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Abstract We discuss the consequences of possible sign
changes of the Q-function which measures the transfer of
energy between dark energy and dark matter. We investi-
gate this scenario from a holographic perspective by mod-
eling dark energy by a linear parametrization and CPL-
parametrization of the equation of state (ω). By imposing
the strong constraint of the second law of thermodynam-
ics, we show that the change of sign for Q, due to the cos-
mic evolution, imply changes in the temperatures of dark
energy and dark matter. We also discuss the phase transi-
tions, in the past and future, experienced by dark energy and
dark matter (or, equivalently, the sign changes of their heat
capacities).

1 Introduction

Certain observational evidence seems to indicate that dark
energy and dark matter, considered as dominant components
of the cosmic fluid, can interact [1–4]. Perhaps an interac-
tion between dynamical vacuum energy and matter is also
possible [5] or a scenario where a particle creation mecha-
nism which can lead to cosmic acceleration [6]. It appears
unnatural to think that cosmic fluids coexist and do not inter-
act with each other as is usual in the standard �CDM model
(both components evolve independently and satisfy the usual
energy conservation equations). As is well known, �CDM,
despite its success, is theoretically unappealing because of
several well-known shortcomings. Motivated by that, new
challenges emerge [7] as, for instance, to understand the
nature of the dark energy and the nature of the phantom dark
energy (not ruled out by observations), an interesting issue
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which seems very difficult to understand within the �CDM
framework.

On the other hand, dark energy and dark matter, both seen
as ordinary fluids (perfect fluids), lead to a consistent and sim-
ple way to describe them. In other words, here, dark energy
and dark matter are described under the hypothesis of per-
fect fluids and in the literature we find nothing against this
assumption. In any case, it is an interesting approach if we
are thinking that a perfect fluid is something that we know
how to handle.

Components with interaction lead to a new perspective
for describing/visualizing the cosmic evolution. There is a
rich literature on the subject and for describing that interac-
tion, for instance, various Ansatzes for Q (defined below) are
used. This is a first approximation to describe the interaction
required by the observational data, but there is no formalism
that allows us to obtain Q from first principles.

In this work, we analyze thermodynamical aspects from
the aforementioned interaction in the framework of two inter-
acting fluids. As already said, we will use the holographic
principle for modeling the dark energy where the emphasis
will appear from the temperature, during the cosmic evolu-
tion, from each fluid (dark energy and dark matter. Phase
transitions (seen as sign changes in the heat capacity) will
also be discussed. 8πG = c = 1 units will be used.

The organization of the paper is as follows: in Sect. 2
we present a brief description of two non-interacting fluids
and we revise the behavior of its temperatures through the
cosmic evolution. In Sect. 3 we incorporate interaction and
we revise the involved thermodynamics bearing in mind the
second law. In Sect. 4 we discuss the interaction under holo-
graphic considerations and we show the presence of phase
transitions (sign changes in its heat capacities) experienced
by both fluids during the evolution. In Sect. 5, we discuss the
behavior of the Hubble parameter and cosmological evolu-
tion model.
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Finally, Sect. 6 is devoted to our conclusions. We have
added an appendix to show explicitly the sign changes in the
heat capacities of the interacting fluids.

2 Non-interacting fluids and thermodynamics

We consider, in the framework of General Relativity (GR),
the non-interacting flat-FLRW scheme between two compo-
nents,

3H2 = ρde + ρdm (1)

and

ρ̇de + 3H(1 + ωde)ρde = 0,

ρ̇dm + 3H(1 + ωdm)ρdm = 0, (2)

where ρde denotes the dark energy density, ρdm denotes the
dark matter density, H is the Hubble parameter, and the
dot denotes derivative with respect to the cosmic time. We
assume that both components can be amenable to study by
using a description under the rigorous scope of the ther-
modynamic laws. Then, by using the equation T dS =
d (ρV ) + p dV , for a generic fluid, where T is the tem-
perature, S the entropy, ρ the energy density, p its pressure,
and V the physical volume, besides the integrability condi-
tion ∂2S/∂T ∂V = ∂2S/∂V ∂T , we can obtain the following
equation for the temperature during the cosmic evolution [8–
10]:

dT

T
= −dV

V

(
∂p

∂ρ

)
V

= −3Hdt

(
∂p

∂ρ

)
a
,

→ T (z) = T (0) exp

(
3
∫

dz

1 + z
ω (z)

)
, (3)

where we have used p = ωρ, 1 + z = a0/a with z being
the redshift parameter and a the cosmic scale factor with
a0 = a(0). Since V = �0a3 (for a spatially flat section
�0 = 4π/3, see [11–13]), we obtain dV/V = 3da/a =
3Hdt . By considering for dark energy ωde (z) ≈ −1 and for
non-relativistic dark matter pdm = nTdm, n being the number
density and ρdm = nm+3nT/2 with m the rest mass, where
Tdm � m [8], we can obtain Tdm (z) ∼ (1 + z)2 after using
(3). So,

Tde(z) = Tde(0)(1 + z)−3, Tdm(z) = Tdm(0)(1 + z)2, (4)

i.e., Tde (z) grows and Tdm (z) decreases when z goes to the
future. This fact appears to be unusual if we want to think in
energy transference from dark energy to dark matter, at least
from some ze in the past. At equilibrium, we have

Tde (ze) = Tdm (ze) ,

�⇒ ze = [Tde (0) /Tdm (0)]1/5 − 1,

→
{

zeεpast �⇒ Tde (0) /Tdm (0) > 1,

zeεfuture �⇒ Tde (0) /Tdm (0) < 1.
(5)

Nowadays we would expect that Tde (0) > Tdm (0) (see
below) and in this case ze belongs to the past. But the problem
arises when ze is in the future. If we do not have equilibrium
through the evolution, we can think in two options: only one
sign of Q and then only one option for the inequality between
the temperatures, Tde (z) > Tdm (z) or Tde (z) < Tdm (z).
Nevertheless, there are holographic arguments in order to
justify, at least on a theoretical level, both options for the
sign of Q [14]. As a second option we can imagine that even
when there are sign changes in Q, the amount of energy
transferred is not enough for generating changes in the rela-
tion between Tde (z) and Tdm (z). But the thermodynamical
constraint given by the second law rejects the latter option.

By following Ref. [8], we ascribe a temperature (Gibbs
integrability condition) to the dark energy in the form Tde ∼
ρ

ω/(ω+1)
de , and we see that if −1 < ω < 0, Tde increases

when ρde decreases and vice versa. If we assume that the
given relationship between temperature and energy density
is valid for ω < −1 (phantom dark energy, not ruled out
by the observational data), Tde and ρde, both increase as time
evolves and dark energy increasing in the future appears to
be not only a conjecture.

On the other hand, if we write for dark matter Tdm ∼
ρ

ω/(ω+1)
dm , we can see that ω = 0 (dust) leads to Tdm = const

and if this were the case, we would have, from a thermody-
namical point of view, a fluid without the ability of interacting
with others. Strictly speaking, the limiting case of dust has
null temperature and then we have the same, that is, a fluid
without the ability of interacting with others. Roughly speak-
ing, when we consider a pressureless fluid we are thinking
in p ≈ 0, i.e., non-null pressure or ω ≈ 0 and also non-null
temperature for it. In this case, whether we can have a fluid
capable of interacting with others.

In the next sections we introduce the interaction and dis-
cuss its consequences for the evolution of the temperatures.

3 Interacting fluids and thermodynamics

By using the interacting scheme
ρ̇de + 3H (1 + ωde) ρde = −Q,

ρ̇dm + 3H (1 + ωdm) ρdm = Q, (6)

or, equivalently

ρ̇de + 3H
(

1 + ωeff
de

)
ρde = 0,

ρ̇dm + 3H
(

1 + ω
e f f
dm

)
ρdm = 0, (7)
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where

ωeff
de = ωde + Q

3Hρde
and ωeff

dm = ωdm − Q

3Hρdm
, (8)

so that according to (3) the temperatures are given, respec-
tively, by

Tde (z) ∼ exp

(
3
∫

dz

1 + z
ωeff

de

)
= exp

(
3
∫

dz

1 + z
ωde

)

× exp

(
3
∫

dz

1 + z

Q

Hρde

)
(9)

and

Tdm (z) ∼ exp

(
3
∫

dz

1 + z
ωeff

dm

)
= exp

(
3
∫

dz

1 + z
ωdm

)

× exp

(
−3

∫
dz

1 + z

Q

Hρdm

)
. (10)

Here we have considered a generic ωdm for dark matter with-
out any special commitment with it. In Sect. 4 we will use
ωdm = 0 (dust).

On the other hand, in the presence of interaction, the
entropy production associated to the interaction is [15]

∀t, Ṡde (t) + Ṡdm (t) =
(

Q (t)

Tdm (t)
+ (−Q (t))

Tde (t)

)
� 0,

(11)

or, by using the redshift parameter

∀z, − (1 + z) H (z)
d

dz
[Sde (z) + Sdm (z)]

=
(

1

Tdm (z)
− 1

Tde (z)

)
Q (z) � 0, (12)

i.e. Tde (z) > Tdm (z) at late times �⇒ Q (z) > 0. However,
at early times Tde (z) < Tdm (z) (a reasonable assumption),
meaning that we should have Q (z) < 0 in order to satisfy
the second law. As was said before, it may seem strange
that today Tde (z) grows with z if dark energy is transferring
energy to dark matter (Q (z) > 0) at least from some ze (5).
Can we have a signal of a negative heat capacity for dark
energy? As we will see in the next section, the incorpora-
tion of interaction explicitly shows this fact. Moreover, the
dark matter shows also phase transitions, in the past and in
the future. Sign changes of Q (one in the past and another
in the future) can be visualized in Ref. [14] where a holo-
graphic modeling for the dark energy was used with the lin-
ear parametrization ωde (z) = ωde (0) + σ z, and σ = const
[16].

We end this section by making a consistency check. By
using the usual concepts of thermodynamics, we deduce the
equation for the evolution of the temperature for a generic
fluid denoted by ρ. We start by setting ρ = ρ (V, T ) and
p = p (V, T ), a reasonable setup. So,

ρ̇ = aH

(
∂ρ

∂a

)
T

+
(

∂ρ

∂T

)
a
Ṫ , (13)

and V = (4π/3) a3 so that V̇ = 3V H and (∂ρ/∂V )T =
(a/3V ) (∂ρ/∂a)T . On the other hand, from the second law
with the integrability condition given before, it is straightfor-
ward to obtain the expression

(
∂ρ

∂a

)
T

= 3T

a

[(
∂p

∂T

)
a

− p + ρ

T

]
. (14)

By replacing this last expression in (13) and by using the
non-conservation equation

ρ̇ = Q f − 3H (ρ + p) , (15)

where Q f = −Q for dark energy and Q f = Q for dark
matter, we can obtain

Ṫ

T
= −3H

(
∂p

∂ρ

)
a

+
(

∂ρ

∂T

)−1

a

Q f

T
, (16)

and by using the redshift parameter, we write the last equation
in the form

dT

T
= dz

1 + z

[
3

(
∂p

∂ρ

)
z
− Q f

H

(
∂ρ

∂T

)−1

z

1

T

]
, (17)

so that, for dark energy,

dTde

Tde
= dz

1 + z

[
3

(
∂pde

∂ρde

)
z
+ Q

H

(
∂ρde

∂Tde

)−1

z

1

Tde

]
, (18)

and for dark matter

dTdm

Tdm
= dz

1 + z

[
3

(
∂pdm

∂ρdm

)
z
− Q

H

(
∂ρdm

∂Tdm

)−1

z

1

Tdm

]
.

(19)

Now, we compare the expressions given in (9) and (18), i.e.,

dTde

Tde
= dz

1 + z

[
3ωde (z) + Q

H

1

ρde

]
(20)

and

dTde

Tde
= dz

1 + z

[
3ωde (z) + Q

H

(
∂ρde

∂Tde

)−1

z

1

Tde

]
, (21)

where (∂pde/∂ρde)z = ωde (z). The consistency between
(20) and (21) indicates that

ρde =
(

∂ρde

∂Tde

)
z
Tde, (22)
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and the same occurs if we compare (10) and (19)

ρdm =
(

∂ρdm

∂Tdm

)
z
Tdm, (23)

as expected (see [17]).

4 Sign change of Q and holography

One approach for treating the Q-function is by considering
the following Ansatz: Q = 3H (λ1ρde + λ2ρdm), where λ1

and λ2 are both constant parameters to be adjusted by obser-
vations. According to observational settings, the two param-
eters have equal sign and so there is no sign change in Q
[18,19].

The second approach, which we will use from now on, is
based on a holographic model

ρde (z) = 3H2 (z)

[
α − β

2
(1 + z)

d ln H2 (z)

dz

]
, (24)

where α and β are both positive parameters which are well
confined by the observational data: β < α < 1 [14,20,21].

The infrared cut-off given for ρde [20,21] can be under-
stood as a generalization of the model ρde ∼ −R [22], where
R is the Ricci scalar given by R = −6

(
2H2 + Ḣ + k/a2

)
or

as an extension of the holographic model ρde = 3αH2 pro-
posed by Li [23]. In the last case, the key idea is to use the
holographic principle [24] and its possible role in cosmology.
This approach is an open issue and, in this philosophy, the
model given in (24) is an interesting starting point in order to
visualize what we mean by dark energy. This is a crucial fact
if we are thinking (as usual) of dark energy as a cosmologi-
cal constant, although the observational data would indicate
that ρde is not necessarily a constant [25]. In this sense, the
�CDM model could be questioned, despite their successes.

By using (24) besides (1) and (6), it is possible to write

ρde (z) = 3H2 (z)

(
2α − 3β

2 + 3βωde (z)

)
, (25)

and so

ρdm (z) = 3H2 (z)

(
2 (1 − α) + 3β (1 + ωde (z))

2 + 3βωde (z)

)
, (26)

so that we can obtain an explicit expression for Q

Q

9H3 (z) = − (2α − 3β)

× [2 (1 − α) + 3β (1 + ωde)] ωde + β (1 + z) dωde/dz

(2 + 3βωde)
2 .

(27)

Fig. 1 The behavior of Q and its two sign changes: for −0.2 < z <

1.86 we have Q > 0, and Q < 0 otherwise

The interaction sign can change through the evolution as can
be seen from the Ansatz ωde (z) = ωde (0) + σ z. Therefore,
according to (27) and by using the Ansatz given before, Q (z)
experiences two sign changes (Fig. 1), one in the past and
another in the future, as can be found in [14]. But, what
means a sign change of Q at late times?, would we have dark
matter phase again?, the current accelerated expansion would
be transient previous to a possible future collapse? [26].

On the other hand, and under an entropic philosophy
(entropic cosmology) in which we have an amount of non-
conservation energy, we can observe sign changes in it and,
in particular, that sign is mainly dependent on the equa-
tion of state (ω) in each stage of the cosmic evolution
[27].

Assuming a holographic principle, also, if we are consid-
ering an interaction between the bulk and the boundary of
the space-time, we can see sign changes in Q (z) [28].

Now, by using (27) together with (26) and (25) in (8), we
write

ωeff
de =

(
2α − 3β

2 + 3βωde

) [
ωde − β (1 + z)

2α − 3β

dωde

dz

]
(28)

and

ωeff
dm = ωdm +

(
2α − 3β

2 + 3βωde

)

×
[
ωde + β (1 + z)

2 (1 − α) + 3β (1 + ωde)

dωde

dz

]
, (29)
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Fig. 2 We see that Tde > Tdm in the range −0.2 < z < 1.86, i.e.,
when Q > 0 and Tde < Tdm for z > 1.86, i.e., when Q < 0, in accord
to the second law. However, in the range −0.39 < z < −0.2, when
Q < 0, the quotient Tde/Tdm diverges

and Q (z) can be written in the form

Q

9H3 (z) = − 1

3β2σ
(2α − 3β)

(z − 1.86) (z + 0.2)

(A + z)2 , (30)

furthermore by using (9) and (10), the temperatures are given,
respectively, by

Tde (z) = Tde (0) (1 + z)a
(

1 + z

A

)b
(31)

and

Tdm (z) = Tdm (0) (1 + z)a
(

1 + z

A

)b+1 (
1 + z

B

)c
, (32)

where

a =
(

2α − 3β

βσ

) (
σ + ω (0) − σ A

A − 1

)
,

b = −1 −
(

2α − 3β

βσ

) (
ω (0) − σ A

A − 1

)
,

c = 2α − 3β;
A = 2 + 3βω (0)

3βσ
, B = A −

(
2α − 3β

3βσ

)
, (33)

where we have considered ωdm = 0 (dust). In Ref. [14]
the best fit for the used parameters was (α, β, ωde (0) , σ ) =
(0.73, 0.38,−1.29, 0.47) with χ2 = 0.981. All these param-
eters were estimated by using an adjustment with type I
Supernova, Union 2 [29]. We note that the phantom case
(ωde (0) < −1) is required by this best fit. So, from them
we have Q (1.86) = Q(−0.2) = 0 and a ≈ 264.00,
b ≈ −264.15, c ≈ 0.32; A ≈ 0.98 B ≈ 0.39. For a better

Fig. 3 We see that Tde always grows and the dark energy exhibits a
negative heat capacity from z ≈ 1.86 to z ≈ −0.2 (dark energy is heated
while energy is being delivered to dark matter). Out the indicated range,
we have a positive heat capacity

Fig. 4 We see that Tdm (z) grows toward z = −0.39. The dark matter
heat capacity experiences a sign change, that is, from z = ∞ to z = 1.86
we have a negative heat capacity (dark matter is heated while energy is
being delivered to dark energy), from z = 1.86 to z = −0.2 the heat
capacity is positive, from z = −0.2 to z = −0.33 its heat capacity is
negative (dark matter cools while receiving energy) and from z = −0.33
to z = −0.38 the heat capacity is positive

visualization we have chosen Tde (0) /Tdm (0) > 1 (Figs. 2,
3, and 4).

According to (28) and (29), we note that if ωde = const.
and ωdm = 0 both temperatures are equal. This last situation
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does not appear to be consistent; is this a signal that ωde 
=
const. through the evolution?

So, sign changes in Q imply changes in the tempera-
tures of dark energy and dark matter, as dictated by the sec-
ond law. Additionally, we can visualize phase transitions,
sign changes in its heat capacities, for both energy densities.
Details can be found in the appendix.

Clearly, the observational data eventually will tell us if
these changes will definitely occur. Today, the observational
data is only just showing signals of the presence of Q, but as
we stated above, it appears unnatural to think that cosmic flu-
ids coexist and do not interact with each other. Additionally,
we cannot say anything about values of Tde (0) and Tdm (0):
the question is whether future observations could elucidate
or not this issue.

Finally, in the used parametrization for ωde(z), which
makes sense for small values of z [30,31], the behavior
toward high z is only formal. So, as can be seen from the fig-
ures, the essential scope lies in the region extending around
today toward the near future where the emphasis has been
put on the sign changes in the heat capacities of the energy
densities and the behavior of the temperatures associated to
them.

Roughly speaking, the sign change in the cosmic acceler-
ation (z ∼ 0.6) is located “inside” the zone where Q (z) > 0.

5 Cosmological evolution

We discuss briefly the behavior of the Hubble parameter, the
coincidence parameter and the energy densities in the vicinity
of the divergence of Tde (z), which occurs around z ≈ −0.4,
as shown in Fig. 3. According to (1), we write

3H2 = ρde + ρdm = ρde (1 + r) = ρ, (34)

where r is the coincidence parameter given by the quotient
ρdm/ρde so that from (25, 26) we can write

r = 2 (1 − α) + 3β (1 + ωde)

2α − 3β
, (35)

and dr (z) /dz = 3βσ/ (2α − 3β) > 0, i.e., ṙ (t) < 0 ←→
2α − 3β > 0 (using the values for α and β).

By using (6), the energy density ρ defined in (34) satisfies
the conservation equation

ρ̇ + 3H

(
1 + ωde

1 + r

)
ρ = 0, (36)

where we have considered ωdm = 0. So, from (34) and (35),
it is straightforward to obtain the following solution for the
Hubble parameter:

H (z) /H (0) = C (1 + z)α/β

∣∣∣∣1 + 2 + 3β (ωde (0) − σ)

3βσ (1 + z)

∣∣∣∣
e

,

(37)

where

C =
∣∣∣∣2 + 3βωde (0)

3βσ

∣∣∣∣
−e

e = 1

β

(
2α − 3β

2 + 3β (ωde (0) − σ)

)
. (38)

According to the values for α, β, and σ used we have
e < 0. So, although Tde (z −→ −0.4) diverges, Fig. 3,
H (z −→ −0.4) −→ finite value, Fig. 5, and there is no
future singularity in H (z).

As regards the coincidence parameter, if we look at (37),
we have

r (z) > 0 �⇒ ωde (z) > −
[

2

(
1 − α

3β

)
+ 1

]
, (39)

and according to the used Ansatz for ωde (z), we have r (z) >

0 ⇐⇒ z > −0.4.
Finally, let us comment on the weak energy condition

(WEC), which states that ρdm > 0 and ρde > 0, which
implies according to (25)

ρde > 0 �⇒ z > − 1

σ

(
2

3β
+ ωde (0)

)
≈ −1, (40)

and according to (26)

Fig. 5 The behavior of the Hubble parameter. There is no future diver-
gence of H(z) when Tde approximates z = −0.4
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Fig. 6 The behavior of Q and its sign change in the future

ρdm > 0 �⇒ z > − 1

σ

(
2 (1 − α)

3β
+ 1 + ωde (0)

)
≈−0.4,

(41)

and for z > −0.4 the WEC is satisfied and there are no future
singularities in the energy densities.

We use now the CPL-parametrization [32] given by
ωde (z) = ω0 + ω1z (1 + z)−1, where ω0 = ωde (0) and
ω1 = ω′

de (0), in order to compare with the previous case.
At variance with the previous case, we see only one sign

change in Q (z) and this change occurs in the future, Fig. 6.
However, as before, this fact also leads to sign changes in the
heat capacities of both, dark energy and dark matter. See the
appendix. So, there are no differences if we are thinking in
the behavior of the heat capacities.

In this last section, we addresses the evolution of the tem-
peratures. According to (9) and (10), we obtain, respectively,

Tde (z) = Tde (0) (1 + z)p1
(

1 + a

b
z
)p2

exp

(
6ω1

z

1 + z

)

(42)

(Fig. 7), and

Tdm (z) = Tdm (0) (1 + z)σ2
(

1 + a

b
z
)σ1

(
1 + A

B
z

)σ3

(43)

(Fig. 8), where the parameters involved are given by

p1 = 3

[
1 + 1

β
(2α − 3β) − 2 (ω0 + ω1)

]
,

p2 = −3

[
1 + 2

β

(
2α − 3β

2 + 3β (ω0 + ω1)

)]
, (44)

and

σi = 9 (2α − 3β) εi , (45)

Fig. 7 We see that Tde grows to the future and the dark energy exhibits
a sign change in its heat capacity given the sign change experienced by
Q

Fig. 8 We see that Tdm decreases to the future and the dark matter
exhibits a sign change in its heat capacity given the sign change expe-
rienced by Q

where

ε1 = ω0 + ω1

a
+ βω1

aA

(
1

B/A − b/a

)
− 1

3β
,

ε2 = 1

3β
,

ε3 = −βω1

aA

(
1

B/A − b/a

)
, (46)

and then

a = 2 + 3β (ω0 + ω1) ,

b = 2 + 3βω0;
A = 2 + 3β (ω0 + ω1) − (2α − 3β) ,

B = 2 + 3βω0 − (2α − 3β) . (47)

Finally, the Hubble parameter is given by

H (z) /H (0) = (1+z)p3

[
1 +

(
1 + 2

3βω0

)−1 z

1 + z

]p4

(48)

123
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Fig. 9 The Hubble parameter

(Fig. 9), where

p3 = 3

[
1 + α (ω0 + ω1)

2 + 3β (ω0 + ω1)

]
,

p4 = − 1

β

[
2α − 3β

2 + 3β (ω0 + ω1)

]
. (49)

In order to plot Figs. 6, 7, 8, and 9 we have used the best
fit for the parameters (α, β, ω0, ω1) = (0.86, 0.23,−1.001,

0.999) with χ2 = 0.982 [14]. All these parameters, as those
used in the linear parametrization for ωde, have been adjusted
from type I Supernova, Union 2 [29]. In this case, the phan-
tom case (ω0 < −1) is also required by this best fit.

We end this section by recalling that in the literature we can
observe several parametrizations for dark energy (see [33],
for instance). Regardless of this, the presence of interaction
and the possibility of sign changes in the direction of energy
transference between cosmological components, and mainly
its consequences, are the key facts to inspect.

6 Final remarks

Consistently with the second law of thermodynamics, we
have studied the behavior of the temperatures of two interact-
ing fluids (dark energy and dark matter) and its relationship
with the sign changes of Q through the cosmic evolution. We
have investigated the phase transitions (sign changes of its
heat capacities) experienced for both, dark energy and dark
matter. We have used a holographic model for the dark energy
and, as usual, we have considered a pressureless fluid (dust)
for dark matter.

It is generally believed that phase transitions have taken
place in the early universe and its effects may well have been
important for the late evolution. In the present work, phase
transitions (seen here as sign change in the heat capacities of
the fluids) are studied. Obviously phase transitions studied
here are not like those experienced earlier, however, the pos-

sibility of having future sign change in the heat capacities of
the interacting cosmological components is in itself interest-
ing to explore. So, negative heat capacities, as showed here,
could reveal new physics beyond the usual thermodynamic
limit. As we said before, the presence of interaction and pos-
sibility of sign change because of energy transfer between
cosmological components can therefore be the key facts in
order to inspect this issue. It is evident that we need a better
theoretical approach, endorsed by the observational data, if
we are thinking in the future evolution. Needless to say that
the study realized before for the phantom case (ω < −1)
may also be important.

We have used two modeling for ωde (z) and in both cases
we have a sign change in Q. This fact is the highlight which
leads to phase transitions and the behavior of the fluid tem-
peratures. We emphasize that a sign change in Q is relevant.
The parametrization play an important role here, for exam-
ple, in the linear case ωde (z) = ω (0) + σ z, we see two sign
changes in Q, one in the past and the other in the future and
for the CPL-model ωde (z) = ω0+ω1z (1 + z)−1 we see only
one sign change, in the future. Both ωde (z) -models repre-
sent a good description of the dark energy in the vicinity of
z = 0, time where we can better visualize the aforementioned
changes.

Finally, and as we said at the beginning, it is natural to
consider an interaction between cosmic fluids, in particu-
lar, between dark components which contribute in significant
fractions to the contents of the universe. The presence of Q
appears to be compatible with the observations [34–36], such
that this interaction could provide us an interesting insight to
inspect the nature of the dark sectors, in particular, its thermo-
dynamical nature. Additionally, if future observations were
to detect sign changes in Q, very interesting consequences
should appear in late cosmology.
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Appendix: Heat capacities

We write

C = �U

�T
,

123
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and by putting �U = Q and recalling

ρ̇de + 3H (1 + ωde) ρde = −Q and ρ̇dm + 3Hρdm = Q,

(6) we write

Cde = −Q

�Tde
< 0, i f Q > 0 and �Tde > 0,

Cdm = +Q

�Tdm
> 0, i f Q > 0 and �Tdm > 0.

Considering the temperatures, we see that Tde (z) always
grows with z (�Tde (z) > 0) in the range −0.2 < z < 1.86;
see Fig. 3. Then the dark energy heat capacity is

Cde (−0.2 < z < 1.86) = −Q

�Tde
< 0,

and out of this range Cde = +Q/�Tde > 0.
We see also that Tdm grows with z to −0.33 (maximum

of Tdm) and goes to zero when z = −0.39. In this range
�Tdm (z) > 0, but in the range −0.39 < z < −0.33 we have
�Tdm (z) < 0. Then the dark matter heat capacity changes
are

Cdm (1.86 < z < ∞) = −Q

�Tdm
< 0 and �Tdm > 0,

Cdm (−0.2 < z < 1.86) = +Q

�Tdm
> 0 and �Tdm > 0,

Cdm (−0.2 < z < −0.33) = −Q

�Tdm
< 0 and �Tdm > 0,

Cdm (−0.33 < z < −0.39) = −Q

�Tdm
> 0 and �Tdm < 0.

By using the CPL-parametrization for dark energy, we write

Cde = −Q

�Tde
and�Tde > 0 −→

{
Q > 0 �⇒ Cde < 0,

Q < 0 �⇒ Cde > 0,

and

Cdm = +Q

�Tdm
and�Tdm < 0 −→

{
Q > 0 �⇒ Cdm < 0,

Q < 0 �⇒ Cdm > 0.

So, as before, there are phase transitions.
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