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Abstract. We realize quantized anti de Sitter space black holes, building

Connes spectral triples, similar to those used for quantized spheres but based
on Universal Deformation Quantization Formulas (UDF) obtained from an os-

cillatory integral kernel on an appropriate symplectic symmetric space. More

precisely we first obtain a UDF for Lie subgroups acting on a symplectic sym-
metric space M in a locally simply transitive manner. Then, observing that

a curvature contraction canonically relates anti de Sitter geometry to the ge-
ometry of symplectic symmetric spaces, we use that UDF to define what we

call Dirac-isospectral noncommutative deformations of the spectral triples of

locally anti de Sitter black holes. The study is motivated by physical and
cosmological considerations.

1. Introduction

1.1. Physical and cosmological motivations. This paper, of independent
interest in itself, can also be seen as a small part in a number of long haul programs
developed by many in the past decades, with a variety of motivations. The refer-
ences that follow are minimal and chosen mostly so as to be a convenient starting
point for further reading, that includes the original articles quoted therein.

An obvious fact (almost a century old) is that anti de Sitter (AdS) space-
time can be obtained from usual Minkowski space-time, deforming it by allowing
a (small) non-zero negative curvature. The Poincaré group symmetry of special
relativity is then deformed (in the sense of [Ger64]) to the AdS group SO(2, 3). In
n + 1 space-time dimensions (n ≥ 2) the corresponding AdSn groups are SO(2, n).
Interestingly these are the conformal groups of flat (or AdS) n space-times. The
deformation philosophy [Fla82] makes it then natural, in the spirit of deformation
quantization [DS02], to deform these further [St05, St07], i.e. quantizing them,
which many are doing for Minkowski space-time.
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These deformations have important consequences. Introducing a small negative
curvature ρ permits to consider [AFFS] massless particles as composites of more
fundamental objects, the Dirac singletons, so called because they are associated
with unitary irreducible representations (UIR) of SO(2, 3), discovered by Dirac in
1963, so poor in states that the weight diagram fits on a single line. These have
been called Di and Rac and are in fact massless UIR of the Poincaré group in one
space dimension less, uniquely extendible to the corresponding conformal group
SO(2, 3) (AdS4/CFT3 symmetry, a manifestation of ’t Hooft’s holography). That
kinematical fact was made dynamical [FF88] in a manner consistent with quan-
tum electrodynamics (QED), the photons being considered as 2-Rac states and
the creation and annihilation operators of the naturally confined Rac having un-
usual commutation relations (a kind of “square root” of the canonical commutation
relations for the photon).

Later [FFS] this phenomenon has been linked with the (then very recently)
observed oscillations of neutrinos (see below, neutrino mixing). Shortly after-
wards, making use of flavor symmetry, Frønsdal was able to modify the electroweak
model [Frø00], obtaining initially massless leptons (see below) that are massified
by Yukawa interaction with Higgs particles. (In this model, 5 pairs of Higgs are
needed and it predicts the existence of new mesons, parallel to the W and Z of the
U(2)-invariant electroweak theory, associated with a U(2) flavor symmetry.)

Quantum groups can be viewed [BGGS] as an avatar of deformation quantiza-
tion when dealing with Hopf algebras. Of particular interest here are the quantized
AdS groups [FHT, Sta98], especially at even root of unity since they have some
finite dimensional UIR, a fact generally associated with compact groups and groups
of transformations of compact spaces. It is then tempting to consider quantized
AdS spaces at even root of unity q = eiθ as “small black holes” in an ambient
Minkowski space that can be obtained as a limit when ρq → −0. Note that, fol-
lowing e.g. ’t Hooft (see e.g. [Hoo06] but his approach started around 1980) that
some form of communication is possible with quantum black holes by interaction
at their surface.

At present, conventional wisdom has it that our universe is made up mostly of
“dark energy” (74% according to a recent Wilkinson Microwave Anisotropy Probe,
WMAP), then of “dark matter” (22% according to WMAP), and only 4% of “our”
ordinary matter, which we can more directly observe. Dark matter is “matter”,
not directly observed and of unknown composition, that does not emit nor reflect
enough electromagnetic radiation to be detected directly, but whose presence can
be inferred from gravitational effects on visible matter. According to the Standard
Model, dark matter accounts for the vast majority of mass in the observable uni-
verse. Dark energy is a hypothetical form of energy that permeates all of space. It
is currently the most popular method for explaining recent observations that the
universe appears to be expanding at an accelerating rate, as well as accounting for
a significant portion of the missing mass in the universe.

The Standard Model of particle physics is a model which incorporates three
of the four known fundamental interactions between the elementary particles that
make up all matter (the fourth one, weakest but long range, being gravity). It came
after the electroweak theory that incorporated QED (electromagnetic interactions)
associated with the photon and the so-called weak interactions, associated with the
leptons that now exist in three generations (flavors): electron, muon and tau, and
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their neutrinos. The Standard Model, of phenomenological origin, encompasses also
the so-called strong interactions, associated with (generally) heavier particles called
baryons (the proton and neutron, and many more), now commonly assumed to be
bound states of “confined” quarks with gluons, in three “colors”. It contains 19 free
parameters, plus 10 more in extensions needed to account for the recently observed
neutrino mixing phenomena, which require nonzero masses for the neutrinos that
are traditionally massless in the Standard Model.

Very recently Connes [CCM] developed an effective unified theory based on
noncommutative geometry (space-time being the product of a Riemannian compact
spin 4-manifold and a finite noncommutative geometry) for the Standard Model
with neutrino mixing, minimally coupled to gravity. It has 4 parameters less and
predicts for the yet elusive Higgs particle (responsible for giving mass to initially
massless leptons) a mass that is slightly different (it is at the upper end of the
expected mass range) from what is usually predicted. See also [Co06], and [Ba06]
in a Lorentzian framework.

Previously, in part aiming at a possible description of quantum gravity, but
mainly in order to study nontrivial examples of noncommutative manifolds, Fröhlich
(in a supersymmetric context), then Connes and coworkers had studied quantum
spheres in 3 and 4 dimensions [FGR, CL01, CDV]. The basic tool there is a
spectral triple introduced by Connes [Co94]. In the present paper we are devel-
oping a similar approach, but for hyperbolic spheres and using integral universal
deformation formulas in the deformation quantization approach.

The distant hope is that these quantized AdS spaces (at even root of unity)
can be shown to be a kind of “small” black holes at the edge of our Universe
in accelerated expansion, from which matter would emerge, possibly created as
(quantized) 2-singleton states emerging from them and massified by interaction with
ambient dark energy (or dark matter), in a process similar to those of the creation
of photons as 2-Rac states and of leptons from 2-singleton states, mentioned above.

As fringe benefits that might explain the acceleration of expansion of our Uni-
verse, and the problems of baryogenesis and leptogenesis (see e.g. [Cl06, SS07]).
Physicists love symmetries and even more to break them (at least at our level).
One of the riddles that physics has to face is that, while symmetry considerations
suggest that there should be as much matter as antimatter, one observes a huge
imbalance in our region of the Universe. In a seminal paper published in 1967
that went largely unnoticed for about 13 years but has now well over a thousand
citations (we won’t quote it here), Andrei Sakharov addressed that problem, now
called baryogenesis. If and when a mechanism along the lines hinted at above can
be developed for creating baryons and other particles, it could solve that riddle.

Roughly speaking the idea is that there is no reason, except theological, why
everything (whatever that means) would be created “in the beginning”, or as con-
ventional wisdom has it now, in a Big Bang. There could very well be “stem cells”
of the primordial singularity that would be spread out, like shrapnel, mostly at the
edge of the Universe. Our proposal is that these could be described mathematically
as quantized AdS black holes. We shall now concentrate our study on them.

1.2. Mathematical introduction. Roughly speaking, a universal deforma-
tion formula (briefly UDF) for a given symmetry G is a procedure that, for every,
say, topological algebra A admitting the symmetry G, produces a deformation Aθ

of A within the same category of topological algebras. Such a UDF is called formal
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when the category it applies to is that of formal power series in a formal parameter
with coefficients in associative algebras.

For instance, Drinfel’d twisting elements in elementary quantum group theory
constitute examples of formal UDF’s (see e.g. [CP95]). Other formal examples
in the Hopf algebraic context have been given by Giaquinto and Zhang [GZ98].
In [Zag94], Zagier produced a formal example from the theory of modular forms.
The latter has been used and generalized by Connes and Moscovici in their work
on codimension-one foliations [CM04].

In [Rie93], Rieffel proves that von Neumann’s oscillatory integral formula
[vN31] for the composition of symbols in Weyl’s operator calculus actually consti-
tutes an example of a non-formal UDF for the actions of Rd on associative Fréchet
algebras. The latter has been extensively used for constructing large classes of ex-
amples of noncommutative manifolds (in the framework of Connes’ spectral triples
[Co94]) via Dirac isospectral deformations1 of compact spin Riemannian mani-
folds [CL01] (see also [CDV]). Some Lorentzian examples have been investigated
in [BDSR] and [PS06]. Other very interesting related approaches can be found in
[HNW, Ga05] and references quoted therein.

Oscillatory integral UDF’s for proper actions of non-Abelian Lie groups have
been given in [Bie02, BiMs, BiMa, BBM]. Several of them were obtained
through geometrical considerations on solvable symplectic symmetric spaces. Nev-
ertheless, the geometry underlying the one in [BiMs] remained unclear.

In the present work we build on these works in the AdS context, with when
needed reminders of their main features so as to remain largely self-contained.
First we show that the latter geometry is that of a solvable symplectic symmetric
space which can be viewed as a curvature deformation of the rank one non-compact
Hermitian symmetric space. [It can also be viewed as a curvature deformation of
the AdS space-time, as we shall see in the last section of the article.]

Next, we develop some generalities on UDF’s for groups which act strictly
transitively on a symplectic symmetric space. We give some precise criteria. We
end the section by providing new examples with exact symplectic forms such as
UDF’s for solvable one-dimensional extensions of Heisenberg groups, as well as
examples with non-exact symplectic forms.

In the last section we apply these developments to noncommutative Lorentzian
geometry. In anti de Sitter space AdSn≥3, every open orbit Mo of the Iwasawa
component AN of SO(2, n) is canonically endowed with a causal black hole struc-
ture [CD07] (generalizing the BTZ-construction in dimension n = 3). We define
the analog of a Dirac-isospectral noncommutative deformation for a triple built on
Mo. The deformation is maximal in the sense that its underlying Poisson structure
is symplectic on the open AN -orbit Mo. In particular, it does not come from an
application of Rieffel’s deformation machinery for isometric actions of Abelian Lie
groups. Moreover, via the group action, the black hole structure is encoded in the
deformed spectral triple, with no other additional geometrical data, in contradis-
tinction with the commutative level2.

1A deformation triple (Aθ,Hθ, Dθ) is said isospectral when Hθ and Dθ are the same for
all values of θ.

2An interesting challenge would be to analyze which operator algebraic notions attached to

the triple are responsible for the singular causality. That is not investigated in the present article.
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2. Curvature deformations of rank one Hermitian symmetric spaces
and their associated UDF’s

2.1. Preliminary set up and reminder. In [BiMs], a formal UDF for the
actions of the Iwasawa component R0 := AN of SU(1, n) is given in oscillatory
integral form. It has been observed in [BBM] that this type of UDF is actually
non-formal for proper actions on topological spaces. The precise framework and
statement are as follows. The groupR0 is a one dimensional extension of the Heisen-
berg group N 0 := Hn. Through the natural identification R0 = SU(1, n)/U(n)
induced by the Iwasawa decomposition of SU(1, n), the group R0 is endowed with
a (family of) left-invariant symplectic structure(s) ω. Denoting by r0 := a0× n0 its
Lie algebra, the map

(2.1) r0 −→ R0 : (a, n) 7→ exp(a) exp(n)

turns out to be a global Darboux chart on (R0, ω). Setting n0 = V × R.Z with
table [(x, z) , (x′, z′)] = ΩV (x, x′) Z, and r0 = {(a, x, z) | , a, z ∈ R;x ∈ V }, one has

Theorem 2.1. For all non-zero θ ∈ R, there exists a Fréchet function space
Eθ, C∞c (R0) ⊂ Eθ ⊂ C∞(R0), such that, defining for all u, v ∈ C∞c (R0)

(u ?θ v)(a0, x0, z0)

:=
1

θdimR0

∫
R0×R0

cosh(2(a1 − a2)) [cosh(a2 − a0) cosh(a0 − a1) ]dimR0−2

× exp
(2i

θ

{
SV

(
cosh(a1 − a2)x0, cosh(a2 − a0)x1, cosh(a0 − a1)x2

)
− +�

0,1,2
sinh(2(a0 − a1))z2

})
× u(a1, x1, z1) v(a2, x2, z2) da1da2dx1dx2dz1dz2 ;

(2.2)

where SV (x0, x1, x2) := ΩV (x0, x1) + ΩV (x1, x2) + ΩV (x2, x0) is the phase for the
Weyl product on C∞c (V ) and +�

0,1,2
stands for cyclic summation3, one has:

(i) u ?θ v is smooth and the map C∞c (R0) × C∞c (R0) → C∞(R0) extends
to an associative product on Eθ. The pair (Eθ, ?θ) is a (pre-C?) Fréchet
algebra.

(ii) In coordinates (a, x, z) the group multiplication law reads

L(a,x,z)(a′, x′, z′) =
(

a + a′, e−a′x + x′, e−2a′z + z′ +
1
2
ΩV (x, x′)e−a′

)
.

The phase and amplitude occurring in formula (2.2) are both invariant
under the left action L : R0 ×R0 → R0.

(iii) Formula (2.2) admits a formal asymptotic expansion of the form:

u ?θ v ∼ uv +
θ

2i
{u, v} + O(θ2) ;

where { , } denotes the symplectic Poisson bracket on C∞(R0) associ-
ated with ω. The full series yields an associative formal star product on
(R0, ω) denoted by ?̃θ.

3In [BiMs], the exponent dimR0− 2 was forgotten in the expression of the amplitude of the

oscillating kernel.
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The setting and (i-ii) may be found in [BiMs], while (iii) is a straightforward
adaptation to R0 of [BBM].

2.2. Geometry underlying the product formula. We start with prelimi-
nary material concerning the symmetric spaces.

2.2.1. Symmetric spaces. A symplectic symmetric space [Bie95, BCG] is a
triple (M, ω, s) where M is a connected smooth manifold, ω is a non-degenerate
two-form on M and s : M×M→M : (x, y) 7→ sx(y) is a smooth map such that
∀x ∈M the map sx : M→M is an involutive diffeomorphism of M preserving ω
and admitting x as an isolated fixed point. Moreover, one requires that the identity
sx ◦ sy ◦ sx = ssx(y) holds for all x, y ∈M [Loo69]. In this situation, if x ∈M and
X, Y and Z are smooth tangent vector fields on M,

(2.3) ωx(∇XY, Z) :=
1
2

Xx.ω(Y + sx?
Y , Z)

defines an affine connection ∇ on M, the unique affine connection on M which is
invariant under the symmetries {sx}x∈M. It is moreover torsion-free and such that
∇ω = 0. In particular, the two-form ω is necessarily symplectic.

It then follows that the group G = G(M, s) generated by the compositions
{sx ◦ sy}x,y∈M is a Lie group of transformations acting transitively on M. The
group G is called the transvection group of M. Given a base point o in M,
the conjugation by the symmetry so defines an involutive automorphism σ̃ of G.
Its differential at the unit element σ := σ̃?e

induces a decomposition into ±1-
eigenspaces of the Lie algebra g of G: g = k ⊕ p. The subspace k of fixed vectors
turns out to be a Lie subalgebra which acts faithfully on the subspace p of “anti-
fixed” vectors (σx = −x for x ∈ p). Moreover [p, p] = k. A pair (g, σ) as above
is called a transvection pair. The subalgebra k corresponds to the Lie algebra of
the stabilizer of o in G, while the vector space p is naturally identified with the
tangent space To(M) to M at point o. In particular the symplectic form at o, ωo,
induces a k-invariant symplectic bilinear form on p. Extending the latter by 0 on
k yields a Chevalley 2-cocycle Ω on g with respect to the trivial representation of
g on R. A triple (g, σ, Ω) as above is called a symplectic transvection triple. It it
said to be exact when there exists an element ξ in g? such that δξ = Ω, where δ
denotes the Chevalley coboundary operator. Up to coverings, the correspondence
which associates a symplectic transvection triple to a symplectic symmetric space is
bijective. More precisely there is an equivalence of categories between the category
of connected simply connected symplectic symmetric spaces and that of symplectic
transvection triples – the notion of morphism being the natural one in both cases.
In the above setting, exactness corresponds to the fact that the transvection group
acts on (M, ω) in a strongly Hamiltonian manner.

The above considerations can be adapted in a natural manner to the Riemann-
ian or pseudo-Riemannian setting4, essentially by replacing mutatis-mutandis the
symplectic structure by a metric tensor. The canonical connection (cf. Formula
(2.3) above) corresponds in this case to the Levi-Civita connection.

2.2.2. Symmetric spaces of group type. We observe that in coordinates (a, x, z)
the map φ : R0 → R0 : (a, x, z) 7→ (−a,−x,−z) preserves the symplectic form
ω (because the coordinates are Darboux coordinates), is involutive and admits
the unit element e = (0, 0, 0) as an isolated fixed point. It may be therefore called

4See [CP80] for an excellent reference.
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“centered symmetry” of the associative kernel (2.2). Since the kernel is left-invariant
as well, such a centered symmetry sg : R0 → R0 : g′ 7→ sg(g′) := Lg ◦φ ◦Lg−1 (g′)
is attached to every point g in R0. It turns out that endowed with the above family
of symmetries, the manifold R0 becomes a symplectic symmetric space. More
precisely:

Proposition 2.2. Let s : R0×R0 → R0 be the map (g, g′) 7→ sg(g′). Then the
triple (R0, ω, s) is a symplectic symmetric space whose transvection group is solv-
able. The underlying affine connection is the unique affine symplectic connection
which is invariant under the group of symmetries of the oscillatory kernel (2.2).

Proof. In coordinates (a, x, z), the symmetry map is expressed as

s(a,x,z)(a′, x′, z′) = (2a− a′, 2 cosh(a− a′)x− x′,

2 cosh(2(a− a′))z + ΩV (x, x′) sinh(a− a′)− z′).
(2.4)

One then verifies that it satisfies the defining identity: sg ◦ sg′ ◦ sg = ssg(g′).
Concerning the solvability of the transvection group, four-dimensional symplec-
tic transvection triples have been classified in [Bie95, Bie98]. The one we are
concerned with here is given by Table (1) (ε = 1) in Proposition 2.3 of [Bie98];
denoting here k = Span{u1, u2, u3} and p = Span{e1, e2, f1, f2}, it writes:

[u2, u3] = u1; [u2, e2] = e1; [u2, f1] = −f2; [u3, f2] = e1; [u1, f1] = 2e1;

[e1, f1] = 2u1; [e2, f1] = u3; [e2, f2] = u1; [f1, f2] = u2.

In these notations the Lie algebra r0 = a0⊕V ⊕RZ ofR0 (with Darboux chart (2.1))
is generated by a0 = R.(−f1), V = Span{u2 − f2, u3 + e2}, Z = 2(u1 + e1). We
now verify (by a short computation) that for all a, z ∈ R and x ∈ V , one has

σ̃(exp(−af1) exp(x + 2z(u1 + e1))K = (exp(af1) exp(−x− 2z(u1 + e1))K,

where K denotes the analytic subgroup associated with k. Thus σ̃ gives se = φ on
R0. The triple considered here is therefore precisely the triple that induces on R0

the present symmetric space structure, hence the transvection group is solvable.
The higher dimensional case is similar to the 4-dimensional one.

Note that the above symmetric space structure on R0 is canonically associated
with the data of the oscillatory kernel (2.2). Indeed, coming from the stationary
phase expansion of an oscillatory integral, the formal star product ?̃θ mentioned in
item (iii) of Theorem 2.1 is natural in the sense that for all positive integer r the
r-th cochain of the star product is a bidifferential operator of order r. To every such
natural star product is uniquely attached a symplectic connection [Lic82, GR03].
In our case the latter, being invariant under the symmetries, must coincide with
the canonical connection associated with the symmetries {sg}g∈R0 . �

The above considerations lead to the following definitions.

Definition 2.3. Let R be a Lie group. A symmetric structure on R is a
diffeomorphism φ : R → R such that φ2 = idR; φ(e) = e; φ?e

= −idTe(R); and
setting, for all g ∈ R, sg := Lg◦φ◦Lg−1 then, for all g′, we define sg◦sg′◦sg = ssg(g′).

Or equivalently:

Definition 2.4. A (symplectic) symmetric space, or more generally a homo-
geneous space, M of dimension m is locally of group type if there exists a
m-dimensional (symplectic) Lie subgroup R of its automorphism group which acts
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freely on one of its orbits in M. One says that it is globally of group type if it is
locally and if R has only one orbit5.

Lie groups are themselves examples of symmetric spaces (globally) of group
type. In the symplectic situation, however, a symplectic symmetric Lie group must
be Abelian [Bie95]. We will see in what follows other non-Abelian examples.

2.2.3. Strategy. Our strategy for constructing UDF’s for certain Lie groups
may now be easily described: starting with a symplectic symmetric space of group
type admitting an invariant deformation quantization — obtained by geometric
considerations at the level of the symmetric space structure — one deduces a UDF
for every Lie subgroup R as above by either identifying M to R, or, in the formal
case, by restricting the deformation quantization to an open R-orbit. This type of
strategy, in contexts other than symmetric spaces, has already been proposed within
a formal framework, see for example [Xu93, CP95, Huy82, CM04, GZ98].

3. Construction of UDF’s for symmetric spaces of group type

The first example presented in the preceding section as well as the elementary
solvable exact triples (briefly “ESET”) of [Bie02] are special cases of the following
situation.

3.1. Weakly nilpotent solvable symmetric spaces. In this section (g, σ)
denotes a complex solvable involutive Lie algebra (in short, iLa) such that if g = k⊕p
is the decomposition into eigenspaces of σ, the action of k on p is nilpotent6. We
denote by prp : g → p the projection onto p parallel to k.

Definition 3.1. A good Abelian subalgebra (in short, gAs) of g is an
Abelian subalgebra a of g, contained in p, supplementary to a σ-stable ideal b in g
and such that the homomorphism ρ : a → Der(b) associated with the split extension
0 → b → g → a → 0 is injective.

Lemma 3.2. If (g, σ) is not flat (i.e. [p, p] acts nontrivially on p) then a gAs
always exists.

Proof. Since k is nilpotent, [k, p] 6= p. Moreover by non-flatness there exists
X ∈ p\[k, p] not central in g. Hence for every choice of a subspace V supplementary
to a := RX in p and containing [k, p], one has that b := k ⊕ V is an ideal of g
supplementary to a and on which X acts nontrivially. �

Note that the centralizer zb(a) of a in b is stable by the involution σ; indeed,
for all a ∈ a and X ∈ zb(a), one has [a, σX] = −σ[a,X] = 0. Moreover, the map
ρ : a → End(b) being injective, we may identify a with its image: a = ρ(a). Let
Σ : End(b) → End(b) be the conjugation with respect to the involution σ|b ∈ GL(b),
i.e. Σ = Ad(σ|b). The automorphism Σ is involutive and preserves the canonical
Levi decomposition End(b) = Z ⊕ sl(b), where Z denotes the center of End(b).
Writing the element a = ρ(a) ∈ a as a = aZ + a0 within this decomposition,
one has: Σ(a) = aZ + Σ(a0) = −a = −aZ − a0, because the endomorphisms a
and σ|b anticommute. Hence Σ(a0) = −2aZ − a0 and therefore aZ = 0. So, a

5In this case, for every choice of a base point o in M, the map R → M : g 7→ g.o is a
diffeomorphism.

6This condition is automatic for a transvection algebra, but not in general. Indeed, consider
the 2-dimensional non-Abelian (solvable) algebra g = Span{k, p} with table [k, p] = p.
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actually lies in the semisimple part sl(b). For any x ∈ sl(b), we denote by x =
xS + xN , xS , xN ∈ sl(b), its abstract Jordan-Chevalley decomposition. Observe
that, denoting by sl(b) = sl+ ⊕ sl− the decomposition in (±1)-Σ- eigenspaces, one
has that a ⊂ sl−. Also, the algebra aN := {aN}a∈a is an Abelian subalgebra in sl−
commuting with a. Setting aS := {aS}a∈a, we have

Definition 3.3. A gAs is called weakly nilpotent if zb(aS) ⊂ zb(aN ) and7

aN ⊂ Der(b).

Let bc =:
⊕

α∈Φ bα be the weight space decomposition with respect to the
action of aS . Note that for all α, one has aN .bα ⊂ bα. Moreover, for all Xα ∈ bα

and aS ∈ aS , one has

σ(aS .Xα) = α(aS)σ(Xα) = σaSσ−1σXα = Σ(aS).σ(Xα) = −aS .σ(Xα).

Therefore, −α ∈ Φ and σbα = b−α. Note in particular that σb0 = b0.

Definition 3.4. An involutive Lie algebra (g, σ) is called weakly nilpotent
if there exists a sequence of subalgebras {ai}0≤i≤r of g such that

(i) a0 is a weakly nilpotent gAs of g with associated supplementary ideal
b(0).

(ii) ai+1 is a weakly nilpotent gAs of zb(i)(ai) (0 ≤ i ≤ r − 1) where, for
i ≥ 1, b(i) denotes the σ-stable ideal of zb(i−1)(ai−1) associated with ai.

(iii) zb(r)(ar) is Abelian.

Proposition 3.5. Assume the iLa (g, σ) to be weakly nilpotent. Then there
exists a (complex) subalgebra s of g such that the restriction prp|s : s → p is a linear
isomorphism.

Proof. Let a be a weakly nilpotent gAs of g and set Vα := bα ⊕ b−α for
every α ∈ Φ. Note that V0 = b0 and that each subspace Vα is then σ-stable and
one sets Vα = kα ⊕ pα for the corresponding eigenspace decomposition. Choose a
partition8 of Φ\{0} as Φ\{0} =: Φ+ ∪Φ− with the properties that −Φ+ = Φ− and
that if α, β ∈ Φ+ with α + β ∈ Φ then α + β ∈ Φ+. One has b = ⊕α∈Φ+Vα ⊕ b0.
We set b+ := ⊕α∈Φ+bα and p+ := prp(b+). It turns out that the restriction map
prp|b+ : b+ → p+ is a linear isomorphism. Indeed for X ∈ bk := b ∩ k and a ∈ aS

one has σ(a.X) = σaσσX = Σ(a).X = −a.X; hence aS .bk ⊂ p. Therefore, for
all X ∈ bα ∩ k α 6= 0, one can find a ∈ aS such that a.X = X ∈ p ∩ k; thus
bα ∩ k = 0 as soon as α 6= 0, yielding ker(prp|b+) = 0. The last condition of
Definition 3.3 implies that aS acts by derivations on b, hence the usual argument
yields that b+ is a subalgebra normalized by a ⊕ b0. Moreover the first condition

7The last condition is automatic when b is Abelian. Observe also that it is satisfied when
ρ(a) is contained in a Levi factor of the derivation algebra Der(b).

8Such a partition can be defined as follows. Let h be a Cartan subalgebra of sl(b) containing
aS and let Λ ∈ h? denote the set of weights of the representation of sl(b) on b. Note that

the restriction map λ 7→ λ|aS from Λ to a?
S is surjective onto Φ. Let h = hR ⊕ ihR be a real

decomposition such that the restriction of the Killing form to hR is positive definite. Every weight
in Λ is then real valued when restricted to hR [Kna01]. Now, any choice of a basis of hR defines a
partial ordering on Λ with the desired properties. To pass to the set of weights Φ, consider the hR-

components, aR
S , of aS viewed as a vector subspace of h. The restriction map ρ : Φ → Φ|aR

S
is then a

bijection. Indeed, for λ ∈ ker(ρ), one has, by C-linearity, λ(a+ia′) = λ(a)+iλ(a′) = 0 ∀a, a′ ∈ aR
S .

Hence λ = 0 as an element of Φ. Therefore, an order on Λ induces on Φ an order having the same
properties.
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of the same definition implies [a, b0] = 0. The proposition follows by induction.
One starts applying the above considerations to a = a0 and b = b(0). This yields
a subalgebra s0 supplementary to zb(0)(a0) and normalized by it. One then sets
g1 := zb(0)(a0), considers a weakly nilpotent a1 in g1 and gets a subalgebra s1

that is now supplementary to and normalized by zb(1)(a1). Applying this procedure
inductively, one gets a sequence a subalgebras s0, ..., sr−1, sr := zbr

(ar) ∩ p such
that si+1 normalizes si and si ∩ sj = 0, and defines s := ⊕isi. �

Remark 3.6. In the exact symplectic case, one has p0 ⊥ a since ξ[a, b0] = 0.

3.2. Darboux charts and kernels: an extension lemma. Let (si,Ωi) with
i = 1, 2 be symplectic Lie algebras, and denote by (Si, ωi) the corresponding simply
connected symplectic Lie groups (ωi being left-invariant). Given a homomorphism
ρ : s1 → Der(s2)∩ sp(Ω2), form the corresponding semi-direct product s := s1×ρ s2

and consider the associated simply connected Lie group S endowed with the left-
invariant symplectic structure ω defined by ωe := Ω1 ⊕ Ω2 (e denotes the unit
element in S).

Lemma 3.7. If φi : (si,Ωi) → (Si, ωi) (i = 1, 2) are Darboux charts, the map
φ : (s,Ω := Ω1 ⊕ Ω2) −→ (S, ω) : (X1, X2) 7→ φ2(X2).φ1(X1) is Darboux.

Proof. For X ∈ s1 and Y ∈ s2 one has:

Lφ−1
?φ

φ?(X) = Lφ−1
?φ

(
Rφ1?φ2

(φ2?
X)

)
= Lφ−1

1 ?
Lφ−1

2 ?
Rφ1?

φ2?X

= Adφ−1
1

(
Lφ−1

2 ?φ2

φ2?X

)
while for Y ∈ s1 one has

Lφ−1
?φ

φ?(Y ) = Lφ−1
1 ?

Lφ−1
2 ?

Lφ2?φ1?Y = Lφ−1
1 ?

φ1?Y.

Hence
ωφ(X, Y ) = Ω

(
Adφ−1

1

(
Lφ−1

2 ?φ2

φ2?X
)
, Lφ−1

1 ?
φ1?Y

)
= 0,

because the first (resp. the second) argument belongs to s2 (resp. to s1), and for
X, X ′ ∈ s2,

ωφ(X, X ′) = Ω
(
Adφ−1

1

(
Lφ−1

2 ?φ2

φ2?X
)
, Adφ−1

1

(
Lφ−1

2 ?φ2

φ2?X
′))

= Adφ−1
1

?
Ω2

(
Lφ−1

2 ?φ2

φ2?X , Lφ−1
2 ?φ2

φ2?X
′
)

= Ω2

(
Lφ−1

2 ?φ2

φ2?X , Lφ−1
2 ?φ2

φ2?X
′
)

= ω2?φ2
(X, X ′) = Ω2(X, X ′).

A similar (and simpler) computation applies for two elements of s1. �

A direct computation shows

Lemma 3.8. Let Ki ∈ Fun((Si)3) be a left-invariant three point kernel on Si

(i = 1, 2). Assume K2 ⊗ 1 ∈ Fun((S)3) is invariant under conjugation by elements
of S1. Then K := K1 ⊗K2 ∈ Fun((S)3) is left-invariant (under S).

In particular, given associative kernels satisfying the above hypotheses, their
tensor product defines an associative invariant kernel on the semidirect product S.
We will call it extension product of K2 by K1.
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3.3. Examples.
3.3.1. One dimensional split extensions of Heisenberg algebras. The strategy is

as follows. First we observe that (the connected simply connected group associated
to) every such extension acts simply transitively on the symmetric space R0, and
is therefore diffeomorphic to it. Then, we remark that this diffeomorphism can be
chosen to be symplectic. The latter is almost a homomorphism, up to an action of a
subgroup of the automorphism group of the kernel onR0 (this is done by embedding
the extension in a subgroup of the automorphism group of the kernel containing
R0). Finally we check that the pullback of that kernel by the diffeomorphism gives
an invariant kernel on the extension.

So let us start with a Heisenberg Lie algebra hn = V ⊕RZ, where (V,ΩV ) is a
2n-dimensional symplectic vector space, Z is central, and [v, v′] = ΩV (v, v′)Z. One
easily sees that a split extension (with i ◦ p = Id) rn of hn by a = RA:

0 → hn→ rn

p

�
i

a → 0,

must be such that, for all v ∈ V and z ∈ R, [A, v + zZ] = X.v +µ(v)Z +2dzZ with
X ∈ End(V ), µ ∈ V ∗ and d ∈ R such that X − dId ∈ sp(V,ΩV ). As symplectic
form on the associated group, we choose the left-invariant 2-form whose value at
the identity is the Chevalley 2-coboundary Ω = −δZ∗ = Z∗[·, ·], which is a natural
generalization of that on R0 in [BiMs]. This 2-coboundary is nondegenerate if and
only if d 6= 0, which we will assume from now on9, and consider extensions with
parameters dX, dµ and 2d, which we will denote by (dX, dµ, 2d).

We have the following symplectic Lie algebra isomorphisms:
(i) (dX, dµ, 2d) ∼= (X, µ, 2) for all d ∈ R0, through the map L(a, v, z) =

(da, v, z).
(ii) (X, µ, d) ∼= (X, 0, 2) for all µ ∈ V ∗, through the map L(a, v, z) = (a, v +

au, z) with iuΩV = µ.
(iii) (X, 0, 2) ∼= (X ′, 0, 2) through the map L(a, v, z) = (a,M.v, z), if and only

if M ∈ Sp(V,ΩV ) is such that MXM−1 = X ′, i.e. if X − Id and X ′− Id
belong to the same adjoint orbit of Sp(V,ΩV ).

Thus we concentrate on algebras of type (X, 0, 2) from which we can recover the
quantization of the others.

Now let r0 = (I, 0, 2), r′ = (X, 0, 2), and R0, R′ the associated groups. Ele-
ments of these algebras will be denoted respectively by aA+v+zZ and aA′+v+zZ.
The difference between the actions of A′ and A on V is X̄ := X − Id which lies
in sp(V,ΩV ). Extending the action X̄ on r0 by [X̄, aA + v + zZ] := X̄.v, we can
therefore view r0 and r′ as subalgebras of the semidirect product g = r0 × s of
r0 by s = span(X̄) ⊂ sp(V,ΩV ). At the level of the groups (S corresponding to
s), on the one hand we can identify R0 with G/S as manifolds, and on the other
hand as a subgroup of G, R′ acts on the quotient. That action is simply transi-
tive. Indeed, on R0 and R′, we have global coordinate maps I(aA + v + zZ) =
exp(aA) exp(v + zZ) and I ′(aA′ + v + zZ) = exp(aA′) exp(v + zZ) such that
I ′(aA′ + v + zZ) = exp(aX̄).I(aA + v + zZ), giving a decomposition g = sr ∈ R′
with s ∈ S and r ∈ R0. Thus, acting on eS ∈ G/S, such an element g gives

9Quantizing extensions with d = 0 requires a non exact 2-form. Since our method needs an

exact one, we shall have to apply it on central extensions of our algebras. An example of that
procedure is given in the next section.
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g · eS = Cs(r)S = I(aA + eaX̄v + zZ)S, where Cs denotes the action by con-
jugation, Cs(g) = sgs−1. The map φ : aA′ + v + zZ 7→ aA + eaX̄v + zZ is a
diffeomorphism from r′ to r0, and the corresponding map Φ = I ◦ φ ◦ I ′

−1, or
sr 7→ Cs(r), is a diffeomorphism from R′ to R0. We now observe

Proposition 3.9. (i) For g = sr ∈ R′, we have Φ◦Lg = LΦ(g) ◦Cs ◦Φ.
(ii) The kernel K on R0 is invariant under the conjugations by S.
(iii) Denoting by ω and ω′ the left-invariant 2-forms with value −δZ∗ at the

identity on R0 and R′ respectively, we have Φ∗ω = ω′.

Proof. (i) For all g = sr, g′ = s′r′ ∈ R′, we have

Φ ◦ Lg(g′) = Φ(ss′Cs′−1(r)r′) = Css′(Cs′−1(r)r′) = LΦ(g) ◦ Cs ◦ Φ(g′).

(ii) Recall that for s = ea′X̄ , Cs(I(aA + v + zZ)) = I(aA + ea′X̄v + zZ)
and that X̄ ∈ Sp(V,ΩV ). Therefore in the kernel (2.2) the amplitude is
independent of v, and in its phase, the function SV is invariant under the
symplectomorphisms of V . The kernel as a whole is thus also invariant
under Sp(V,ΩV ).

(iii) By left-invariance, the condition is ωe ◦
(
LΦ(g)−1 ◦ Φ ◦ Lg

)
∗e

= ω′e. Using
the first property of Φ above and the invariance of ωe under Sp(V,ΩV ),
we get ωe ◦

(
LΦ(g)−1 ◦ Φ ◦ Lg

)
∗e

= ωe ◦ (Cs ◦ Φ)∗e = ωe ◦ φ∗0, which is
readily seen to be equal to ω′e.

�

Defining a kernel K ′ : R′ ×R′ ×R′ → C on R′ by K ′ = Φ∗K, we now have

Proposition 3.10. The kernel K ′ is
(i) invariant under the diagonal left action of R′,
(ii) associative.

Together with the functional space Φ∗Eθ, it thus defines a WKB quantization of R′.

A quantization of these groups can be obtained by the same method as in
[BiMs]. So let us first quickly review that method. On a connected simply con-
nected symplectic solvable Lie group (R, ω), with ω a left-invariant exact symplectic
form (so that the action by left translations is strongly Hamiltonian), one chooses a
global Darboux chart I : r → R for which the Moyal star product is covariant, i.e.
if for X ∈ ∇, λX ∈ C∞(r) denotes the (dual) moment map in these coordinates,
and ?M

θ the Moyal product on r, one has [λX , λY ]∗M
θ

= 2θ{λX , λY }. Such charts
always exist on these groups (see [Puk90], [AC90]).

Covariance of the Moyal product implies that ρθ : r → End(C∞(r)[[θ]]) : X 7→
[λX , ·]∗M

θ
is a representation of r by derivations of the algebra (C∞(r)[[θ]], ?M

θ ). In
order to find an invariant product on r, one then tries to find an invertible operator
Tθ which intertwines this action and that by fundamental vector fields, i.e. such
that T−1

θ ◦ρθ(X)◦Tθ = X∗. Those found up to now were all integral operators of the
type F−1 ◦φ∗θ ◦F , where F is a partial Fourier transform and φθ a diffeomorphism
(see the proof of Theorem 4.6 for the precise form of the one in [BiMs]). An
invariant product ?θ on r is then defined by u ?θ v = T−1

θ (Tθu ?W
θ Tθv), where ?W

θ

is the Weyl product on r. Modulo some work on the function spaces, this gives
a WKB invariant quantization of R. In our case, choosing as Darboux chart the
map I(aA+v+zZ) = exp(aA) exp(e−aX̄v+zZ), one checks that the same integral
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operator Tθ as in [BiMs] works here, giving thus rise to the same kernel (2.2). This
reflects again the fact that our groups are all subgroups of the automorphism group
of a symplectic symmetric space on which they act simply transitively.

3.3.2. Non exact example. As mentioned before, all the examples of symplectic
symmetric Lie groups shown up to now were endowed with an exact symplectic
form, as our method requires exactness in order for the left translations to be
strongly Hamiltonian. We present here an example with a non exact symplectic
form showing that, as expected, considering a central extension allows to apply the
same method.

Let r = span 〈A, V1, V2,W1,W2, Z〉 be the Lie algebra defined by [A, Vi] = Vi,
[A,Wi] = −Wi, [A,Z] = 2Z, [V1, V2] = Z, and choose the non exact10 Chevalley 2-
cocycle Ω: Ω(A,Z) = 1, Ω(Vi,Wi) = 1, Ω(V1, V2) = 1/2. We define g as the central
extension of r by the element E with commutators [X, Y ]g = [X, Y ]r + Ω(X, Y ).E
for all X, Y ∈ g, where we extended [·, ·]r and Ω by zero on E. Then Ω = −δE∗ is
a 2-coboundary.

Now the connected simply connected Lie group R whose Lie algebra is r can
be realized as the coadjoint orbit O of E∗ in g∗, and a global Darboux chart J from
R6 to O is given by:

J(q1, p1, q2, p2, q3, p3) = exp(q3H) exp((p3 + q1p1 + q2p2 − p1p2/2)Z)
exp((q2 + p1/4)W1) exp(p2V1)
exp((q1− p2/4)W2) exp(p1V2) · E∗.

In this chart, the (dual) moment maps are linear in the pi, so that the Moyal
product is covariant. From now on, the method outlined above can be carried on
the same way as in [BiMs], with the same integral operator Tθ as before.

3.3.3. The Iwasawa factor of sp(2, R) ' so(2, 3). The Lie algebra g0 := sp(n, R)
of the group G0 := Sp(n, R) is defined as the set of 2n × 2n real matrices X such

that τXF + FX = 0 where F :=
(

0 In

−In 0

)
. One has

(3.1) g0 = {
(

A S1

S2 −τA

)
where A ∈ Mat(n× n, R) and Si = τSi ; i = 1, 2}.

In particular, F ∈ G0 and a Cartan involution of g0 is given by θ := Ad(F ). The
corresponding Cartan decomposition g0 = k0 ⊕ p0 is then given by

(3.2) k0 ' u(n) and p0 = {
(

S S′

S′ −S

)
},

where the matrices S and S′ are symmetric. For n = 2, a maximal Abelian subal-
gebra a in p0 is generated by H1 = E11 − E33 and H2 = E22 − E44 where as usual
Eij denotes the matrix whose component are zero except the element ij which is
one. The restricted roots Φ w.r.t a are then given by

(3.3) Φ = {α0, α1, α2 := α0 + α1, α3 := α0 + 2α1}

with α0 := 2H∗
2 , α1 := H∗

1 − H∗
2 , hence α2 := H∗

1 + H∗
2 and α3 := 2H∗

1 , where
H∗

i (Hj) := δij . The corresponding root spaces gαi (i = 0, ..., 3) are one-dimensional,
generated respectively by N0 = E24, N1 = E12 − E43, N2 = E14 + E23, N3 = E13.

10One can actually show that every symplectic 2-cocycle on r is non exact and that what
follows can be applied to any one of them.
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With this choice of generators, the minimal parabolic subalgebra s := a ⊕ n with
n :=

⊕3
i=0 gαi

has the following multiplication table:

[H1, N1] = N1, [H1, N2] = N2,(3.4a)

[H2, N1] = −N1, [H2, N2] = N2,(3.4b)

[H1, N3] = 2N3, [H2, N0] = 2N0,(3.4c)

[N0, N1] = −N2, [N1, N2] = 2N3;(3.4d)

the other brackets being zero. Setting

(3.5) s1 := Span{H2, N0} and s2 := Span{H1, N1, N2, N3},
one observes that s is a split extension of s2 by s1:

(3.6) 0 −→ s2 −→ s −→ s1 −→ 0.

Note that s1 is a minimal parabolic subalgebra of su(1, 1) while s2 is a minimal
parabolic subalgebra of su(1, n). In particular, the Lie algebra s is exact symplectic
w.r.t. the element ξ := ξ1 ⊕ ξ2 of s? with ξi ∈ s?

i (i = 1, 2) defined as ξ1 := N∗
0

and ξ2 := N∗
3 .

One therefore obtains a UDF for proper actions of AN by direct application
of the above extension lemma 3.8.

4. Isospectral deformations of anti de Sitter black holes

4.1. Anti de Sitter black holes. Anti de Sitter (AdS) black holes have
been introduced by Bañados, Teitelbaum, Zannelli and Henneaux [BTZ, BHTZ]
as connected locally AdS space-times M (possibly with boundary and corners)
admitting a singular causal structure in the following sense:

Condition BH. There exists a closed subset S in M called the singularity
such that the subset Mbh constituted by all the points x such that every light like
geodesic issued from x ends in S within a finite time is a proper open subset of
Mphys := M\S.

Originally such solutions were constructed in space-time dimension 3, but they
exist in arbitrary dimension n ≥ 3 (see [BDSR, CD07]). More precisely the
structure may be described as follows. Take G := SO(2, n−1) (the AdS group), fix
a Cartan involution θ and a θ-commuting involutive automorphism σ of G such that
the subgroup H of G of the elements fixed by σ is locally isomorphic to SO(1, n−1).
The quotient spaceM := G/H is an n-dimensional Lorentzian symmetric space, the
anti de Sitter space-time. It is a solution of the Einstein equations without source.
Let g denote the Lie algebra of G and denote by g = h ⊕ q the ±1-eigenspace
decomposition with respect to the differential at e of σ that we denote again by σ.
Denote by g = k ⊕ p the Cartan decomposition induced by θ, consider a σ-stable
maximally Abelian subalgebra a in p and choose accordingly a positive system of
roots. Denote by n the corresponding nilpotent subalgebra. Set n := θ(n), r := a⊕n

and r := a ⊕ n. Finally denote by R := AN and R := AN the corresponding
analytic subgroups of G. One then has

Proposition 4.1. [BDSR, CD07] The groups R and R admit open orbits
and finitely many closed orbits in the AdS space M. Prescribing as singular the
union of all closed orbits (of R and R) defines a structure of causal black hole
on an open subset Mphys in M (in the sense of the above condition (BH)). In
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particular, every open orbit Mo of R in M containing Mphys is itself endowed
with a black hole structure.

Recall that if J denotes an element of Z(K) whose associated conjugation coin-
cides with the Cartan involution θ then the R-orbit Mo in G/H of an element uH
with u2 = J is open and contains Mphys, see [CD07]. Remark that the extension
lemma 3.8 yields an oscillatory integral UDF for proper actions of R. But here
the situation is simplified by the following observation — for convenience of the
presentation we write it below for n = 4 but the results are valid for any n ≥ 3.

Proposition 4.2. The R-homogeneous space Mo admits a unique structure
of globally group type symplectic symmetric space. The latter is isomorphic to
(R0, ω, s) described in section 2.

For the proof, recall first (see [CD07]) that the solvable part of the Iwasawa
decomposition of so(2, 3) may be realized with as nilpotent part n = {W,V,M,L}
and Abelian a = {J1, J2} with the commutator table [V,W ] = M , [V,L] = 2W ,
[J1,W ] = W , [J2, V ] = V , [J1, L] = L, [J2, L] = −L, [J1,M ] = M , [J2,M ] = M .
Notice that W,J1 ∈ h, and J2 ∈ q. This decomposition is related to the one given
in (3.4) by

N0 = L N2 = 2W H1 = J1 + J2

N1 = V N3 = M H2 = J1 − J2.

We choose to study the orbit of the element ϑ = uH with

u =

 0 1
−1 0

I3×3

 .

We denote by Rθ its stabilizer group in R, by rθ the Lie algebra of Rθ; r′ is the
subalgebra of r generated by elements of r minus the generator of rθ and R′ is the
analytic subgroup of R whose algebra is r′.

Lemma 4.3. The action of R′ on U is simply transitive, i.e. R′uH = RuH.

Proof. The first step is to prove that Rθ is connected and U simply connected
in order to prevent any double covering problem. The stabilizer of uH is

(4.1) Rθ = {r ∈ R | r · uH = uH} = {r ∈ R | Cu−1(r) ∈ H}.
Since R is an exponential group, we have rθ = {X ∈ R | Ad(u−1)X ∈ h} with
Rθ = exp rθ. The set rθ being connected, Rθ is connected too. A long exact
sequence argument using the fibration Rθ → R→ U shows that H0(Rθ) ' H1(U),
which proves that U is simply connected.

As an algebra, r is a split extension r = rθ ⊕ad r′. Hence, as group, R = RθR′,
or equivalently R = R′Rθ. This proves that the action is transitive. The action is
even simply transitive because U is simply connected. �

Let us now find the algebra rθ. The Cartan involution X 7→ −Xt is imple-
mented as CJ with

J =
(
−I2×2

I3×3

)
.

Using the relations u2 = J and σ(u) = u−1, one sees that Cu−1(r) ∈ H if and only
if σ

(
Cu−1r

)
= Cu−1r. This condition is equivalent to θσ(r) = r. The involution σ
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splits a into two parts: a = a+ ⊕ a− with J1 ∈ a+ = a ∩ h and J2 ∈ a− ∩ q. Let
β1, β2 ∈ a∗ be the dual basis; we have W ∈ gβ1 , V ∈ gβ2 , L ∈ gβ1−β2 , M ∈ gβ1+β2 ,
and, in terms of positive roots, the space n is given by W ∈ gα+β , V ∈ gβ , L ∈ gα,
M ∈ gα+2β . We are now able to compute the vectors X ∈ r such that σθ(X) = X.
Let us take X ∈ r = a⊕ n and apply σθ:

X = XJ1 + XJ2 + Xα + Xβ + Xα+β + Xα+2β ,

σθX = −XJ1 + XJ2 + Z−(α+2β) + Zβ + Z−(α+β) + Z−α
(4.2)

where Xϕ and Zϕ denote elements of gϕ. It is directly apparent that X = J2

belongs to rθ. The only other component common to X and σθX is in gβ , but
it is a priori not clear that Xβ = Zβ . The dimension of U is 4 and that of R
is 6, hence Rθ is at least 2-dimensional; it is generated by J2 and gβ = RV , i.e.
rθ = Span{J2, V }. This proves that the orbit of uH is open.

The fact that R′ acts freely on U = R/Rθ proves that U is locally of group
type and since, by definition, U is only one orbit of R, the space U is globally of
group type. From now on, Mo = R/Rθ will be identified with U as homogeneous
space, so what we have to find is a group R̃ which

• acts transitively on U , i.e. R̃uH = RuH,
• admits a symplectic structure.

It is immediate to see that the algebra r′ fails to fulfil the symplectic condition.
The algebra r̃ = Span{A,B,C, D} of a group which fulfils the first condition must
at least act transitively on a small neighborhood of uH and thus be of the form

A = J1 + aJ2 + a′V(4.3a)

B = W + bJ2 + b′V(4.3b)

C = M + cJ2 + c′V(4.3c)

D = L + dJ2 + d′V.(4.3d)

The problem is now to fix the parameters a, a′, b, b′, c, c′, d, d′ in such a way that
Span{A,B,C, D} is a Lie algebra (i.e. it is closed under the Lie bracket) which
admits a symplectic structure and whose group acts transitively on U . We will
begin by proving that the surjectivity condition imposes b = c = d = 0. Then the
remaining conditions for r̃ to be an algebra are easy to solve by hand.

First, remark that A acts on the algebra Span{B,C,D} because J1 does not
appears in [r, r]. We can write r̃ = RA⊕ad Span{B,C,D} and therefore a general
element of the group R̃ reads r̃(α, β, γ, δ) = eαAeβB+γC+δD because a subalgebra
of a solvable exponential Lie algebra is solvable exponential. Our strategy will be to
split this expression in order to get a product SR′ (which is equivalent to a product
R′S). As Lie algebras, Span{B,C,D} ⊂ RJ2 ⊕ad {W,M,L, V }. Hence there exist
functions w, m, l, v and x of (α, β, γ, δ) such that

(4.4) eβB+γC+δD = exJ2ewW+mM+lL+vV .

We are now going to determine l(α, β, γ, δ) and study the conditions needed in
order for l to be surjective on R. Since J2 does not appear in any commutator,
the Campbell-Baker-Hausdorff formula yields x = βb+ γc+ δd. From the fact that
[J2, L] = −L, we see that the coefficient of L in the left hand side of (4.4) is −l(1−
e−x)/x. The V -component in the exponential can also get out without changing
the coefficient of L. We are left with r̃(α, β, γ, δ) = eαAexJ2eyV ew′W+m′M+lL where
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w′ and m′ are complicated functions of (β, γ, δ) and l is given by

(4.5) l(β, γ, δ) =
−δ(βb + γc + δd)
1− e−βb−γc−δd

,

which is not surjective except when b = c = d = 0. Taking the inverse a general
element of R̃uH reads

[
e−wW−mM−lMej1J1u

]
, where the range of l is not the whole

R. Since the action of R′ is simply transitive, R̃ is not surjective on RuH.
When b = c = d = 0, the conditions for (4.3) to be an algebra are easy to solve,

leaving only two a priori possible two-parameter families of algebras:
Algebra 1.

A = J1 +
1
2
J2 + sV [A,B] = B + sC

B = W [A,C] =
3
2
C

C = M [A,D] = 2sB +
1
2
D

D = L + rV [B,D] = −rC.

with r 6= 0. The general symplectic form on that algebra is given by

(4.7) ω1 =


0 −α −β −γ

α 0 0 2βr
3

β 0 0 0
γ − 2βr

3 0 0

 ,

Since detω =
(

2βr
3

)2

we must have β 6= 0, r 6= 0. That algebra will be denoted by
r1. The analytic subgroup of R whose Lie algebra is r1 is denoted by R1.

Algebra 2.

A = J1 + rJ2 + sV [A,B] = B + sC

B = W [A,C] = (r + 1)C

C = M [A,D] = 2sB + (1− r)D
D = L.

There is no way to get a non-degenerate symplectic form on that algebra.

Remark 4.4. One can eliminate the two parameters in algebra r1 by the iso-
morphism

(4.8) φ =


1 0 0 0
0 1 0 4s
0 2sr 1/r 4s2/r
0 0 0 1


which fixes s = 0 and r = 1 and transforms r1 into the algebra defined by [A′, B′] =
B′, [A′, C ′] = 3

2C ′, [A′, D′] = 1
2D′, [B′, D′] = −C ′.

It is now easy to prove that

Proposition 4.5. The group R1 of algebra r1 acts transitively on U , i.e.
RuH = R1uH.
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Proof. The algebra r1 can be written r1 = RA ⊕ad RD ⊕ad Span{B,C}, a
split extension, hence a general element reads r1(α, β, γ, δ) = eαAeδDeβW+γM . One
can use Campbell-Baker-Hausdorff formula to split it into a factor in Rθ and one
in R′ (where f and g are some auxiliary functions):

(4.9) r1(α, β, γ, δ) = eαsV + α
2 J2eδrV︸ ︷︷ ︸
∈Rθ

eαJ1e

(
f(δ)+β

)
W

(
g(δ)+γ

)
M︸ ︷︷ ︸

surjective on R′

�

The conclusion is that R1 is the group R̃ that we were searching for. To
summarize, the structure is as follows.

(i) The AdS space is decomposed into a family of cells: the orbits of a sym-
plectic solvable Lie group R̃ as in Proposition 4.2 above. Note that these
cells may be viewed as the symplectic leaves of the Poisson generalized
foliation associated with the left-invariant symplectic structure on R̃.

(ii) The open R̃-orbit Mo, endowed with a black hole structure, identifies
with the group manifold R̃.

4.2. Deformation triples for Mo.
4.2.1. Left-invariant Hilbert function algebras on R0. In this section, we present

a modified version of the oscillatory integral product (2.2) leading to a left-invariant
associative algebra structure on the space of square integrable functions on R0.

Theorem 4.6. Let u and v be smooth compactly supported functions on R0.
Define the following three-point functions:

S :=SV

(
cosh(a1 − a2)x0, cosh(a2 − a0)x1, cosh(a0 − a1)x2

)
− +�

0,1,2
sinh

(
2(a0 − a1)

)
z2 ;(4.10)

and

A :=
[
cosh

(
2(a1 − a2)

)
cosh(2(a2 − a0)) cosh(2(a0 − a1))[

cosh(a1 − a2) cosh(a2 − a0) cosh(a0 − a1)
]dimR0−2

] 1
2
.

Then the formula

(4.11) u ?
(2)
θ v :=

1
θdimR0

∫
R0×R0

A e
2i
θ Su⊗ v

extends to L2(R0) as a left-invariant associative Hilbert algebra structure. In par-
ticular, one has the strong closedness11 property:∫

u ?
(2)
θ v =

∫
uv .

Proof. The oscillatory integral product (2.2) may be obtained by intertwining
the Weyl product on the Schwartz space S (in the Darboux global coordinates (2.1))
by the following integral operator [BiMs]:

τ := F−1 ◦ (φ−1
θ )? ◦ F ,

11The notion of strongly closed star product was introduced in [CFS] in the formal context.
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F being the partial Fourier transform with respect to the central variable z:

F(u)(a, x, ξ) :=
∫

e−iξzu(a, x, z)dz ;

and φθ the one parameter family of diffeomorphism(s):

φθ(a, x, ξ) = (a,
1

cosh( θ
2ξ)

x,
1
θ

sinh(θξ)).

Set J := |(φ−1)?Jacφ|−
1
2 and observe that for all u ∈ C∞ ∩ L2, the function

J (φ−1)?u belongs to L2. Indeed, one has∫
|J (φ−1)?u|2 =

∫
|φ?J|2 |Jacφ| |u|2 =

∫
|u|2 .

Therefore, a standard density argument yields the following isometry:

Tθ : L2(R0) −→ L2(R0) : u 7→ F−1 ◦mJ ◦ (φ−1)? ◦ F(u) ,

where mJ denotes the multiplication by J. Observing that Tθ = F−1 ◦mJ ◦ F ◦ τ ,
one has ?

(2)
θ = F−1 ◦ mJ ◦ F(?θ). A straightforward computation (similar to the

one in [Bie02]) then yields the announced formula. �

Remark 4.7. Let us point out two facts with respect to the above formulas:

(i) Note the cyclic symmetry of the oscillating three-point kernel A e
2i
θ S .

(ii) The above oscillating integral formula gives rise to a strongly closed,
symmetry invariant, formal star product on the symplectic symmetric
space (R0, ω, s).

Proposition 4.8. The space L2(R0)∞ of smooth vectors in L2(R0) of the left
regular representation closes as a subalgebra of (L2(R0), ?

(2)
θ ).

Proof. First, observe that the space of smooth vectors may be described as
the intersection of the spaces {Vn} where Vn+1 := (Vn)1, with V0 := L2(R0) and
(Vn)1 is defined as the space of elements a of Vn such that, for all X ∈ r0, X.a
exists as an element of Vn (we endow it with the projective limit topology).

Let thus a, b ∈ V1. Then, (X.a) ? b + a ? (X.b) belongs to V0. Observing that
D ⊂ V1 and approximating a and b by sequences {an} and {bn} in D, one gets (by
continuity of ?): (X.a)?b+a?(X.b) = lim(X.an?bn+an?(X.bn)) = limX.(an?bn) =
X.(a ? b). Hence a ? b belongs to V1. One then proceeds by induction. �

4.2.2. Twisted L2-spinors and deformations of the Dirac operator. We now fol-
low in our four dimensional setting the deformation scheme presented in [BDSR]
in the three-dimensional BTZ context.

At the level of the (topologically trivial) open R-orbit, the spin structure over
Mo and the associated spinor C2-bundle – restriction of the spinor bundle on
AdSn – are trivial. The space of (smooth) spinor fields may then be viewed as
S := C∞(R0, C2), on which the (isometry) group R0 acts on via the left regular
representation. In this setting, the restriction to Mo of the Dirac operator D on
AdSn may be written as D =

∑
i γi (X̃i + Γi), where

• {Xi} denotes an orthonormal basis of r0 = Tϑ(Mo) (w.r.t. the adS-
metric at the base point ϑ of Mo);

• for X ∈ r0, X̃ denotes the associated left-invariant vector field on R0;
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• γi and Γi denote respectively the Dirac γ-endomorphism and the spin-
connection element associated with Xi.

In that expression the elements γi’s and Γi’s are constant. However, already at the
formal level, a left-invariant vector field X̃ as infinitesimal generator of the right
regular representation does not in general act on the deformed algebra. In order to
cure this problem, we twist the spinor module in the following way.

Definition 4.9. Let drg be a right-invariant Haar measure on R0 and consider
the associated space of square integrable functions L2

right(R0). Set

H := L2
right(R0)⊗ C2 ;

and denote by H∞ the space of smooth vectors in H of the natural right represen-
tation of R0 on H. Then intertwining ?

(2)
θ by the inverse mapping

ι : L2
right(R0) → L2(R0) : ι(u)(g) := u(g−1)

yields a right invariant noncommutative L2
right(R0)-bi-module structure (respec-

tively a (L2
right(R0))∞-bi-module structure) on H (resp. H∞). The latter will be

denoted Hθ (resp. H∞θ ).

We summarize the main results of this paper in the following:

Theorem 4.10. The Dirac operator D acts in H∞θ as a derivation of the non-
commutative bi-module structure. In particular, for all a ∈ (L2

right(R0))∞, the
commutator [D, a] extends to H as a bounded operator. In other words, the triple
(L2

right(R0))∞,H∞θ , D) induces on Mo a pseudo-Riemannian deformation triple.

5. Conclusions, remarks and further perspectives

To the AdS space we associated a symplectic symmetric space (M,ω, s). That
association is natural by virtue of the uniqueness property mentioned in Propo-
sition 4.2. The data of any invariant (formal or not) deformation quantization
on (M,ω, s) yields then canonically a UDF for the actions of a non-Abelian solv-
able Lie group. Using it we defined the noncommutative Lorentzian spectral triple
(A∞,H, D) where A∞ := (L2

right(R0))∞ is a noncommutative Fréchet algebra mod-
elled on the space of smooth vectors of the regular representation on square inte-
grable functions on the group R0. The underlying commutative limit is endowed
with a causal black hole structure encoded in the R0-group action. A first ques-
tion that this construction raises is that of defining within the present Lorentzian
context the notion of causality at the operator algebraic level.

Another direction of research is to analyze the relation between the present ge-
ometrical situation and the corresponding one within the quantum group context.
Indeed, our universal deformation formulas can be used at the algebraic level to
produce nonstandard quantum groups SO(2, n− 1)q via Drinfeld twists. An inter-
esting challenge would then be to study the behaviour of the representation theory
under the deformation process.

More generally the somewhat elliptic sentence with which we started the paper
may now be better understood if we remark that the physical motivation section
and the quantum group framework suggest to study a number of questions related
to (noncommutative) singleton physics, in particular:
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(i) Since [FHT, Sta98] we know that for q even root of unity, there are
unitary irreducible finite dimensional representations of the Anti de Sitter
groups. Interestingly (cf. [FGR] p.122) the “fuzzy 3-sphere” is related
to the Wess-Zumino-Witten models and is conjectured to be related to
the non-commutative geometry of the quantum group Uq(sl2) for q =
e2πi/(k+2), k > 0, a root of unity.

(ii) The last remark suggests to look more closely at the phenomenon of di-
mensional reduction which appears in a variety of related problems. In
this paper we considered only n ≥ 3. The reason is that for n = 2
the context is in part different: the conformal group of 1+1 dimen-
sional space-time is infinite dimensional, and there are no black holes
[CD07]. But many considerations remain true, and furthermore many
group-theoretical properties find their origin at the 1+1 dimensional level,
e.g. the uniqueness of the extension to conformal group [AFFS]. An-
other exemple of dimensional reduction is the fact that the massless UIR
of the 2+1 dimensional Poincaré group Di and Rac satisfy Di ⊕ Rac =
D(HO)⊕D(HO) where D(HO) is the representation D(1/4)⊕D(3/4) of
the metaplectic group (double covering of SL(2, R)) which is the symme-
try of the harmonic oscillator in the deformation quantization approach
(see e.g. Section (2.2.4) in [DS02]).

(iii) What do the degenerate representations Di and Rac become under defor-
mation? Furthermore there may appear, for our nonstandard quantum
group SO(2, n)q, new representations that have no equivalent at the un-
deformed level (e.g. in a way similar to the supercuspidal representations
in the p-adic context). These may have interesting physical interpreta-
tions.

(iv) We have seen that for q even root of unity SO(2, n)q has some properties
of a compact Lie group. Our cosmological Ansatz suggests that the qAdS
black holes are “small.” It is therefore natural to try and find a kind of
generalized trace that permits to give a finite volume for qAdS. Note
that, in contradistinction with infinite dimensional Hilbert spaces, the
notions of boundedness and compactness are the same for closed sets
in Montel spaces, and that our context is in fact more Fréchet nuclear
than Hilbertian. This raises the more general question to define in an
appropriate manner the notion of “q-compactness” (or “q-boundedness”)
for noncommutative manifolds.

(v) Possibly in relation with the preceding question, one should perhaps con-
sider deformation triples in which the Hilbert space is replaced by a suit-
able locally convex topological vector space (TVS), on which D could be
continuous.

(vi) The latter should yield a natural framework for implementing quantum
symmetries in deformation triples, since Fréchet nuclear spaces and their
duals are at the basis of the topological quantum groups (and their duals)
introduced in the 90’s, especially in the semi-simple case with preferred
deformations (see the review [BGGS]). We would thus in fact have
quadruples (A, E , D,G) where A is some topological algebra, E an ap-
propriate TVS, D some (bounded on E) “Dirac” operator and G some
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symmetry. [Being in a Lorentzian noncompact framework, we did not ad-
dress here questions such as the resolvent of D when E is a Hilbert space,
which we did not need at this stage; eventually one may however have
to deal with the reasons that motivated the additional requirements on
triples in the Riemannian compact context; note that here the restriction
to an open orbit was needed in order to have bounded commutators [D, a]
in the Hilbertian context, but a good choice of E could lift the restriction.]
That framework should be naturally extendible to the supersymmetric
context, which is the one considered in [FGR] with modified spectral
triples and is natural also for the problems considered here since e.g.
Di⊕Rac and D(HO) are UIR of the corresponding supersymmetries.

(vii) If we want to incorporate “everything,” the (external) symmetry G should
be the Poincaré group SO(1, 3) ·R4 in the ambient Minkowski space (pos-
sibly modified by the presence of matter) and SO(2, 3)q in the qAdS4

black holes, or possibly some supersymmetric extension. The unified (ex-
ternal) symmetry could therefore be something like a groupoid. The lat-
ter should be combined in a subtle way (as hinted e.g. in [St07]) with the
“internal” symmetry associated with the various generations, colors and
flavors of (composite) “elementary” particles in a generalized Standard
Model, possibly in a noncommutative geometry framework analogous to
what is done in [Co06, CCM, Ba06]. There would of course remain
the formidable task to develop quantized field theories on that back-
ground, incorporating composite QED for photons on AdS as in [FF88]
and some analog construction for the electroweak model (touched in part
in [Frø00]) and for QCD, possibly making use of some formalism coming
from string theory.

(viii) The Gelfand isomorphism theorem permits to realize commutative invo-
lutive algebras as algebras of functions on their “spectrum.” Finding a
noncommutative analog of it has certainly been in the back of the mind
of many, since quite some time (see e.g. [St05]). We now have theories
and many examples of deformed algebras, quantum groups and noncom-
mutative manifolds. The above mentioned quadruples could provide a
better understanding of that situation.
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[BTZ] M. Bañados, C. Teitelboim, and J. Zanelli, Black hole in three-dimensional space-time,
Phys. Rev. Lett. 69 (1992), no. 13, 1849–1851 (hep-th/9204099).

[Ba06] J.W. Barrett, A Lorentzian version of the non-commutative geometry of the standard

model of particle physics, J. Math. Phys. 48 (2007) 012303 (hep-th/0608221).
[Bie95] P. Bieliavsky, Espaces symétriques symplectiques, Thesis, Université Libre de Bruxelles
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