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Abstract

The paper presents the study of momentum and heat transfer characteristics in a visco-elastic boundary layer fluid flow over
an exponentially stretching continuous sheet with non-uniform heat source. The flow is generated solely by the application of
two equal and opposite forces along the x-axis such that stretching of the boundary surface is of exponential order in x and
influenced by uniform magnetic field applied vertically. The non-linear boundary layer equation for momentum is converted
into ordinary differential equation by means of similarity transformation. Approximate analytical similarity solutions is
obtained for the dimensionless stream function and velocity distribution function after transforming the boundary layer
equation into Riccati type and solving it sequentially. Heat transfer equation is then solved using Runge-Kutta fourth order
method. The accuracy of the analytical solutions is also verified by comparing the solutions obtained to those in literature
when Hartmann number is zero. The effects of various physical parameters on velocity, skin friction, temperature and
Nusselt number profiles are presented graphically.

Key words: Exponential Stretching sheet, Prandtl number, Non-uniform heat source/sink, Similarity Solution,
visco- elastic fluid, boundary layer flow, skin-friction.

1. Introduction
Momentum and heat transfer in a visco-elastic boundary layer flow over a stretching sheet have been studied
extensively in the recent past because of its ever increasing usage in polymer processing industry, in particular in
manufacturing process of artificial film and artificial fibres in some applications of dilute polymer. The transport
of momentum heat and mass in laminar boundary layers on the moving inextensible stretching surfaces has
considerable practical relevance. For example, in electrochemistry (Chin (1975), Gorla (1978)), polymer
processing (Giffth (1964), Erickson (1966)) and in fibre industries.
In view of increasing importance of non-Newtonian flows, Rajgopal et al (1984), examined a special class of
Visco-elastic fluids known as second order fluids. Subhas and Siddappa(1986) studied the flow of Visco-elastic
fluids of the type Walter’s liquid B past a stretching sheet. Since the Walter’s liquid B is a fluid that has a short
memory, they arrived at the some non-linear equation as that can be derived with the boundary layer
approximation.
Subhas (2002) studied visco-elastic fluid flow and heat transfer over a stretching sheet with variable viscosity.
All these studies deals with the studies concerning non-Newtonian flows and heat transfer in the absence of
magnetic fields, but present years we find several industrial applications such as polymer technology and
metallurgy (Chakrabarti and Gupta  (1979)) where the magnetic field is applied in the visco-elastic fluid flow.
Andersson (1992) investigated the flow problem of electrically
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Nomenclature
f dimensionless stream function p scalar pressure

0k elastic parameter
wu main stream velocity/free stream

1k viscoelastic parameter vu , the velocity components

l reference length yx, the coordinate axis

Re non-dimensional Reynolds number Cp specific heat
T stress tensor Q Heat source/Sink parameter

 similarity variable Greek letters

21,  the normal stress moduli  acceleration/deceleration parameter

21 AandA kinematical tensors;  dynamic viscosity

0B applied magnetic field  kinematic viscosity

M MHD parameter  Fluid density

Ec Eckert number  electrical conductivity

fc dimensionless skin-friction coefficient  Heat source/sink parameter

Pr Prandtl number

conducting visco-elastic fluid past a flat and impermeable elastic sheet. Lawrence and Rao (1992) studied the
non-uniqueness of the MHD flow of second order fluid past a stretching sheet.
A new dimension was added to this investigation by Elbashbeshy (2001) who examined the flow and heat
transfer characteristics by considering an exponentially stretching continuous surface. Subhas et al (2001), in
their paper report heat transfer in a MHD Visco-elastic fluid over a stretching surface. Kumari and Nath (2001),
studied MHD flow of Non-Newtonian fluids over continuously moving surface with a parallel free stream.
Subhas et al (2004), investigate Non-Newtonian Magneto hydrodynamic flow over a stretching surface with heat
and mass transfer.

Recently, Siddheshwar and Mahabaleshwar (2005), examined the effects of radiation and heat source
on MHD flow of a visco-elastic liquid and heat transfer over a stretching sheet. In his work Sujit (2006) obtained
first and second order similarity solution of boundary layer visco-elastic fluid flow over an exponentially
stretching sheet with uniform heat source. In 2012, Midya present the study of diffusion of reactive species
undergoing first-order chemical reaction in a boundary layer flow of an incompressible homogeneous second
order fluid over a linearly shrinking sheet in the presence of a transverse magnetic field. The study reveals that
the velocity is getting closer towards wall for increasing magnetic parameter whereas it is going away from the
wall for increasing visco-elastic parameter. It is also found that the diffusion of reactive species is considerably
reduced with increasing values of Schmidt number, magnetic and reaction rate parameter whereas it is increased
for enhanced values of visco-elastic parameter. Negative concentration is observed in some cases which may not
have real world applications.

In reality, most of the fluids considered in industrial applications are more non-Newtonian in nature,
especially of visco-elastic type than viscous type. Motivated by all these studies we intend to study the visco-
elastic fluid flow and heat transfer over stretching sheet in the presence of uniform magnetic field in the
boundary layer region. Since for MHD flows, the effect of internal heat generation is important and hence, it is
taken into consideration, and combined effect of visco-elasticity, magnetic field and Reynolds number on the
skin friction coefficient are considered.

2. Formulation of the problem
2.1. Preliminaries
The constitutive equation of an incompressible second order fluid is given by

2
12211 AAApIT   (2.1)

Kinematical tensors 1A and 2A are defined by
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Equation (2.1) was derived by Coleman and Noll (1960) using the postulates of gradually fading memory. Using

some experimental data verification Fosdick and Rajagopal (1979) gave the range of values of  , 1 and 2 as

0,0,0 211   .  (2.3)

Making use of Eq.(2.1) Beard and Walters (1964) derived the steady state two-dimensional boundary layer
equation for a visco-elastic fluid flow in the form
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This equation has been derived with the assumption that the normal stress is of the same order of magnitude as
that of the shear stress, in addition to the usual boundary layer approximations.

2.2. Flow governing equations

In formulating the problem we consider the following assumption.

(i) The boundary sheet is assumed to be moving axially with a velocity of exponential order in the axial
direction and generating the boundary layer type of flow.

(ii) A steady two-dimensional laminar flow of an incompressible, electrically conducting visco-elastic
liquid (Walters’ liquid B model) due to an exponentially stretching sheet is considered.

Figure 1: Boundary layer over an impermeable exponentially stretching sheet.

The sheet lies in the plane y = 0 with the flow being confined to y > 0. The coordinate x is being taken along the
stretching sheet and y is normal to the surfaced, two equal and opposite forces are applied along the x-axis, so
that the sheet is stretched, keeping the origin fixed. This flow obeys the rheological equation of state derived by
Beard and Walters (1964).For ease of analysis, we assume that dissipation due to elastic stresses is negligible. It
is also assumed that boundary layer approximations can be used to simplify the basic equations governing the
transport of momentum and heat. Further, this flow exposed under the influence of uniform transverse magnetic
field. The set of basic equations, together with the continuity equation, then become:
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where all parameters have their usual meanings. The appropriate boundary conditions for this purpose are:
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where A is a positive parameter.
Assuming that material properties appearing in the above equation are constant, the momentum

equation can be solved regardless of the energy equation.

3. Solution of the boundary layer equations
At this stage we try to find a suitable similarity variable,  , such that the problem can be reduced to a set of

ODEs instead of PDEs. And it turns out that the following similarity variable can meet our purpose:
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Using this similarity variable, the stream function ),( yx and the temperature field )(yT  can be made

dimensionless as f  and   respectively:
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Assuming the flow to be two-dimensional, the velocity components can be related to the stream unction as:
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Substituting these dimensionless parameters into the governing equations (2.1) to (2.4) one would obtain:
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In terms of dimensionless parameters, the boundary conditions required to solve Equations(3.4) and (3.5) are:
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Integrating equation (3.4), we obtain
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where  0fs  .

For ,  we get
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We integrate equation (3.7) once again and apply boundary conditions (3.6). This yield
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Now, the solution procedure of the equation (3.9) may be reduced to the sequential solutions of  the Riccati-type
equations
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This iteration algorithm has to be solved by substituting suitable zero-order approximation   0f  for

 f  on the R.H.S of equation (3.9).

We assume zero-order approximation of   0f  as
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which satisfies the boundary conditions at infinity. Integrating the Eq.(3.10) and making use of boundary
condition at 0 of (3.6) we get
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Substituting all the derivatives of zero-order approximation   0f  into R.H.S of equation (3.9) and assuming
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Here the equation for first-order iteration f takes the form
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Equation (3.14) is the non-linear Riccati equation and this can be solved for
  1f  in terms of confluent

hyper-geometric Whittaker function (Abramowitz and Stegun 1964):
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The dimensionless skin-friction coefficient fc is expressed as
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Figure 2: Vertical velocity profile obtained from
zero and first order solution when 5M and

2.01 k

Figure 3: Horizontal velocity profile obtained
from zero and first order solution when

5M and 2.01 k

4. Heat Transfer
The governing boundary layer heat transport equation in the presence of space- and temperature- dependent
internal heat generation/ absorption for two-dimensional flow is

   22PrPrPr fMfEcff   (4.1)

    0,10   (4.2)

The energy equation (4.1) together with the boundary condition (4.2) is a linear second order ordinary
differential equation with variable coefficient, f(η), which is known from the solution of the flow equation (3.12)
and (3.15) and the Prandtl number Pr is assumed constant. From Figures (2) and (3) above, it is clear that both
zero and first order solutions are very close. Hence use have been made of zero order solution in solving
equation (4.1) numerically under the boundary condition (4.2) using central differences for the derivatives and
Thomas’ algorithm for the solution of the set of discritized equations. The resulting system of equations has to
be solved in the infinite domain 0 < η <∞. A finite domain in the η-direction can be used instead with η chosen
large enough to ensure that the solutions are not affected by imposing the asymptotic conditions at a finite

distance. Grid-independence studies show that the computational domain  0 can be divided into

intervals each of uniform step size 0.02. This reduces the number of points between  0 without

sacrificing accuracy. The value 10  was found to be adequate for all the ranges of parameters studied

here. Convergence is assumed when the ratio of everyone of f, f  , f  , or f  for the last 2 approximations

differed from unity by less than 510  at all values of η in  0 .

5. Results and Discussion:
In the paper we investigate the boundary layer flow and heat transfer in a visco-elastic liquid over an
exponentially stretching sheet in presence of non-uniform heat source. Similarity solution is used to obtain the
velocity distribution, which is governed by non-linear differential equation.

Figure 4: Variation of vertical velocity for
various values of M

Figure 5: Variation of vertical velocity for

various values of 1k
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Figures 4 and 6 is a graphical representation which depicts the effect of Magnetic field Parameter M on the

velocity profiles  f  and  f  respectively. It is found that the effect of Magnetic field Parameter M is to

reduce the velocity, significantly in the visco-elastic flow in comparison with the viscous flow, this is due to the
fact that increase of M signifies the increase of Lorentz force, which opposes the flow in the reverse direction.

The graphs for the non-dimensional velocity profiles  f  and  f  for different values of the visco-elastic

parameter 1k are shown in Figures 5 and 7 respectively. The analysis of the figure demonstrates that the effect

of the visco- elastic parameter 1k is to decrease velocity throughout the boundary layer flow field, which is quite

obvious.

Figure 6: Effect of the parameter M on

the horizontal velocity  f 
Figure 7: Effect of the parameter 1k on

the horizontal velocity  f 

Figure 8: Temperature distribution for
various values of Pr

Figure 9: Temperature distribution for

various values of 1k

Figure 10: Temperature distribution for
various values of M

Figure 11: Temperature distribution for
various values of 

Figures (8) and (9) is plotted for the temperature distribution for various Prandtl number and visco-elastic

parameter 1k  respectively, it is an interesting note that there is a significant enhancement of temperature in both

cases. On comparison of the curves it could be seen that there would be an increase in temperature in the flow
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region for lower values of Prandtl number, which result in increase of thermal boundary layer thickness as

Prandtl number increases. Also, increase in visco-elastic parameter 1k  brings about an increase in temperature

in the flow region
In Figure 10, we displayed the effect of M temperature distribution. On comparison of the curves, it is seen that
temperature increases in the flow region due to the application of magnetic field. Here increase of magnetic
force causes significant increase of thermal boundary layer thickness in the fluid flow. Figure 11 show the effect
of heat source/sink on the thermal boundary layer of the flow field. We observe that for heat generation
temperature distribution decreases throughout the boundary layer of the flow field as heat absorption and
increases with heat generation.

Figure 12: Skin – friction distribution for various values of Hartmann number

Table 1: Effect of Eckert number on horizontal velocity  f 

y Ec=0.1 Ec=0.3 Ec=0.5

0 1 1 1

1 0.209893 0.187764 0.165634

2 0.047997 0.039665 0.031333

3 0.012325 0.009435 0.006545

4 0.003523 0.002528 0.001533

5 0.00109 0.000747 0.000405

6 0.000354 0.000236 0.000118

7 0.000118 7.77E-05 3.71E-05

8 4E-05 2.61E-05 1.22E-05

9 1.37E-05 8.88E-06 4.08E-06

10 4.69E-06 3.04E-06 1.39E-06
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Table 1 show the effect of Eckert number on the temperature distribution. It could be seen that increase
in Eckert number brings about decrease the temperature distribution throughout the boundary layer.

The graphs of the non-dimensional skin-friction parameter fc  against visco-elastic parameter for

different values of the Hartmann number is shown in Figure 12.  The figure shows that the skin friction
parameter increases on the wall with the application of magnetic field. This is because of the magnetic
force acts as a retarding force and causes the increase of shear stress. The combined effect of visco-
elasticity and impermeability of the wall is to increase the skin friction at the wall largely. Here
additional introduction of shear stress at the wall by magnetic field, non-Newtonian nature of visco-
elastic flow and impermeability of the wall, thereby decreases the boundary layer thickness leads to
increase the skin friction of the flow.

Table 2: Effect of flow parameters on wall sear stress

Pr 1k M Nu Ec  0 Nu

0.015 0.2 2.0 0.1460 0.3 -0.3 1.7449

0.71 0.6 2.0 1.5796 0.5 -0.3 2.3233

1.0 0.2 2.0 1.9788 0.1 -5.0 2.4074

0.71 0.8 2.0 1.4568 0.1 -3.0 2.0523

0.71 0.9 2.0 1.3676 0.1 -1.0 1.5796

0.71 0.2 1.0 1.6076 0.1 0.0 1.1625

0.71 0.2 4.0 1.5443 0.1 0.1 1.2418

0.71 0.2 8.0 1.5122 0.1 0.2 2.8570

0.71 0.2 15 1.5007 0.1 0.3 0.9373

The heat transfer phenomena is usually analyzed from the numerical results of a physical parameter,
namely wall temperature gradient and the same are documented in table 2. Analyzing the table reveals

that the effect of increasing the value of Prandtl number, Eckert number and heat sink  0 is to

increase the wall temperature gradient. While visco-elastic parameter, Hartmann number and heat

source  0  reduces the Nusselt number. The results are in tune with what happens in regions

away from the sheet.

Conclusions

A mathematical problem has been formulated for the heat and mass transfer in a visco-elastic fluid
flow over an exponentially stretching impermeable sheet. In the solution procedure the non-linear
differential equation is converted into an ordinary differential equation by applying similarity
transformations. Sequential similarity solutions of the transformed momentum equation are obtained
analytically by solving the non-linear Riccati type equation. Expressions are also obtained for the

dimensionless skin-friction coefficient  fc and wall sear stress  Nu .

The important findings of the graphical analysis of the results of the present problem are as follows.
1. Increase in both heat generation and Hartmann number increase the temperature throughout

the boundary layer.

2. The effect of increasing the values of the visco-elastic parameter 1k is to increase the

temperature distribution throughout the boundary layer and decrease the Nusselt number.

3. The effect of increasing the values of the visco-elastic parameter 1k is to decrease the

velocity through out the boundary layer.
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4. The effect of increasing the values of the visco-elastic parameter 1k is to decrease the

skin-friction parameter  fc and the effect of increasing values of the hartmann number is to

increase the skin – friction coefficient  fc  and decrease the Nusselt number.
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