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ABSTRACT

We propose here a natural, but substantive, extension of
the MIC. Defined for two variables, MIC has a distinct
advance for detecting potentially complex dependencies.
Our extension provides a similar means for dependencies
among three variables. This itself is an important step
for practical applications. We show that by merging two
concepts, the interaction information, which is a general-
ization of the mutual information to three variables, and
the normalized information distance, which measures in-
formational sharing between two variables, we can ex-
tend the fundamental idea of MIC. Our results also exhibit
some attractive properties that should be useful for prac-
tical applications in data analysis. Finally, the conceptual
and mathematical framework presented here can be used
to generalize the idea of MIC to the multi-variable case.

1. INTRODUCTION

Data sets that represent measurements on complex sys-
tems often embody functional relationships between vari-
ables that are difficult to discover. In a complex system
the dependency between measured variables can have a
functional form that is itself complex, and can therefore
be difficult to detect by standard methods. The maxi-
mal information coefficient (MIC) represents an interest-
ing new approach [1] to measuring dependency between
two random variables. It is able to capture a wide range of
functional associations, which makes it a particularly use-
ful tool for exploring large, complex data sets, and thus
it is especially appropriate for investigating large biologi-
cal data sets with many variables. For example, the yeast
based data set discussed in [2] contains 225 variables rep-
resenting genetic markers and 374 yeast strains leading
obviously to a potentially huge number of genetic interac-
tion.

In Speed’s commentary on reference [1] he pointed
out that an interesting challenge is presented by this new
approach. The challenge is the generalization of MIC,

which he called a ”correlation for the 21st century” [3],
to more than two variables. In this paper, we take up this
challenge by making use of our early work [2] where we
used the concept of interaction information [4, 5], a mul-
tivariate generalization of mutual information, to find a
suitable binning of a continuous variable while preserving
the relationships between the other variables. We use the
interaction information idea as a framework for extending
MIC from two to three variables. We propose substituting
a normalized information distance for mutual information,
which is used in MIC, as the key measure of dependence.
The approach we propose also offers a clear conceptual
starting point for extending the theory of MIC much far-
ther.

The central aim of this paper is to provide a theoret-
ical framework for future work on constructing measures
of associations between three variables. There are two
general approaches to this problem: the first is based on
information theory methods like MIC and interaction in-
formation. The second is the more traditional approach
similar to the partial correlation coefficient which is an
extension of the linear correlation between variables X1

and X2 while a third variable Y is fixed at some value
[3]. In the current paper we focus our attention on the
first approach; however, we briefly discuss possibilities of
alternative solutions of the problem.

2. THE MAXIMAL INFORMATION
COEFFICIENT

Here we present a brief description of the process of calcu-
lating the MIC. A more detailed discussion can be found
in [1]. Let X1 and X2 be two continuous random vari-
ables, and letD be a set of pairs drawn from the joint prob-
ability distribution P (x1, x2). Then, the value MIC(D),
which stands for the MIC computed for the sample set
D, is the maximal possible mutual information [6] be-
tween all possible binnings of these variables. More pre-
cisely, let X ′1 and X ′2 be binned (discretized) versions



of X1 and X2. Based on the data set D, we can ap-
proximate the mutual information, I(X ′1;X

′
2), between

X ′1 and X ′2. Subsequently, I(X ′1;X
′
2) is normalized by

log(min(|X ′1|, |X ′2|)), where |X ′i|, i = 1, 2, is the num-
ber of states (bins) of X ′i . Finally, the MIC(D) is the
maximal normalized mutual information estimated from
all possible binnings X1 and X2. An algorithm for ap-
proximating this value was presented in the supplemen-
tary materials of [1]. An improvement of this algorithm
will be one of the most important topics of our future
work.

The basic concept behind the idea of MIC is simply
that the mutual information is a good measure of asso-
ciation between two variables, and maximizing this dis-
cretized measure by choice of binnings produces MIC. It
simply finds the most informative binning of the two vari-
ables of interest. Unfortunately, however, the use of mu-
tual information in practical applications can be difficult.
There are two sources of these difficulties: 1) estimation
of mutual information from data is difficult, especially for
continuous random variables, and 2) mutual information
itself is not a normalized measure; thus, the interpretation
of the results may be sometimes problematic [3, 6].

MIC cannot be treated as an approximation of the mu-
tual information betweenX and Y , however. On the other
hand, there are two theorems [1] showing that if X and Y
are independent or if X = f(Y ), then the MIC(D) con-
verges to 0 or 1 respectively with the size of D going to
infinity. What is more, MIC offers a natural normalization
of obtained results.

3. INTERACTION DISTANCE

To extend MIC we have to have a multivariate general-
ization of the mutual information. The natural choice is
the conditional mutual information I(X1;X2|Y ). How-
ever, it can be easily shown that this is not the best solu-
tion. For example, I(X1;X2|Y ) equals zero when either
all the three variables are mutually independent or when
X1 and X2 are independent given Y . These are two com-
pletely different situations, which should be differentiated
by a good measure, but are not distinguished by condi-
tional mutual information.

In [2] we used the concept of interaction information,
I(X1;X2;Y ) [4, 5, 7], which is defined as a difference be-
tween I(X1;X2|Y ), the mutual information between X1

and X2 given Y , and I(X1;X2). The value of
I(X1;X2;Y ) can be either positive or negative, as can be
seen from the range of values of these two terms. A pos-
itive value suggests a synergy between X1 and X2; i.e.,
both variables together contain more information about Y
than separately. A negative value suggests redundancy be-
tween X1 and X2.

While the interaction information appears to provide
the path to a natural extension of MIC, we note that
I(X1;X2;Y ) is symmetric: for example, I(X1;X2;Y ) =
I(X1;Y ;X2). Consequently, I(X1;X2;Y ), a single num-
ber describing a relationship between three variables, still
does not capture all possible associations between the vari-

ables. This is illustrated by the Example 3.1.
A better generalization of MIC can be achieved by re-

placing the mutual information measure, I(X1;X2), with
the normalized information distance, d(X1;X2), and then
extending d(X1;X2) to three variables using the concept
of interaction information. The normalized information
distance [8, 9] is a metric defined as

d(X1;X2) =
max[H(X1|X2), H(X2|X1)]

max[H(X1), H(X2)]
,

which can be rewritten to

d(X1;X2) =
max[H(X1), H(X2)]− I(X1;X2)

max[H(X1), H(X2)]
.

Here, H(·) stands for the entropy.
The normalized information distance was defined in

[8] in terms of Kolmogorov complexity [10]. However, it
can be easily adapted to the Shannon’s formalism [6]. We
want to point out that this distance offers an alternative
approach for the normalization of the mutual information
between X1 and X2.

The extension to three variables d(X1;X2.Y ) can then
be made in the same way as in the case of the interaction
information:

d(X1;X2.Y ) = d(X1;X2|Y )− d(X1;X2).

We call this quantity the interaction distance by anal-
ogy, even though it is not a metric, as opposed to the two-
variable form. Here d(X1;X2|Y ) is a conditional version
of the normalized distance, i.e., d(X1;X2|Y ) =

max[H(X1|Y ), H(X2|Y )]− I(X1;X2|Y )

max[H(X1|Y ), H(X2|Y )]
.

It can be shown that d(X1;X2|Y ) is a metric. The proof
of that property will be presented in the extended version
of this paper. Here, we want to note that the proof for the
Shannon’s form of the distance is relatively simple; i.e., it
is an extension of the original proof [8], that d(X1;X2) is
a metric. This extension is based on the fact that:

H(X,Y |Z) = H(X|Z)−H(Y |X,Z).

Unfortunately, the Kolmogorov counterpart of this prop-
erty does not hold exactly [11]. Therefore, it is unclear if
the Kolmogorov’s version of d(X1;X2|Y ) is a metric.

To prove usefulness of the interaction distance, we
need to describe basic properties of d(X1;X2.Y ). In or-
der to do that, we need to go back to a theorem which is
a key result of [7]. This theorem describes behavior of
the interaction information in the context of various rela-
tionships between the three variables. Here, we present a
lemma that is a counterpart of this theorem. The detailed
proof is omitted here, due to space limitations. The lemma
can be treated as a corollary of the theorem.

Lemma 3.1 The following three properties hold for arbi-
trary functions f and g:



1. −1 ≤ d(X1;X2.Y ) ≤ 1.

2. d(X1;X2.Y ) = −1 if and only if X1, X2 are inde-
pendent and Xi = fj(Xj , Y ), i, j = 1, 2.

3. d(X1;X2.Y ) = 1 if and only if Xi = gi(Y ) =
fj(Xj), i, j = 1, 2.

The first property simply shows the range of the inter-
action distance. The limit values are obtained if and only
if certain functional associations between the three vari-
ables occur. The second property implies that Y is fully
determined by two independent variables. The third state-
ment describes situation when X1 and X2 are determined
by Y . In more general setting, see [4, 5], when the rela-
tion between variables is not functional, the negative val-
ues of the interaction distance suggest synergy of X1 and
X2; while the positive distance means redundancy of the
information of these two variables with respect the condi-
tioning variable Y . This includes also a case whenX1 and
X2 are independent given Y . Note that, in contrast to the
interaction information, the information distance is nega-
tive in the case of a synergy betweenX1, X2, and positive
if the variables are redundant.
Example 3.1 Here we present an example that demon-
strates the difference between the interaction information
and the interaction distance. Let X1 and X2 be two inde-
pendent, binary, random variables such that P (Xi = 0) =
0.5, i = 1, 2. Let us define a third variable Y in as follows:

• Y = 0 for X1 = 0 and X2 = 0;

• Y = 1 for X1 = 1 and X2 = 0;

• Y = 2 for X1 = 0 and X2 = 1;

• Y = 3 for X1 = 1 and X2 = 1.

Note that the triple X1, X2, Y fulfills requirements of
the Lemma 3.1, point 2. This is an obvious case of synergy
between X1 and X2; i.e., on one hand, knowledge about
the state of only one of these two variables leaves the state
of Y uncertain. On the other hand, when states of bothX1

and X2 are known, the state of Y becomes certain.
Let us now analyze the behavior of the interaction in-

formation and interaction distance in this case. Clearly,
I(X1;X2) = 0; subsequently, elementary calculations re-
veal that I(X1;X2|Y ) = H(Xi|Y ) = 0 and thus
I(X1;X2;Y ) = 0. Since X1 and X2 are independent
d(X1;X2) = 1; then, we can show that d(X1;X2|Y ) =
0. To this end, we note that

I(X1;X2|Y ) = H(Xi|Y ) for i = 1, 2,

Thus, it follows, from the definition of the conditional dis-
tance, that d(X1;X2|Y ) = 0. Hence, we have

d(X1;X2.Y ) = d(X1;X2|Y )−d(X1;X2) = 0−1 = −1.

Note that in the example d(X1;X2|Y ) looks like zero
over zero. We treat it as zero since this is the special case
when the conditional mutual information is equal to the

conditional entropy. Thus, d(X1;X2|Y ) = 0 for arbitrar-
ily small value of these quantities. Hence, in the limit, we
obtain the zero interaction distance.

The immediate advantage of using d(X1;X2.Y ) is its
ability to capture a broader spectrum of relations than the
interaction information itself. A positive value of the in-
teraction information indicates synergy between variables
[4, 5]. However, the above example shows that the reverse
is not always true. To understand the difference between
the interaction distance and the interaction information we
need to go back to the key theorem of [7]. From this theo-
rem it follows that in situations similar to that in our exam-
ple the interaction information equals H(Xi|Y ). Hence,
when the conditional entropy tends to zero the interaction
information follows. We can see that the distance is inde-
pendent from the values of the entropies and conditional
entropies of X1 and X2. This allows us to detect associ-
ations that cannot be captured by the interaction informa-
tion itself. The price for this capacity is that the distance
is not symmetric, and not a metric. Thus, sometimes, one
may need to consider three cases of conditioning by all
variables.

4. CONCLUSIONS AND DISCUSSION

One of the directions for future work is exploration of the
question of statistical power of MIC. However, this is not
specific to the three (or more) variable case. There are
two main directions on future problems. The first is the
practical implementation of the interaction distance. The
second one is to find possible alternatives for the interac-
tion distance. Further work will involve using this present
framework, used to generalize to three variables, to extend
MIC to multi-variable cases.

4.1. Implementation

For a given data set the information distance, d, is approx-
imated from the data in a manner very similar to the MIC
algorithm [1]. The details of these operations are beyond
the scope of this short paper and will be presented in its
extended version. We have simply adapted the algorithm
presented in [1]. In short, we estimate d(X1;X2.Y ) in
two steps. In the first step, we maximize d(X1;X2) and
in the second step we maximize d(X1;X2.Y ). Note that
the first step is a simple adjustment of the existing MIC
algorithm. On the other hand, the second step is more
complex, as it requires taking into account the conditional
variable Y . The simplest solution here is to impose an
equi-partition on the values of Y ; c.f., supplementary ma-
terials of [1]. It is unclear if this solution is generally op-
timal in practical applications. In [1] a similar approach is
used where one of the variables is equi-partitioned.

Note that by maximizing d(X1;X2|Y ) and d(X1;X2)
separately different discretizations of X1 and X2 can be
obtained. Consequently, an important direction for future
research is to define context-dependent discretization of
a random variable: such discretization will be different
when we change contextual variables of the variable of
interest.



The complexity and time for the computations could
be a key issue for future applications. We have performed
some preliminary tests on the yeast data set, mentioned
above, with 225 binary variables and 375 samples. We
calculated the interaction distances d(Xi;Xj .Y ), where
i, j went across all the pairs of the 225 variables and Y
was an additional variable that represents phenotype. The
phenotype variable was binned into four states. The run-
ning time on a laptop was about ten seconds. We artifi-
cially generated similar set with 1000 samples and 1200
variables: the running time in this case was about nine
minutes. Even if we take into account that we may need to
test various binnings, the running time should be accept-
able. The detailed discussion of this issue will be consid-
ered in future papers.

4.2. Alternatives

The problem with the interaction distance is the large num-
ber of samples required to obtain a sound estimation of
d(X1;X2.Y ). Even for the MIC between two variables
we need relatively large number of samples: the minimal
practical size of D is about 100. Since the interaction dis-
tance involves three variables, an order of magnitude more
samples will be required here. In many practical applica-
tions we may not be able to collect a sufficient amount of
observations. Thus, we need to find an alternative. This
could be based on the idea that underlies the partial corre-
lation between X1 and X2 given Y , denoted by ρX1X2·Y .
This is the correlation of residuals of X1 and X2 calcu-
lated from the linear regression of X1 given Y and X2

given Y .

In our future research we want to develop a similar
approach but replace the correlation of the residuals by
a measure or a statistical test that can capture more than
only linear relationships. A good candidate for such a
measure seems to be the distance correlation introduced
by Szekely [12].

In the Science perspective commenting on [1] a chal-
lenge was presented [3]: ”MIC is a great step forward, but
there are many more steps to take.” To take the first step
we have proposed here a relatively natural, but substan-
tive, extension of the MIC for detecting potentially com-
plex associations among three random variables. This it-
self is an important step for practical applications. We
have shown that by merging two concepts, the interaction
information, which is a generalization of the mutual in-
formation to three variables, and the normalized informa-
tion distance, which measures informational sharing be-
tween two variables, we are able to extend the fundamen-
tal idea of MIC. The interaction distance we propose ex-
hibits some attractive properties that should also be useful
for practical applications in many aspects of data analysis
and the framework presented here can be used to general-
ize to the multi-variable case. The technical details of our
method will be a topic of a future publication.
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