
Monitoring very high speed links
Gianluca Iannaccone, Christophe Diot Ian Graham Nick McKeown

Sprint ATL University of Waikato Stanford University�
gianluca,cdiot � @sprintlabs.com ian@waikato.ac.nz nickm@stanford.edu

Abstract—Our goal is to build passive monitoring equip-
ment for use at 10Gb/s (e.g. 10GE and OC-192) and above.
We already have in place an OC-48 passive monitoring sys-
tem for capturing and storing a detailed record for every
packet. But because of constraints on storage and bus band-
width this will not be feasible at 10Gb/s and above. There-
fore, taking advantage of the fact that packets can be con-
sidered as belonging to flows, our system will store per-flow
records that are created at the time of capture, and stored
alongside small per-packet records. This way storage re-
quirements can be reduced several-fold. Results indicate
that it will be possible to capture and store detailed flow in-
formation at OC-192 without losing much information com-
pared to our OC-48 packet traces.

I. INTRODUCTION

ASSIVE monitoring involves tapping the link on
which data needs to be collected, and recording to

disk either complete packets, or just packet headers and
timestamps indicating their arrival time.

In this paper we consider how a currently deployed OC-
3 and OC-48 monitoring system deployed at Sprint [1] can
be scaled to monitor OC-192 links. We will use the OC-48
system as a starting point for our discussion. In short, an
optical splitter copies all of the data on the link, which is
received by a packet capture card [2] on a PC. Timestamps
recorded by the capture card are synchronized to a GPS
signal. Packets are temporarily stored on the capture board
and then sent to the PC main memory over the PC’s PCI
bus. We believe this system to be representative of most
passive monitoring systems.

Collecting packet traces at higher link speeds is difficult
for several reasons:� PCI bus throughput is already challenged at OC-48 (as
explained in [1], the PCI bus is crossed twice for any data
transfer: once from the capture board to the main memory,
and a second time from the main memory to the hard disk).

A new bus technology needs to be used at 10 Gbps.� We currently collect several terabytes of data per day in
a POP at OC-48 speed. At OC-192, the storage capacity
must increase by a factor of four, along with the challenge
of managing such an enormous data set.� Memory access speeds do not increase as quickly as the
link speed. In fact, memory access speeds have not in-
creased much in the past 5 years and we can not rely on
technology improvements in this area for the next genera-
tion monitoring tools.� Disk array speed cannot keep up with link bandwidth.
At OC-192 speed, a packet-level trace would require a disk
bandwidth of roughly 250 Mbytes/sec (assuming 300 byte
packets and a 64 byte long packet records).

The problem is not only limited to individual links. In
the future, we hope to see the deployment of monitoring
facilities inside the routers. This would be preferable to
external monitoring for several reasons. First, if we are
interested in how long packets are queued inside a router,
it is difficult to use an external monitor. (We would need
two - one at ingress and one at egress - with precisely syn-
chronized timestamps). On the other hand, a router can
easily measure how long a packet is queued for all inter-
faces simultaneously. Second, if we are interested in the
path taken by packets, we would like to know which port
a packet entered and left the router. Again, this is diffi-
cult unless we have a precise and uptodate snapshot of the
router’s forwarding table, or unless we monitor all of the
router’s ports. Third, it is invasive to splice a link and insert
a passive monitor. It would be preferable for monitoring to
be integral with the routing equipment.

But if we wish to add monitoring equipment inside the
router, we will encounter even more problems of scalabil-
ity, in terms of data rate, storage, and processing. For ex-
ample, the aggregate data rate of backplanes are as high as
a few hundred gigabits per second today, and will exceed a
terabit per second soon. This creates enormous challenges
for processing and storage elements. Furthermore, routers
are generally built to have the highest capacity for a given
volume and power consumption. Monitoring equipment
- particularly if it includes significant storage - is bulky
and consumes a lot of power. It is difficult to see how it
will fit within the router, without compromising its perfor-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194469277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


mance. Worse still, because newer routers use switched
backplanes, rather than shared backplanes, not all packets
are seen at any single point of the backplane. As a result,
it seems unlikely that routers will include extensive mon-
itoring functions any time soon. And so in this paper, we
will focus on the development of a passive monitoring in-
frastructure that is external to the routers.

Our goal is to define a passive monitoring infrastructure
that can be deployed in the near future (OC-192 deploye-
ment has already started at most tier 1 ISPs). However this
infrastructure is deployed it will have to do some compu-
tation on-line so as to minimize the amount of data stored
locally. But the computation must be simple – at OC-192
speed (10 Gbps) a new packet arrives every 240ns on av-
erage (assuming 300-byte packets). This allows only 360
instructions per packet on the fastest processor (ignoring
the – often significant – time that it takes for the data to
enter the processor). This reduces to just 90 instructions
per packet for OC-768 (40 Gbps) links.

Thus, we define the requirements of a high speed pas-
sive monitoring infrastructure:

� The system must perform some information processing
at the time data is collected, although it’s clear we’ll have
to accept some severe limitations on what can be com-
puted.� The system must store the minimum amount of informa-
tion. Much can be achieved by data compression before
data is forwarded to disk servers for archiving. We believe
that storing data as IP flows can result in significant com-
pression.� Sampling might be required in addition to compres-
sion [4]. Further investigation is needed in this area to
identify appropriate sampling techniques to be used in con-
junction with a flow-based trace compression.

In this document, we discuss the compression ratio that
can be achieved by storing IP data as flow traces instead
of packet traces. And we discuss the feasibility of identi-
fying flows and constructing flow digests in hardware on
the capture board, at OC-192 and OC-768 rates. Hardware
design elements identified in this paper can either be ap-
plied to stand-alone hardware or to hardware embedded in
a router.

II. FROM PACKET TRACES TO FLOW TRACES

A. Flow based compression

In the current monitoring system, we store the first 44
bytes of each packet, that include the IP and transport
headers (TCP or UDP), together with a 8 byte timestamp
and with HDLC framing information (12 bytes). The fixed
size record for each packet is 64 bytes.

In the proposed solution, we will instead maintain a per-
flow record, followed by a record for each packet in the
flow. We will identify the (application) flow using the clas-
sical 5-tuple definition, i.e. source address, destination ad-
dress, source port, destination port, and protocol type.

Our goal is to store as little data as possible, without
compromising the information content of the trace. So we
must first decide what information must be kept in the flow
trace. We have identified the following information:� The parameters of the flow that are constant for all pack-
ets. These include the 5-tuple and the flow starting time.� The information that needs to be kept for each packet,
i.e. the packet arrival time (offset), packet size, IP id, ToS,
time-to-live, sequence numbers (if any) and TCP flags.

There are 2 parts to a flow record. The information
about the flow, which is common to all packets in the flow
(Figure 1):� timestamp giving the second when this flow started (32
bits);� protocol number (8 bits);� flags (8 bits), in particular we have the Last Record (LR)
flag that is used to specify if the current record is the last
record related to a given flow;� record number (16 bits), to enumerate the number of
records that constitute a single flow (see section II-C for
explanation);� source IP address (32 bits);� destination IP address (32 bits);� source port number (16 bits);� destination port number (16 bits);� initial sequence number (32 bits);� initial acknowledgement number (32 bits);

Note that the timestamp field is used as a base refer-
ence for the timestamp of each packet. This is why it has
a granularity of one second. Moreover, the shaded areas
in Figure 1 represent those field that can be removed de-
pending on the protocol (i.e. port numbers and sequence
numbers).

In summary the length of the flow record is 28 bytes for
TCP, 20 bytes for UDP and 16 bytes for other protocols.

The second part of the flow trace is made of packet
records. For each packet of the flow we add the follow-
ing information (Figure 1):� timestamp, a fixed point value with 24 fractional bits that
gives the time offset in seconds from the previous packet,
or the flow start time (32 bits);� packet length in bytes (16 bits);� packet identification (16 bits);� type of service bits (8 bits);� time-to-live (8 bits);� TCP flags such as SYN, FIN, etc. (8 bits);



24 32

Protocol Flags Record Number

Destination address

Source port Destination port

Initial Sequence number

Source address

Timestamp

Initial Acknowledgement number

0 8 16

IdentificationTotal length

TCP Flags

Timestamp

Ack number offset

Type of service Time To Live

Sequence number offset

Flags

Fig. 1. Flow and packet records.

� packet record flags, in particular we have the Last Packet
(LP) flag that is used to identifiy the last packet belonging
to a given flow record (8 bits);� sequence number offset from the previous packet or the
initial sequence number of the flow (16 bits, signed inte-
ger);� acknowledgment sequence number offset from the pre-
vious packet or the initial acknowledgement number of the
flow (16 bits, signed integer);

In order to investigate the compression ratio achievable
with this technique we have compressed some of the OC-3
packet traces collected in [1] using the above flow-based
record. Depending on the flow characteristics, a flow trace
is between 3 and 4 times shorter than the equivalent packet
trace1. The compression ratio depends on the number of
packets found on an OC-3 link, on the number of flows
and on the flow size distribution2 . Additional measure-
ments carried out on traces from an OC-48 backbone link
showed an average compression of similar magnitude for
more than 20 GBytes of trace data.

Note that the current state of the art technology allows
us to collect packet traces at full rate OC-48 [2]. A com-
pression rate of four would allow us to monitor OC-192
links with the same technology, or for OC-768 links with
the next generation bus and disk technology.

B. Flow termination

A major issue is to decide when a flow has terminated.
Some flows explicitly indicate that they have completed,
for example the FIN or RST segments sent by TCP flows.
But some flows give no explicit indication; e.g. UDP

�

We have run our compression tool on 5 different 24 hour traces and
obtained the following compression rates: 3.76, 3.75, 4.02, 3.63, 3.20

�

Details about these data can be found on the Sprint IP monitoring
web site: www.sprintlabs.com/Department/IP-Interworking/Monitor

100 200 300 400 500 600
0

2

4

6

8

10

12

Flow Timeout (sec)

N
um

be
r 

of
 fl

ow
s 

(m
ill

io
n)

Trace 1
Trace 2
Trace 3

Fig. 2. Evaluation of the flow termination time-out.

flows, or TCP flows for which which no FIN or RST is
sent (perhaps because of a poor implmentation, because
the trace finished before the flow completed, or because
of a network or host failure). And even if there is a end
of flow packet, retransmitted packets can be received af-
ter the flow appears to have finished. In order to achieve
higher compression ratios, data related to a flow should be
archived on the host PC only when the flow has terminated.

In our proposed scheme, we have considered using ei-
ther a static inactivity timeout to determine that a flow has
finished [5], or an adaptive timeout based on the char-
acteristics of the connections that are collected [6]. We
have decided to follow the approach proposed in [5] with a
static timeout value. To determine what this timeout value
should be, we have processed our packet traces off-line
and counted the number of flows with different time-out
values. The result is shown in Figure 2. Five traces were
processed. The figure shows the number of flows over a
2 hours period for 3 of these traces. As expected, as the
timeout decreases the total number of flows we count in
the trace increases. This is due to the fact that with a short
timeout we may count the same flow more than once.

From Figure 2 we can see that a timeout value in the
range of 60-120 seconds gives a reasonable estimate of the
number of flows. However with a timeout value of 60 sec-
onds, the monitoring system must keep on-line state for a
number of flows in the range of 60 to 100 thousand.

Therefore, we have a trade-off between the accuracy of
the flow termination timeout and the amount of on-line
state to maintain in the onboard memory. A short timeout
value would reduce the compression ratio causing some
flows to be spread over different flow records but at the
same time it would also reduce the amount of onboard
memory required (e.g. with a 10 seconds timeout the cap-
ture board would need to keep state for 10 to 25 thousand



0 1000 2000 3000 4000 5000 6000 7000
0

50

100

150

200

250

300

350

400

450

500

Time (sec)

M
em

or
y 

re
qu

ire
d 

(M
by

te
s)

w/ fragmentation
w/out fragmentation

Fig. 3. Evaluation of the memory size required to store flow
traces (with the flow termination timeout of 60s).

flows only).
Note that the value of the timeout is not crucial for the

trace collection. A short timeout will not cause the system
to lose any information. As flow traces are archived, it is
possible to post-process the traces to concatenate flows if
they have been incorrectly stored in two or more separate
flow records.

Further investigation is also needed to account for spe-
cific pathological traffic patterns (e.g. SYN attacks, port
scans) that can make the number of flows to increase dra-
matically.

C. Memory requirements

We have designed a program that computes the amount
of on-board memory that is necessary to record all flows
until completion and to transfer this record once the flow
is finished. We used a 60 second timeout to define flow ter-
mination. The plain curve on Figure 3 shows the amount
of memory for one of the five traces we have processed.

To explain this result, we need to look at the distribu-
tion of flow size in packets on the analyzed trace (Figure
4). The peaks can be explained by the presence on the link
of very long flows carrying very large numbers of pack-
ets. Such flows require a large amount of memory before
they terminate and before the recorded information can be
moved to main memory. This behavior explains the sud-
den decrease in memory requirements at time 2000 and
4000 in Figure 3 (the decrease corresponds to the memory
freed by the transfer of the large flow record to the PC).

Keeping full flow records on the capture board is con-
sequently a bad idea because (i) it would require a huge
amount of fast access memory on the data capture board
and (ii) it would make the traffic on the bus between the
capture board and the main memory be very bursty, even-

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Flow size (packets)

E
m

pi
ric

al
 p

ro
ba

bi
lit

y 
de

ns
ity

 fu
nc

tio
n

Fig. 4. Flow size distribution in packets (log-log scale).

tually creating congestions.
With no extra cost, we have implemented a flow record

fragmentation technique that allows to store flow informa-
tion over multiple records and works as follows:

� The sum of a flow record and of the relative packet
records cannot exceed a given amount of memory (e.g.
2Kbytes);� if when adding a packet record to a flow, the memory
limit is exceeded, all recorded information are moved to
the main memory and the field “record number” is in-
creased;� the on-board memory now just contains the flow record
with no packets;� when the flow termination timeout expires the entire
record is stored to disk with the Last Record (LR) flag set;

The empirical results show that with multiple records,
about 25Mbytes of on board memory is required for an
OC-3 monitor with a flow termination timeout of 60s
(dashed line in Figure 3). The amount of memory is
expected to scale linearly with link speed, thus about
100Mbytes should be needed at OC-12, 400Mbytes at OC-
48, and 1.2Gbytes at OC-192.

Note that the bus bandwidth between the capture board
and the main memory is not a problem given the compres-
sion ratio we can achieve. The use of multiple records also
allows a non bursty use of the system bus.

III. HARDWARE ARCHITECTURE DESIGN

Based on the requirements described in Section II, we
are prototyping an OC-192 monitor as an extension of the
OC-48 monitor better known as the DAG 4 [3]. The above
results show that collecting exhaustive packet level data is
feasible at OC-192 with the current DAG 4 architecture
given that:

� the proposed flow record is used to store packet level



information;� 66 MHz/64bit PCI bus is used for data transfer between
the board memory and the PC main memory;� at least 1 Gbyte of fast access memory can be made
available on the board;� the use of dedicated hardware for the computing tasks
involved in flow encoding.

Recording a flow trace would require the following steps
to be done at packet capture time:� Step 1: capture the packet and process the framing in-
formation.� Step 2: add the 8-byte timestamp and extract the packet
fields that will be added to the flow record.� Step 3: classify the packet, finding what flow it belongs
to.� Step 4: update the flow record if it exists, otherwise cre-
ate a new one.� Step 5: when the flow terminates, send the flow record
to a host PC along with the associated packet record.

These steps can be easily pipelined and realized with
dedicated hardware (e.g. FPGA) so that each step can be
done in less than the time between the arrival of two mini-
mum length IP packets at OC-192 speed.

Packet classification is certainly the most expensive and
complex step. It requires a one-to-one mapping between
a fixed set of packet fields (the 5-tuple made of proto-
col number and source and destination addresses and port
numbers) and the memory portion that contains the flow
record. This mapping can be implemented using a hash
function and a flow table that contains the addresses of the
flow records. A second mechanism (such as a second hash
function or a lookup trie) must be also included to solve
collision events of the first hashing.

Step 4 instead would require to allocate a fixed amount
of memory per flow record. Note that with the use of mul-
tiple records the maximum size of a flow record is defined
before the trace collection. Therefore, the processor needs
to access to the memory address returned by Step 3 and
add a packet record (and a new flow record, if the flow is a
new one).

Further investigation is needed to evaluate the use of
cache memory to store the most recently used flow records
and speed up memory accesses. However, it is important
to note that for the purposes of trace collection it is also
possible to buffer received packets, as long as they have
already been timestamped.

IV. CONCLUSION

We have shown that monitoring high speed links is fea-
sible with current technologies given that we record packet
traces in a flow based format. The current technology can

scale up to 10Gbps link speed without losing much infor-
mation on IP packets carried by the link. The same tech-
nology could be integrated in routers to provide monitor-
ing facilities on each line card without affecting the router
performance.

Providing monitoring facilities on the router backplane,
or at speeds higher than 10Gbps, would instead require
sampling techniques. Sampling can be done at the packet
level, resulting in storing only part of the flow information,
or at the flow level, capturing only packets that belong to a
subset of the flows.

The main limitation we forsee for very high speed mon-
itoring systems is the memory access speed. As explained
earlier, we can not expect the memory access rate to im-
prove at the same speed than processor capacity. Conse-
quently, at backplane throughput, it will be impossible to
store information on a per packet basis and either sampling
or on-the-fly processing of packet data will be mandatory.

We believe that it is important to work now on moni-
toring techniques at hundreds of gigabit per second or at
terabit per second. By the time these links will become
available on operational network, we expect measurement
to be an operation critical technology.

We have already described areas where further inves-
tigation is needed for example to evaluate the economic
feasibility of the proposed monitoring equipment. More-
over, pathological traffic patterns have to be identified in
order to design additional mechanisms to guarantee that
the capture board can operate in critical scenarios such as
SYN flood attacks, port scans or high degree of IP packet
fragmentation.

REFERENCES

[1] C. Fraleigh, C. Diot, B. Lyles, S. Moon, P. Owezarski, D. Papa-
giannaki, F. Tobagi, Design and Deployment of a Passive Moni-
toring Infrastructure, Passive and Active Measurement Workshop,
Amsterdam, April 2001.

[2] J. Cleary, S. Donnelly, I. Graham, A. McGregor, M. Pearson, De-
sign Principles for Accurate Passive measurement, Passive and
Active Measurement Workshop, Hamilton (New Zealand), April
2000.

[3] The DAG project, http://dag.cs.waikato.ac.nz.
[4] K.C. Claffy, G.C. Polyzos and H.W. Braun, Application of Sam-

pling Methodologies to Network Traffic Characterization, ACM
Sigcomm 1993

[5] K.C. Claffy, H.W. Braun, G.C. Polyzos, A parameterizable
methodology for Internet traffic flow profiling, IEEE JSAC 1997

[6] B. Ryu, D. Cheney, H. Braun, Internet Flow Characterization:
Adaptive Timeout Strategy and Statistical Modeling, Passive and
Active Measurement Workshop, Amsterdam, April 2001.


