
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

12-2013

Modeling Temporal Adoptions Using Dynamic
Matrix Factorization
Freddy Chong-Tat CHUA
Singapore Management University, freddy.chua.2009@smu.edu.sg

Richard Jayadi Oentaryo
Singapore Management University, roentaryo@smu.edu.sg

Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

DOI: https://doi.org/10.1109/ICDM.2013.25

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
CHUA, Freddy Chong-Tat; Oentaryo, Richard Jayadi; and LIM, Ee Peng. Modeling Temporal Adoptions Using Dynamic Matrix
Factorization. (2013). IEEE 13th International Conference on Data Mining: ICDM 2013: Proceedings, 7-10 December 2013, Dallas, Texas.
91-100. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1974

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/19448917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ICDM.2013.25
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1974&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1974&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1974&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1974&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Modeling Temporal Adoptions Using Dynamic Matrix Factorization

Freddy Chong Tat Chua, Richard J. Oentaryo, Ee-Peng Lim

Living Analytics Research Centre

Singapore Management University

{freddy.chua.2009, roentaryo, eplim}@smu.edu.sg

Abstract—The problem of recommending items to users is
relevant to many applications and the problem has often been
solved using methods developed from Collaborative Filtering
(CF). Collaborative Filtering model-based methods such as
Matrix Factorization have been shown to produce good results
for static rating-type data, but have not been applied to time-
stamped item adoption data. In this paper, we adopted a
Dynamic Matrix Factorization (DMF) technique to derive dif-
ferent temporal factorization models that can predict missing
adoptions at different time steps in the users’ adoption history.
This DMF technique is an extension of the Non-negative Matrix
Factorization (NMF) based on the well-known class of models
called Linear Dynamical Systems (LDS). By evaluating our
proposed models against NMF and TimeSVD++ on two real
datasets extracted from ACM Digital Library and DBLP,
we show empirically that DMF can predict adoptions more
accurately than the NMF for several prediction tasks as well
as outperforming TimeSVD++ in some of the prediction tasks.
We further illustrate the ability of DMF to discover evolving
research interests for a few author examples.

Keywords-Kalman Filter, Linear Dynamical Systems, State
Space Models, Dynamic Matrix Factorization

I. INTRODUCTION

A. Motivation

Recommender systems have been widely used to suggest

products, content and services to consumers. Recommender

techniques have been largely related to rating prediction and

evaluated on Netflix and Movielens datasets. The common

assumptions underlying rating prediction are that: (a) each

item can be rated or adopted only once by a user; (b)

ratings assigned to items are restricted to a pre-defined

rating options, say 1 to 5; and (c) the user-rate-item data is

static. Although these assumptions are reasonable in many

application settings, there are also many other settings that

violate these assumptions.

For example, there are many application scenarios where a

user can adopt the same item more than once, i.e. a user may

buy the same product in different purchases. These include

food, stationery, drug, and other items. A user may visit the

same restaurant, bookstore, or cinema multiple times. In the

context of social media, a user may adopt the same URL,

tag or keyword multiple times as the user shares messages

with her friends. When the same item is adopted at different

time steps, the user may adopt it with different quantities as

the user’s preference or demand on the item changes over

time. Assumption (a) hence does not hold in these scenarios

and we need to consider recommending the same item even

if it has been previously adopted.

The above scenarios also violate assumption (b) as they

do not necessarily involve users giving ratings to items.

The user’s propensity to adopt an item can be measured by

adoption quantity, which can be any non-negative integer

value instead of a fixed range of rating values. A user may

choose not to adopt an item at all if he dislikes the item, or

adopt an item with a large quantity if he likes it. Adoption

count also does not imply likeness. By adopting one instance

of item does not mean the user does not like the item.

Conversely, by adopting multiple instances of an item does

not mean the user like the item.

The last assumption (c) is clearly not applicable to many

recommender systems involving dynamic user adoption pat-

terns. These recommender systems have to determine trends

that affect user adoptions. Unfortunately, most existing

recommendation algorithms only deal with static adoption

data. When applied to dynamic adoption data, the data is

usually first divided into time steps and the recommendation

algorithm is applied to the adoption data in each time step

independently of other time step. The result is that items

recommended to a user in one time step may look entirely

different from those recommended in the next time step,

which is not ideal in many application settings.

Figure 1 shows an example between the differences of

rating and adoption in two time steps t = 1, 2. In the case

of temporal rating, the user can only rate an item once, any

changes in the rating between the user and the item at a later

time step is seen as an updated rating. When we collapse

the data into its static equivalent (denoted by *), the value

between user and item reflects the latest rating. However for

temporal adoption, the edges in the collapsed static data (*)

has weights that are aggregated through time.

B. Research Objectives

In this paper, we focus on addressing the problem of

modeling users adopting items across different time steps to

generate recommendations considering evolving user prefer-

ences. Unlike rating-based recommendation, we assume the

same users can adopt items more than once with different

quantity numbers.

t = 1 t = 2

V1

V2

V1

V2

V1

V2

*
4

3 3

5 5

3

t = 1 t = 2

V1

V2

V1

V2

V1

V2

*
4

20 3

10 14

23

Temporal Ratings

Temporal Adoptions

Figure 1. Temporal Rating vs Temporal Adoption

The main idea of our approach is to model dynamic

adoption data using a combination of Non-negative Matrix

Factorization (NMF) and Linear Dynamical Systems (LDS).

We represent the adoption data of each time step as a state

defined by the preferences of users and the characteristics of

items in low rank factors as well as transitions of low rank

factors so as to smoothen the evolution of user preferences.

Suppose we model users adopting items as a bipartite

graph where users and items represent the two types of

vertices, the weights on the user-adopt-item edges represent

the number of times the users adopt the items. For the time

steps of adoption data, we can define a bipartite graph Yt

for each time step t. When a user n adopts w instances of

an item m in time t, an edge is created between n and m

and an edge weight w is assigned. In the adjacency matrix

representation, this translates to ym,n,t = w.

We now define the dynamic adoption prediction problem

as follows. Given the item adoption data for a set of N

users and M items in different time steps for t = 1 · · ·T ,

we want to find the low rank factors of user preference for

every time step and to use the low rank factors to predict

for the possibility of missing adoptions in each time step t.

A direct and simple way of solving dynamic adoption

prediction problem is to perform NMF independently for

each time step. Suppose we have M items and N users,

using MF for K latent factors,

Yt = Ct ·Xt

where Yt ∈ R
M×N , Ct ∈ R

M×K and Xt ∈ R
K×N .

But there are drawbacks to such an approach. Given that

solving for NMF is a non-convex optimization problem,

this approach suffers from the identifiability problem where

multiple solutions exist. This makes the interpretation of

resultant predictions difficult, as the lower rank factors

are not related across different time steps. That is, the

user preference factors derived for one time step may be

completely unrelated with those for another time step.

Linear Dynamical Systems (LDS) offer an elegant way of

expressing the relationship between latent factors at different

time steps. For each user n, LDS derives for each time step

t a dynamics matrix An,t that represents the mapping of

latent factors from time step t−1 to t. When LDS is applied

to a set of users, we obtain Dynamic Matrix Factorization

(DMF). Different matrix factorization techniques can be

utilized in DMF and this paper introduces DMF based on

NMF, a MF technique very often used for rating prediction.

To the best of our knowledge, using LDS and NMF for

DMF to model dynamic adoption data is novel and has not

been attempted before. In a previous work by Sun et al.,

a Dynamic Matrix Factorization approach based on LDS

has been developed for rating prediction [1], but they do

not include the use of NMF. The use of NMF is extremely

important for obtaining insights into the “topics” that users

follow. Without the non-negativity constraints, the latent

factors obtained for users become uninterpretable. Previous

works on rating prediction [2], [3], [4], [5], [6] which employ

Probabilistic Matrix Factorization (PMF) [7], [8] are not able

to show interpretable topics because of the unconstrained

sign of their latent factors. Our approach of enforcing a

non-negativity constraint in DMF has never been applied

and evaluated in item adoption prediction.

C. On the Necessity of Non-negativity

We briefly argue that non-negativity is necessary for

ranking items in each latent factor to obtain interpretable

topics. For a given element ym,n of the item-user matrix

Y , the MF approach is to approximate ym,n using the item

latent factors cm and user latent factors xn.

ym,n =
K
∑

k=1

cm,k · xk,n

In topic models based on NMF [9], [10], the important items

for each latent factor is obtained by ranking the items’ value

in the respective latent factor. So if ci,k > cj,k, it implies that

item i is more representative than item j for the latent factor

k in NMF. But this is not true if the latent factors contain

negative values. A negative cm,k can also be important for

contributing to the value ym,n if the corresponding xk,n is

also negative. Since the negative latent factors prevent one

from interpreting their semantics, we propose to use NMF

with LDS to obtain DMF with non-negative values.

D. Contributions

We now summarize the research contributions of this

paper as follows:

• This paper makes a clear distinction between item

adoption recommendation and rating recommendation.

We point out that as user interests evolve, we need

to model these changes and adapt the prediction of

adoption data temporally.

• We propose Dynamic Matrix Factorization (DMF)

based on Non-Negative Matrix Factorization (NMF)

and Linear Dynamical Systems (LDS), and apply it to

solving several prediction tasks involving adoptions at

different time steps as well cumulated adoptions across

multiple time steps. We also derive a few variants of

DMF based on the choice of item factor scaling and

dynamics matrix and show how they can be used in

the different adoption prediction tasks.

• We propose three evaluation tasks for comparing the

performance of our proposed models against other

baselines in the temporal item adoption problem.

• We conduct a series of experiments to show that our

proposed models outperform NMF in the different pre-

diction tasks and TimeSVD++ for some prediction tasks

involving dynamic adoptions. A few author case exam-

ples illustrating changes of research interests learnt in

DMF have also been given to highlight the knowledge

discovered by using DMF.

II. RELATED WORKS

Matrix Factorization (MF) has been successful in solving

the (rating) recommendation problem by representing users

and items using low rank vectors. One well-known MF

approach is Non-negative Matrix Factorization (NMF) [11],

[12] which have been proposed to model image pixels and

encoding variables, as well as documents and words. Our

survey showed that NMF has not been used for adoption rec-

ommendation where a user can adopt items with quantities

at different points in time. In the item adoption scenario, it is

important to address the abundance of temporal data. NMF

alone is not adequate to address the relationship between the

latent factors between different time points.

In the context of rating recommendation, various MF-

based approaches have been proposed, which broadly fall

into two categories: static and dynamic methods. As an

example of static MF methods, Koren [3] developed a

hybrid MF approach that smoothly integrates the latent

factor and neighborhood models in order to effectively

capture the global and local structure of user and/or item

relationships, respectively. Meanwhile, Salakhutdinov and

Mnih introduced the first probabilistic linear model of matrix

factorization with Gaussian observation noise [7], and later

extended it by providing a full Bayesian treatment through

the Markov Chain Monte Carlo (MCMC) algorithm [8].

These methods produce good predictive accuracy and can

scale up to large/sparse static data. However, they do not

consider temporal dynamics, and thus lacks the ability to

track the trending patterns that are more relevant to the

current user preferences than those in the past.

In light of this limitation, several dynamic MF methods

have been developed. In [13], an online NMF (ONMF) was

proposed that could process the ratings one at a time and

automatically update the latent factors by combining the

old factors with the newly arrived rating. Koren developed

TimeSVD++ to address temporal dynamics through a spe-

cific parameterization with factors drifting from a central

time [5], [4]. Recently, [6] presented a probabilistic tensor

factorization, which extends [7], [8] to model time-evolving

relational data. In [14], an evolutionary nonnegative matrix

factorization (eNMF) was devised, which assumes factorized

matrices evolve smoothly over time, and uses an efficient

projected gradient algorithm to minimize the difference

between the matrices at consecutive time steps. But none of

these proposed temporal MF models make use of the well-

known Kalman Filtering and Rauch Tung Striebel (RTS)

smoothing algorithm which gives globally optimal solution

for the latent states.

Another model was developed in [15] that uses low-rank

MF and Kalman filter to estimate user and item factors. This

provides a single joint model to simultaneously incorporate

both spatial and temporal structure in ratings. But [15] does

not model the dynamics of transition between latent factors

in consecutive time steps.

Our work is closely related to the recent dynamic MF

approach advocated in [1]. The centerpiece of this work is

a dynamic state-space model that builds upon probabilistic

matrix factorization in [7], [8] and Kalman filter in order

to provide recommendations in the presence of process and

measurement noises. We combine the use of NMF for the

non-negative parameter estimation and proposed different

variants of DMF for different adoption scenarios.

In summary, we show that Linear Dynamical Systems

(LDS) which was extended to Dynamic Matrix Factorization

(DMF) by [1], has parameters that can first be solved by

NMF to satisfy the non-negativity constraints. We use NMF

for obtaining the item latent factor matrix and initial values

of the user latent factors. Then we apply Kalman filtering

and RTS smoothing for each individual user to obtain better

estimates of their latent factors.

III. DYNAMIC MATRIX FACTORIZATION

Given the relationship between static Matrix Factorization

(MF) and Dynamic Matrix Factorization (DMF), we show

how to use the parameters obtained from the learning of MF

for learning DMF.

A. Problem Definition

Dynamic adoption prediction can be formally defined as a

MF problem for an adoption matrix Y ∈ R
M×N×T , where

M denotes the number of items, N denotes the number of

users and T denotes the number of time steps. Each element

ym,n,t of Y denotes the adoption count (≥ 0) for item m

by user n in time step t.

Not all temporal adoptions in Y are observed. We denote

ym,n,t as the temporal adoption observed for user n, item

m and time step t. When ym,n,t = 0, it means that the

temporal adoption is missing or we do not observe the item

n adopted by user m in the corresponding time step. Y is

sparse as each user adopts usually only very few items.

The adoption matrix Y can be collapsed into a M × N

total adoption matrix Y ∗ by aggregating the temporal adop-

tions of each user-item pair across all time steps. That is,

each element of Y ∗ is obtained by y∗m,n =
∑

t ym,n,t.

Depending on what we want to predict for the adoption

matrix Y , we can formulate three prediction tasks:

• Task 1, Prediction of missing temporal adoptions: The

task of predicting missing adoptions at some time step

t for some user n and item m and we represent the

predicted adoptions by ŷm,n,t.

• Task 2, Prediction of all total adoptions given missing

temporal adoptions: The task of predicting all total

adoptions y∗m,n given some missing temporal adoptions,

i.e., ym,n,t = 0, at some time step t for some n and m

for a set of (m,n, t) triplets. We represent the predicted

total adoptions of user n and item m as ŷ∗m,n

• Task 3, Prediction of missing total adoptions: The task

of predicting missing total adoptions ŷ∗m,n for user n

and item m with ym,n,t = 0 for all t ∈ T .

We can solve the above prediction tasks in a naive

approach using non-negative matrix factorization (NMF) in

the next section before extending it to DMF.

B. Non-Negative Matrix Factorization

Given a static adoption matrix Y ∗ ∈ R
M×N , matrix

factorization returns two lower ranked matrices item-factor

matrix C ∈ R
M×K and user-factor matrix X∗ ∈ R

K×N ,

where K represents the number of factors. The item-factor

matrix C represents the mappings from items to a set

of factors, while the factor-user matrix X∗ represents the

mappings from factors to users. In adoption prediction tasks,

we would like to regard the factor values as their weights

and hence require them to be non-negative.

Non-negative matrix factorization (NMF) meets the re-

quirement for non-negativity of both the item-factor matrix

C and factor-user matrix X∗. NMF finds the lower rank

matrices C and X∗ such that their product recovers missing

values in Y ∗. As NMF is a well-defined and well-understood

technique, we only briefly show how to solve for C and X∗

using stochastic gradient descent (SGD) with the log-barrier

approach for non-negativity constraints.

The parameters of NMF can be obtained using the fol-

lowing derivatives executed using multiple iterations,

∂ log p(y∗m,n)

∂cm,k

= γ

(

y∗m,n −
K
∑

k=1

cm,kx
∗
k,n

)

x∗
k,n +

ξ

cm,k

∂ log p(y∗m,n)

∂x∗
k,n

= γ

(

y∗m,n −
K
∑

k=1

cm,kx
∗
k,n

)

cm,k +
ξ

x∗
k,n

new cm,k = old cm,k + η ·
∂ log p(y∗m,n)

∂cm,k

new x∗
k,n = old x∗

k,n + η ·
∂ log p(y∗m,n)

∂x∗
k,n

where γ represents the precision of error, ξ represents the

strictness of the log barrier constraint and η represents the

rate of learning for SGD. In our experiments, we use the

parameter settings γ = 1, ξ = 0.01, and η = 0.0001.

C. Dynamic Matrix Factorization

DMF can be seen as an extension of NMF by adding the

time dimension based on Linear Dynamical Systems (LDS).

LDS is originally designed to relate an output signal yt ∈
R

M at time step t with some latent vector xt ∈ R
K at

time step t, and the latent vectors x at earlier time steps.

Formally, we define LDS as follows,

yt = C · xt + v xt = At · xt−1 + w

v ∼ N (0, R) w ∼ N (0, Q)

where C ∈ R
M×K is the item-factor matrix, and At ∈

R
K×K is the factor to factor mapping between adjacent

time steps. The covariance matrices Q ∈ R
K×K and R ∈

R
M×M are set to be 0.1 · I in our experiments.

The above LDS formulation models only a single user’s

data across time steps. It can be extended to model dynamic

data of a set of users in a dynamic matrix factorization

model. Sun et al. defined a version of DMF as follows [1]:

yn,t = Cn · xn,t + v xn,t = An,t · xn,t−1 + w

v ∼ N (0, R) w ∼ N (0, Q)

This version of DMF learns a fixed item-factor matrix C

for all users. Instead of learning C, we propose to use an

item-factor matrix derived from NMF. We also propose four

other versions of DMF based on the options used for Item

Factor Matrix and Dynamics Matrix as shown in Table I.

Table I
PROPOSED DMF MODELS

Non-Scaled Scaled Item
Item Factors Factors

Variable Dynamics Matrix DMF-B DMF-I

Fixed Dynamics Matrix DMF-A DMF-IA

Basic DMF (DMF-B). In this Basic DMF model, we

determine a static item-factor matrix C using NMF while

allowing the factor-user matrix Xt to vary with time. That

is, we define Basic DMF to be:

yn,t = C · xn,t + v Y ∗ = C ·X∗ using NMF

keeping the equations of xn,t, w and v the same.

To use DMF for obtaining an estimate of ŷm,n,t, we

calculate yn,m,t|T , the frequency of adoptions by user n on

item m at time t conditioned on all information up to the

last time step T .

yn,t|T = C · xn,t|T

DMFs with Scaled Item Factors (DMF-I and DMF-IA).

The DMF-I and DMF-IA models consider that the item-

factor matrix C learnt from NMF is determined for the

observations for all time steps, i.e., Y ∗. With large observed

adoption counts in Y ∗, we expect larger entries in C. The

consequence of this is an over-estimation of item factors for

each time step. Consider using the NMF model to recover

adoptions, we have

y∗m,n =
K
∑

k=1

cm,k · x∗
k,n

However, in DMF, we have

ym,n,t =
K
∑

k=1

cm,k · xn,t,k

In NMF, both C and X∗ contribute to the observation of

the magnitude in Y ∗ for the respective indices. However,

in DMF-B, the adoption magnitude Y is spread out over

multiple time periods. If C remains constant when inferring

for the values of xn,t, the value of xn,t will have to be

adjusted downwards in order to compensate for the reduction

of the observed value ym,n,t. While it is convenient to allow

xn,t to bear the burden of adjusting for ym,n,t, we could also

adjust C such that it is suitable for the number of observed

time steps for each user n. For example, if a user is only

active in one time step, then Cn should be no different with

the C from NMF. However, if user is active in multiple time

steps, then Cn for user n should be scaled such that Cn < C.

In the DMF-I model, we therefore scale C by the number

of time steps.

Cn =
C

of observed time steps for user n

Alternatively, C can be estimated via a log likelihood

maximization approach in the same way as how A is

optimized. But the elegance of how LDS is being defined

allows for the parallel estimation of the xn’s and An’s

parameters independently from each user n. Therefore if

we learn the C that is coupled with all other users, it

becomes computationally expensive with little room for

parallelization and scalability.

DMFs with Fixed Dynamics (DMF-A and DMF-IA).

In both DMF-B and DMF-I, the dynamics matrix A is

different (or variable) for each user and each time step. In

predicting missing total adoptions, we have user-item pairs

that do not involve any adoption across all time steps. Using

different dynamics matrices across time steps may cause

over-fitting problem in DMF-B and DMF-I and prevent

accurate prediction of missing total adoptions. We therefore

propose to learn a fixed dynamics matrix A for each user

across all time steps. DMF-A and DMF-IA thus have the

following equation for xn,t.

xn,t = A · xn,t−1 + w

Parameter Learning for DMF. The estimation of param-

eters in all the DMF models can be derived as laid out in

Rauch, Tung and Striebel [16] and that of Ghahramani and

Hinton [17]. In the following, we only show the learning of

parameters for DMF-B and DMF-I.

Let xn,t|T be the smoothed latent state variable of user

n at time t conditioned on T . Without showing the explicit

derivations, we only state the equations here. Readers inter-

ested in the derivations can refer to Rauch, Tung and Striebel

[16]. The steps listed here is known as RTS smoothing.

xn,t|T = xn,t|t + Jn,t
(

xn,t+1|T − xn,t+1|t

)

Jn,t = Pn,t|tA
′
n,tP

−1

n,t+1|t

Pn,t|T = Pn,t|t + Jn,t
(

Pn,t+1|T − Pn,t+1|t

)

J ′
n,t

The smoothed latent states depends on the prior latent

states xn,t|t−1 and posterior latent states xn,t|t. The posterior

and prior latent states are obtained through a process known

as Kalman filtering [18].

xn,t|t−1 = An,txn,t−1|t−1

Pn,t|t−1 = An,tPn,t−1|t−1A
′
n,t +Q

Kn,t = Pn,t|t−1C
′
(

CPn,t|t−1C
′ +R

)−1

xn,t|t = xn,t|t−1 +Kn,t

(

yn,t − Cxn,t|t−1

)

Pn,t|t = (I −Kn,tC)Pn,t|t−1

The dynamics matrix An,t is given by
(

xn,t|T · x
′
n,t−1|T + Pn,t,t−1|T

) (

xt−1|T · x
′
t−1|T + Pn,t−1|T

)−1

Although the matrix C remains the same as before, the

latent space vectors xn,t, now divided by different time steps

no longer have their non-negativity constraints enforced by

the Kalman filtering and smoothing steps. This is because

when solving for the posterior and smooth distributions of

x, it also involves a maximization step without additional

constraints on the polarity of the vectors. Although Lagrange

constraints can be added to enforce x to lie on the pos-

itive orthant, the algebraic manipulations becomes far too

complex to solve analytically. Stochastic gradient descent

can be used for solving the posterior and smoothed vectors

numerically but given the multiple time steps involved for

multiple users, the complexity of such an approach is not

feasible for data on a larger scale.

IV. EXPERIMENTS

We evaluate our models against the baseline NMF and

TimeSVD++1 on the three tasks: 1) DMF-B and DMF-

I for Prediction of missing temporal adoptions, 2) DMF-

B and DMF-I for Prediction of all total adoptions given

1The TimeSVD++ we used is the implementation from GraphLab

missing temporal adoptions and 3) DMF-A and DMF-IA for

Prediction of missing total adoptions. Evaluations on tasks

1 and 2 use the same training and testing sets while task 3

uses a different training and testing sets. In this section, we

will discuss how the training and testing sets are constructed

before reporting the results for the three tasks.

A. Data Set

We use a subset of publications from DBLP and ACM

Digital Library (ACMDL). Using papers published in the

Journal of ACM (JACM) as a seed set, we grow this seed set

by including their authors and their non-JACM publications.

We also include the co-authors of JACM authors, and the

publications of these co-authors. We collect the titles and

abstracts (for ACMDL only) of all the above publications.

The statistics of our data sets are given in Table II. In this

experiment, we use authors and title/abstract words as users

and items respectively. Each year is considered a time step.

DBLP has twice as many authors as ACMDL due to the

longer history of publications maintained by DBLP. DBLP

covers a larger scope than ACMDL as the latter focuses only

on ACM-related publications. However, ACMDL has many

more unique words than DBLP, because ACMDL has both

titles and abstracts, whereas DBLP only has titles.

Table II
DATASET SIZES

Data set # authors # unique non- # non-zero time steps
stop words entries in Y

DBLP 52,754 20,080 4,085,265 1936–2012

ACMDL 24,569 33,044 8,721,385 1952–2011

Training and Testing sets for Task 1. To evaluate Task
1 (Prediction of missing temporal adoptions), we divide the
temporal adoption matrix Y into five (training set, testing
set) pairs, (Y (i)train, Y (i)test) for i=1 to 5. The process
for creating these data sets is outlined as follows,

1) Y (0)train = Y , Y (0)test = ∅

2) For i=1 to 5

a) Y (i)train = Y (i− 1)train

Y (i)test = Y (i− 1)test

b) For each y(i)trainm,n,t > 0, with probability 0.1, do

i) y(i)testm,n,t = y(i)trainm,n,t

ii) y(i)trainm,n,t = 0

We deliberately hide 10% of adopted items in each time

step. We then iteratively grow the testing set by shifting

10% of the adoptions in the training set to the testing

set. This way, we can ensure that subsequent testing set

is always a superset of the previous set. That makes the

difficulty of predicting for the missing adoptions in the test

set consistently more difficult than the previous set. We

obtain five sets of testing data { 10%, 19%, 27%, 34%,

41% } with their respective training data.

Training and Testing sets for Task 2. For Task 2

Prediction of all total adoptions given missing temporal

adoptions, we simply collapse the above Y (i)train and

Y (i)test across time steps. That is, for each i, the training

and test sets are defined by,

y∗(i)trainm,n =
∑

t

y(i)trainm,n,t y∗(i)testm,n =
∑

t

y(i)testm,n,t

Training and Testing sets for Task 3. For task 3, we

divide the temporal adoption matrix Y into training sets

Y (j)train and testing sets Y (j)test, for j=1 to 5. The

process for creating these data sets is listed as follows,

1) Y (0)train = Y , Y (0)test = ∅

2) Y ∗(0)train = Y ∗, Y ∗(0)test = ∅

3) For j=1 to 5

a) Y (j)train = Y (j − 1)train

Y (j)test = Y (j − 1)test

b) Y ∗(j)train = Y ∗(j − 1)train

Y ∗(j)test = Y ∗(j − 1)test

c) For each y∗(j)trainm,n > 0, with probability 0.1, do

i) y∗(j)testm,n = y∗(j)trainm,n

y∗(j)trainm,n = 0
ii) For t=1 to T

A) y(j)testm,n,t = y(j)trainm,n,t

B) y(j)trainm,n,t = 0

We create the testing set by randomly including 10% of

the item m-user n pairs with non-zero y∗m,n from Y ∗. The

selected pairs are also excluded from the training set by

setting ym,n,t = 0 for all t. The size of the training and

testing sets is then varied by randomly selecting another

10% from the training set and shifting it to the testing set.

B. Results for Prediction of Missing Temporal Adoptions

We used Y (i)train for training DMF-B/DMF-I and per

time step data from Y (i)train for training NMF. The

models then predict the missing adoptions for each time

step y(i)testm,n,t for all y(i)testm,n,t > 0. The purpose of this

experiment is to show that even when NMF is applied

independently to each time step, DMF-B and DMF-I are still

able to outperform NMF. This indicates that the relationship

between the user latent factors of adjacent time steps xn,t

and xn,t−1 captured by the dynamics matrix is necessary to

more accurately predict missing temporal adoptions.

The predicted values given by NMF, DMF-B and DMF-

I are denoted by ŷ(i)nmf
m,n,t, ŷ(i)

dmf−b
m,n,t and ŷ(i)dmf−i

m,n,t re-

spectively. We compare the Pearson Correlation Coefficient

(PCC) of the predicted values for each time step against

y(i)testm,n,t of each time step. PCC is preferred over Root

Sum Squared Error (RSSE)2 because the total adoptions

when divided into multiple time steps have many small count

values dominating RSSE over the large count values that are

deemed more important.

Figure 2 shows the result of DMF-B against the baseline

NMF using ACMDL dataset for different proportions of test

data. In the plot, The x-axis represents the PCC of NMF

predicted values against the test (or ground truth) values

2Root Sum Squared Error is defined by the root of squared errors, i.e.,
√
∑

k
error2

k
.

while y-axis represents the PCC of DMF- predicted values

against the test values. Each dot represents the respective

results of a year. If the dot lies on the upper-left side of

graph, it indicates that for that year DMF-B performs better

than NMF. Figure 2 indeed shows that for the four plots,

most of the dots lie on the upper left side of the figure.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

corr(NMF, test)

c
o
rr

(D
M

F
−

B
,
te

s
t)

(a) For i=2, test size=19%

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

corr(NMF, test)

c
o

rr
(D

M
F

−
B

,
te

s
t)

(b) For i=3, test size=27%

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

corr(NMF, test)

c
o
rr

(D
M

F
−

B
,
te

s
t)

(c) For i=4, test size=34%

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

corr(NMF, test)

c
o
rr

(D
M

F
−

B
,
te

s
t)

(d) For i=5, test size=41%

Figure 2. PCC of DMF-B against NMF for Task 1 (ACMDL)

Figure 3 shows the results of DMF-I against DMF-B.

The results show that most of the dots lie on the upper left

side of the figures. This indicates that using a scaled item-

factor matrix C achieve a better estimation of the latent

factors. The two figures show that for most years, DMF-I

outperforms DMF-B while DMF-B outperforms NMF. Due

to space constraints and the small adoption values in each

time step, we do not include DBLP for this task.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

corr(DMF−B, test)

c
o

rr
(D

M
F

−
I,

 t
e

s
t)

(a) For i=2, test size=19%

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

corr(DMF−B, test)

c
o
rr

(D
M

F
−

I,
 t
e
s
t)

(b) For i=3, test size=27%

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

corr(DMF−B, test)

c
o

rr
(D

M
F

−
I,

 t
e

s
t)

(c) For i=4, test size=34%

−0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

corr(DMF−B, test)

c
o
rr

(D
M

F
−

I,
 t
e
s
t)

(d) For i=5, test size=41%

Figure 3. PCC of DMF-I against DMF-B for Task 1 (ACMDL)

C. Results for Prediction of Total Adoptions with Missing

Temporal Adoptions

In this evaluation task, the training of DMF-B and DMF-

I uses temporal adoptions in Y (i)train while training of

NMF uses total adoptions in Y ∗(i)train. We evaluate how

accurate these models predict the total adoptions in y∗m,n for

all y∗(i)testm,n > 0 where

y∗m,n =

T
∑

t=1

ym,n,t

ym,n,t = y(i)trainm,n,t + y(i)testm,n,t, for all i = 1 to 5

Using DMF-B or DMF-I, we can compute the value of

ŷm,n,t for each different time step t. Then an estimate of

ŷ∗m,n is obtained by summing the predicted value across all

time steps.

ŷ∗m,n = max(

T
∑

t=1

ŷm,n,t, 0)

If ŷ∗m,n is negative, it is unlikely user m adopts item n and

we set the predicted adoption value to zero.

We evaluate the predicted adoption values against the test

(ground truth) values using Pearson correlation coefficient

(PCC) and Root Sum Squared Error (RSSE) for k largest test

adoption values where k is varied from 1 to the number of

test cases with adoption values not smaller than 20, ignoring

the less important small adoption values.

0 2000 4000 6000 8000 10000
0.4

0.5

0.6

0.7

0.8

0.9

Top K

C
o
rr

e
la

ti
o
n

NMF

timeSVD++

DMF−B

DMF−I

(a) Results for i=2, 19%

0 5000 10000 15000
0.4

0.5

0.6

0.7

0.8

0.9

Top K

C
o
rr

e
la

ti
o
n

NMF

timeSVD++

DMF−B

DMF−I

(b) Results for i=3, 27%

0 0.5 1 1.5 2

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

Top K

C
o
rr

e
la

ti
o
n

NMF

timeSVD++

DMF−B

DMF−I

(c) Results for i=4, 34%

0 0.5 1 1.5 2

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

Top K

C
o
rr

e
la

ti
o
n

NMF

timeSVD++

DMF−B

DMF−I

(d) Results for i=5, 41%

Figure 4. PCC of Task 2 (ACMDL)

Figures 4 and 5 show the correlation and RSSE results for

Task 2. The results show that DMF-I outperforms DMF-B by

a very small margin and the DMF-B and DMF-I outperforms

NMF and TimeSVD++ by a large margin. This indicates

that the two DMF models can recover the total adoptions

more accurately when some temporal adoptions are missing.

The PCC and RSSE performance reduces as we increase k

0 2000 4000 6000 8000 10000
600

800

1000

1200

1400

1600

1800

2000

2200

Top K

R
S

S
E

NMF

timeSVD++

DMF−B

DMF−I

(a) Results for i=2, 19%

0 5000 10000 15000
500

1000

1500

2000

2500

3000

Top K

R
S

S
E

NMF

timeSVD++

DMF−B

DMF−I

(b) Results for i=3, 27%

0 0.5 1 1.5 2

x 10
4

500

1000

1500

2000

2500

3000

Top K

R
S

S
E

NMF

timeSVD++

DMF−B

DMF−I

(c) Results for i=4, 34%

0 0.5 1 1.5 2

x 10
4

500

1000

1500

2000

2500

3000

3500

Top K

R
S

S
E

NMF

timeSVD++

DMF−B

DMF−I

(d) Results for i=5, 41%

Figure 5. RSSE of Task 2 (ACMDL)

adding more errors to the measures. We also perform similar

experiments on the DBLP data set. As shown in Figures 6

and 7, we also observe that DMF-B and DMF-I outperforms

NMF and TimeSVD++ significantly by PCC and RSSE.

0 200 400 600 800 1000 1200
0.5

0.6

0.7

0.8

0.9

1

Top K

C
o
rr

e
la

ti
o
n

NMF

timeSVD++

DMF−B

DMF−I

(a) For i=2, Test size=19%

0 500 1000 1500
0.4

0.5

0.6

0.7

0.8

0.9

Top K

C
o
rr

e
la

ti
o
n

NMF

timeSVD++

DMF−B

DMF−I

(b) For i=3, Test size=27%

0 500 1000 1500 2000
0.4

0.5

0.6

0.7

0.8

0.9

Top K

C
o
rr

e
la

ti
o
n

NMF

timeSVD++

DMF−B

DMF−I

(c) For i=4, Test size=34%

0 500 1000 1500 2000 2500
0.4

0.5

0.6

0.7

0.8

0.9

Top K

C
o
rr

e
la

ti
o
n

NMF

timeSVD++

DMF−B

DMF−I

(d) For i=5, Test size=41%

Figure 6. PCC of Task 2 (DBLP)

While it is expected that NMF will perform poorly on

task 2 due to the lack of temporal considerations, we are

surprised that TimeSVD++ also performs as poor as NMF

on task 2. Manual inspection of the predicted values given

by TimeSVD++ shows that TimeSVD++ predicts almost the

same adoption values ŷ∗m,n,t for all time steps t where user

n is active in. Given that for task 2, user adoption values

for an item m is missing in some but not all of the time

steps, an adoption model should cope with such variations

in item user adoption values throughout the entire temporal

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

700

Top K

R
S

S
E

NMF

timeSVD++

DMF−B

DMF−I

(a) For i=2, Test size=19%

0 500 1000 1500
100

200

300

400

500

600

700

800

Top K

R
S

S
E

NMF

timeSVD++

DMF−B

DMF−I

(b) For i=3, Test size=27%

0 500 1000 1500 2000
100

200

300

400

500

600

700

800

900

Top K

R
S

S
E

NMF

timeSVD++

DMF−B

DMF−I

(c) For i=4, Test size=34%

0 500 1000 1500 2000 2500
0

200

400

600

800

1000

Top K

R
S

S
E

NMF

timeSVD++

DMF−B

DMF−I

(d) For i=5, Test size=41%

Figure 7. RSSE of Task 2 (DBLP)

duration. Since TimeSVD++ was originally developed for

user-item rating prediction, it assumes that once item has

been rated by user, the rating remains the same throughout

the entire temporal duration. Such an assumption violates

the conditions necessary for good prediction in task 2.

D. Results for Missing Total Adoptions

For this task, we train DMF-A and DMF-IA using

Y (j)train and train NMF using Y ∗(j)train. We want to

investigate if the temporal adoption data of known user-item

pairs can help to predict the missing total adoption for a

given user-item pair. The test total adoptions to be predicted

are y∗,testm,n for all Y ∗(j)test > 0 where

y∗,testm,n =
T
∑

t=1

ytestm,n,t

DMF-A and DMF-IA are required to predict the values

of ŷm,n,t for each different time steps t. They then give an

estimate of ŷ∗m,n by summing the predicted value across all

time steps.

ŷ∗m,n = max(
T
∑

t=1

ŷm,n,t, 0)

If ŷ∗m,n is negative, we set it to zero. The predicted total

adoptions are then compared with test (ground truth) adop-

tions y∗m,n by Root Sum Squared Error (RSSE).

We again evaluate the predicted adoption values against

the test (ground truth) values using PCC and Root Sum

Squared Error RSSE for k largest test adoption values where

k is varied from 1 to the number of test cases with adoption

values not smaller than 20, ignoring the less important

small adoption values. Figures 8 and 9 shows the RSSE

results for the ACMDL and DBLP data set. DMF-IA is

observed to have smaller RSSE than DMF-I showing that

fixed dynamics matrix and scaled item factors are required

to yield more accurate predictions than DMF-I and NMF for

this task. DMF-I again outperforms NMF for PCC and RSSE

predictions. However, TimeSVD++ have better performance

for task 3 in the comparison of RSSE values. Since for task

3, the adoption values of item m and user n are consistently

missing for all time steps, the adoption model does not

have to make different prediction values for different time

steps. When comparing against the aggregated item adoption

values Y ∗(i), this hides the weakness of rating prediction

models such as TimeSVD++.

0 5000 10000 15000
1000

1500

2000

2500

3000

Top K

R
S

S
E

NMF

timeSVD++

DMF−A

DMF−IA

(a) For j=2, Test size=19%

0 0.5 1 1.5 2

x 10
4

1000

1500

2000

2500

3000

3500

Top K

R
S

S
E

NMF

timeSVD++

DMF−A

DMF−IA

(b) For j=3, Test size=27%

0 0.5 1 1.5 2 2.5

x 10
4

1500

2000

2500

3000

3500

4000

Top K

R
S

S
E

NMF

timeSVD++

DMF−A

DMF−IA

(c) For j=4, Test size=34%

0 0.5 1 1.5 2 2.5 3

x 10
4

1500

2000

2500

3000

3500

4000

4500

5000

Top K

R
S

S
E

NMF

timeSVD++

DMF−A

DMF−IA

(d) For j=5, Test size=41%

Figure 8. RSSE of Task 3 (ACMDL)

0 500 1000 1500
200

300

400

500

600

700

800

900

1000

Top K

R
S

S
E

NMF

timeSVD++

DMF−A

DMF−IA

(a) For j=2, Test size=19%

0 500 1000 1500 2000
200

400

600

800

1000

1200

Top K

R
S

S
E

NMF

timeSVD++

DMF−A

DMF−IA

(b) For j=3, Test size=27%

0 500 1000 1500 2000 2500
200

400

600

800

1000

1200

Top K

R
S

S
E

NMF

timeSVD++

DMF−A

DMF−IA

(c) For j=4, Test size=34%

0 500 1000 1500 2000 2500 3000
200

400

600

800

1000

1200

1400

Top K

R
S

S
E

NMF

timeSVD++

DMF−A

DMF−IA

(d) For j=5, Test size=41%

Figure 9. RSSE of Task 3 (DBLP)

E. Case Study

A main feature of DMF formulation is the use of dynam-

ics matrix An,t to capture the evolution of user n’s latent

factors xn,t from one time step to the next time step. The

latent state at t is given by

xn,t = An,t · xn,t−1

The kth factor in xn,t is derive by the dot product of the

kth row of An,t and xn,t−1. The largest value in the kth

row of An,t, say the (k, l) value, tells us that the jth latent

factor in xn,t−1 plays a significant role in explaining for the

value of the kth latent factor in xn,t.

We explain the evolution of Duminda Wijesekera’s latent

factors for the years (2000 to 2001) and (2001 to 2002).

From the item factor matrix C, we can derive the underlying

topics of some latent factors as shown in Table III. Duminda

Wijesekera has research interests in security, multimedia,

networks, etc.. His 6th latent factor, corresponding to se-

curity topic, evolves from 2.25 in 2000 to 3.23 in 2001, and

later to 9.10 in 2002. We also notice that the (6, 20)th entry

in the 6th row of ADuminda,2001 has the highest value of

0.347 while the other entries in the same row have a mean

value of 0.0387. In addition, in the 6th row of An,2002,

the (6, 6)th entry has the highest value of 0.3625 while the

other values have mean value of 0.1418. This suggests that

Duminda Wijesekera shifted his research from databases to

security from 2000 to 2001. Then from 2001 onwards, the

security topic continues to be his main research topic.

Consider another well known author Christos Faloutsos

who has published widely in databases, data mining and

graph mining. The 23th factor of Christos Faloutsos, cor-

responding to graph mining, increased from 2.90 in year

2006 to 14.83 in year 2007. By inspecting his dynamics

matrix AChristos,2007, we noticed that the (23, 20)th entry

of the 23th row has the highest value of 0.5055 while the

mean value of other entries in the same row is 0.1056. This

indicates that Christos Faloutsos’s increased research in the

graph mining comes from his previous research interest in

databases.

Table III
LATENT FACTORS

Factor 6 Factor 20 Factor 23 Factor 18

access data mining network

control large graph networks

paper database cache wireless

systems approach graphs nodes

based techniques frequent sensor

model algorithms patterns traffic

information efficient memory infiniband

security stream vertices routing

system query pattern mobile

policies problem vertex node

Finally, we observe that another database researcher Beng

Chin Ooi has shifted his research interests from database

to mobile systems between the years 2003 to 2004. The

18th factor (corresponding to mobile systems) of his latent

state increased from 1.6907 to 9.1483 between 2003 and

2004. In the 18th row of Beng Chin Ooi’s dynamics matrix

ABeng Chin,2004, the (18, 20)th entry shows a large magni-

tude of 0.2441 while the rest of the other factors give a mean

value of 0.0933. This indicates that the increase in mobile

systems came from previous involvement with databases.

We stress again that without the use of NMF for DMF, we

will not be able to observe such case studies for individual

authors.

V. CONCLUSION

We have highlighted the differences between rating pre-

diction and adoption prediction. When the data given con-

tains temporal information, we proposed the use of Dynamic

Matrix Factorization (DMF) for modeling the dynamics of

latent states for every user. The empirical results show that

using DMF gives overall better performance over NMF and

state of the art method such as TimeSVD++. Our case

study shows three examples of well-known researchers who

changed the focus of their research career from a particular

field to other fields in Computer Science. By analyzing the

different latent states at different time steps, we can notice

the years which indicate a tipping point in their focus. Then

by further analyzing the dynamics matrix for the tipping

point years, we can observe which fields they contributed to

the interest in their respective new fields. Without the non-

negative constraints in the item factor matrix for DMF, we

will not be able to obtain latent factors that can be interpreted

as topics of interests for the users. Therefore, the models

proposed here can be used as a form of dynamic topic

models for tracking the evolution of users’ behavior over

time. Temporal data sets have also been gaining attention

[19] and the models we highlighted here could be applied

to other social media data sets as well.

ACKNOWLEDGMENT

We will like to thank Sun et al. [1] for sharing their code.

This research is supported by the Singapore National Re-

search Foundation under its International Research Centre @

Singapore Funding Initiative and administered by the IDM

Programme Office, Media Development Authority (MDA).

REFERENCES

[1] J. Z. Sun, K. R. Varschney, and K. Subbian, “Dynamic matrix
factorization: A state space approach,” in IEEE International
Conference on Speech and Signal Processing, 2012, pp.
1897–1900.

[2] H. Ma, H. Yang, M. R. Lyu, and I. King, “Sorec: social
recommendation using probabilistic matrix factorization,” in
CIKM. New York, NY, USA: ACM, 2008, pp. 931–940.

[3] Y. Koren, “Factorization meets the neighborhood: a multi-
faceted collaborative filtering model,” in SIGKDD, 2008, pp.
426–434.

[4] ——, “Collaborative filtering with temporal dynamics,” in
SIGKDD, New York, NY, 2009, pp. 447–456.

[5] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization tech-
niques for recommender systems,” IEEE Computer, vol. 42,
no. 8, pp. 30–37, 2009.

[6] L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G.
Carbonell, “Temporal collaborative filtering with Bayesian
probabilistic tensor factorization,” in SDM, Columbus, OH,
2010, pp. 211–222.

[7] R. Salakhutdinov and A. Mnih, “Probabilistic matrix factor-
ization,” in NIPS. Cambridge, MA: MIT Press, 2008, pp.
1257–1264.

[8] ——, “Bayesian probabilistic matrix factorization using
Markov chain Monte Carlo,” in ICML, Helsinki, Finland,
2008, pp. 880–887.

[9] W. Xu, X. Liu, and Y. Gong, “Document clustering based on
non-negative matrix factorization,” in SIGIR, ser. SIGIR ’03.
New York, NY, USA: ACM, 2003, pp. 267–273.

[10] C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang,
“Distributed nonnegative matrix factorization for web-scale
dyadic data analysis on mapreduce,” in WWW. New York,
NY, USA: ACM, 2010, pp. 681–690.

[11] D. D. Lee and H. S. Seung, “Learning the parts of objects
by non-negative matrix factorization,” Nature, vol. 401, no.
6755, pp. 788–791, 1999.

[12] ——, “Algorithms for nonnegative matrix factorization,” in
Proceedings of the Advances in Neural Information Process-
ing Systems, vol. 13. MIT Press, 2001, pp. 556–562.

[13] B. Cao, D. Shen, J.-T. Sun, X.-H. Wang, Q. Yang, and
Z. Chen, “Detect and track latent factors with online nonneg-
ative matrix factorization,” in IJCAI, 2007, pp. 2689–2694.

[14] F. Wang, H.-H. Tong, and C.-Y. Lin, “Towards evolutionary
nonnegative matrix factorization,” in AAAI, 2011, pp. 501–
506.

[15] Z. Lu, D. Agarwal, and I. S. Dhillon, “A spatio-temporal
approach to collaborative filtering,” in Proceedings of the
ACM Conference on Recommender Systems, New York, NY,
2009, pp. 13–20.

[16] H. E. Rauch, C. T. Striebel, and F. Tung, “Maximum like-
lihood estimates of linear dynamic systems,” Journal of the
American Institute of Aeronautics and Astronautics, vol. 3,
no. 8, pp. 1445–1450, Aug. 1965.

[17] Z. Ghahramani and G. E. Hinton, “Parameter estimation for
linear dynamical systems,” University of Toronto technical
report CRGTR962, vol. 6, no. CRG-TR-96-2, pp. 1–6, 1996.

[18] R. E. Kalman, “A new approach to linear fitering and predic-
tion problems,” Transactions of the ASME–Journal of Basic
Engineering, vol. 82 (Series D), no. 1, pp. 35–45, 1960.

[19] H. Gao, J. Tang, X. Hu, and H. Liu, “Exploring temporal
effects for location recommendation on location-based social
networks,” in RecSys, 2013.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	12-2013

	Modeling Temporal Adoptions Using Dynamic Matrix Factorization
	Freddy Chong-Tat CHUA
	Richard Jayadi Oentaryo
	Ee Peng LIM
	Citation

	309.dvi

