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Abstract 

The desire to reduce the cost of energy from 

wind turbine generation has seen an increase 

in the research applied to the field of wind 

turbine condition monitoring.  Wind turbine 

condition monitoring has the potential to 

reduce operation and maintenance costs 

through optimised maintenance scheduling 

and the avoidance of major breakdowns. To 

aid this research, increasing volumes of data 

are being captured and stored. These large 

volumes  of  data  may  be  deemed  ‘Big  Data’, 
and require improved handling techniques in 

order to work with the data efficiently. This 

paper introduces a wind turbine condition 

monitoring system which has been installed in 

an operational Vestas V47 wind turbine for the 

purpose of developing algorithms to detect 

machine  deterioration.  The  system’s  ability  to 
capture large volumes of data (approx. 2TB 

per month) has led to the necessity of using 

enhanced data handling techniques. This 

paper will discuss these ‘Big Data’ techniques 

and suggest how they may ultimately be used 

for condition monitoring of multiple wind 

turbines or wind farms.  

Keywords: Big data techniques, wind turbine 

condition monitoring. 

 

1.0 Introduction 

The continual development of sensor and 

storage technology has led to a dramatic 

increase in volumes of data being captured for 

condition monitoring and machine health 

assessment. Beyond wind energy, many 

sectors are dealing with the same issue, and 

these large, complex data sets have been 

termed ‘Big Data’. Companies are increasingly 

looking towards Big Data tools and 

approaches for managing huge volumes of 

data [1]. Until recently, the majority of these 

companies have been in the marketing or 

financial sectors dealing with the behaviours of 

their customers [2]. Other companies involved 

in Big Data include delivery companies such 

as UPS who are tracking millions of packages 

worldwide [3].  

As technology improves and it becomes easier 

to store large volumes of data, the definition of 

Big Data moves from the terabyte scale to the 

petabyte scale. Big Data can be described in 

terms of the 3Vs model [4]: velocity (the speed 

at which the data can be processed), volume 

(the volume of data that is being stored or 

analysed), and variety (the different types of 

data that are being stored or analysed). Big 

Data differs from standard data due to the 

complexity introduced by these three 

parameters. 

One area where Big Data practices are 

receiving greater attention and which is not 

dissimilar to wind energy generation, is power 

system operation and the management of 

power networks [5, 6]. These papers highlight 

the potential benefits of using Big Data 

practices in order to fully utilise large volumes 

of data. Having the capabilities to work with 

large volumes of data can provide valuable 

insight, which for the power network, may 

include unprecedented capabilities for 

forecasting demand, preventing outages and 

optimising unit commitment. Similarly, data 

from wind turbine Condition Monitoring 
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Systems (CMS) may be able to optimise 

maintenance operations, prevent major 

breakdowns and reduce wind turbine 

downtime.  

When implementing Big Data practices there 

are a number of considerations to take into 

account. At a high level these can be split into 

hardware and software considerations. 

Hardware considerations may include the 

method for storing data and what volume of 

data will have to be stored locally (as opposed 

to  being  stored  remotely,  or  “in  the  cloud”). 
The processing speed should also be 

considered and whether there is a requirement 

for redundancy of the hardware or the data 

itself.  

Software considerations fall into two broad 

categories: what approach will be utilised for 

data storage, and what type of platform will be 

used to process the data. 

Data storage refers to how individual 

parameters and data values can be saved and 

retrieved. One common tool for this is MySQL, 

which is an open source relational database 

management system which uses structured 

query language (SQL) to manage data held 

within the database. Due to many years of 

information retrieval research and 

optimisation, SQL databases have the 

advantage of allowing large volumes of data to 

be retrieved quickly and efficiently [7]. So-

called  ‘flat  files’  and  more  recent paradigms 

such as NoSQL do not require a rigorous data 

schema to be developed before application 

deployment. However, any perceived 

advantages of flexibility given by this approach 

may be undermined by the lack of error 

checking possible at the application level [7]. 

Big Data processing can be achieved using 

specialist frameworks such as Hadoop, which 

allow very large data sets to be processed 

efficiently [8]. The framework makes use of 

clusters of standard computing hardware in 

order to perform parallel computation. This has 

the result of increasing the speed of 

processing without the expense of buying 

special purpose (supercomputer) hardware.  

Hadoop is based on the MapReduce 

programming model, which performs filtering 

and sorting functions followed by a summary 

operation, resulting in enhanced handling of 

very large data sets [8].   

Analysis carried out in [9] looks specifically at 

the performance of the different database 

frameworks discussed above. Taking large 

datasets from multiple wind farms, the authors 

show how execution times differ for three 

different architectures: MySQL, Hadoop with 

two nodes, and Hadoop with 48 nodes. The 

results from the investigations show that the 

use of Big Data techniques for data storage 

can reduce execution times. This paper looks 

more specifically at the data analysis 

techniques related to Big Data, as opposed to 

the capture and storage of the data.  

This paper discusses the application of Big 

Data analysis practices for use in wind turbine 

condition monitoring, with reference to a 

deployed system capturing 2 TB of data per 

month. It focuses specifically on the software 

considerations for Big Data processing of this 

data.  

 

2.0 Case study: Wind turbine 

condition monitoring system 

A comprehensive wind turbine CMS described 

in [10] and [11] has been installed in an 

operational Vestas V47 wind turbine for the 

purpose of developing algorithms to detect 

machine deterioration. This system measures 

a number of parameters, given in Tables 1 and 

2, at two sampling rates – a lower sampling 

rate of 50Hz and a higher sampling rate of 

20kHz. The system captures approximately 2 

TB of data each month in the form of MySQL 

MyISAM tables and saves this data onto 2 TB 

external hard drives which can be ‘hot 
swapped’  (taken  out  while  the  system  is 
running) as required. The data is then taken to 

an offsite computer, where detailed analysis 

may be carried out. 

 

 

 



Parameter Sensor 

External air 
temperature 

PT100 

Gearbox casing temp PT100 

Nacelle ambient temp PT100 

Generator casing 
temp 

PT100 

CMS enclosure temp  PT100 

Wind speed Anemometer 

Wind direction Wind vane 

Humidity Humidity sensor 

Low speed shaft 
rotational speed 

Hall effect sensor 

XY tower movement Dual axis 
accelerometer 

Atmospheric pressure Pressure sensor 

Yaw error Digital compass 
Table 1: Parameters measured at 50Hz 

sampling rate 

Parameter Sensor 

Voltage (per phase) Voltage transducers 

Current (per phase) Rogowski coils 

Gearbox (XYZ axis) Accelerometer 

Generator (XY axis) Accelerometer 

Main bearing (XY 
axis) 

Accelerometer 

CMS enclosure  Accelerometer 
Table 2: Parameters measured at 20kHz 

sampling rate 

The size of the data set had two key impacts 

on its analysis. Due to the volume of data and 

the lack of infrastructure at the remote site, it 

was not possible to transmit the data via the 

internet, so manual collection was required. 

Secondly, a number of difficulties arise when 

trying to work with this volume of data on a 

standard desktop computer. Programs such as 

MS Excel, while very familiar to engineers, are 

not suited to dealing with data files of this size, 

and so initial analysis was handled using a 

MySQL server and database with import to 

Matlab for analysis. 

In most scenarios the practicality of working 

with very large volumes of data results in the 

data being filtered and/or averaged. This will 

without doubt significantly reduce the volume 

of data and therefore the complexity in working 

with it. As a research tool however, reducing 

the volume of data through filtering or 

averaging may result in the loss of valuable 

information. It is not known ahead of time what 

knowledge the research is likely to generate, 

but by storing all of the recorded data there is 

a greater chance of detecting patterns or 

anomalies related to the inception of faults.          

Using the collection and analysis of data from 

this system as a case study, this paper 

investigates and addresses the issues of 

working with Big Data for the purpose of wind 

turbine condition monitoring. Comparisons will 

be made between different approaches of data 

handling, and recommendations will be given 

on which are appropriate to the given volumes 

of data. 

2.1 Analysis of CMS data 

Wind turbine condition monitoring has the 

potential to reduce operation and maintenance 

costs through reduced downtime and 

optimised maintenance scheduling. Current 

systems, however, may not necessarily be 

able to detect all types of deterioration and 

faults. One reason for this is a lack of high 

frequency data, which contains enough 

information to be able to detect machine 

degradation far enough in advance as to allow 

remedial actions to be planned effectively. At 

present, the majority of wind turbines are 

monitored by supervisory control and data 

acquisition (SCADA) systems, which provide 

data only at 10 minute averages, whereas 

standard machinery diagnostics practices 

require high frequency vibration monitoring 

[12]. 

Regardless of the data source, the detection of 

deterioration or impending failure may also be 

described as anomaly detection. The 

challenges posed by anomaly detection differ 

depending on the application area, however 

they are likely to include: defining the 

threshold of an anomaly, dealing with noise in 

the data, and the selection of appropriate 

features to detect [13]. Not only do Chandola 

et. al [13] highlight the difficulty in selecting the 

correct detection method, but they also 

highlight the requirement for efficient 

computation based on a number of factors 

including the nature of the data and the type of 

anomaly being detected. 

This detection requires a number of potentially 

computationally intensive operations, 

depending on the volume of data required for 



detection. The operations required may 

consist of computationally simple operations, 

such as threshold detection, or may be highly 

computationally complex, such as hidden 

Markov models [14]. It is more likely however 

that for accurate detection of faults, a 

combination of high and low complexity 

operations will be required. Given the large 

volumes of data under study here, the method 

of implementation can have a significant effect 

on the time and computational resources 

taken to complete data processing. 

2.2 Case Study Computations 

Computational complexity of an operation can 

be represented using Big-O Notation [15], 

which refers to how the computation time 

scales with respect to the number of data 

points, n. A computationally efficient algorithm 

which loops over each data point once would 

be termed O(n); while a less efficient algorithm 

which loops over the whole set of data once 

for each point is O(n
2
).  

A comparison has been made between CMS 

data and SCADA data for the case study 

turbine, to illustrate the necessity for improved 

data handling techniques. One hour of data 

sampled at 50Hz from the in-service turbine 

was read into MS Excel and basic calculation 

of the mean of 14 variables (including wind 

speed, rotor speed, and generator 

temperature) was carried out. This is a 

relatively computationally simple calculation 

(O(n)), which can be used to detect trends in 

behaviour by comparing means between 

measurement periods (one hour in this case). 

Table 3 illustrates the difference in the number 

of rows and the processing time. 

 CMS 
Data 

SCADA 
Data 

File Size 8.4MB 10.6kB 

Number of Rows 
(measurements) 

180,000 6 

Time to calculate 
mean (seconds) 

0.06 0.001 

Table 3: Comparison between CMS and 
SCADA Data 

For one hour of data the difference in 

processing time may seem insignificant. 

However  a  day’s  worth  of  CMS  data  will 

produce 4,320,000 rows of data of which MS 

Excel can only handle 1,048,576 rows at a 

time.  In comparison, a day’s worth of SCADA 
data is 144 rows, which is many orders of 

magnitude smaller, and therefore almost any 

tools can be used for calculation.  

There are also significant performance 

implications for the CMS data when the 

operation performed becomes more complex 

than calculation of the mean. The Fast Fourier 

transform (FFT) (shown in Figure 1) allows 

time series signals to be analysed in the 

frequency domain, and is a very common 

method of analysing vibration data. The 

standard implementation of the FFT is of order 

O(n log n) [15].  

The amplitude spectrum shown in Figure 1 is 

the result of performing an FFT on data from 

an accelerometer mounted on the main 

bearing. Adjusting the number of samples will 

have an effect on the frequency resolution of 

the spectrum.  

 

Figure 1: Amplitude spectrum of main bearing 
acceleration 

MS Excel has an add-on function which 

carries out the FFT. The function has a limit of 

only being able to process 4096 data values, 

which for data sampled at 50Hz means only 

81.92 seconds of data can be used for the 

operation. This limit significantly reduces the 

frequency resolution that can be achieved. For 

comparison, 4096 data samples were used to 

calculate the FFT in Matlab.  

Table 4 shows the results of the comparison. 

The statistics show how many milliseconds it 



takes to compute each operation. The 

computation times were recorded 10 times 

and averaged to reduce variability due to 

external factors.  As can be seen from Table 4 

the computation times for performing the 

operations were an order of magnitude faster 

when performed in Matlab.   

Statistics Matlab MS Excel 

Minimum (ms) 0.15843 3.48 

Maximum (ms) 0.34834 39.43 

Mean (ms) 0.19 3.5 

Standard Deviation 0.05455 0.02828 
Table 4: Computation times for performing an 

FFT in Matlab and MS Excel 

 

 3.0 System Design for Big 

Data Approach to Wind 

Turbine Condition Monitoring 

As discussed above the FFT is a commonly 

used technique in signal processing and data 

analysis. However performing an FFT over 

large volumes of multiple datasets can be 

computationally intensive. In this application 

the requirement is to perform an FFT on 14 

different high frequency sensors in order to 

extract useful information such as key bearing 

or fault frequencies. 

The standard approach is to develop a 

program which iteratively computes the FFT 

for each parameter. In this application, for 

each period of study the program would 

iteratively compute the FFT for each sensor. 

This is illustrated by the pseudocode shown in 

Figure 2. 

Figure 2: Pseudocode for computing an FFT 

A Big Data approach to developing the same 

program is shown in Figure 3. Each iteration of 

the previous program is broken down into a 

sequence of Map, Reduce, or other higher 

order functions [8]. In this application, this 

translates to a Map stage, to perform the FFT 

to convert the time series data into the 

frequency domain; a Filter stage, to remove 

the complex conjugate values; and a set of 

Reduce operations, which summarise the data 

by extracting useful frequencies of interest. 

These steps are replicated for all 14 

parameters as illustrated in Figure 4. 

The key benefit of this Big Data approach is 

that each function stage becomes a separate 

work task, and the work tasks can be 

distributed over a number of computers (also 

known as nodes). This reduces the 

computational load on a single processor. This 

approach to parallel processing can reduce 

the total computation time and allow greater 

data throughput, which may result in earlier 

anomaly detection. It also allows for future 

expansion by adding additional nodes to the 

framework. 

A Big Data framework such as Hadoop will 

automatically handle the assignment of work 

tasks to each computer. This will ensure all 

nodes are processing a work task while there 

are still tasks to be performed. In Figure 3, the 

tasks relating to different sensors are 

completely independent, and can be assigned 

to any node at any time. The tasks relating to 

a single parameter must be executed in 

sequence (that is, the FFT must be calculated 

before the complex conjugates are removed), 

but each of the Map, Filter, and Reduce tasks 

can be performed by different nodes as they 

become available. 

This approach to data processing can be 

extended to other types of analysis. While the 

FFT is a commonly-used technique, there are 

other anomaly detection approaches such as 

parameter correlation, threshold analysis, and 

hidden Markov modelling. Future work will 

investigate these other approaches, taking 

advantage of the Big Data techniques for data 

handling. It is expected that by allowing larger 

datasets to be analysed more efficiently, wind 



turbine CMS can be fully utilised for the detection of faults and deterioration. 

Figure 3: Big Data Technique for reducing computation time 

 

 

Figure 4: Task sharing across multiple nodes

 

 

 

 

 

 



4.0 Conclusion 

Through the application of a wind turbine 

condition monitoring system, this paper has 

shown that large volumes of data require 

improved data handling techniques compared 

to that of conventional SCADA systems. 

Where investigations in [9] have shown the 

need for the correct database frameworks, this 

paper has highlighted that data analysis 

programs such as MS Excel are unable to 

handle the large files which are in excess of 

1,000,000 rows of data. One way to improve 

data handling is through the use of Big Data 

platforms that can manage and process large 

volumes of data more efficiently.  

Taking the widely-used FFT as a data analysis 

case study, this paper showed how a 

traditional iterative approach to data 

processing could be transformed into a set of 

functional work tasks for a Big Data platform. 

This allows tasks to be distributed across 

different computers, thus increasing 

throughput and decreasing total analysis time. 

The system described in section 2 can 

produce approximately 2 TB of data per month 

from one turbine. As technology improves, 2 

TB of data may not be considered Big Data; 

however 2 TB of data from each wind turbine 

across a wind farm generates data in the 

petabyte range. Implementing Big Data 

practices within a wind farm provides the 

infrastructure to handle this volume, and 

unlock the information within the data. This 

may benefit different parties such as 

technicians, operators, or manufacturers, and 

allow real time decision making for 

maintenance action. 
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