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Abstract

Most data-intensive applications are confronted with the problems of I/O bottleneck, poor
query processing times and space requirements. Database compression has been
discovered to alleviate the I/O bottleneck, reduce disk space, improve disk access speed,
speed up query, reduce overall retrieval time and increase the effective I/O bandwidth.
However, random access to individual tuples in a compressed database is very difficult to
achieve with most available compression techniques.
We propose a lossless compression technique called non-differential augmented vector
quantization, a close variant of the novel augmented vector quantization. The technique is
applicable to a collection of tuples and especially effective for tuples with many low to
medium cardinality fields. In addition, the technique supports standard database
operations, permits very fast random access and atomic decompression of tuples in large
collections. The technique maps a database relation into a static bitmap index cached
access structure. Consequently, we were able to achieve substantial savings in space by
storing each database tuple as a bit value in the computer memory.
Important distinguishing characteristics of our technique is that individual tuples can be
compressed and decompressed, rather than a full page or entire relation at a time, (b) the
information needed for tuple compression and decompression can reside in the memory or
at worst in a single page. Promising application domains include decision support systems,
statistical databases and life databases with low cardinality fields and possibly no text
fields.

Keywords: Data Compression, High-Dimensional Data Space, Vector Quantization,

Database

1. Introduction

Compression has traditionally not been widely used in commercial database systems
because many compression methods are effective only on large chunks of data and are thus
incompatible with random access to small parts of the data [1]. Many of the available
schemes are only suitable for data compression, which differs from database compression
because it is usually performed at the granularity of the entire data objects. In data
compression, access to random portions of the compressed data is impossible without
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decompressing the entire file. Evidently, this is not practical for database systems whose
essential function is query processing. Efficient query processing and random accessing to
small parts of data without incurring serious overhead is only achievable by fine-grained
units like tuple or attributes level decompressions. Compression methods that provide fast
decompression and random access are therefore, more attractive for databases than schemes
that offer better compression effectiveness. The drawback typically associated with
compression is that it puts extra burden on the CPU. However, recent works on database
compression [1, 2] have shown that it:

improves system performance especially in read-intensive environments,

provides significant improvement in query processing performance,

reduces disk seek times,

increases disk bandwidth,

reduces network communication costs in distributed applications,

increases buffer hit rate and

decreases disk I/O to log devices.

The problem on which this work premises is in Augmented Vector Quantization (AVQ) [3],
which was also called Attribute Enumerative Coding (AEC) [4] or Tuple Differential
Coding (TDC) [5, 6]. The goal of the study is to adapt AVQ to address the problem of
randomly accessing and individually decompressing tuples, while maintaining compact
storage of the data [7]. The original AVQ like many block-oriented schemes such as
Adaptive Text Substitution (ATS) [8] compresses and decompresses relation tuples that are
locally confined to memory blocks. The problems here are:

block (or page) level compression can result in poor query processing times,

compressed block can cross disk block boundaries and

the size of a compressed block can change when data in a block is updated [2].

Furthermore, random access to individual tuple is still not possible until a block of
memory is decompressed. In addition, tuple ordering and differencing in AVQ present
overhead cost that are problematic for designing lightweight compression and
decompression routines especially when the database is unstable. Both tuple and attributes
level compressions were shown to be more attractive from the query processing view point
[2]. However, attributes level compression performs better, but has poor compression ratio.
The query processing power of tuple level compression, which gives higher compression
rate, can be improved upon. This is the motivation for the present work. The solution we
propose for randomly accessing stored tuples in a compressed relation is a static bitmap
index structure.

The rest of the paper is briefly organized as follows. Section 2 provides the necessary
background information on traditional AVQ. Section 3 describes the new scheme and an
analogue of bitmap index is suggested for its implementation rather than using
expensive B-tree index structure. The evaluation of the method is considered in Section
4 and the paper is concluded in Section 5 with a brief note.
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2. AVQ Overview

The AVQ represents a series of tuple values in a relational database
 nAAAR ,,, 21  by the differences between them, where iA , i=1(1)n are n sets of

natural numbers. The method is particularly applicable to sets and databases and it works as
follows. First, each tuple in R is treated as integer and R is then sorted by rows. Successive
tuples are then differenced and the differences are used to represent R. This technique is

formally defined by the quantizer LQ as follows [3]:

Given a vector quantizer:

RL NZRQZRQ   :,:

is a lossless mapping that encodes a tuple Rt  by the pair <C(t), d(t, Q(t))>, where C is
the coder that produces the codeword denoting Q(t) and the difference d between any two
tuples is given by Equation (1).
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The compression efficiency of the technique depends on the choice of the codebook. If the
codebook is properly designed, the average difference between a tuple and its representative
tuple will be small enough that it takes fewer bits to encode than the original tuple. The
simplest form of AVQ algorithm is described according to the following steps [3]:

Step 1: Attribute encoding

This is the first preprocessing stage and it achieves compression by mapping a long
string of characters attribute to a short number.

Step 2: Attribute domain ranking

The lexicographical order defined by function is dependent on the ordering of the
attribute domains. Different domain orderings give rise to different orders and different
orderings of tuples also give rise to different amount of differences among tuples
ordinals, thus affecting the amount of compression.

Step 3: Tuple reordering

Every tuple in R is totally ordered via an ordering rule. The rule is usually a
lexicographical order with respect to the attribute sequence in R defined by the function

RNR : , where  1,,1,0  RNR  and the number |||||| 1 i
n
i AR  is the size

of the R space. The function is defined for every tuple Raaat n  ,...,, 21 by:
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The inverse function 1 defined for all RNe and i = 1(1)n-1 is given by:

 te)(1 (3)

Where

ear 0 , r
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The function converts each t R to a unique integer (t) that represents its ordinal
position within the R space and a total order is based on this function. To avoid the use

of auxiliary variables
r
ia for i = 1(1)n, we replace Equations (4) and (5) by an

alternative model (Equation 6) that randomly computes a given ia from e and
previously computed jia  , j = 1(1)i-1 for all i = 1(1)n. The symbols x and x denote
the usual floor and ceiling functions respectively.
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Step 4: Block partitioning

The ordered relation is partitioned into disjoint blocks of tuples and the size of a
memory page is chosen as the partition size. When a tuple is required, the block it
resides in is transferred from the disk to the main memory. Coding and decoding of
tuples are localized to block level granularity.

Step 5: Block encoding

A particular block consists of a set of ordered tuples and a representative tuple kt is
chosen from the block so as to minimize total distortion. Each tuple is therefore,

replaced by its difference from kt to obtain numerically smaller tuples with fewer bytes
of storage. The leading zero components in each difference are encoded using run-
length coding.

3. Non-differential AVQ

The new compression algorithm called Non-differential AVQ (NAVQ) is directly based
on AVQ and it compresses a given relation at tuple level granularity. Compression is
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done while tuples are being stored, thus it supports randomize decompression of
individual tuples. The method uses modular arithmetic [9] to associate a tuple t with a
pair of integers (q, r), where 0 q < m and 0 r < n. The modular arithmetic partitions
the set of natural numbers into n equivalent classes (or strata), where n 2 . Each
stratum has m 1 tuples with common features and the entire relation is mapped
into a static bitmap index structure nmB , . The pair (q, r) serves as the position marker in

nmB , for t. We use the term static to discriminate the array from the conventional bitmap
index [10], here called dynamic bitmap. The difference between the two bitmap types is
that static bitmap is statically created from predefined statistics of the relation and
dynamic bitmap is dynamically created from the elements of the relation.

NAVQ is formally defined by a database quantizer NQ as follows. Given a vector

quantizer  :,: NQRQ is a lossless contraction mapping that encodes
each t R by the pair  )(),( 21 tCtC <C1(t), where 1C and 2C are coders that produce
pair of codewords denoting the position of Q(t) in a bitmap. Apparently,  tQQN is a
mapping composition and the most important distinguishing aspects of the technique are
(a) each compressed tuple can randomly be decompressed at a time complexity
independent on tuples size, (b) compression and decompression can be carried out
without referencing the entire page, let alone the entire relation.

NAVQ is a lossless vector quantization that maps tuple values to bit values. It is
different from AVQ since it does not represent a series of tuple values by their
differences and does not perform tuple sorting, which can lead to a performance
overhead for unstable database. Both methods are similar because they are applied by
first treating each tuple in a database table as an integer. Both algorithms use the same
mapping to convert a tuple to a unique codeword. The compression algorithm is
clearly described as follows.

Algorithm 1: DB_Compressor

Input:

The relation R to compress

Output:

A static bitmap structure Bm,n of compressed tuples, where  nRm /|||| and n(1,

||R||) are fixed constants.

Method:

This algorithm is basically in phases of preprocessing as follows.
If R is compressible Then

1. Create Bm,n and initialize its entries to 0
2. If attribute encoding is required Then perform attribute encoding on tuples in R

3. Map every t R to a codeword e = (t) using Equation 2

4. Map e to Bm,n using 1, rqB , where  neq / and )/( neMODr 
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End_Algorithm DB_Compressor

The decompression technique is based on the inversion function given by Equation (3)
and it works directly in opposite mode to the compression routine. The detail description
of the algorithm is given below.

Algorithm 2: DB_Decompressor
Input:

Bm,n and n.
Output:

A list of 1k tuples t1, t2, …, tk.

Method:

This simple algorithm is the direct inverse of DB_Compressor
If R was compressed Then
1. Create the actual relation R

2. Convert each bitmap entry (q, r) with value 1 to a codeword e using rnqe  *
3. Perform codeword decoding on e using Equation 3 to obtain t R

4. If attribute encoding was carried out Then perform attribute decoding on t

5. Insert t into R

End_Algorithm DB_Decompressor

3.1. Application of NAVQ Algorithm

The algorithm was applied to compress the relation R given in [5]. The elements of RN
and the corresponding entries of the bitmap are displayed in Table I. ||R|| = 262144, n =
5 and the efficiency of the technique is 94.44%. Any value of n can be chosen, but for
the bitmap to attain high degree of storage utilization, small values are appropriate. We
recommend the cardinality of the relation as an appropriate value of n.

Table I: A Relation R

NR (q, r) NR (q, r) NR (q, r) NR (q, r)

14816 (2963, 1) 92696 (18539, 1) 154073 (30814, 3) 212130 (42426, 0)

18984 (3796, 4) 100950 (20190, 0) 158233 (31646, 3) 216867 (43373, 2)

21140 (4228, 0) 105118 (21023, 3) 162206 (32441, 1) 223316 (44663, 1)

39331 (7866, 1) 110105 (22021, 0) 173803 (34760, 3) 227484 (45496, 4)

43117 (8623, 2) 117795 (23559, 0) 179038 (35807, 3) 232022 (46404, 2)

47252 (9450, 2) 125352 (25070, 2) 182804 (36560, 4) 235363 (47072, 3)

51104 (10220, 4) 128798 (25759, 3) 186841 (37368, 1) 244658 (48931, 3)

68702 (13740, 2) 134302 (26860, 2) 190996 (38199, 1) 248414 (49682, 4)

80419 (16083, 4) 137827 (27565, 2) 204052 (40810, 2) 252190 (50438, 0)

85140 (17028, 0) 149920 (29984, 0) 207828 (41565, 3) 255449 (51089, 4)
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3.2. Data Structure and Operations

We now consider how access mechanisms are constructed on coded tuples and how the
tuples can be retrieved and modified. The focus is to give an idea of how the method can be
integrated with standard access and retrieval mechanisms. We restrict attention to basic
operations rather than to general queries because all queries, simple or complex, reduce to a
set of basic tuple operations [5].

We propose a static bitmap index as a suitable data structure for efficient implementation of
the algorithms. Dynamic bitmap index is a special kind of index structure consisting in
arrays of bits. Each bitmap represents one of the values in the indexed column and the bit
position in the array corresponds to the row position in the table [11]. Bitmap indexes are
most desirable for low cardinality field relations, systems with low concurrency, few
updates and searches. They are frequently used in data warehouses since all of these
conditions are found there [11]. A bitmap structure occupies much less space than a
correspondent B-tree index [12, 13], an alternative structure that can be used instead of the
bitmap. The primary key will then be the q values, which can be made small by choosing n
to be large. However, the overhead incur by the q values and pointers to the next node will
jeopardize the essence of compression and so bitmap is the most suitable structure for the
application since these overheads are avoided.

Static bitmap supports high concurrency, many updates and frequent searches. The structure
consisting in arrays of bits, but each array represents a stratum of tuples with common
features and not values in the index column. A static bitmap is different from other cached
(or pre-computed) access structures in the sense that it does not hold information about
relations, but a one–to–one correspondence exists between it and the original relation. The
great advantage of static bitmap index is that it allows the database system to avoid direct
reading from or writing to the relation. The information needed to answer the query is not
taken from the relation and thus in this context, it is related to materialized views [14].

We illustrate the two structures by a concrete example using the Sell relation [15] shown in

Table II. The dynamic bitmap indexes and static bitmap index for this relation are

respectively given by Tables III and IV.

Table II: Sell Relation

Company Product Country

IBM PC France

IBM PC Italy

IBM PC UK

IBM Mainframe France

IBM Mainframe Italy

IBM Mainframe UK

DEC PC France

DEC PC Spain
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DEC PC Ireland

DEC Mini France

DEC Mini Spain

DEC Mini Ireland

ICL Mainframe Italy

ICL Mainframe France

… … …

Table III: Dynamic Bitmap Indexes

(a) Index Company (b) Index Product (c) Index Country

IBM DEC ICL PC MA MI FR IT UK SP IR

1 0 0 1 0 0 1 0 0 0 0

1 0 0 1 0 0 0 1 0 0 0

1 0 0 1 0 0 0 0 1 0 0

1 0 0 0 1 0 1 0 0 0 0

1 0 0 0 1 0 0 1 0 0 0

1 0 0 0 1 0 0 0 1 0 0

0 1 0 1 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0

0 1 0 1 0 0 0 0 0 0 1

0 1 0 0 0 1 1 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 0 0 0

0 0 1 0 1 0 1 0 0 0 0
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Table IV: Static Bitmap Index

r0 r1 r2

q0 1 1 1

q1 0 0 1

q2 1 1 0

q3 0 0 0

q4 0 0 0

q5 1 0 0

q6 1 1 0

q7 0 0 0

q8 0 1 0

q9 0 1 1

q10 0 0 0

q11 0 0 1

q12 1 0 0

q13 0 0 0

q14 0 0 0

3.3. Access method

A static bitmap index structure is constructed using the data in Table (I). Suppose a query
wishes to locate the tuple <2, 1, 3, 38, 30>, the query only needs to check if the location
given by (32441, 1) for this tuple in the bitmap has a bit value one. The value of one is an
indication that the tuple is present in the relation while zero means it does not exist.

3.4. Tuple insertion, deletion and modification

Tuple insertions and deletions are supported in the compressed database as follows.
Suppose we wish to insert the tuple <2, 3, 1, 39, 24>. The codeword for the tuple is 186840
and the tuple is stored as 1 in location (37386, 0) in the bitmap structure. For tuple deletion
we simply assign bit value 0 to this location. Tuple modification is simply a combination of
tuple insertion and deletion. Conclusively, standard database operations remain the same
even when the database is NAVQ coded.
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4. Evaluation of the Techniques

The performance of a compression technique can be measured in terms of (a) compression
ratio, (b) compression and decompression time overhead and (c) query response time. We
concentrate on the first factor in this paper since our access structure provides efficient
access mechanism.

The efficiency of a compression technique operating on a relation R with k tuples is
usually defined in terms of two parameters D and C respectively denoting the sizes of the
relation before and after compression. The ratio is defined by [5]:

D
C

1
(7)

Equation (7) suggests that positive efficiency is not always guaranteed as may take on
negative values depending on whether the relation is compressible or not. If C > D, negative
efficiency occurs and the database is said to be incompressible. A positive efficiency
implies the technique compresses well according to the largeness of . Small positive value
of signifies poor compression and zero value shows that compression is not achieved by
the technique.

The efficiencies of two compression techniques can also be compared using Equation (7). In
this case C and D are respectively the sizes of the compressed relation when techniques 1
and 2 are applied. The value of being zero implies that both techniques have the same
efficiencies, small value of is an indication that the second technique performs better than
the first and large value of means the first technique compresses better than the second.
We further discriminate between two techniques with nearly the same compression
efficiency using other characteristics such as compression throughput, simplicity and
efficiency of the algorithms. In most cases, a lightweight scheme is preferable to a
heavyweight scheme.

4.1 Compression efficiency of AVQ

The efficiency of AVQ is affected by two factors compression overhead per tuple and tuple
spacing [5]. The compression overhead per tuple is the size of the count field used to
indicate the number of leading zero components of a tuple. Usually, a fixed-size field of size
bits is used to encode this count in order to avoid making the scheme overly complex. For
n attribute domains, the number of leading zero components in any difference tuple is larger

than zero, but less than n. Thus, the number of bits required for the field is  n2log . If
relation R has k tuples, the total compression overhead is given by (k-1), since k tuples
yield k-1 differences.

The spacing between two tuples ji tt  with respect to is measured by a function

)1,0[: RR defined as:
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 ))()((log),( 2 ijji tttt   (8)

The quantity ),( ji tt measures the number of bits required to represent the numerical

difference between tuples it and jt . The further apart the tuples are, the larger is the
difference. The total space requirement in bits for the k-1 tuple differences and fixed
compression overhead per tuple is:
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4.2. Compression efficiency of NAVQ

The efficiency of NAVQ can be determined ahead of compression and it is affected by two
factors namely the norm of R space and the overhead of storing the parameter n, which
corresponds to column size of the bitmap. Since every tuple is mapped to a bit value, tuple
size is just one bit. This follows that ||R|| bits are required for storing a database relation
with a maximum of ||R|| tuples. If n is chosen to correspond to the cardinality of R, then the
efficiency * of the method assuming a low size dictionary was used for attribute encoding,
is given by:

 )(log
||||

1
2 tk

R








10)

It can easily be shown that NAVQ gives higher compression ratio than AVQ whenever the
load factor of the relation (i.e. the ratio of number of records to the size of the relation) is
high. The question of which of the two schemes gives a higher compression rate can be
solved as follows. If for a given k, the load factor satisfies condition (11) then NAVQ
gives a higher compression rate than AVQ, otherwise the reverse is the truth. Even if the
compression rate of AVQ is higher (for low tuples in relation), NAVQ has the advantage of
providing random access to individual tuples in the relation.
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5. Conclusion

This paper presented a new compression algorithm that is based on AVQ and demonstrates
its effectiveness on relational database, which exhibits low to medium cardinality fields and
numeric fields. The algorithm supports standard database operations, permits very fast
random access and atomic decompression of tuples in large collection of data with low
decompression cost.

In comparison to a novel AVQ, our technique hopefully yields a higher compression ratio
for large tuples. However, in general, the technique has the disadvantage that it compresses
only low cardinality field database relations. We hope to develop a hybrid version of this
algorithm to compress databases containing generic-purpose data, such as images, sound
and text. We also intend to extend the technique for mining association rules in compressed
databases.
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