eq. (2.2-2.6) and the
graphical representation of TMF shown in Fig. 2 , the
posterior distribution over the user and item vectors is
given by

p(U, V,B|R, σ, σV , σU , σB)

∝p(U |B, σU )p(V |σV )p(B|σB)p(R|U, V, σ)
(2.7)

Our goal is to find the values of Uit, Vjt, and Bi
that maximize the log-posterior of Eq. (2.7), which
is equivalent to minimizing the sum-of-squared-errors
objective function with quadratic regularization terms:

1

2

S∑
t=1

N∑
i=1

M∑
j=1

Iijt(Rijt − UTitVjt)2 +
λV
2

S∑
t=1

M∑
j=1

‖Vjt‖2Fro

+
λU
2

S∑
t=1

N∑
i=1

‖Uit −BiUi,t−1‖2Fro +
λB
2

N∑
i=1

‖Bi − I‖2Fro

(2.8)

where λU = σ2/σ2
U , λV = σ2/σ2

V , λB = σ2/σ2
B and

‖ ·‖2Fro denotes the Frobenius norm. We adopt gradient
descent with learning rate η in U , V and B to find the
local minimum of the objective function in Eq. (2.8).

3 The Fully Bayesian Model (BTMF)

One drawback of TMF is that it is hard to search ap-
propriate values of the hyperparameters σ, σU , σV , σB
to control the model complexity. A possible solution
is to integrates out all model parameters U, V,B and
hyperparameters σ, σU , σV , σB to achieve the predic-
tive distribution given observed data. In this section,
we extend TMF to a fully Bayesian treatment called
BTMF, in which both parameters and hyperparameters
are sampled from the predictive distribution through
the MCMC method. Though the mathematical devel-
opment is a bit involved, the spirit of the extension is
essentially the same as extending the probabilistic ma-
trix factorization to its fully Bayesian treatment [12].

3.1 Modeling BTMF introduces priors for the hy-
perparameters to control the model complexity, as
shown in Fig. 2. Instead of Eq. (2.3) with fixed settings,
BTMF models two hyperparameters, the mean vector
µt and the precision matrix Φt, for each latent item vec-
tor Vjt, as in [12]; the prior distribution is assumed to
be Gaussian:

(3.9) p(Vjt|µt,Φt) = N (Vjt|µt,Φ−1t )

And we place Gaussian-Wishart priors on µt,Φt:

p(µt,Φt|µ0, β0,W0, ν0)

= p(µt|Φt, µ0, β0)p(Φt|W0, ν0)

= N (µt|µ0, (β0Φt)
−1)W(Φt|W0, ν0)

(3.10)

Here W is the Wishart distribution with ν0 degrees of
freedom and a D ×D scale matrix W0:

W(Λ|W0, ν0) =
1

C
|Λ|(ν0−D−1)/2 exp(−1

2
Tr(W−10 Λ))

For each latent user vector Uit, the mean vector is
given by BiUi,t−1 and we place Wishart priors on the
user hyperparameter Λt:

(3.11) p(Uit|Bi, Ui,t−1,Λt) = N (Uit|BiUi,t−1,Λ−1t )

(3.12) p(Λt|W0, ν0) = p(Λt|W0, ν0) =W(Λt|W0, ν0)

For each transition matrix Bi, there are three
hyperparameters, i.e., the mean matrix Z and two
covariance matrices Σ,Ω; contrary to Eq. (2.6), the
prior distribution is assumed to be matrix normal:

(3.13) p(Bi|Z,Σ,Ω) =MN (Bi|Z,Σ,Ω)

To be simplified, we place no priors on Σ and Ω (Indeed,
the priors for variance matrices of matrix normal distri-
bution are hyper inverse Wishart distributions but they



have little effects). We place the prior Z0 to control the
expectation matrix Z and set Σ = Ω = I.

For the sake of convenience, we define the hyperpa-
rameters ΘU = {Λt=1...S} , ΘV = {µt=1...S ,Φt=1...S}
and ΘB = {Z} controlled by priors Θ0 =
{µ0, ν0, β0,W0, Z0}. The predictive distribution of the
rating value R∗ij for user i and item j at future time
window can be obtained by marginalization:

p(R∗ij |R,Θ0)

=

∫∫
p(R∗ij |Uit, Vjt, Bi)p(U, V,B|R,ΘU ,ΘV ,ΘB)

p(ΘU ,ΘV ,ΘB |Θ0)d{U, V,B}d{ΘU ,ΘV ,ΘB}

(3.14)

The exact evaluation of this predictive distribution
is analytically intractable due to the complexity of the
posterior. MCMC-based methods [10] use the Monte
Carlo approximation to the predictive distribution given
by

p(R∗ij |R,Θ0) ≈ 1

ϑ

ϑ∑
κ=1

p(R∗ij | Uκit, V κjt, Bκi )(3.15)

where ϑ is the given maximal iteration number and
Uκit, V

κ
jt, B

κ
i are samples at κth iteration.

3.2 Inference To compute R∗ij using Eq. (3.15), we
need to sample the variables U, V,B and ΘU , ΘV , ΘB in
turn from its distribution conditional on the current val-
ues of all other variables, according to Gibbs sampling.
Below, we describe these conditional distributions.

Sampling Uit and hyperparameter Λt: Due to
the use of conjugate priors for the parameters and hy-
perparameters in our model, the conditional distribu-
tion over the latent user vector Uit, conditioned on other
variables (V,R,B...) and the hyperparameters (ΘU , σ),
is Gaussian:

p(Uit|V,R,B,Ui,t−1,ΘU , σ) = N (Uit|µ∗U , [Λ∗U ]−1)

∝
M∏
j=1

[N (Rijt|UTitVjt, σ2)]Iijtp(Uit|Bi, Ui,t−1,Λt)

(3.16)

where
Λ∗U = Λt +

1

σ2

M∑
j=1

Iijt[VjtV
T
jt ],

µ∗U = [Λ∗U ]−1(
1

σ2

M∑
j=1

Iijt[VjtRijt] + ΛtBiUi,t−1).

The conditional distribution over the user hyper-
parameters Λt conditioned on the latent user feature
hypermatrix U and transition hypermatrix B is given
by the Wishart distribution:

(3.17) p(Λt|U,B,Θ0) =W(Λt|W ∗0 , ν∗0 )

where

[W ∗0 ]−1 = W−10 +

N∑
i=1

(Uit −BiUi,t−1)(Uit −BiUi,t−1)T ,

ν∗0 = ν0 +N.

Sampling Vjt and hyperparameters µt,Φt:
This part is the same as the conventional fully Bayesian
case [12]. The conditional distribution over the latent
item vector Vjt, conditioned on other variables (U,R)
and the hyperparameters (ΘV , σ), is Gaussian:

p(Vjt|U,R,ΘV , σ) = N (Vjt|µ∗V , [Φ∗V ]−1)

∝
N∏
i=1

[N (Rijt|UTitVjt, σ2)]Iijtp(Vjt|µt,Φt)
(3.18)

where
Φ∗V = Φt +

1

σ2

N∑
i=1

Iijt[UitU
T
it ],

µ∗V = [Φ∗V ]−1(
1

σ2

N∑
i=1

Iijt[UitRijt] + Φtµt).

The conditional distribution over the item hyper-
parameters µt,Φt conditioned on the latent item vector
hypermatrix V is given by the Gaussian-Wishart distri-
bution:
(3.19)
p(µt,Φt|V,Θ0) = N (µt|µ∗0, (β∗0Φt)

−1)W(Φt|W ∗0 , ν∗0 )

where

µ∗0 =
β0µ0 +MV̄

β0 +M
, β∗0 = β0 +M, ν∗0 = ν0 +M,

[W ∗0 ]−1 = W−10 + C̄ +
β0M

β0 +M
(µ0 − V̄ )(µ0 − V̄ )T ,

V̄ =
1

M

M∑
j=1

Vjt, C̄ =

M∑
j=1

(Vjt − V̄ )(Vjt − V̄ )T .

Sampling Bi and hyperparameter Z: Like Eq.
(3.16) and (3.18), we assume that the conditional distri-
bution over each transition matrix Bi is matrix normal,
and the conditional distribution is determined by a se-
ries of multivariate normal distribution and a prior dis-
tribution according to p(Bi|U,ΘB) ∝ p(U |Bi)p(Bi|ΘB).
The approximation to this conditional distribution is as
follows:

p(Bi|U,ΘB) =MN (Bi|Z∗,Σ,Ω)

∝
S∏
t=1

N (Uit|BiUi,t−1,Λ−1U )p(Bi|Z,Σ,Ω)
(3.20)

where

Z∗ = (

S∑
t=1

[UitU
T
i,t−1] + Z)(

S∑
t=1

[Ui,t−1U
T
i,t−1] + I)−1,

Σ = Ω = I.



Analogously, the conditional distribution over Z
conditioned on the transition hypermatrix B is given
by the matrix normal distribution:

(3.21) p(Z|B,Θ0) =MN (Z|Z∗0 ,Σ,Ω)

where

Z∗0 =
Z0 +NB̄

1 +N
, B̄ =

1

N

N∑
i=1

Bi, Σ = Ω = I.

Algorithm 1 shows the process of the Gibbs sam-
pling for BTMF. x ∼ y means sampling the random
variable x following the distribution y.

Algorithm 1 Gibbs sampling for BTMF

Initialize the model parameters { U1, V 1, B1 }
for κ = 1→ ϑ do

Sample the hyperparameters by Eq. (3.17) (3.19)
(3.21) for all time windows:

Θκ
U ∼ p(ΘU |Uκ, Bκ,Θ0),

Θκ
V ∼ p(ΘV |V κ,Θ0),

Θκ
B ∼ p(ΘB |Bκ,Θ0).

For each time window t = 1, ..., S, sample each
latent user vector by Eq. (3.16), sample each latent
item vector by Eq. (3.18):

Uκ+1
it ∼ p(Uit|V κ, R,Bκ, Uκi,t−1,Θκ

U , σ),

V κ+1
jt ∼ p(Vjt|Uκ, R,Θκ

V , σ).
For each user i = 1, ..., N , sample the transition
matrix in parallel by Eq. (3.20):

Bκ+1
i ∼ p(Bi|Uκ,Θκ

B).
end for

4 Experiments

We conducted extensive experiments to evaluate the
prediction accuracy of the proposed methods. We first
introduce the experimental settings and then present
the main findings.

4.1 Experimental Setup We evaluate TMF pro-
posed in Section 2 and BTMF proposed in Section
3 against the following methods: PMF refers to the
probabilistic matrix factorization model widely used in
collaborative filtering [13]. BPMF refers to the fully
Bayesian treatment to PMF achieving better results
[12]. timeSVD refers to the time sensitive algorithm
applied successfully in Netflix data set [6]. Ensemble
refers to an ensemble method by adopting PMF in sep-
arate windows and tuning the relevant weights.

We conduct experiments on six data sets: Movie-
Lens1 (movie ratings), BeerAdvocate2 (beer ratings),

1http://www.grouplens.org/node/12
2http://snap.stanford.edu/data/#reviews [9]

FineFoods2 (food ratings), Epinions [4] (product rat-
ings), EachMovie1 (movie ratings), and Flixster [4]
(movie ratings). We keep the first two data sets un-
changed because they have a balanced scale, and pre-
process the other four data sets by removing the users
with less than 20 ratings as in [8]. All data sets contain
ratings ranging from 1 to 5, except for the Eachmovie
data set which ranges from 1 to 6. The statistics of the
processed data sets are shown in Table 1.

Table 1: Statistics of data sets.

Data set #User #Item #Rating Timespan
MovieLens 2113 9801 824600 1997.11-2008.12
BeerAdvocate 33387 66051 1586259 1998.1-2012.10
FineFoods 7590 27385 141294 1999.10-2012.10
Epinions 14077 96291 470557 1999.3-2000.12
EachMovie 36658 1623 2580267 1996.2-1997.8
Flixster 36492 48277 7729741 2005.12-2009.11

The first three data sets span a longer period of time
than the last three. For each data set, we created S = 10
time windows as follows. We partition each of the first
three data sets yearly and merge several oldest windows
(which have less data) into one window to create a total
of 10 time windows. For the last three data sets, we
partition them bimonthly or half-yearly to get 10 time
windows. The last three windows are used for testing.
For each testing window, we use all the time windows
prior to it, except for Ensemble, as the training set, and
run the experiment five times and report the average
results for reliability. For Ensemble, we use each of the
q most recent windows prior to the testing window to
learn a model and average the scores of these models.
We report the best result for all possible q.

We set η = 0.001, λU = λV = 0.01 in PMF,
timeSVD, Ensemble and TMF, with other internal
parameters with default settings in timeSVD and λB =
0.01 in TMF, and set ν0 = D,β0 = 2,W0 = I, µ0 = 0 in
BPMF and BTMF, with additional Z0 = I in BTMF.

We evaluate the accuracy of estimated ratings based
on RMSE and Recall@k for the testing data. RMSE,
defined in Eq. (2.1), is the root mean squared error
measuring the difference between the estimated rating
values and the true rating values, thus, the prediction
accuracy on the individual rating level. Recall@k for a

user u is defined as the ratio |N(k;u)|
|N(u)| , where | · | denotes

the number of elements in a set, N(u) is the set of items
rated by u in the testing set and N(k;u) is the subset
of N(u) contained in the top-k list of all items sorted by
their estimated ratings. We report the average of the
recall over all users in the testing set. In practice, recall
is more useful in recommender systems since it takes a
global view on all items and a high recall indeed reflects
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(l) Recall@300 at Flixster. Vary D

Figure 3: Recall of different models. Each row refers to a data set and each column refers to a testing window.
The left part observes the effect of varying k with fixed D = 20 while the right part observes the effect of varying
D with fixed k = 300. Higher values are better.



Table 2: RMSE (mean±standard error) of different models. D = 20. The best performer is in boldface and the
second best performer is in italic.

MovieLens BeerAdvocate
Algorithm Window 1 Window 2 Window 3 Window 1 Window 2 Window 3
PMF[13] 0.9661± 0.0018 0.9478± 0.0026 0.9036± 0.0016 0.7006± 0.0015 0.6247± 0.0014 0.6368± 0.0010
BPMF[12] 0.9351± 0.0029 0.9350± 0.0057 0.8843± 0.0015 0.6917± 0.0005 0.6226± 0.0005 0.6325± 0.0010
timeSVD[6] 0.9170± 0.0021 0.9049± 0.0010 0.8683± 0.0013 0.6424± 0.0013 0.5634± 0.0017 0.5648± 0.0009
Ensemble 0.9531± 0.0007 0.9642± 0.0020 0.9105± 0.0027 0.6984± 0.0007 0.6269± 0.0008 0.5941± 0.0032
TMF 0 .8909 ± 0.0020 0 .8801 ± 0.0020 0 .8557 ± 0.0027 0.6660± 0.0007 0.5800± 0.0012 0.5882± 0.0022
BTMF 0.8712± 0.0006 0.8454± 0.0006 0.8310± 0.0004 0 .6524 ± 0.0003 0 .5708 ± 0.0003 0 .5779 ± 0.0002

FineFoods Epinions
PMF[13] 1.2671± 0.0032 1.2078± 0.0073 1.2429± 0.0097 1.2419± 0.0087 1.2268± 0.0037 1.1924± 0.0048
BPMF[12] 1.2537± 0.0003 1.1792± 0.0002 1.1940± 0.0006 1.1892± 0.0004 1.1818± 0.0005 1.1542± 0.0003
timeSVD[6] 1 .2484 ± 0.0008 1.1684± 0.0009 1 .1893 ± 0.0007 1.1707± 0.0013 1.1655± 0.0017 1.1357± 0.0009
Ensemble 1.2528± 0.0004 1.1779± 0.0018 1.1956± 0.0020 1.1929± 0.0017 1.1847± 0.0008 1.1582± 0.0002
TMF 1.2506± 0.0047 1.1820± 0.0058 1.2089± 0.0041 1 .1125 ± 0.0016 1 .1117 ± 0.0012 1 .0978 ± 0.0015
BTMF 1.2476± 0.0004 1 .1744 ± 0.0002 1.1891± 0.0001 1.1024± 0.0002 1.1067± 0.0002 1.0937± 0.0001

EachMovie Flixster
PMF[13] 1.3163± 0.0015 1.3099± 0.0044 1.3608± 0.0025 1.1299± 0.0082 1.0511± 0.0056 1.0899± 0.0067
BPMF[12] 1 .2894 ± 0.0016 1.2855± 0.0017 1.3134± 0.0014 1.1100± 0.0008 1 .0337 ± 0.0015 1 .0489 ± 0.0024
timeSVD[6] 1.3696± 0.0010 1.3736± 0.0026 1.4233± 0.0019 1 .0865 ± 0.0007 1.0390± 0.0003 1.0539± 0.0006
Ensemble 1.4659± 0.0053 1.4778± 0.0064 1.5371± 0.0052 1.1466± 0.0024 1.0572± 0.0022 1.0713± 0.0006
TMF 1.3477± 0.0024 1.3493± 0.0019 1.3909± 0.0030 1.1555± 0.0038 1.0723± 0.0011 1.1290± 0.0004
BTMF 1.2867± 0.0080 1 .2892 ± 0.0098 1 .3414 ± 0.0143 1.0802± 0.0038 1.0329± 0.0022 1.0436± 0.0018

the user’s adoption.

4.2 Experimental Results The followings are the
findings on Recall@k and RMSE.

Recall@k. Fig. 3 presents the recall performance
of different models at three testing windows of six data
sets. The left three columns show Recall@k at the la-
tent dimensionality D = 20 while varying k from 50 to
500. The right three columns show Recall@300 while
varying D from 10 to 50. We observed that our pro-
posed model TMF always performs better than its con-
ventional counterpart PMF that has no temporal con-
sideration. Ensemble, whose data partitioning misses
global patterns and suffers from the data sparsity is-
sue, works no better than PMF. These evidences suggest
that considering the effect of temporal dependence and
dynamics through the transition matrix help improve
the accuracy of recommendation.

The fully Bayesian treatment BTMF beats PMF,
BPMF, Ensemble, and TMF in all six data sets. The
performance of BTMF is steady with respect to the
dimensionality D. The relative ranks of items are better
predicted by our temporal models due to the reality
that user’s subsequent ratings depend more on recent
ratings, which is modeled by R∗ij = (BiUit)

TVjt, where t
is the current time. However, simply focusing on recent
ratings, like Ensemble, will miss patterns represented
by anterior ratings. Our models address this problem
by capturing the temporal dependence and the users’

interest shift through the transition matrix Bi learnt
from the full set of rating data.

The results of BTMF are competitive even com-
pared with the time-aware timeSVD: BTMF beats
timeSVD on MovieLens, FineFood and EachMovie data
sets and performs similarly on other data sets. timeSVD
aims to capture temporal effects by incorporating a
time-variant bias for each user and item at every in-
dividual time window, whereas BTMF captures tempo-
ral effects through incorporating a single time-invariant
transition matrix for each user. Unlike time-variant bi-
ases, the time-invariant transition matrix captures the
temporal pattern that holds all times, and thus, is suit-
able for prediction in the next time window. In con-
trast, time-variant biases are differences at each individ-
ual time window and do not summarize the underlying
pattern for such differences. This approach works for
prediction only if two windows share similar biases. In-
deed, for the faster changing FineFoods and MovieLens,
we observed a more significant improvement of BTMF
over timeSVD.

RMSE. Table 2 shows the RMSE of different
models. As pointed out in [6], achievable RMSE values
lie in a quite compressed range and small improvements
in RMSE terms can have a significant impact on the
quality of the top few presented recommendations.
First of all, the two fully Bayesian matrix factorization
models, BPMF and BTMF, achieve better performance
than their non-Bayesian counterparts, PMF and TMF.



The boldface and italic highlight the best and second
best performers, respectively. Since timeSVD and
BTMF perform best on recall, we focus on these two
methods here. With 6 data sets and 3 testing windows
for each, there are 18 testing cases. Among these 18
testing cases, BTMF performs best in 12 cases and
second best in 6 cases, whereas timeSVD performs best
in 4 cases and second best in 3 cases. For the four
cases where timeSVD performs best (i.e., three cases for
BeerAdvocate and one case for FineFoods), timeSVD is
only slightly better than BTMF.

In summary, the proposed BTMF outperforms pre-
vious models in most cases. Two elements contribute
to this improvement. One is considering temporal ef-
fects in the full time range without discarding any part
of the data. Ensemble, which uses several recent time
windows, performs poorly. The second element is the
time-invariant transition matrix that captures a prop-
erty essential for prediction. The time-variant biases
used by the timeSVD model are fit for prediction only
if such biases are similar for adjacent time windows. The
transition matrix also provides a way to understand the
pattern of evolution for a user. We observed two types
of transition matrices learnt. The first type has non-
zero entries on the main diagonal, which captures those
inactive users who have very few ratings observed. The
second type has non-zero entries outside the main diag-
onal and such entries represent certain preference shifts
among latent factors, and a different distribution of non-
zero entries captures a different shift pattern.

5 Conclusion

We proposed two temporal matrix factorization meth-
ods, TMF and BTMF, to predict user preferences that
evolve over time. The key idea is to model the evolution
by a latent transition matrix that captures the time-
invariant property of user’s temporal dynamics, thus,
the “pattern of evolution” for a user. We presented
inference algorithms for these methods and evaluated
their effectiveness. The experimental results demon-
strated improved prediction over previous methods.
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