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Abstract

In this paper, a cell based smoothed finite element method with discrete shear gap technique is employed to study

the static bending, free vibration, mechanical and thermal buckling behaviour of functionally graded material

(FGM) plates. The plate kinematics is based on the first order shear deformation theory and the shear locking

is suppressed by the discrete shear gap method. The shear correction factors are evaluated by employing the

energy equivalence principle. The material property is assumed to be temperature dependent and graded only in

the thickness direction. The effective properties are computed by using the Mori-Tanaka homogenization method.

The accuracy of the present formulation is validated against available solutions. A systematic parametric study

is carried out to examine the influence the gradient index, the plate aspect ratio, skewness of the plate and the

boundary conditions on the global response of the FGM plates. The effect of a centrally located circular cutout

on the global response is also studied.

Keywords: functionally graded material, cell based smoothed finite element method, discrete shear gap,

viscoelastic, boundary conditions, gradient index, circular cutout

1. Introduction

With the rapid advancement of engineering, there is an increasing demand for new materials which suits the harsh

working environment without loosing it’s mechanical, thermal or electrical properties. Engineered materials such

as the composite materials are used due to their excellent strength-to and stiffness-to-weight ratios and their

possibility of tailoring the properties in optimizing their structural response. But due to the abrupt change in

material properties from matrix to fibre and between the layers, these materials suffer from pre-mature failure or

by the decay in the stiffness characteristics because of delaminations and chemically unstable matrix and lamina

adhesives. On the contrary, another class of materials, called, the Functionally Graded Materials (FGM) are made

up of mixture of ceramics and metals and are characterized by smooth and continuous transition in properties from

one surface to another [17]. As a result, FGMs are preferred over the laminated composites for structural integrity.

The FGMs combine the best properties of the ceramics and the metals and this has attracted the researchers to

study the characteristics of such structures.
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Background. The tunable thermo-mechanical property of the FGM has attracted researchers to study the static

and the dynamic behaviour of structures made of FGM under mechanical [48, 49, 37, 43] and thermal load-

ing [24, 33, 8, 10, 15, 50, 51]. Praveen et al., [33] and Reddy et al., [39] studied the thermo-elastic response of

ceramic-metal plates using first order shear deformation theory coupled with the 3D heat conduction equation.

Their study concluded that the structures made up of FGM with ceramic rich side exposed to elevated tempera-

tures are susceptible to buckling due to the through thickness temperature variation. The buckling of skewed FGM

plates under mechanical and thermal loads were studied in [10, 11] employing the first order shear deformation

theory and by using the shear flexible quadrilateral element. Efforts has also been made to study the mechanical

behaviour of FGM plates with geometrical imperfection [41]. Saji et al., [40] has studied thermal buckling of

FGM plates with material properties dependent on both the composition and temperature. They found that the

critical buckling temperatures are decreased when material properties are considered to be a function of tempera-

ture as compared to the results obtained where material properties are assumed to be independent of temperature.

Ganapati at al., [10] has studied the buckling of FGM skewed plate under thermal loading. Efforts has also been

made to study the mechanical behaviour of FGM plates with geometrical imperfection [41]. More recently, re-

fined models have been adopted to study the characteristics of FGM structures [5, 4, 7].

Existing approaches in the literature to study plate and shell structures made up of FGMs uses finite element

method (FEM) based on Lagrange basis functions [11], meshfree methods [9, 34] and recently Valizadeh et

al., [45] used non-uniform rational B-splines based FEM to study the static and dynamic characteristics of FGM

plates in thermal environment. Tran et al., [23] employed isogeometric finite element method to study thermal

buckling of functionally graded plates. Even with these different approaches, the plate elements suffer from shear

locking phenomenon and different techniques were proposed to alleviate the shear locking phenomenon. Another

set of methods have emerged to address the shear locking in the FEM. By incorporating the strain smoothing

technique into the finite element method (FEM), Liu et al., [22] have formulated a series of smoothed finite

element methods (SFEM), named as cell-based SFEM (CS-FEM) [29, 2], node-based SFEM [21], edge-based

SFEM [20], face-based SFEM [27] and α-FEM [19]. And recently, edge based imbricate finite element method

(EI-FEM) was proposed in [6] that shares common features with the ES-FEM. As the SFEM can be recast within

a Hellinger-Reissner variational principle, suitable choices of the assumed strain/gradient space provides stable

solutions. Depending on the number and geometry of the subcells used, a spectrum of methods exhibiting a

spectrum of properties is obtained. Interested are referred to the literature [22, 29] and references therein. Nguyen-

Xuan et al., [31] employed CS-FEM for Mindlin-Reissner plates. The curvature at each point is obtained by a

non-local approximation via a smoothing function. From the numerical studies presented, it was concluded that

the CS-FEM technique is robust, computationally inexpensive, free of locking and importantly insensitive to

mesh distortions. The SFEM was extended to various problems such as shells [26], heat transfer [47], fracture

mechanics [30] and structural acoustics [13] among others. In [3], CS-FEM has been combined with the extended

FEM to address problems involving discontinuities. The above list is no way comprehensive and interested readers

are referred to the literature and references therein and a recent review paper by Jha and Kant [16] on FGM plates.

Approach. In this paper, we study the static and the dynamic characteristics of FGM plates by using a cell-based

smoothed finite element method with discrete shear gap technique [28]. Three-noded triangular element is em-

ployed in this study. The effect of different parameters viz., the material gradient index, the plate aspect ratio, the

plate slenderness ratio and the boundary condition on the global response of FGM plates are numerically studied.

The effect of centrally located circular cutout is also studied. The present work focusses on the computational

aspects of the governing equations, hence, the attention has been restricted to Reissner-Mindlin plate theory. It is

noted that the extension to higher order theories is possible.

Outline. The paper is organized as follows, the next section will give an introduction to FGM and a brief overview

of Reissner-Mindlin plate theory. Section 3 presents an overview of the cell-based smoothed finite element method
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with discrete shear gap technique. The efficiency of the present formulation, numerical results and parametric

studies are presented in Section 4, followed by concluding remarks in the last section.

2. Theoretical Background

2.1. Reissner-Mindlin plate theory

The Reissner-Mindlin plate theory, also known as the first order shear deformation theory (FSDT) takes into

account the shear deformation through the thickness. Using the Mindlin formulation, the displacements u, v,w at

a point (x, y, z) in the plate (see Figure (1)) from the medium surface are expressed as functions of the mid-plane

displacements uo, vo,wo and independent rotations θx, θy of the normal in yz and xz planes, respectively, as:

u(x, y, z, t) = uo(x, y, t) + zθx(x, y, t)

v(x, y, z, t) = vo(x, y, t) + zθy(x, y, t)

w(x, y, z, t) = wo(x, y, t) (1)

where t is the time. The strains in terms of mid-plane deformation can be written as:

ε =

{

εp

0

}

+

{

zεb

εs

}

(2)

z

x

y

a

b

h

(a)

ψ

y

y′

x, x′

a

b

(b)

Figure 1: (a) coordinate system of a rectangular FGM plate, (b) Coordinate system of a skew plate

The midplane strains εp, the bending strain εb and the shear strain εs in Equation (2) are written as:

εp =






uo,x

vo,y

uo,y + vo,x






, εb =






θx,x

θy,y

θx,y + θy,x






,

εs =






θx + wo,x

θy + wo,y





. (3)

where the subscript ‘comma’ represents the partial derivative with respect to the spatial coordinate succeeding it.

The membrane stress resultants N and the bending stress resultants M can be related to the membrane strains, εp

and bending strains εb through the following constitutive relations:
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N =






Nxx

Nyy

Nxy






= Aεp + Bεb − Nth

M =






Mxx

Myy

Mxy






= Bεp + Dbεb −Mth (4)

where the matrices A = Ai j,B = Bi j and Db = Di j; (i, j = 1, 2, 6) are the extensional, bending-extensional coupling

and bending stiffness coefficients and are defined as:

{

Ai j, Bi j, Di j

}

=

∫ h/2

−h/2

Qi j

{

1, z, z2
}

dz (5)

Similarly, the transverse shear force Q = {Qxz,Qyz} is related to the transverse shear strains εs through the follow-

ing equation:

Qi j = Ei jεs (6)

where E = Ei j =
∫ h/2

−h/2
Qi jυiυ j dz; (i, j = 4, 5) are the transverse shear stiffness coefficients, υi, υ j is the transverse

shear coefficient for non-uniform shear strain distribution through the plate thickness. The stiffness coefficients

Qi j are defined as:

Q11 = Q22 =
E(z)

1 − ν2
; Q12 =

νE(z)

1 − ν2
; Q16 = Q26 = 0

Q44 = Q55 = Q66 =
E(z)

2(1 + ν)
(7)

where the modulus of elasticity E(z) and Poisson’s ratio ν are given by Equation (20). The thermal stress resultant

Nth and the moment resultant Mth are:

Nth =






N th
xx

N th
yy

N th
xy






=

h/2∫

−h/2

Qi jα(z, T )






1

1

0






∆T (z) dz

Mth =






Mth
xx

Mth
yy

Mth
xy






=

h/2∫

−h/2

Qi jα(z, T )






1

1

0






∆T (z) z dz

(8)

where the thermal coefficient of expansion α(z, T ) is given by Equation (21) and ∆T (z) = T (z) − To is the tem-

perature rise from the reference temperature and To is the temperature at which there are no thermal strains. The

strain energy function U is given by:

U(δ) =
1

2

∫

Ω

{

ε
T
pAεp + ε

T
pBεb + ε

T
b Bεp + ε

T
b Dεb + ε

T
s Eεs − ε

T
b Nth − εT

b Mth
}

dΩ (9)
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where δ = {u, v,w, θx, θy} is the vector of the degree of freedom associated to the displacement field in a finite

element discretization. Following the procedure given in [36], the strain energy function U given in Equation (9)

can be rewritten as:

U(δ) =
1

2
δ

TKδ (10)

where K is the linear stiffness matrix. The kinetic energy of the plate is given by:

T (δ) =
1

2

∫

Ω

{

p(u̇2
o + v̇2

o + ẇ2
o) + I(θ̇2

x + θ̇
2
y)
}

dΩ (11)

where p =
∫ h/2

−h/2
ρ(z) dz, I =

∫ h/2

−h/2
z2ρ(z) dz and ρ(z) is the mass density that varies through the thickness of the

plate. When the plate is subjected to a temperature field, this in turn results in in-plane stress resultants, Nth. The

external work due to the in-plane stress resultants developed in the plate under a thermal load is given by:

V(δ) =

∫

Ω

{

1

2

[

N th
xxw2

,x + N th
yyw

2
,y + 2N th

xyw,xw,y

]

+

h2

24

[

N th
xx

(

θ2
x,x + θ

2
y,x

)

+ N2
yy

(

θ2
x,y + θ

2
y,y

)

+ 2N th
xy

(

θx,xθx,y + θy,xθy,y

)]
}

dΩ

(12)

Substituting Equation (9) - (12) in Lagrange’s equation of motion, one obtains the following finite element equa-

tions:

Static bending:

Kδ = F (13)

Free vibration:

Mδ̈ + (K +KG) δ = 0 (14)

Buckling analysis:

Mechanical Buckling2.

(K + λMKG) δ = 0 (15)

Thermal Buckling.

(K + λT KG) δ = 0 (16)

where λM includes the critical value applied in-plane mechanical loading and λT is the critical temperature dif-

ference and K, KG are the linear stiffness and geometric stiffness matrices, respectively. The critical temperature

difference is computed using a standard eigenvalue algorithm.

2.2. Functionally graded material

A rectangular plate made of a mixture of ceramic and metal is considered with the coordinates x, y along the

in-plane directions and z along the thickness direction (see Figure (1)). The material on the top surface (z = h/2)

of the plate is ceramic rich and is graded to metal at the bottom surface of the plate (z = −h/2) by a power

law distribution. The effective properties of the FGM plate can be computed by using the rule of mixtures or

by employing the Mori-Tanaka homogenization scheme. Let Vi(i = c,m) be the volume fraction of the phase

2Prebuckling deformations are assumed to be zero or negligible in the analysis (including those coming from in-plane and out-of-

plane coupling related to FGM and temperature variation through the thickness of the plate).
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material. The subscripts c and m refer to ceramic and metal phases, respectively. The volume fraction of ceramic

and metal phases are related by Vc + Vm = 1 and Vc is expressed as:

Vc(z) =

(

2z + h

2h

)n

(17)

where n is the volume fraction exponent (n ≥ 0), also known as the gradient index. The variation of the compo-

sition of ceramic and metal is linear for n =1, the value of n = 0 represents a fully ceramic plate and any other

value of n yields a composite material with a smooth transition from ceramic to metal.

Mori-Tanaka homogenization method. Based on the Mori-Tanaka homogenization method, the effective Young’s

modulus and Poisson’s ratio are computed from the effective bulk modulus K and the effective shear modulus G

as [44]

Keff − Km

Kc − Km

=
Vc

1 + Vm
3(Kc−Km)

3Km+4Gm

,
Geff −Gm

Gc −Gm

=
Vc

1 + Vm
(Gc−Gm)

(Gm+ f1)

(18)

where

f1 =
Gm(9Km + 8Gm)

6(Km + 2Gm)
(19)

The effective Young’s modulus Eeff and Poisson’s ratio νeff can be computed from the following relations:

Eeff =
9KeffGeff

3Keff +Geff

, νeff =
3Keff − 2Geff

2(3Keff +Geff)
(20)

The effective mass density ρeff is computed using the rule of mixtures (ρe f f = ρcVc + ρmVm). The effective heat

conductivity κeff and the coefficient of thermal expansion αeff is given by:

κeff − κm

κc − κm

=
Vc

1 + Vm
(κc−κm)

3κm

αeff − αm

αc − αm

=

(
1

Keff
− 1

Km

)

(
1

Kc
− 1

Km

) (21)

Temperature dependent material property. The material properties that are temperature dependent are written

as [44]:

P = Po(P−1T−1 + 1 + P1T + P2T 2 + P3T 3) (22)

where Po, P−1, P1, P2 and P3 are the coefficients of temperature T and are unique to each constituent material

phase.

Temperature distribution through the thickness. The temperature variation is assumed to occur in the thickness

direction only and the temperature field is considered to be constant in the xy-plane. In such a case, the temperature

distribution along the thickness can be obtained by solving a steady state heat transfer problem:

−
d

dz

[

κ(z)
dT

dz

]

= 0, T = Tc at z = h/2; T = Tm at z = −h/2 (23)
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The solution of Equation (23) is obtained by means of a polynomial series [46] as

T (z) = Tm + (Tc − Tm)η(z, h) (24)

where,

η(z, h) =
1

C





(

2z + h

2h

)

−
κcm

(n + 1)κm

(

2z + h

2h

)n+1

+

κ2
cm

(2n + 1)κ2
m

(

2z + h

2h

)2n+1

−
κ3

cm

(3n + 1)κ3
m

(

2z + h

2h

)3n+1

+
κ4

cm

(4n + 1)κ4
m

(

2z + h

2h

)4n+1

−
κ5

cm

(5n + 1)κ5
m

(

2z + h

2h

)5n+1


 ;

(25)

C = 1 −
κcm

(n + 1)κm

+
κ2

cm

(2n + 1)κ2
m

−
κ3

cm

(3n + 1)κ3
m

+
κ4

cm

(4n + 1)κ4
m

−
κ5

cm

(5n + 1)κ5
m

(26)

where κcm = κc − κm.

3. Cell based smoothed finite element method with discrete shear gap technique

In this study, three-noded triangular element with five degrees of freedom (dofs) δ = {u, v,w, θx, θy} is employed.

The displacement is approximated by

uh =
∑

I

NIδI (27)

where δI are the nodal dofs and NI are the standard finite element shape functions given by

N =
[

1 − ξ − η, η, ξ
]

(28)

In this work, the cell-based smoothed finite element method (CSFEM) is combined with stabilized discrete

shear gap method (DSG) for three-noded triangular element, called as ‘cell-based discrete shear gap method

(CS-DSG3)’ [28]. The cell-based smoothing technique decreases the computational complexity, whilst DSG sup-

presses the shear locking phenomenon when the present formulation is applied to thin plates. Interested readers

are referred to the literature and references therein for the description of cell-based smoothing technique [22, 2]

and DSG method [1]. In the CS-DSG3, each triangular element is divided into three subtriangles. The displace-

ment vector at the center node is assumed to be the simple average of the three displacement vectors of the three

field nodes. In each subtriangle, the stabilized DSG3 is used to compute the strains and also to avoid the transverse

shear locking. Then the strain smoothing technique on the whole triangular element is used to smooth the strains

on the three subtriangles. Consider a typical triangular element Ωe as shown in Figure (2). This is first divided

into three subtriangles ∆1,∆2 and ∆3 such that Ωe =
3⋃

i=1

∆i. The coordinates of the center point xo = (xo, yo) is

given by:

(xo, yo) =
1

3
(xI , yI) (29)
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O

1

2

3

∆1

∆2

∆3

Figure 2: A triangular element is divided into three subtriangles. ∆1,∆2 and ∆3 are the subtriangles created by connecting the central

point O with three field nodes.

The displacement vector of the center point is assumed to be a simple average of the nodal displacements as

δeO =
1

3
δeI (30)

The constant membrane strains, the bending strains and the shear strains for subtriangle ∆1 is given by:

εp =
[

p
∆1

1
p
∆1

2
p
∆1

3

]






δeO

δe1

δe2






εb =
[

b
∆1

1
b
∆1

2
b
∆1

3

]






δeO

δe1

δe2






εs =
[

s
∆1

1
s
∆1

2
s
∆1

3

]






δeO

δe1

δe2






(31)

Upon substituting the expression for δeO in Equation (31), we obtain:

ε
∆1
p =

[
1
3
p
∆1

1
+ p

∆1

2
1
3
p
∆1

1
+ p

∆1

3
1
3
p
∆1

1

]






δe1

δe2

δe3






= B∆1
p δe

ε
∆1

b
=

[
1
3
b
∆1

1
+ b

∆1

2
1
3
b
∆1

1
+ b

∆1

3
1
3
b
∆1

1

]






δe1

δe2

δe3






= B
∆1

b
δe

ε
∆1
s =

[
1
3
s
∆1

1
+ s
∆1

2
1
3
s
∆1

1
+ s
∆1

3
1
3
s
∆1

1

]






δe1

δe2

δe3






= B∆1
s δe

(32)
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where pi, (i = 1, 2, 3), bi, (i = 1, 2, 3) and si, (i = 1, 2, 3) are given by:

Bp =
1

2Ae





b − c 0 0 0 0 c 0 0 0 0 −b 0 0 0 0

0 d − a 0 0 0 0 −d 0 0 0 a 0 0 0 0

︸                       ︷︷                       ︸

p1

d − a b − c 0 0 0
︸              ︷︷              ︸

p2

− d c 0 0 0
︸              ︷︷              ︸

p3

a −b 0 0 0





Bb =
1

2Ae





0 0 0 b − c 0 0 0 0 c 0 0 0 0 −b 0

0 0 0 0 d − a 0 0 0 0 −d 0 0 0 0 a

︸                       ︷︷                       ︸

b1

0 0 0 d − a b − c
︸              ︷︷              ︸

b2

0 0 0 −d c
︸              ︷︷              ︸

b3

0 0 0 a −b





Bs =
1

2Ae

[

0 0 b − c Ae 0 0 0 c ac/2 bc/2 0 0 −b −bd/2 −bc/2

︸                   ︷︷                   ︸

s1

0 0 d − a 0 Ae
︸                             ︷︷                             ︸

s2

0 0 −d −ad/2 −bd/2
︸                      ︷︷                      ︸

s3

0 0 a ad/2 ac/2

]

(33)

where a = x2−x1; b = y2−y1; c = y3−y1 and d = x3−x1 (see Figure (3)), Ae is the area of the triangular element and

Bs is altered shear strains [1]. The strain-displacement matrix for the other two triangles can be obtained by cyclic

permutation. Now applying the cell-based strain smoothing [2], the constant membrane strains, the bending strains

and the shear strains are respectively employed to create a smoothed membrane strain εp, smoothed bending strain

εb and smoothed shear strain εson the triangular element Ωe as:

ξ

1

2

3d

c

b

b

η

Figure 3: Three-noded triangular element and local coordinates in discrete shear gap method.
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εp =

∫

Ωe

εbΦe(x) dΩ =

3∑

i=1

ε
∆i
p

∫

∆i

Φe(x) dΩ

εb =

∫

Ωe

εbΦe(x) dΩ =

3∑

i=1

ε
∆i

b

∫

∆i

Φe(x) dΩ

εs =

∫

Ωe

εsΦe(x) dΩ =

3∑

i=1

ε
∆i

s

∫

∆i

Φe(x) dΩ (34)

where Φe(x) is a given smoothing function that satisfies:

Φ(x) =

{

1/Ac x ∈ Ωc

0 x < Ωc

(35)

where Ac is the area of the triangular element. The smoothed membrane strain, the smoothed bending strain and

the smoothed shear strain is then given by

{

εp, εb, εs

}

=

3∑

i=1

A∆i

{

ε
∆i
p , ε

∆i

b
, ε
∆i
s

}

Ae

(36)

The smoothed elemental stiffness matrix is given by

K =

∫

Ωe

BpAB
T

p + BpBB
T

b + BbBB
T

p + BbDB
T

b + BsEB
T

s dΩ

=

(

BpAB
T

p + BpBB
T

b + BbBB
T

p + BbDB
T

b + BsEB
T

s

)

Ae (37)

where Bp,Bb and Bs are the smoothed strain-displacement matrix. The mass matrix M, is computed by following

the conventional finite element procedure. To further improve the accuracy of the solution and to stabilize the

shear force oscillation, the shear stiffness coefficients are multiplied by the following factor:

ShearFac =
h3

h2 + αh2
e

(38)

where α is a positive constant and he is the longest length of the edge of an element.

4. Numerical examples

In this section, we present the static bending response, the linear free vibration and buckling analysis of FGM

plates using cell based smoothed finite element method with discrete shear gap technique. The effect of various

parameters, viz., material gradient index n, skewness of the plate ψ, the plate aspect ratio a/b, the plate thickness

a/h and boundary conditions on the global response is numerically studied. The top surface of the plate is ceramic

rich and the bottom surface of the plate is metal rich. Here, the modified shear correction factor obtained based

on energy equivalence principle as outlined in [42] is used. The boundary conditions for simply supported and

clamped cases are : Simply supported boundary condition:
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uo = wo = θy = 0 on x = 0, a; vo = wo = θx = 0 on y = 0, b (39)

Clamped boundary condition:

uo = wo = θy = vo = θx = 0 on x = 0, a & y = 0, b (40)

Skew boundary transformation. For skew plates, the edges of the boundary elements may not be parallel to the

global axes (x, y, z). In order to specify the boundary conditions on skew edges, it is necessary to use the edge

displacements (u′o, v
′
o,w

′
o) etc, in a local coordinate system (x′, y′, z′) (see Figure (1)). The element matrices

corresponding to the skew edges are transformed from global axes to local axes on which the boundary conditions

can be conveniently specified. The relation between the global and the local degrees of freedom of a particular

node is obtained by:

δ = Lgδ
′ (41)

where δ and δ′ are the generalized displacement vector in the global and the local coordinate system, respectively.

The nodal transformation matrix for a node I on the skew boundary is given by:

Lg =





cosψ sinψ 0 0 0

− sinψ cosψ 0 0 0

0 0 1 0 0

0 0 0 cosψ sinψ

0 0 0 − sinψ cosψ





(42)

where ψ defines the skewness of the plate.

4.1. Static Bending

Let us consider a Al/ZrO2 FGM square plate with length-to-thickness a/h = 5, subjected to a uniform load with

fully simply supported (SSSS) boundary conditions. The Young’s modulus for ZrO2 is Ec = 151 GPa and for

aluminum is Em = 70 GPa. Poisson’s ratio is chosen as constant, ν = 0.3. Table 1 compares the results from the

present formulation with other approaches available in the literature [12, 18, 32, 45] and a very good agreement

can be observed. Next, we illustrate the performance of the present formulation for thin plate problems. A simply

supported square plate subjected to uniform load is considered, while the length-to-thickness (a/h) varies from 5

to 104. Three individual approaches are employed: discrete shear gap method referred to as DSG3, the cell-based

smoothed finite element method with discrete shear gap technique (CSDSG3) and the stabilized CSDSG3. The

normalized center deflection wc = 100wc
Emh3

12(1−ν2)pa4 is shown in Figure (4). It is observed that the DSG3 results are

subjected to shear locking when the plate becomes thin (a/h > 100). However, the present formulation, CSDSG3

with stabilization is less sensitive to shear locking.

4.2. Free flexural vibrations

In this section, the free flexural vibration characteristics of FGM plates with and without centrally located cutout

in thermal environment is studied numerically. Figure (5) shows the geometry of the plate with a centrally lo-

cated circular cutout. In all cases, we present the non-dimensionalized free flexural frequency defined as, unless

otherwise stated:

ω = ωa2

√

ρch

Dc

(43)
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Table 1: The normalized center deflection wc = 100wc
Ech3

12(1−ν2)pa4 for a simply supported Al/ZrO2-1 FGM square plate with a/h = 5,

subjected to a uniformly distributed load p.

Method gradient index, n

0 1 2

4×4 0.1443 0.2356 0.2644

8×8 0.1648 0.2703 0.3029

16×16 0.1701 0.2795 0.3131

32×32 0.1714 0.2819 0.3158

40×40 0.1716 0.2822 0.3161

NS-DSG3 [32] 0.1721 0.2716 0.3107

ES-DSG3 [32] 0.1700 0.2680 0.3066

MLPG [12] 0.1671 0.2905 0.3280

kp−Ritz [18] 0.1722 0.2811 0.3221

MITC4 [32] 0.1715 0.2704 0.3093

IGA-Quadratic [45] 0.1717 0.2719 0.3115
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Figure 4: The normalized center deflection as a function of normalized plate thickness for a simply supported square FGM plate subjected

to a uniform load.
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b

r

a

Figure 5: Plate with a centrally located circular cutout. r is the radius of the circular cutout.

where ω is the natural frequency, ρc,Dc =
Ech3

12(1−ν2)
are the mass density and the flexural rigidity of the ceramic

phase. The FGM plate considered here is made up of silicon nitride (Si3N4) and stainless steel (SUS304). The ma-

terial is considered to be temperature dependent and the temperature coefficients corresponding to Si3N4/SUS304

are listed in Table 2 [38, 44]. The mass density (ρ) and the thermal conductivity (κ) are ρc = 2370 kg/m3, κc =

9.19 W/mK for Si3N4 and ρm = 8166 kg/m3, κm = 12.04 W/mK for SUS304. Poisson’s ratio ν is assumed to be

constant and taken as 0.28 for the current study [44]. Before proceeding with a detailed study on the effect of

gradient index on the natural frequencies, the formulation developed herein is validated against available analyt-

ical/numerical solutions pertaining to the linear frequencies of a FGM plate in thermal environment and a FGM

plate with a centrally located circular cutout. The computed frequencies: (a) for a square simply supported FGM

plate in thermal environment with a/h = 10 is given in Table 3 and (b) the mesh convergence and comparison of

linear frequencies for a square plate with circular cutout is given in Tables 4 - 5. It can be seen that the numerical

results from the present formulation are found to be in very good agreement with the existing solutions. For the

uniform temperature case, the material properties are evaluated at Tc = Tm = 300K. The temperature is assumed

vary only in the thickness direction and determined by Equation (24). The temperature for the ceramic surface is

varied, whist a constant value on the metallic surface is maintained (Tm = 300K) to subject a thermal gradient.

The geometric stiffness matrix is computed from the in-plane stress resultants due to the applied thermal gradient.

The geometric stiffness matrix is then added to the stiffness matrix and the eigenvalue problem is solved. The

effect of the material gradient index is also shown in Tables 3 & 5 and the influence of a centrally located cutout

is shown in Tables 4 - 5. The combined effect of increasing the temperature and the gradient index is to lower the

fundamental frequency, this is due to the increase in the metallic volume fraction. Figure (6) shows the influence

of the cutout size on the frequency for a plate in thermal environment (∆T = 100K). The frequency increases

with increasing cutout size. This can be attributed to the decrease in stiffness due to the presence of the cutout.

Also, it can be seen that with increasing gradient index, the frequency decreases. In this case, the decrease in

the frequency is due to the increase in the metallic volume fraction. It is observed that the combined effect of

increasing the gradient index and the cutout size is to lower the fundamental frequency. Increasing the thermal

gradient further decreases the fundamental frequency.

4.3. Buckling analysis

In this section, we present the mechanical and thermal buckling behaviour of functionally graded skew plates.
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Table 2: Temperature dependent coefficient for material Si3N4/SUS304, Ref [38, 44].

Material Property Po P−1 P1 P2 P3

Si3N4

E(Pa) 348.43e9 0.0 -3.070e−4 2.160e−7 -8.946e−11

α (1/K) 5.8723e−6 0.0 9.095e−4 0.0 0.0

SUS304
E(Pa) 201.04e9 0.0 3.079e−4 -6.534e−7 0.0

α (1/K) 12.330e−6 0.0 8.086e−4 0.0 0.0

Table 3: The first normalized frequency parameter ω for a fully simply supported Si3N4/SUS304 FGM square plate with a/h = 10 in

thermal environment.

Tc,Tm gradient index n

0 1 5 10

300,300
Present 18.3570 11.0690 9.0260 8.5880

Ref. [25] 18.3731 11.0288 9.0128 8.5870

400,300
Present 17.9778 10.7979 8.8626 8.3182

Ref. [25] 17.9620 10.7860 8.7530 8.3090

600,300
Present 17.1205 10.1679 8.1253 7.6516

Ref. [25] 17.1050 10.1550 8.1150 7.6420

Table 4: Convergence of fundamental frequency

(

Ω =

[

ω2ρcha4

Dc(1−ν2)

]1/4
)

with mesh size for an isotropic plate with a central cutout.

Number of nodes Mode 1 Mode 2

333 6.1025 8.6297

480 6.0805 8.5595

719 6.0663 8.5192

1271 6.0560 8.4852

Ref. [35] 6.1725 8.6443

Ref. [14] 6.2110 8.7310

Table 5: Comparison of fundamental frequency for a simply supported FGM plate with a/h = 5 and r/a = 0.2.

Tc gradient index, n

0 1 2 5 10

300
Ref. [35] 17.6855 10.6681 9.6040 8.7113 8.2850

Present 17.7122 10.6845 9.6188 8.7246 8.2976

400
Ref. [35] 17.4690 10.5174 9.4618 8.5738 8.1484

Present 17.5488 10.5775 9.5197 8.6309 8.2059
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Figure 6: Effect of the cutout size on the fundamental frequency (Ω) for a square simply supported FGM plate with a central circular

cutout in thermal environment ∆T = 100K (Tc = 400K, Tm = 300K) for different gradient index n.

Mechanical Buckling

The FGM plate considered here consists of Aluminum (Al) and Zirconium dioxide (ZrO2). The material is

considered to be temperature independent. The Young’s modulus (E) for ZrO2 is Ec = 151 GPa and for Al is

Em = 70 GPa. For mechanical buckling, we consider both uni- and bi-axial mechanical loads on the FGM plates.

In all cases, we present the critical buckling parameters as, unless otherwise specified:

λcru =
N0

xxcrb
2

π2Dc

λcrb =
N0

yycrb
2

π2Dc

(44)

where λcru and λcrb are the critical buckling parameters for uni- and bi-axial load, respectively, Dc = Ech
3/(12(1−

ν2)). The critical buckling loads evaluated by varying the skew angle of the plate, volume fraction index and

considering mechanical loads (uni- and biaxial compressive loads) are shown in Tables 6 for a/h = 100. The

efficacy of the present formulation is demonstrated by comparing our results with those in [11]. It can be seen

that increasing the gradient index decreases the critical buckling load. A very good agreement in the results can

be observed. It is also observed that the decrease in the critical value is significant for the material gradient index

n ≤ 2 and that further increase in n yields less reduction in the critical value, irrespective of the skew angle.

The effect of the plate aspect ratio and the gradient index on the critical buckling load is shown in Figure (7)

for a simply supported FGM plate under uni-axial mechanical load. It is observed that the combined effect of

increasing the gradient index and the plate aspect ratio is to lower the critical buckling load. Table 7 presents the

critical buckling parameter for a simply supported FGM with a centrally located circular cutout with r/a = 0.2. It
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can be seen that the present formulation yields comparable results. The effect of increasing the gradient index is to

lower the critical buckling load. This can be attributed to the stiffness degradation due to increase in the metallic

volume fraction. Figure (8) shows the influence of a centrally located circular cutout and the gradient index on

the critical buckling load under two different boundary conditions, viz., all edges simply supported and all edges

clamped. In this case, the plate is subjected to a uni-axial compressive load. It can be seen that increasing the

gradient index decreases the critical buckling load due to increasing metallic volume fraction, whilst, increasing

the cutout radius decreases the critical buckling load in the case of simply supported boundary conditions. This

can be attributed to the stiffness degradation due to the presence of a cutout and the simply supported boundary

condition. In case of the clamped boundary condition, the critical buckling load first decreases with increasing

cutout radius due to stiffness degradation. Upon further increase, the critical buckling load increases. This is

because, the clamped boundary condition adds stiffness to the system which overcomes the stiffness reduction

due to the presence of a cutout.

Table 6: Critical buckling parameters for a thin simply supported FGM skew plate with a/h = 100 and a/b = 1.

Skew angle λcr Gradient index, n

0 1 5 10

Ref. [11] Present Ref. [11] Present

0◦
λcru 4.0010 4.0034 1.7956 1.8052 1.2624 1.0846

λcrb 2.0002 2.0017 0.8980 0.9028 0.6312 0.5423

15◦
λcru 4.3946 4.4007 1.9716 1.9799 1.3859 1.1915

λcrb 2.1154 2.1187 0.9517 0.9561 0.6683 0.5741

30◦
λcru 5.8966 5.9317 2.6496 2.6496 1.8586 1.6020

λcrb 2.5365 2.5491 1.1519 1.1520 0.8047 0.6909

Table 7: Comparison of critical buckling load λcru =
No

xxcr b2

π2 Dm
for a simply supported FGM plate with a/h = 100 and r/a = 0.2. The

effective material properties are computed by rule of mixtures. In order to be consistent with the literature, the properties of the metallic

phase is used for normalization.

gradient index, n Ref. [52] Present % difference

0 5.2611 5.2831 -0.42

0.2 4.6564 4.6919 -0.76

1 3.6761 3.663 0.36

2 3.3672 3.3961 -0.86

5 3.1238 3.1073 0.53

10 2.9366 2.8947 1.43

Thermal Buckling

The thermal buckling behaviour of simply supported functionally graded skew plate is studied next. The top

surface is ceramic rich and the bottom surface is metal rich. The FGM plate considered here consists of aluminum
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Figure 7: Effect of plate aspect ratio a/b and gradient index on the critical buckling load for a simply supported FGM plate under

uni-axial compression with a/h = 10.
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Figure 8: Variation of the critical buckling load, λcru =
No

xxcr b2

π2Dc
with cutout dimensions for a square FGM plate with a/h=10 subjected to

uniaxial compressive loading for different gradient index n and various boundary conditions.
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and alumina. The Young’s modulus, the thermal conductivity and the coefficient of thermal expansion for alumina

is Ec = 380 GPa, Kc =10.4 W/mK, αc = 7.4 × 10−6 1/◦C, and for aluminum, Em = 70 GPa, Km = 204 W/mK, αm =

23 × 10−6 1/◦C, respectively. Poisson’s ratio is chosen as constant, ν = 0.3. The temperature rise of Tm = 5◦C in

the metal-rich surface of the plate is assumed in the present study. In addition to nonlinear temperature distribution

across the plate thickness, the linear case is also considered in the present analysis by truncating the higher order

terms in Equation (25). The plate is of uniform thickness and simply supported on all four edges. Table 8 shows the

convergence of the critical buckling temperature with mesh size for different gradient index, n. It can be seen that

the results from the present formulation are in good very agreement with the available solution. The influence of

the plate aspect ratio a/b and the skew angle ψ on the critical buckling temperature for a simply supported square

FGM plates are shown in Figures (9) and (10). It is seen that increasing the plate aspect ratio decreases the critical

buckling temperature for both linear and nonlinear temperature distribution through the thickness. The critical

buckling temperature increases with increase in the skew angle. The influence of the gradient index n is also

shown in Figure (10). It is seen that with increasing gradient index, n, the critical buckling temperature decreases.

This is due to the increase in the metallic volume fraction that degrades the overall stiffness of the structure. Figure

(11) shows the influence of the cutout radius and the material gradient index on the critical buckling temperature.

Both linear and nonlinear temperature distribution through the thickness is assumed. Again, it is seen that the

combined effect of increasing the gradient index n and the cutout radius r/a is to lower the buckling temperature.

For gradient index n = 0, there is no difference between the linear and the nonlinear temperature distribution

through the thickness as the material is homogeneous through the thickness. While, for n > 0, the material is

heterogeneous through the thickness with different thermal property.

Table 8: Convergence of the critical buckling temperature for a simply supported FGM skew plate with a/h = 10 and a/b = 1. Nonlinear

temperature rise through the thickness of the plate is assumed.

Mesh Gradient index, n

0 1 5 10

8×8 3383.40 2054.61 1539.24 1496.36

16×16 3286.90 1995.07 1495.25 1453.99

32×32 3263.91 1980.96 1484.76 1443.86

40×40 3261.17 1979.30 1483.51 1442.60

Ref. [10] 3257.47 1977.01 1481.83 1441.02

5. Conclusion

In this paper, we applied the cell-based smoothed finite element method with discrete shear gap technique to study

the static and the dynamic response of functionally graded materials. The first order shear deformation theory was

used to describe the plate kinematics. The efficiency and accuracy of the present approach is demonstrated with

few numerical examples. This improved finite element technique shows insensitivity to shear locking and produce

excellent results in static bending, free vibration and buckling of functionally graded plates.

Acknowledgements

S Natarajan would like to acknowledge the financial support of the School of Civil and Environmental Engineer-

ing, The University of New South Wales for his research fellowship since September 2012.

18



0.5 1 1.5 2 2.5
500

1000

1500

2000

2500

3000

3500

a/b

C
ri

ti
ca

l B
u

ck
lin

g
 T

em
p

er
at

u
re

, ∆
 T

cr

 

 

Linear
Nonlinear

Figure 9: Critical buckling temperature as a function of plate aspect ratio a/b with linear and nonlinear temperature distribution through

the thickness with gradient index n = 5.
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Figure 11: Influence of cutout size on the critical buckling temperature for a square simply supported FGM plate with a centrally located

circular cutout with a/h = 10 for various gradient index n. Linear and nonlinear temperature distribution through the thickness is

assumed.
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