
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech

researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/7694

To cite this version :

Julie DIANI, Pierre GILORMINI, Gerry AGBOBADA - Experimental study and numerical
simulation of the vertical bounce of a polymer ball over a wide temperature range - Journal of
Materials Science - Vol. 49, n°5, p.2154-2163 - 2014

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SAM : Science Arts et Métiers

https://core.ac.uk/display/19446335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://sam.ensam.eu
http://hdl.handle.net/10985/7694
mailto:archiveouverte@ensam.eu


Experimental study and numerical simulation of the vertical
bounce of a polymer ball over a wide temperature range

Julie Diani · Pierre Gilormini · Gerry Agbobada

Abstract The dependence to temperature of the re-
bound of a solid polymer ball on a rigid slab is in-

vestigated. An acrylate polymer ball is brought to a
wide range of temperatures, covering its glass to rub-
bery transition, and let fall on a granite slab while the

coefficient of restitution, duration of contact, and force
history are measured experimentally. The ball fabrica-
tion is controlled in the lab, allowing the mechanical

characterization of the material by classic dynamic me-
chanical analysis (DMA). Finite element simulations of
the rebound at various temperatures are run, consider-

ing the material as viscoelatic and as satisfying a WLF
equation for its time-temperature superposition prop-
erty. A comparison between the experiments and the

simulations shows the strong link between viscoelastic-
ity and time-temperature superposition properties of
the material and the bounce characteristics of the ball.

Keywords Polymers · Rebound · Viscoelasticity ·
Thermomechanics

1 Introduction

The vertical bounce of a ball dropped on a flat rigid
slab is a classical problem in Solid Mechanics, with ob-
vious applications in sports, for instance ([1], [2], [3],
among others). For symmetry reasons, this problem is

equivalent to the frontal collision of two identical balls
with exactly opposite velocities, unless such phenomena
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as acoustic emission are considered (as in [4], for exam-
ple), and thus is connected to a wide range of applica-

tions (from the collision of fruits [5] up to the stability
of planetary rings [6], for instance). A long list of scien-
tific papers has followed the celebrated work of Hertz

[7] on elastic balls, which took into account more com-
plex mechanical behaviors like viscoelasticity ([8] and
many others) or viscoplasticity [9]. A plastic behavior

was considered essentially in the “dual” problem of the
vertical bounce of a rigid ball on a deformable material,
especially for the interpretation of the Shore hardness

test on metals [10]. Polymers were also considered early
in this dual problem ([11], [12], [13]), with attempts to
correlate the coefficient of restitution to the damping

factor of the viscoelastic material ([14], [15], [16]).

The present paper deals with the bounce of a vis-
coelastic solid homogeneous ball, which is simpler in a

sense than the hollow (tennis, squash, for instance) or
solid but heterogeneous (golf, baseball, etc.) balls used
in sports. By contrast, a special effort is put here on

a complete control of the ball, which is manufactured
in the lab, and on a systematic identification of the
mechanical behavior of its constitutive material. More-

over, the simple question “Does a ball rebound higher
or lower when temperature is increased?” is addressed,
and the influence of temperature from the glassy to the

rubbery state is investigated. To the authors knowledge,
this is the first study of the coefficient of restitution of a
polymer ball over such a wide temperature range since

the early experimental study of Briggs [17] on golf balls.
Jenckel and Klein [11], Calvit [15], Raphael and Arme-
niades [16], Robbins and Weitzel [18], among others,

covered very wide temperature ranges for the bounce
of a rigid ball on polymer blocks instead. By contrast,
recent measurements on baseballs ([19], [20]) or squash

balls [2], for instance, explored narrow temperature do-
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mains only. In addition, finite element simulations are

also performed in this study to correlate the experi-
mental results to the simulations using the identified
mechanical behavior. This numerical technique is pre-

ferred here, for better reliability, to more or less simpli-
fied models ([13], [8], [6], [21]) of the system.

The remainder of the paper is organized as follows.
Section 2 presents how the material was synthesized,

its mechanical characterization, how the balls were pro-
duced, and the experimental setup used to measure the
coefficient of restitution, contact duration, and impact

force. Section 3 explains how the finite element simula-
tions were run. Finally, Section 4 details the experimen-
tal results and discusses the comparison with numerical

simulations.

2 Material and methods

2.1 Synthesis of the material and production of the

balls

The material is an acrylate network obtained by pho-

topolymerization, with a composition given elsewhere
[22]. The mix consists of 90% in mol of benzyl methacry-
late (BMA) with 10% in mol of 550 g/mol molar weight

poly(ethylene glycol) dimethacrylate (PEGDMA) used
as crosslinker and 0.5% of 2-dimethoxy-2-phenylaceto-
phenone (DMPA) as photoinitiator. Once mixed for 10
minutes at room temperature, the polymer solution was

either injected between two glass slides in order to ob-
tain rectangular plates of 1.3 mm thickness or injected
into hollow spherical glass beads to obtain balls of 25

mm diameter. For polymerization, plates and beads
were exposed to 365 nm ultra-violet (UV) light in UV
chamber UVP CL-1000 during 50 minutes and 2 hours

respectively. Notes that due to the transparent color of
the glass and the mix, UV radiation penetrates the balls
completely. The DMPA is a poor photoinitiator, which

helps preventing early polymerization when preparing
the mix, but which also increases the required duration
of UV exposure for complete polymerization. In order

to assess the complete polymerization of the balls, one
ball has been cut into two identical hemispheres reveal-
ing a complete solid state.

2.2 Mechanical characterization of the material

A complete characterization of the material linear vis-

coelasticity and of its time-temperature superposition
property were carried out in order to possibly relate
these thermomechanical properties of the material with

its bounce ability.
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Fig. 1 Temperature dependences of the material storage
modulus (a) and of the damping factor (b) measured dur-
ing dynamic torsion frequency sweeps

After identifying the material glass transition tem-
perature to 46◦C by differential scanning calorimetry
when applying a heating ramp of 10◦C/min, plane sam-

ples were submitted to dynamic mechanical analysis in
order to characterize the material viscoelasticity. For
this purpose, rectangular samples of 40× 12 mm2 were

cut from the 1.3 mm-thick plates. Theses samples were
submitted to dynamic frequency sweep torsion tests on
a MCR 502 rheometer from Anton Paar. The applied

strain was set to 0.1% for frequencies ranging from 0.01
to 10 Hz. Frequency sweeps were performed at different
temperatures, from 37 to 70◦C with 3◦C increments,

and three frequency sweep tests were run at each tem-
perature. Figure 1 shows the material storage modulus
and damping factor dependences to temperature that

were obtained.

In order to reach the material viscoelasticity over
a wider range of frequencies, the time-temperature su-
perposition principle was applied, which provides the

material viscoelasticity master curves by mere horizon-
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Fig. 2 The acrylate storage modulus (a) and damping factor
(b) master curves at 64◦C, and their fits by a generalized
Maxwell model.

tal shifts of the measured data in Fig. 1. Figure 2 shows

the material master curves for the chosen temperature
Tref = 64◦C. Figure 2 shows also that this viscoelastic
behavior is reproduced well by a generalized Maxwell

model. In order to reach an accurate representation
of the material viscoelasticity, 40 relaxation times τi
have been considered, with a fixed ratio of 1.87 between

consecutive values. The fitting procedure of Weese [23]
was used to obtain the associated set of shear moduli
Gi, which applies a Tikhonov nonlinear regularization

that is much more relevant than a mere least squares
method. The stiffness of the elastic branch correspond-
ing to elasticity at low frequencies was measured to

G∞ = 2 MPa, and the relaxation times and relaxation
moduli are listed in table 1. As a consequence, the re-
laxation function in shear writes as

G(t) = G∞ +
40∑
i=1

Gi exp(−t/τi) . (1)

Table 1 Relaxation times and associated shear moduli used
in the generalized Maxwell model.

τi (s) Gi (Pa)

1.259E-08 2.639E+07
2.354E-08 2.256E+07
4.401E-08 1.939E+07
8.230E-08 1.690E+07
1.539E-07 1.505E+07
2.877E-07 1.380E+07
5.380E-07 1.314E+07
1.006E-06 1.310E+07
1.881E-06 1.374E+07
3.517E-06 1.514E+07
6.576E-06 1.739E+07
1.230E-05 2.046E+07
2.299E-05 2.422E+07
4.299E-05 2.822E+07
8.038E-05 3.191E+07
1.503E-04 3.475E+07
2.810E-04 3.648E+07
5.254E-04 3.718E+07
9.824E-04 3.712E+07
1.837E-03 3.632E+07
3.435E-03 3.421E+07
6.422E-03 2.963E+07
1.201E-02 2.226E+07
2.245E-02 1.421E+07
4.198E-02 8.086E+06
7.850E-02 4.416E+06
1.468E-01 2.466E+06
2.744E-01 1.480E+06
5.132E-01 9.806E+05
9.595E-01 6.962E+05
1.794E+00 4.798E+05
3.355E+00 2.875E+05
6.272E+00 1.490E+05
1.173E+01 7.616E+04
2.193E+01 4.540E+04
4.100E+01 3.494E+04
7.667E+01 3.524E+04
1.434E+02 4.427E+04
2.680E+02 6.384E+04
5.012E+02 9.740E+04

Finally, to characterize the material time-tempera-
ture superposition, the horizontal shift factors aTref

ap-

plied while building the master curves were found to
satisfy the Williams-Landel-Ferry (WLF) equation [24]:

log10(aTref
(T )) =

−C1(T − Tref )

C2 + (T − Tref )
. (2)

Figure 3 shows the shift factor values and their fit by
the WLF equation (2) for Tref = 64◦ C, C1 = 17 and
C2 = 124◦C.

2.3 Experimental setup

The ball was held by suction with a vacuum pump and

was allowed to fall straight from a fixed height of h0 =
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Fig. 3 Time-temperature superposition shift factors and
their fit by the WLF equation.

81.5 cm onto a polished 14 × 14 × 10 cm3 granite slab
by turning the pump off. A simple calculation shows

that air friction can be neglected during this free fall
under gravity, and the velocity of the ball at impact is
therefore v0 =

√
2gh0 ≃ 4 m/s.

Two types of measures were carried out. First, sev-

eral successive rebounds of the ball on the slab were
allowed, and the noise was recorded with a microphone
connected to a computer. This gave access to the time

between the first two bounces (∆t) by a subsequent
simple Matlab [25] treatment of the sound signal, and
the upward ball velocity v after the first contact was

deduced as v = g∆t/2 by neglecting air friction. This
acoustic technique (see for instance Aguiar and Lau-
dares [26], among many others), leads to the coefficient

of restitution (COR) e = v/v0 very simply.

During impact, the ball remains in contact with the
slab during a time tc that varies according to the ball
material behavior especially. In order to measure the

contact duration of the ball during the first bounce,
a thin piezoresistive sensor was stuck on the impacted
surface of the slab in a second series of tests. Acoustic

measurements confirmed that the COR was not signif-
icantly modified by the sensor laying between the ball
and the slab during impact, and therefore a possible

perturbation induced by the sensor could be neglected.
A Flexiforce A401 sensor from Tekscan was integrated
in a signal conditioning circuit using an Arduino Uno

microcontroller board. In order to increase the record-
ing frequency, the output analog signal was saved on a
Dso5014A oscilloscope from Agilent Technologies. The

Flexiforce sensor provides an easy technical solution to
measure the contact duration. It can also give access to
the contact force, but a low saturation threshold pre-

vents the absolute measure of large forces, and only the

shape of the contact force profile can be studied in such

conditions.

The COR and the contact duration were estimated
at various temperatures from room temperature to 180◦C.

For each temperature, the polymer ball was placed in
a thermal chamber for 15 minutes prior to testing. The
temperature of the thermal chamber was controlled by

a thermocouple run with myPCLab, and at least six
rebound tests were performed at each temperature. An
additional temperature of 0◦C was also considered for

the COR, by cooling the ball in ice before testing.

3 Simulation technique

3.1 Finite element procedure

The Abaqus/Explicit finite element code [27] has been
used in this study to perform the simulations of the

experimental tests. This software applies an explicit
integration scheme to solve highly nonlinear systems
with complex contacts under transient loads. It offers

a large choice of elements and wide material modeling
capabilities. Concerning viscoelasticity, both the gener-
alized Maxwell model and the WLF time-temperature

superposition relation are available. Moreover, the fi-
nite strain extension of the generalized Maxwell model
given by Simo [28] is also included, which uses the same

relaxation times and shear moduli pairs as those defin-
ing the shear modulus master curve for small strains.
Therefore, the 40 pairs listed in Table 1 were used. In

addition, a reference elastic behavior is required, which
was taken as neo-Hookean hyperelastic at high tem-
peratures, with a shear modulus of G∞ = 2 MPa and

a bulk modulus of B = 3.11 GPa. The bulk modulus
is assumed independent of temperature and, combined
with the shear modulus, the above value leads to a Pois-

son’s ratio close to 0.5 in the rubbery state and equal
to 0.41 in the glassy state, consequently. The finite el-
ement simulations include finite strain.

The ball was meshed as shown in Fig. 4. Axial sym-
metry allows one half of the ball section to be mod-
eled, and 2278 axisymmetric four-node elements with

reduced integration were generated, with smaller ele-
ment sizes in the vicinity of the contact area. Since
inertia effects are essential in these simulations, a mass

density of 1.21 g/cm3 was used, as deduced from the
weight and volume measured on the balls. The slab was
modeled as a fixed rigid surface with a no-penetration

condition imposed. This was allowed by preliminary
simulations where the slab was meshed as a 10 cm-
high cylinder with a radius of 8 cm (in order to keep

axisymmetry and have the same slab volume as in the
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fixed rigid surface

viscoelastic

ball

25 mm

Fig. 4 Mesh used in the finite element simulations.

experiments), using standard elastic constants for gran-
ite. No difference with the case of a mere rigid surface

was found, which is due to a very large contrast of elas-
tic properties between the polymer ball and the granite
slab (the Young’s modulus is multiplied by about 50

between granite and the glassy polymer, for example),
but this equivalence would not apply for a steel ball, for
instance. Moreover, no perceptible difference was ob-

tained when the ball-slab friction conditions were var-
ied, at either low or high temperature, from no friction
at all to no slip, which is consistent with contact forces
being essentially normal to the interface, and no friction

was applied consequently.

At the beginning of the calculations, the ball is lo-
cated slightly above the rigid surface, it has a uniform
downward velocity of 4 m/s and its temperature also is

uniform. Because of the initial position of the ball and
because of its low weight (less than 10 grams), the sim-
ulations did not show any difference when gravity was

taken into account or neglected. Therefore, no gravity
loading was applied. The contact duration tc was de-
fined by a non-zero reaction force applied to the fixed

rigid surface. The COR e was computed as the ratio be-
tween the (upward) velocity of the ball center of mass at
the contact end (i.e., when the reaction force returned

to zero) and its initial velocity.

3.2 Preliminary simulations

The first preliminary simulation corresponds to the bou-
nce of the polymer ball when its elastic glassy behavior

is used. In these conditions, the COR should be unity
since there is no dissipation in the system considered,
except for a low artificial bulk viscosity required for

the numerical stability of the integration scheme. As
expected, the computed COR is found equal to 1 in-
deed. This problem also corresponds to a special case

of Hertz’s theory of impact [7], with well-known results
([29], for instance): during contact time, the force ap-
plied on the rigid surface is given by

F =
4

3

E
√
R

1− ν2
δ3 (3)

with

δ =

[
15m

16

1− ν2

E
√
R

(v20 − δ̇2)

]2/5
(4)

for a ball of radius R, mass m, Young’s modulus E,
Poisson’s ratio ν, with an impact velocity v0. In these

equations, δ denotes the difference between the ball ra-
dius and the height of the ball center of mass above the
rigid surface. Numerical integration of the differential
equation (4) yields a curve shown in Fig. 5, where the

result of the finite element simulation also is presented.
Although the two curves are close, Hertz’s theory can
be observed to give a slightly longer contact duration

and a smaller peak force. This theory is recalled to be
based on an assumption, which replaces the dynamic
problem by a series of static states of equilibrium where

the ball is submitted to a different uniform body force
at any moment of its contact with the slab. By contrast
with this quasi-static approach, the finite element sim-

ulation does take the dynamic aspects of the problem
into account, a non uniform acceleration is obtained,
which gives a non uniform body force, with different

results consequently.
In order to confirm the above explanation, a static

analysis has also been performed, using the Abaqus/

Standard variant of the code, where a uniform vertical
force density was applied instead of an initial veloc-
ity. When the pressure profile in the contact area is

considered, Fig. 6 shows that a very good agreement
is obtained between the finite element simulation and
Hertz’s theory. The latter involves a well-known elliptic

distribution:

p(r) =
3F

2π
r2c

√
1−

(
r

rc

)2

(5)

where

rc =

(
3

4

1− ν2

E
RF

)1/3

(6)
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ing the bounce of the ball in its elastic glassy state. Finite
element simulation (solid line) and Hertz’s theory (broken
line).
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element simulation (symbols) and Hertz’s theory (solid line).

denotes the radius of the contact area and F the total
applied force. A value of F = 900 N was used to obtain
the results of Fig. 6. The discernible difference near the

end of the contact area in Fig. 6 can be attributed to
the size of the elements used.

As another preliminary test, Abaqus/Explicit has
been used to simulate the bounce of the polymer ball
in its elastic rubbery state. The ball is now much softer

than in the first case considered above (and its behav-
ior is nonlinear elastic). Consequently, it has to deform
more in order to change its initial kinetic energy into

elastic strain energy when the force reaches its maxi-
mum (and the first principal logarithmic strain reaches
the value of 0.11). As a result, the ball crushes more sig-

nificantly on the rigid surface, the maximum radius of
the contact area is multiplied by about 3 (close to half
the ball radius), and the underlying small deformation

assumption in Hertz’s theory is no more valid. This ex-
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Fig. 7 History of the reaction force on the rigid surface dur-
ing the bounce of the ball in its elastic rubbery state. Finite
element simulation (solid line) and Hertz’s theory (broken
line). The simulation using a Poisson’s ratio of 0.475 is also
shown (dotted line).

plains a larger discrepancy with the (finite strain) sim-
ulation results in Fig. 7. It may be noted that the areas
below the F (t) curves in this figure as well as in Fig. 5

are all equal to 2mv0 (twice the initial momentum), as
they should in a non-dissipative impact on a fixed rigid
surface. As a result, a factor of about 10 on contact du-

ration, which is observed when passing from the glassy
(about 0.1 ms) to the rubbery state (about 1 ms), in-
duces a factor of about 1/10 on the peak force. As men-

tioned previously, the rubbery behavior is very close to
incompressible, but Fig. 7 also shows that using a value
of ν = 0.475 (keeping the Young’s modulus equal to

6 MPa) does not modify the results significantly. Thus,
no bias is induced by the four-node reduced integration
elements when quasi-incompressibility is considered in

the bounce problem. This can be explained by the ball
being quite free to deform, with very few constraints
applied on its outer boundary. Unlike Hertz’s theory,

which predicts a perfect symmetry of the force history
with respect to the force peak, some dissymmetry is
evidenced by the finite element results in Fig. 7 (com-

pare the curvatures at the beginning and end of con-
tact, for instance). This was expected indeed, because
the ball keeps vibrating after the contact is left, which

differs from its rigid body motion before impact, and
therefore the history of the velocity field (and all sub-
sequent quantities) must be dissymmetric. This effect is

enhanced when the elastic shear modulus of the ball is
smaller (compare with Fig. 5), but it does not affect the
COR, which remains very close to 1 (0.992, actually).

By contrast, a sharp dissymmetry of the force history
will be observed when the viscous part of the behavior
will be taken into account in the next Section, but this

will be due to dissipative effects.
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4 Results and discussion

4.1 Coefficient of restitution

The experimental measurements of the COR with re-

spect to temperature were very reproducible and they
are presented in Figure 8. At both low and high tem-
peratures, the COR is observed to plateau at its highest

value of 0.94. First, it is interesting to notice that the
polymer ball bounces as efficiently well at low tempera-
ture as at high temperature, since this result may seem

somewhat counter intuitive according to everyday ex-
perience with “superballs”. The latter (like in [1], for
instance) are in their rubbery state at room tempera-

ture, and one may have the feeling that a glassy ball
would bounce less. This is not the case indeed, be-
cause the ball is close to elastic at low and at high

temperatures as well, and the COR is able to reach
equally high values. From 40◦C to 160◦C, the COR is
strongly dependent on temperature and, as could be

expected, it varies as the viscous component of the be-
havior increases, which expresses the delayed mechani-
cal response of the material. More precisely, the COR

starts decreasing when temperature increases because
the relaxation times of the material increase. At higher
temperature, the COR increases because the contact

duration is increasingly exceeded by relaxation times,
and viscous flow has less time to develop. With the
vertical axis reversed, the shape of the experimental

curve in Fig. 8 may recall the shape of the damping
factor plotted as a function of temperature for a fixed
frequency, which is somewhat similar to Fig. 2b. This

is consistent with the latter curve characterizing energy
loss in the material, whereas the COR reflects a fraction
of non-dissipated energy, but no direct connection will

be attempted here. The experimental results in Fig. 8
follow the same trends as the data of Briggs [17] on
golf balls, where a minimal COR was obtained around

−40◦C. The right part of the experimental curve in
Fig. 8 is also reminiscent of what is observed on squash
balls [2], and warming-up the ball before a game is a

common practice that improves the bounce.

The experimental maximum e value is less than

1, which indicates some energy is lost during impacts
at low and high temperatures. In the literature, there
are many reports of COR values below 1 even though

the behavior of the ball could reasonably well be as-
sumed to be elastic, and the contributions of acous-
tic emission, vibrations, internal friction, slab plasticity

or damage, surface imperfections, adhesion, etc. have
been considered. For instance, COR values of 0.95 have
been reported in [14] for steel balls impacting steel slabs

at moderate velocities. In the present case, it seems

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
oe

ffi
ci

en
t o

f r
es

tit
ut

io
n 

(e
)

Temperature (°C)

Experimental data
Simulations

Fig. 8 Comparison between experimental measures and sim-
ulation estimates of the coefficient of restitution.

reasonable that some viscosity is still present at the
extreme temperatures considered, inducing dissipation
and a COR less than 1, which is similar to the con-

tribution of internal friction invoked in the bounce of
metal spheres. Nevertheless, the finite element simula-
tions shown in Fig. 8 lead to COR values that are too

high at the extreme temperatures considered in the ex-
periments, which implies that the dissipation has been
underestimated and that the model behavior is very

close to perfect elasticity in these conditions. Additional
simulations allowed to reject an explanation based on
some uncertainty on the impact velocity, since substan-

tial variations of the latter were not found to modify the
COR significantly. One reason for overestimated COR
values can rather be an imperfect rendering of the vis-
cous dissipation in extreme cases by the Maxwell model

that has been fitted over a limited frequency range
and which may ignore a specific effect of high transient
strain rates. Another reason can be the limited temper-

ature range used in the identification of the behavior
(from 30 to 70◦C), and the necessary extrapolation of
the WLF equation to temperatures outside this range

(from 0 to 180◦C). Finally, it should be mentioned that
several (Tref , C1, C2) triplets may fit the data of Fig. 3
equally well, but with a significant impact on the COR

predictions.

The shape of the experimental curve in Fig. 8 is
nevertheless reproduced well by the finite element sim-

ulations, and the minimum value of the COR (0.19
at 84◦C) is estimated quite well (0.22 at 87.5◦C), but
some discrepancies remain. In addition to the reasons

given above, a possible explanation could be some ex-
perimental errors in the temperatures. The temperature
within the thermal chamber used to heat the ball was

recorded with an accuracy of ±1◦C, but the ball sur-
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face may have cooled in the air at ambient temperature

during the test duration. Actually, the latter is only a
few seconds, which would lead to a temperature gradi-
ent located essentially near the free surface of the ball

according to the analytical expressions given in [30].
Such a temperature gradient has been found to have
a negligible influence on the COR in additional finite

element simulations that we performed. More impor-
tantly, the temperatures measured in the thermal cham-
ber and in the rheometer have been found to disagree

by about 1.8◦C when measured with the same thermo-
couple. This lead to a correction that has already been
applied in Fig. 8 and cannot explain the differences,

consequently. Therefore, the discrepancy between the
experimental COR values and the simulations is be-
lieved to reflect the limits of the accuracy of the behav-

ior provided by standard DMA tests, by the fit with a
Maxwell model, and by the extrapolation of the time-
temperature superposition.

4.2 Contact duration

The contact duration also is strongly dependent of tem-
perature, as shown in Figure 9 where the experimental
data obtained with the piezoresistive sensor are pre-

sented. Values between 0.13 and 1.2 ms are obtained
over the temperature range considered, which confirm
that high strain rates develop in the ball during impact.

The contact duration appears to depend on the inverse
of the material stiffness at impact, and it remains ap-
proximately constant below 40◦C and above 120◦C.

Figure 9 presents also the results of the finite ele-
ment simulations, which overestimate by about 10% the

contact durations at low and high temperatures. This
encouraging result is consistent with a possible force
threshold below which the sensor does not record con-

tact, which induces underestimated experimental val-
ues. When temperature increases, the rapid transition
between short and long contact durations is also repro-
duced quite well.

4.3 Force history during impact

The history of the voltage signal given by the piezore-
sistive sensor during impact has been recorded on the

oscilloscope. As long as the force is moderate, this sig-
nal is proportional to the applied force, which allows
to measure the actual value of the force with respect

to time after calibration has been performed. For in-
stance, Fig. 10 shows that the force history recorded
at 165◦C is reproduced very well by the finite element

simulation. Actually, the latter gives the same results
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Fig. 10 Force history during impact at 165◦C.

as the simulation presented in 3.2 where an elastic ball
in its rubbery state was considered (Fig. 7), which con-

firms that the viscous effects are absent in the model at
moderately high temperatures.

Unfortunately, the force becomes so large below 120◦C
that a saturation threshold of the sensor is reached.

Actually, the points on the sensor surface where the
applied pressure is too large saturate, and the total-
ized signal of the sensor is affected. As a consequence,

the sensor returns the contact area (multiplied by the
saturation value) rather than the force in such cases.
This happens for instance at room temperature, where

the simulations of 3.2 indicated an average pressure of
110 MPa for a glassy ball, i.e. about 100 times larger
than in the rubbery case because of a force multiplied

by about 10 and a contact area reduced by a factor of
about 10. For this reason, the experimental results in
Fig. 11 have been scaled vertically to reach the same

peak value as the finite element simulation. In these
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Fig. 11 Force history during impact at 25◦C. The experi-
mental results have been scaled vertically.

conditions, the agreement is acceptable for the whole
profile. It may be mentioned that the contact area re-

sulting from (6) is proportional to F 2/3, and thus would
have a convex profile (without the concavities of the
theoretical F (t) at the beginning and end of contact)

even more similar in shape to the experimental sensor
measure, but with a contact time still overestimated.
Note finally that the symmetry of the experimental

curve in Fig. 11 suggests that the sensor has no hys-
teresis, even though it saturates.

The normalization procedure of the experimental re-

sults has also been applied in Fig. 12, where two exam-
ples of force histories in the intermediate range of tem-
perature is presented, i.e. when viscous dissipation is

significant according to Fig. 8. Accordingly, the force vs.
time profiles are now clearly unsymmetric. The trend
in common with Fig. 10 and Fig. 11 is a decreasing

peak force when temperature increases, i.e. the trend
opposite to contact duration. Although the force peak
is comparable with Fig. 10, some sensor saturation was

present at 104◦C (Fig. 12a) because of a smaller contact
area, but the agreement with the finite element results
is still good when the force normalization is applied. By

contrast, the simulated force history at 84◦C (Fig. 12b)
differs more significantly from the sensor signal, even
though the latter has been adjusted vertically to fit the

force peak. A first reason to explain the difference is a
strong sensor saturation due to a large pressure, which
distorts the experimental force profile. It should also

be noted that the temperature of 84◦C corresponds to
the smallest experimental coefficient of restitution, and
therefore to a maximum viscous dissipation. The dis-

crepancy may thus also be due to the approximations
and limitations involved in the model used to describe
the viscoelastic behavior of the material and in its iden-

tification.
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Fig. 12 Force history during impact at 104◦C (a) and 84◦C
(b). The experimental results have been scaled vertically.

5 Conclusion

The effect of temperature on the vertical rebound of
a polymer ball falling on a rigid slab has been shown

experimentally to be substantial when a wide enough
temperature range is considered. This allows to answer
the question asked in the Introduction: the coefficient of

restitution decreases when temperature increases if the
ball is at low temperature, but the opposite trend ap-
plies if the ball is above a transition temperature. The

contact duration and force history also have been mea-
sured, the former increases with temperature, whereas
the contrary applies to the peak force.

The fabrication of the acrylate ball in the lab al-
lowed a thorough mechanical characterization of the
material by dynamic mechanical analysis which, com-

bining a generalized Maxwell model and the WLF equa-
tion for time-temperature superposition, allowed in turn
the finite element simulation of the rebounds without

ad hoc adjustment. The simulations agreed globally
well with the experiments. The trends were predicted
correctly, which has shown the strong link between the

viscoelastic and time-temperature superposition prop-
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erties of the material and the main characteristics of

the bounce of a polymer ball.

Nevertheless, some discrepancies remain. Besides ex-
perimental difficulties like temperature control or piezo-
resistive sensor saturation, this study has shown that re-

bound testing enhances the effect of some uncertainties
and extrapolations in the description of a temperature-
dependent viscoelastic behavior. Moreover, it suggests

that some features of the viscoelastic deformation of
polymers at high transient strain rates may still be im-
properly implemented in simple models of the mechan-

ical behavior.
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