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Abstract

Piezoelectric ultrasonic transducers usually employ composite struc-

tures to improve their transmission and reception sensitivities. The geom-

etry of the composite is regular with one dominant length scale and, since

these are resonant devices, this dictates the central operating frequency

of the device. In order to construct a wide bandwith device it would seem

natural therefore to utilize resonators that span a range of length scales.

In this article we derive a mathematical model to predict the dynamics

of a fractal ultrasound transducer; the fractal in this case being the Sier-

pinski gasket. Expressions for the electrical and mechanical fields that
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are contained within this structure are expressed in terms of a finite ele-

ment basis. The propagation of an ultrasonic wave in this transducer is

then analyzed and used to derive expressions for the non-dimensionalised

electrical impedance and the transmission and reception sensitivities as a

function of the driving frequency. Comparing these key performance mea-

sures to an equivalent standard (Euclidean) design shows some benefits

of these fractal designs.

1 Introduction

Ultrasonic transducers are devices that convert electrical energy into mechan-

ical vibration and conversely can convert mechanical energy into an electrical

signal [21]. These devices can be used to interrogate a medium by emitting

a wave (electrical to mechanical) and then listening to the same wave after

it has traversed the medium (mechanical to electrical). Piezoelectric ultrasonic

transducers typically employ composite structures to improve their transmission

and reception sensitivities [9, 18]. Many biological species produce and receive

ultrasound such as moths, bats, dolphins and cockroaches. The manmade trans-

ducers tend to have very regular geometry on a single scale whereas the natural

systems exhibit a wide variety of intricate geometries often with resonators over

a range of length scales [16, 15, 13, 4, 6, 17, 19, 5]. This allows these transduc-

ers to operate over a wider frequency range and hence results in reception and

transmission sensitivities with exceptional bandwidths. To assess the benefits of

having transducers with such structures it would be useful to build mathemat-

ical models of them. One structure whose geometrical components consist of a

range of length scales is a fractal. There have been a number of mathematical

2



approaches which describe wave propagation in fractal media [11, 8, 12, 1, 2].

This paper constructs a model of a fractal ultrasound transducer and then uses

this model to compare its operational qualities with that of a standard (Eu-

clidean) design. The fractal that will be used in this article to simulate this

self-similar transducer is the Sierpinski gasket [7]. Such an ultrasonic trans-

ducer would start with an equilateral triangle of piezoelectric crystal, and the

next generation (n = 1) would be obtained by replacing this by three copies of

itself, each of which being half the size of the original triangle. This process is

then repeated for several generations (see Figure 1). The Sierpinski gasket lat-

tice of degree 3, SG(3), is the lattice counterpart of the Sierpinski gasket [20] (see

Figure 2). This lattice is constructed by a process which starts from the Sier-

pinski gasket of order 1 (which consists of three piezoelectric triangles), assigns

a vertex to the centre of each of these triangles and, by connecting these vertices

together with edges, the SG(3) lattice at generation level n = 1 is constructed.

The lattice has side length L units which remains constant as the generation

level n increases. Therefore, as n increases, the length of the edge between ad-

jacent vertices tends to zero and in this limit the lattice will perfectly match the

space filling properties of the original Sierpinski gasket [14]. The total number

of vertices is N = 3n and h(n) = L/(2n − 1) is the edge length of the fractal

lattice. The vertex degree is 3 apart from the boundary vertices (input/output

vertices) which have degree 2 and M = 2(3n − 1)/3 denotes the total number

of edges. These boundary vertices will be used to interact with external loads

(both electrical and mechanical) and so we introduce fictitious vertices A,B and

C to accommodate these interfacial boundary conditions (see Figures 5 and 6).

Let us denote by Ω the set of points lying on the edges or vertices of SG(3) and

denote the region’s boundary by ∂Ω.
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Figure 1: The first few generations of the Sierpinski gasket.

n = 1 n = 2 n = 3

Figure 2: The first few generations of the Sierpinski gasket lattice SG(3).

2 Model Derivation

The lattice represents the vibrations of a piezoelectric material (we will focus

on PZT-5H) that has been manufactured to form a Sierpinski gasket. The

interplay between the electrical and mechanical behaviour of the lattice vertices

is therefore described by the piezoelectric constitutive equations [21]

Tij = cijklSkl − ekijEk, (1)

Di = eiklSkl + εikEk, (2)

where Tij is the stress tensor, cijkl is the stiffness tensor, Skl is the strain tensor,

ekij is the piezoelectric tensor, Di is the electrical displacement tensor and εik is

the permittivity tensor (where the Einstein summation convention is adopted).

The strain tensor is related to the displacement gradients ui,j by

Sij =
ui,j + uj,i

2
, (3)
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and the electric field vector is related to the electric potential φ via

Ei = −φ,i. (4)

The dynamics of the piezoelectric material is then governed by

ρT üi = Tji,j, (5)

subject to Gauss’ law

Di,i = 0 (6)

where ρT is the density and ui is the component of displacement in the direction

of the ith basis vector. So, combining equations (5) and (1) gives

ρT üi = cjiklSkl,j − ekjiEk,j. (7)

Combining equations (6) and (2)

Di,i = eiklSkl,i + εikEk,i = 0. (8)

We will restrict attention to the out of plane displacement only (a horizontal

shear wave) by stipulating that

u =
(

0, 0, u3(x1, x2, t)
)

, (9)

so only u3,1 and u3,2 are nonzero then equation (7) gives

ρT ü3 = c13klSkl,1 + c23klSkl,2 − ekj3Ek,j. (10)

From equation (3) we get

Sij =































1
2
u3,1 i = 1, j = 3 or i = 3, j = 1

1
2
u3,2 i = 2, j = 3 or i = 3, j = 2

0 otherwise,

(11)
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so equation (10) gives

ρT ü3 = c1331u3,11 + c1332u3,21 + c2331u3,12 + c2332u3,22 − ekj3Ek,j. (12)

From the properties of PZT-5H (see Appendix), then

ρT ü3 = c44(u3,11 + u3,22) − ekj3Ek,j. (13)

since c55 = c44. Now if E =
(

E1(x1, x2), E2(x1, x2), 0
)

then

ρT ü3 = c44(u3,11 + u3,22) − e113E1,1 − e123E1,2 − e213E2,1 − e223E2,2. (14)

That is

ρT ü3 = c44(u3,11 + u3,22) − e15E1,1 − e14E1,2 − e25E2,1 − e24E2,2. (15)

Then, for PZT-5H,

ρT ü3 = c44(u3,11 + u3,22) − e24(E1,1 + E2,2), (16)

since e15 = e24. From equation (8) we get

e113S13,1 + e131S31,1 + e223S23,2 + e232S32,2 + ε11E1,1 + ε22E2,2 = 0. (17)

That is, for PZT-5H,

e15u3,11 + e24u3,22 + ε11E1,1 + ε22E2,2 = 0. (18)

Therefore

e24(u3,11 + u3,22) + ε11(E1,1 + E2,2) = 0 (19)

since ε11 = ε22. So we get

E1,1 + E2,2 = −e24
ε11

(u3,11 + u3,22). (20)
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Substituting this equation into equation (16) gives

ρT ü3 = c44(u3,11 + u3,22) +
e224
ε11

(u3,11 + u3,22). (21)

This can be written as

ü3 = c2T∇u3 (22)

where ∇ = (∂2/∂x2
1, ∂

2/∂x2
2), cT =

√

YT/ρT is the (piezoelectrically stiffened)

wave velocity and YT = c44(1 + e224/(ε11c44)). We impose the initial condi-

tions u3(x, 0) = u̇3(x, 0) = 0 and the boundary conditions of continuity of

displacement and force at ∂Ω (the boundary to Ω). By introducing the non-

dimensionalised variable θ = cT t/h then (dropping the subscript on u)

∂2u

∂θ2
= h2∇2u. (23)

Applying the Laplace transform L : θ → q then gives

q2 ū = h2 ∇2ū. (24)

We will seek a weak solution ū ∈ H1(Ω) where on the boundary ū = ū∂Ω ∈

H1(∂Ω). Now multiplying by a test function w ∈ H1
B(Ω), where H1

B(Ω) := {w ∈

H1(Ω) : w = 0 on ∂Ω}, integrating over the region Ω, and using Green’s first

identity
∫

Ω
ψ ∇2φ dv =

∮

∂Ω
ψ(∇φ.n) dr −

∫

Ω
∇φ.∇ψ dv, where n is the outward

pointing unit normal of surface element dr, gives

∫

Ω

q2 ū w dx = h2

∮

∂Ω

w(∇ū.n) dr − h2

∫

Ω

∇ū.∇w dx. (25)

Now h2
∮

∂Ω
w(∇ū.n) dr is zero since w = 0 on ∂Ω and so, we seek ū ∈ H1(Ω)

such that
∫

Ω

(q2 ū w + h2 ∇ū.∇w) dx = 0 (26)

where w ∈ H1
B(Ω).
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3 Galerkin discretisation

Using a standard Galerkin method we replace H1(Ω) and H1
B(Ω) by the finite

dimensional subspaces S and SB = S ∩H1
B(Ω). Let UB ∈ S be a function that

approximates ū∂Ω on ∂Ω, then the discretised problem involves finding Ū ∈ S

such that
∫

Ω

(q2 Ū W + h2 ∇Ū .∇W ) dx = 0. (27)

Let{φ1, φ2, · · · , φN} form a basis of SD and set W = φj, then

∫

Ω

(q2 Ū φj + h2 ∇Ū .∇φj) dx = 0. (28)

Furthermore, let I = {φN+1, φN+2, φN+3} form a basis for the boundary nodes

and let

Ū =

N
∑

i=1

Uiφi +
∑

i∈I

UBi
φi. (29)

Hence, equation (28) becomes

N
∑

i=1

(
∫

Ω

(q2φiφj + h2∇φi.∇φj)dx

)

Ui =

−
∑

i∈I

(
∫

Ω

(q2φiφj + h2∇φi.∇φj)dx

)

UBi
(30)

where j ∈ {1, 2, · · · , N}. That is

AjiUi = bj (31)

where

Aji =

∫

Ω

(q2φiφj + h2∇φi.∇φj)dx, (32)

and

bj = −
∑

i∈I

(
∫

Ω

(q2φiφj + h2∇φi.∇φj)dx

)

UBi
. (33)
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It is important to now explicitly record the fractal generation level n and so

equation (32) can be written

A
(n)
ji = q2H

(n)
ji + h2K

(n)
ji , (34)

where

K
(n)
ji =

∫

Ω

(∇φj.∇φi)dx (35)

and

H
(n)
ji =

∫

Ω

(φjφi)dx. (36)

The lattice basis function at vertex xj is chosen to be (see Figure 3)

(xj+3, yj+3)

(xj , yj)

(xj+1, yj+1)

(xj+2, yj+2)

Figure 3: The lattice basis function φj at vertex xj = (xj , yj).

φj(x, y) =















a+ bx+ cy + d(x2 + y2) j ∈ {1, · · · , N}

a+ d(x2 + y2) j ∈ I.

(37)

where (x, y) ∈ Ω and a, b, c, d ∈ R are coefficients to be determined. Hence

∇φj(x, y) =















(b+ 2dx, c+ 2dy) j ∈ {1, · · · , N}

(2dx, 2dy) j ∈ I.

(38)

Futhermore, the φj are defined as localised basis functions such that

φj(x, y) =















1 if (x, y) = (xj , yj)

0 if (x, y) = coordinates of vertices adjacent to vertex j,

(39)
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and φj(x, y) = 0 at all points which do not lie in the edges adjacent to vertex

j. For each generation level of the SG(3) lattice the coordinates of the vertices

are known (see the Appendix for a detailed description for n = 1 and n = 2).

Using equation (39) the coefficients in equation (37) can be determined (see the

Appendix for the values of these coefficients for n = 1 and n = 2). For each

element (edge) e where e = 1, · · · ,M

eK
(n)
ji =

∫

e

(bj + 2djx, cj + 2djy).(bi + 2dix, ci + 2diy)dx,

=

∫

e

(

bibj + 2(djbi + dibj)x+ 4didjx
2 + cicj + 2(dicj + djci)y

+4didjy
2
)

dx. (40)

For a particular element lying between vertex i and vertex j the isoparametric

s1

s

s2

(xi, yi)

(xj, yj)

Figure 4: An isoparametric element (edge) between vertex (xi, yi) and vertex

(xj , yj).

representation, given by

(

x(s), y(s)
)

=
(

(xj − xi)s+ xi, (yj − yi)s+ yi

)

(41)

is enployed (see Figure 4), where s1 = 0 and s2 = 1 and dx = hds. Substituting

this into equation (40) gives

eK
(n)
ji =

4

h







∫ 1

0
s2ds

∫ 1

0
s(s− 1)ds

∫ 1

0
s(s− 1)ds

∫ 1

0
(s− 1)2ds






=

2

3h







2 −1

−1 2






. (42)
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1 2 3

54

6

A B

C

1 2

3

(−h, 0) (0, 0) (h, 0) (2h, 0)

(h/2,
√

3h/2)

(h,
√

3h)

Figure 5: The Sierpinski Gasket lattice SG(3) at generation level n = 1. Nodes

1, 2 and 3 are the input/output nodes, and nodes A,B and C are fictitious

nodes used to accommodate the boundary conditions. The lattice has 6 elements

(circled numbers), with two vertices adjacent to each element.

For the boundary elements e ∈ {M + 1,M + 2,M + 3} then equation (40)

becomes

eK
(n)
ji =

∫

e

(2djx, 2djy).(2dix, 2diy)dx =
2

3h







2 0

0 0






. (43)

Combining equations (42) and (43) to assemble the full matrix in equation (35)

gives, for generation level n = 1,

K
(1)
ji =

2

3h













6 −1 −1

−1 6 −1

−1 −1 6













, (44)

and at generation level n = 2
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1 2

3

4 5

6

7 8

9

1

23

4 5

67

8 9

10

1112

13 4

15

A B

C

x

y

(−h, 0) (0, 0) (h, 0) (2h, 0) (3h, 0) (4h, 0)

(h/2,
√

3h/2) (5h/2,
√

3h/2)

(h,
√

3h) (2h,
√

3h)

(3h/2, 3
√

3h/2)

(2h, 2
√

3h)

Figure 6: The Sierpinski Gasket lattice SG(3) at generation level n = 2. Nodes

A,B and C are fictitious nodes used to accommodate the boundary conditions.

The lattice has 15 elements (circled numbers), with two vertices adjacent to each

element.

K
(2)
ji =

2

3h





















































6 −1 −1 0 0 0 0 0 0

−1 6 −1 −1 0 0 0 0 0

−1 −1 6 0 0 0 −1 0 0

0 −1 0 6 −1 −1 0 0 0

0 0 0 −1 6 −1 0 0 0

0 0 0 −1 −1 6 0 −1 0

0 0 −1 0 0 0 6 −1 −1

0 0 0 0 0 −1 −1 6 −1

0 0 0 0 0 0 −1 −1 6





















































. (45)
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Similarly for eH
(n)
ji we can write equation (36) as

eH
(n)
ji =

∫

e

(

aj + bjx+ cjy + dj(x
2 + y2).(ai + bix+ ciy + di(x

2 + y2)
)

dx

=

∫

e

(

ajai + (ajbi + aibj)x+ (ajci + aicj)y + (cjbi + cibj)xy + bjbix
2

+cjciy
2 + (ajdi + aidj)(x

2 + y2) + (bjdi + bidj)x(x
2 + y2)

+(cjdi + cidj)y(x
2 + y2) + djdi(x

2 + y2)2
)

ds(e). (46)

Using equation (41) then

eH
(n)
ji = h







∫ 1

0
(s2 − 1)2ds

∫ 1

0
(s2 − 1)(s− 2)sds

∫ 1

0
(s2 − 1)(s− 2)sds

∫ 1

0
(s− 2)2s2ds






, (47)

for e ∈ {1, · · · ,M} which reduces to

eH
(n)
ji =

h

30







16 11

11 16






. (48)

For the boundary elements e ∈ {M + 1,M + 2,M + 3}

eH
(n)
ji =

h

30







16 0

0 0






. (49)

Assembling the full matrix in equation (36) gives, for generation level n = 1

H
(1)
ji =

h

30













48 11 11

11 48 11

11 11 48













, (50)
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and for generation level n = 2

H
(2)
ji =

h

30





















































48 11 11 0 0 0 0 0 0

11 48 11 11 0 0 0 0 0

11 11 48 0 0 0 11 0 0

0 11 0 48 11 11 0 0 0

0 0 0 11 48 11 0 0 0

0 0 0 11 11 48 0 11 0

0 0 11 0 0 0 48 11 11

0 0 0 0 0 11 11 48 11

0 0 0 0 0 0 11 11 48





















































. (51)

Combining equations (44) and (50) gives equation (34) as

A
(1)
ji = h













α β β

β α β

β β α













, (52)

where α = 8
5
q2 + 4, and β = 11

30
q2 − 2

3
. Similarly, for generation level n = 2,

A
(2)
ji = h





















































α β β 0 0 0 0 0 0

β α β β 0 0 0 0 0

β β α 0 0 0 β 0 0

0 β 0 α β β 0 0 0

0 0 0 β α β 0 0 0

0 0 0 β β α 0 β 0

0 0 β 0 0 0 α β β

0 0 0 0 0 β β α β

0 0 0 0 0 0 β β α





















































. (53)
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A similar treatment can be given to equation (33) to give (m = (N + 1)/2)

b
(n)
j =















































−(
∫

eM+1
(q2φN+1φj + h2∇φN+1.∇φj)dx)UA, j = 1

−(
∫

eM+2
(q2φN+2φj + h2∇φN+2.∇φj)dx)UB, j = m

−(
∫

eM+3
(q2φN+3φj + h2∇φN+3.∇φj)dx)UC , j = N

0 otherwise

(54)

Using the isoparametric representation given by equation (41)

b
(n)
j =















































hη
(n)
j UA, j = 1

hη
(n)
j UB, j = m

hη
(n)
j UC , j = N

0 otherwise

(55)

where

η
(n)
j =















4
3
− 2

15
q2, j = 1

1 + 1
3(2n+1−1)

+ (11−15×2n)
30(2n+1−1)

q2, j = m or N.

(56)

For generation level n = 1,

b
(1)
j =















































h(4
3
− 2

15
q2)UA, j = 1

h(10
9
− 19

90
q2)UB, j = 2

h(10
9
− 19

90
q2)UC , j = 3

0 otherwise

, (57)
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and for generation level n = 2,

b
(2)
j =















































h(4
3
− 2

15
q2)UA , j = 1

h(22
21

− 7
30
q2)UB , j = 5

h(22
21

− 7
30
q2)UC , j = 9

0 otherwise

. (58)

3.1 Application of the Mechanical boundary conditions

Mechanical and electrical loads will be introduced to the tranducer at its bound-

aries as displayed in Figure 7. In the mechanical load at the front face of the

transducer the governing equation is

ρL
∂2uL

∂t2
= YL

∂2uL

∂x2
L

, (59)

where uL is the displacement of the load material, ρL is the density and YL is

the Young’s modulus. That is

ρT
h2

YT

∂2uL

∂t2
=

( ρTh
2

ρLYT

)

YL
∂2uL

∂x2
L

(60)

and so, nondimensionalising, gives

∂2uL

∂θ2
=

(cLh

cT

)2∂2uL

∂x2
L

(61)

where cL is the wave speed in the load (c2L = YL/ρL). Taking Laplace transforms

gives

∂2ūL

∂x2
L

−
( qcT
hcL

)2

ūL = 0. (62)

Hence, the displacement in the load is

ūL = ALe
(−qcT xL/hcL) +BLe

(qcT xL/hcL), (63)
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ZPZP

Z0

Mechanical Load

Backing
Material

Vs

Mechanical Load

Sierpinski Gasket

Figure 7: Physical layout of the fractal transducer.

where AL and BL are constants. Similarly the displacement in the backing layer

(subscript B) is given by

ūB = ABe
(−qcT xB/hcB) +BBe

(qcT xB/hcB), (64)

where AB and BB are constants and cB is the wave speed in the backing material.

As the backing layer is highly attenuative it is assumed that there is only a wave

travelling away from the piezoelectric layer (SG(3)) interface (xB = 0) in the

direction of increasing xB, and so we set BB = 0. Continuity of displacement at

the transducer-mechanical load interface and the symmetry of the SG(3) lattice

give

UA = ūB(0) = AB, (65)

UB = ūL(0) = AL +BL, (66)

UC = ūL(0) = AL +BL, (67)
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where UA, UB and UC are the mechanical displacements at the fictitious vertices

A,B and C, respectively. The force F on each vertex is given by F = ArT ,

where Ar is the cross-sectional area of each edge of the fractal lattice.

From equation (9) only u3,1 and u3,1 are nonzero and so the only nonzero com-

ponents of equation (1) are

T13 = c1313S13 + c1331S31 − e113E1, (68)

T31 = c3113S13 + c3131S31 − e131E1, (69)

T23 = c2323S23 + c2332S32 − e223E2 (70)

and

T32 = c3223S23 + c3232S32 − e232E2. (71)

That is

T13 = T31 = c44u3,1 − e24E1 (72)

and

T23 = T32 = c44u3,2 − e24E2. (73)

Similarly, from equation (2), the only nonzero components are

D1 = e24u3,1 + ε11E1, (74)

and

D2 = e24u3,2 + ε11E2, (75)

Given the geometry of the lattice, the positioning of the boundary nodes, and

the load conditions there is a line of symmetry given by x1 = x2 (see Figure 8).

Hence E1 = E2 = E, u3,1 = u3,2 and D1 = D2 = D and so

D = e24u3,1 + ε11E. (76)
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x1

x2

Figure 8: The line of symmetry given by x1 = x2

That is

E = −ζS +
D

ε
(77)

where ζ = e24/ε11, S = u3,1 = ∂ū/∂x and ε11 = ε, say. Also, by writing T13 = T ,

we have

T = c44u3,1 − e24E. (78)

and substituting equation (76) gives

T =
(

c44 +
e224
ε11

)

u3,1 −
e24
ε11

D. (79)

That is

T = YTS − ζD. (80)

where YT = c44 +e224/ε11 = c̄44 is the piezoelectrically stiffened Young’s modulus

(the subscripts on the remaining terms being dropped). Hence

F = ArT = ArYTS − ζDAr. (81)

By applying an electrical charge Q at one of the transducer-electrical load in-

terfaces then Gauss’ law gives D = Q/Ar. Since S = ∂ū/∂x, then

F = ArYT
∂ū

∂x
− ζQ. (82)
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So from the continuity of force we get FT (ūm) = FL(ū∂Ω) = FL(xL = 0). That

is

ArYT
(UB − Um)

h
− ζQ = ArYL

( qcT
hcL

)

(−AL +BL), (83)

and so

UB − Um − ζQ

YT

( h

Ar

)

=
ZL

ZT
q(−AL +BL), (84)

where the mechanical impedance of the load is ZL = ρLcLAr = ArYL/cL and

of the transducer is ZT = ρT cTAr. At each generation level of the Sierpinski

gasket transducer the ratio of the cross-sectional area of each edge to its length

is denoted by ξ = Ar/h. The overall extent of the lattice (L) is fixed and

so the length of the edges will steadily decrease and, by fixing ξ, the cross-

sectional area will also decrease as the fractal generation level increases (in fact

Ar = ξL/(2n − 1)). Hence, continuity of force gives

U1 − UA − ζQ

YT ξ
=

ZB

ZT

q(−AB), (85)

UB − Um − ζQ

YT ξ
=

ZL

ZT
q(−AL +BL). (86)

From equations (65) and (85) we have that UA = γ1U1 + δ1 and from equations

(66),(67) and (86) we have

UB = γmUm + δm = UC = γNUN + δN , (87)

where

γj =















(1 − qZB

ZT

)−1, j = 1

(1 − q ZL

ZT

)−1, j = m or N

(88)

and

δj =















− ζQ
YT ξ

(

1 − qZB

ZT

)−1

, j = 1

(

1 − q ZL

ZT

)−1(
ζQ
YT ξ

− 2ALq
ZL

ZT

)

, j = m or N.

(89)
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Hence, equation (55) becomes

b
(n)
j = hγ̄

(n)
j Uj + hδ̄j

(n)
j = 1, m or N (90)

where γ̄
(n)
j = η

(n)
j γj and δ̄j

(n)
= η

(n)
j δj. Putting equation (90) into equation (31)

gives

Â
(n)
ji Ui = γ̄

(n)
j Uj + δ̄j

(n)
(91)

where Â = A/h. Hence,

(Â
(n)
ji − B̂

(n)
ji )Ui = δ̄j

(n)
, i = 1, m or N (92)

where

B̂
(n)
ji =





















































γ̄1 0 · · · · · · 0

0 0
. . .

...

...
. . .

. . .

0 0

γ̄m

0 0

. . .
. . .

...

...
. . . 0 0

0 · · · · · · 0 γ̄N





















































. (93)

That is

F
(n)
ji Ui = δ̄j

(n)
, (94)

and so

Ui = G
(n)
ji δ̄j

(n)
, (95)

where

G
(n)
ji =

(

F
(n)
ji

)−1
=

(

Â
(n)
ji − B̂

(n)
ji

)−1
(96)

repesents the Green’s transfer matrix.
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4 Renormalisation

From equation (95) the desired weightings at each vertex in Ω is given by

U
(n)
j = G

(n)
j1 δ̄

(n)
1 +G

(n)
jm δ̄

(n)
m +G

(n)
jN δ̄

(n)
N . (97)

In particular we will be interested in U
(n)
1 , U

(n)
m and U

(n)
N and so we only need

to be able to calculate the pivotal Green’s functions G
(n)
ij , i, j ∈ {1, m,N}. If

1 b e m

d q

r z

N

Figure 9: Three Sierpinski Gasket lattices of generation level n−1 are connected

by the edges in bold
(

(d, r), (b, e) and (q, z)
)

to create the Sierpinski Gasket

lattice at generation level n.

we temporarily ignore matrix B̂ in equation (96) (this matrix originates from

consideration of the boundary conditions) then, due to the symmetries of the

SG(3) lattice (and hence in matrix A(n)), we have

Ĝ
(n)
ii = Ĝ

(n)
jj = x̂, say, where i, j ∈ {1, m,N} (98)

(i.e corner-to-same-corner), and

Ĝ
(n)
jk = Ĝ

(n)
hk = ŷ, say, where j, k, h ∈ {1, m,N}, j 6= k 6= h (99)

(i.e corner-to-other-corner), where

Ĝ(n) = (Â(n))−1. (100)
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For clarity, at level n + 1, we denote, X = Ĝ
(n+1)
ii and Y = Ĝ

(n+1)
ij where i, j,∈

{1, m,N}, i 6= j. The matrix is symmetrical and consequently, Ĝ
(n)
ij = Ĝ

(n)
ji .

From equation (24), since

θ(n) =
cT
h(n)

t, (101)

then L : θ(n) → q(n) where q(n) = iŵ(n) = i2πf̂ (n) = i2π(cT/h
(n))−1f (n), f̂ (n) is

the nondimensionalised natural frequency, ŵ(n) is the nondimensionalised angu-

lar frequency and f (n) (and w(n)) are the dimensionalised equivalents. In order

to use the renormalisation approach detailed below then we set q = q(n) = q(n+1).

This simply means that the output from the renormalisation methodology (and

hence the electrical impedance and transmission/reception sensitivities) at a

given q (fixed) is then that quantity at frequency f (n) at generation level n. So

when comparing outputs at different generation levels one must ensure that the

frequency is scaled appropriately (by (cT/h
(n))−1) when re-dimensionalising. An

iterative procedure can be developed from equation (34) which can be written

Â
(n)
ji = 8

5
q2In − T (n) (102)

where

T (n) = βR(n) − 4In, (103)

R(n) = R̄(n−1) + V (n−1), (104)

R̄(n−1) is a block-diagonal matrix whose three blocks are equal to R(n−1) with

R(1) =













0 −1 −1

−1 0 −1

−1 −1 0













, (105)
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and

V (n) =















−1 if (h, k) ∈ {(b, e), (d, r), (q, z), (e, b), (r, d), (z, q)}

0 otherwise

. (106)

So, using equations (102) and (103), we can write equation (100) as

Ĝ(n) =
(

8
5
q2In − T (n)

)−1

=
(

(8
5
q2 + 4)In − βR(n)

)−1
. (107)

Hence,

(Ĝ(n+1))−1 = (8
5
q2 + 4)In+1 − βR(n+1). (108)

Since Ḡ(n) is a block-diagonal matrix then

(Ḡ(n))−1 = Â(n)

=
(

8
5
q2In − T (n)

)

= 8
5
q2In+1 − T̄ (n)

= 8
5
q2In+1 − (βR̄(n) − 4Īn)

= (8
5
q2 + 4)In+1 − βR̄(n). (109)

Now

In+1 = Ḡ(n)(Ḡ(n))−1

= Ḡ(n)
(

(8
5
q2 + 4)In+1 − βR̄(n)

)

= Ḡ(n)
(

(8
5
q2 + 4)In+1 − β(R̄(n) + V (n)) + βV (n)

)

.

From equations (104) and (108) then

In+1 = Ḡ(n)
(

(Ĝ(n+1))−1 + βV (n)
)

= Ḡ(n)
(

(Ĝ(n+1))−1 + βV (n)Ĝ(n+1)(Ĝ(n+1))−1
)

= (Ḡ(n) + Ḡ(n)βV (n)Ĝ(n+1))(Ĝ(n+1))−1. (110)
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Hence

Ĝ(n+1) = Ḡ(n) + βḠ(n)V (n)Ĝ(n+1). (111)

To calculateG
(n)
ij the boundary conditions must be reintroduced. From equations

(96),(102) and (103)

(G(n))−1 = Â(n) − B̂(n)

= (8
5
q2In − T (n)) − B̂(n)

= 8
5
q2In − (βR(n) − 4In) − B̂(n)

= (8
5
q2 + 4)In − βR(n) − B̂(n). (112)

Now, from equation (107)

In = Ĝ(n)(Ĝ(n))−1

= Ĝ(n)
(

(8
5
q2 + 4)In − βR(n) − B̂(n) + B̂(n)

)

.

From equation (112) then,

In = Ĝ(n)
(

(G(n))−1 + B̂(n)
)

= Ĝ(n)
(

(G(n))−1 + B̂(n)G(n)(G(n))−1
)

= (Ĝ(n) + Ĝ(n)B̂(n)G(n))(G(n))−1. (113)

Hence

G(n) = Ĝ(n) + Ĝ(n)B̂(n)G(n). (114)

4.1 Derivation of the pivotal recursion relationships

The (i, j)th element of the matrix equation (111) can be written as,

Ĝ
(n+1)
ij = Ḡ

(n)
ij +

∑

h,k

βḠ
(n)
ih V

(n)
hk Ĝ

(n+1)
kj . (115)
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The system of linear equation in Ĝ
(n+1)
ij will create the renormalisation recursion

relationships for the pivotal Green’s functions. However, these recursions do not

include the boundary conditions. Since the subgraphs of Figure 1 only connect

to each other at the corners, it will transpire that the recursions in equation

(115) only involve two pivotal Green’s functions, namely, corner-to-corner and

corner-to-same-corner; the so called input/output nodes. To proceed, we now

need to determine x̂ and ŷ as defined in equations (98) and (99). Using equations

(106) and (115) we get

Ĝ
(n+1)
11 = Ḡ

(n)
11 +

∑

h,k

βḠ
(n)
1h V

(n)
hk Ĝ

(n+1)
k1

= Ĝ
(n)
11 + βḠ

(n)
1d V

(n)
dr Ĝ

(n+1)
r1 + βḠ

(n)
1b V

(n)
be Ĝ

(n+1)
e1

= Ĝ
(n)
11 − βĜ

(n)
1NĜ

(n+1)
r1 − βĜ

(n)
1mĜ

(n+1)
e1 .

That is

X̂ = x̂− 2βŷĜ
(n+1)
e1 , (116)

since we know from equation (106) that V
(n)
dr = V

(n)
be = −1 and by symmetry

Ḡ
(n)
1d = Ĝ

(n)
1N , Ĝ

(n)
1N = Ĝ

(n)
1m and Ĝ

(n+1)
r1 = Ĝ

(n+1)
e1 . Similarly,

Ĝ
(n+1)
e1 = Ḡ

(n)
e1 +

∑

h,k

βḠ
(n)
eh V

(n)
hk Ĝ

(n+1)
k1

= βḠ(n)
ee V

(n)
eb Ĝ

(n+1)
b1 + βḠ(n)

eq V
(n)
qz Ĝ

(n+1)
z1

= −βĜ(n)
11 Ĝ

(n+1)
b1 − βĜ

(n)
1NĜ

(n+1)
z1 .

Therefore

Ĝ
(n+1)
e1 = −βx̂Ĝ(n+1)

b1 − βŷĜ
(n+1)
z1 . (117)
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Also

Ĝ
(n+1)
b1 = Ḡ

(n)
b1 +

∑

h,k

βḠ
(n)
bh V

(n)
hk Ĝ

(n+1)
k1

= Ĝ
(n)
m1 + βḠ

(n)
bb V

(n)
be Ĝ

(n+1)
e1 + βḠ

(n)
bd V

(n)
dr Ĝ

(n+1)
r1

= ŷ − βĜ(n)
mmĜ

(n+1)
e1 − βĜ

(n)
mNĜ

(n+1)
e1 .

Hence

Ĝ
(n+1)
b1 = ŷ − βĜ

(n+1)
e1 (x̂+ ŷ), (118)

since Ĝ
(n+1)
r1 = Ĝ

(n+1)
e1 . Finally,

Ĝ
(n+1)
z1 = Ḡ

(n)
z1 +

∑

h,k

βḠ
(n)
zh V

(n)
hk Ĝ

(n+1)
k1

= βḠ(n)
zr V

(n)
rd Ĝ

(n+1)
d1 + βḠ(n)

zz V
(n)
zq Ĝ

(n+1)
q1

= −βĜ(n)
m1Ĝ

(n+1)
b1 − βĜ(n)

mmĜ
(n+1)
z1 .

Therefore

Ĝ
(n+1)
z1 = −βŷĜ(n+1)

b1 − βx̂Ĝ
(n+1)
z1 , (119)

since Ĝ
(n+1)
d1 = Ĝ

(n+1)
b1 and Ĝ

(n+1)
q1 = Ĝ

(n+1)
z1 . Equations (116) to (119) provide

four equations in the four unknows X̂, Ĝ
(n+1)
e1 , Ĝ

(n+1)
b1 and Ĝ

(n+1)
z1 . Rearranging

equation (116) gives (for ŷ 6= 0, β 6= 0)

Ĝ
(n+1)
e1 =

x̂− X̂

2βŷ
, (120)

and substituting this into equation (118) gives

Ĝ
(n+1)
b1 = ŷ + (x̂+ ŷ)

(X̂ − x̂

2ŷ

)

. (121)

Now rearranging equation (117) gives (for ŷ 6= 0, β 6= 0)

Ĝ
(n+1)
z1 =

−1

βŷ

(

Ĝ
(n+1)
e1 + βx̂Ĝ

(n+1)
b1

)

, (122)
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and substituting equations (120) and (121) into equation (122) gives

Ĝ
(n+1)
z1 =

−1

βŷ

[ x̂− X̂

2βŷ
+ βx̂ŷ + βx̂(x̂+ ŷ)

(X̂ − x̂

2ŷ

)]

=
X̂ − x̂

2β2ŷ2

(

1 − x̂β2(x̂+ ŷ)
)

− x̂, (123)

and substituting equations (121) and (123) into equation (119) gives (where

X̂ = Ĝ
(n+1)
11 )

[(X̂ − x̂)

2β2ŷ2

(

1 − β2x̂(x̂+ ŷ)
)

− x̂
]

(1 + βx̂) = −βŷ
[

ŷ + (x̂+ ŷ)
(X̂ − x̂)

2ŷ

]

(124)

so

(X̂ − x̂)
[

(

1 − β2x̂(x̂+ ŷ)
)

(1 + βx̂)

2β2ŷ2
+
βŷ(x̂+ ŷ)

2ŷ

]

= x̂(1 + βx̂) − βŷ2 (125)

and so

(X̂− x̂)
[

(1−β2x̂2−β2x̂ŷ)(1+βx̂)+β3ŷ2(x̂+ ŷ)
]

= 2β2ŷ2(x̂+βx̂2−βŷ2) (126)

Expanding and factorising we get,

X̂ = x̂+
2β2ŷ2(x̂+ βx̂2 − βŷ2)

(1 + βx̂+ βŷ)(1 − β2x̂2 − βŷ + β2ŷ2)
. (127)

By substituting this into equations (120),(121) and (123) gives

Ĝ
(n+1)
e1 =

−βŷ(x̂+ βx̂2 − βŷ2)

(1 + βx̂+ βŷ)(1 − β2x̂2 − βŷ + β2ŷ2)
, (128)

and

Ĝ
(n+1)
b1 =

ŷ(1 + βx̂)

(1 + βx̂+ βŷ)(1 − β2x̂2 − βŷ + β2ŷ2)
, (129)

and so

Ĝ
(n+1)
z1 =

−βŷ2

(1 + βx̂+ βŷ)(1 − β2x̂2 − βŷ + β2ŷ2)
. (130)
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Now, for Ŷ = Ĝ
(n+1)
m1 , equation (115) gives

Ĝ
(n+1)
m1 = Ḡ

(n)
m1 +

∑

h,k

βḠ
(n)
mhV

(n)
hk Ĝ

(n+1)
k1

= βḠ(n)
meV

(n)
eb Ĝ

(n+1)
b1 + βḠ(n)

mqV
(n)
qz Ĝ

(n+1)
z1

= −βĜ(n)
m1Ĝ

(n+1)
b1 − βĜ

(n)
mNĜ

(n+1)
z1 .

Therefore

Ŷ = −βŷ(Ĝ(n+1)
b1 + Ĝ

(n+1)
z1 ). (131)

Putting equations (129) and (130) into equation (131) gives

Ŷ =
−βŷ2(1 + βx̂− βŷ)

(1 + βx̂+ βŷ)(1 − β2x̂2 − βŷ + β2ŷ2)
. (132)

The boundary conditions can now be considered by rewriting the (i, j)th element

of the matrix equation (114) as,

G
(n)
ij = Ĝ

(n)
ij +

∑

h,k

Ĝ
(n)
ih B̂

(n)
hk G

(n)
kj (133)

and so we have,

G
(n)
11 = Ĝ

(n)
11 +

∑

h,k

Ĝ
(n)
ih B̂

(n)
hk G

(n)
k1

= Ĝ
(n)
11 + Ĝ

(n)
11 B̂

(n)
11 G

(n)
11 + Ĝ

(n)
1mB̂

(n)
mmG

(n)
m1 + Ĝ

(n)
1N B̂

(n)
NNG

(n)
N1.

Therefore

x = x̂+ x̂γ̄1x+ 2ŷγ̄my (134)

since B̂
(n)
11 = γ̄1, B̂

(n)
mm = B̂

(n)
NN = γ̄m from equation (93). Similarly,

G
(n)
1m = Ĝ

(n)
1m +

∑

h,k

Ĝ
(n)
mhB̂

(n)
hk G

(n)
k1

= Ĝ
(n)
m1 + Ĝ

(n)
m1B̂

(n)
11 G

(n)
11 + Ĝ(n)

mmB̂
(n)
mmG

(n)
m1 + Ĝ

(n)
mN B̂

(n)
NNG

(n)
N1.
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Hence

y = ŷ + ŷγ̄1x+ x̂γ̄my + ŷγ̄my. (135)

Letting G
(n)
mm = z and G

(n)
mN = w then,

G(n)
mm = Ĝ(n)

mm +
∑

h,k

Ĝ
(n)
mhB̂

(n)
hk G

(n)
km

= Ĝ(n)
mm + Ĝ

(n)
m1B̂

(n)
11 G

(n)
1m + Ĝ(n)

mmB̂
(n)
mmG

(n)
mm + Ĝ

(n)
mN B̂

(n)
NNG

(n)
Nm.

Therefore

z = x̂+ ŷγ̄1y + x̂γ̄mz + ŷγ̄mw. (136)

Finally,

G
(n)
mN = Ĝ

(n)
mN +

∑

h,k

Ĝ
(n)
mhB̂

(n)
hk G

(n)
kN

= Ĝ
(n)
mN + Ĝ

(n)
m1B̂

(n)
11 G

(n)
1N + Ĝ(n)

mmB̂
(n)
mmG

(n)
mN + Ĝ

(n)
mN B̂

(n)
NNG

(n)
NN .

Hence

w = ŷ + ŷγ̄1y + x̂γ̄mw + ŷγ̄mz. (137)

the four equations (134),(135),(136) and (137) can be solved to express x, y, w, z

in terms of x̂, ŷ, γ̄1, γ̄m. Solving equations (134),(135) for x and y gives

x =
x̂+ 2ŷγ̄my

1 − x̂γ̄1
. (138)

Substituting equation (138) into equation (135) gives

y = ŷ + ŷγ̄1

( x̂+ 2ŷγ̄my

1 − x̂γ̄1

)

+ x̂γ̄my + ŷγ̄my. (139)

Therefore

y =
ŷ

(

1 − x̂γ̄1

)(

1 − γ̄m(x̂+ ŷ)
)

− 2ŷ2γ̄1γ̄m

. (140)

Rearranging equation (136) we get

z(1 − x̂γ̄m) = x̂+ ŷγ̄1y + ŷγ̄mw. (141)
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That is

z =
x̂+ ŷγ̄1y + ŷγ̄mw

1 − x̂γ̄m
. (142)

Substituting equation (142) into (137) gives

w(1 − x̂γ̄m) = ŷ + ŷγ̄1y + ŷγ̄m

( x̂+ ŷγ̄1y + ŷγ̄mw

1 − x̂γ̄m

)

(143)

which can be written as

w =
ŷ(1 + γ̄1y)

1 − x̂γ̄m
+
ŷγ̄m

(

x̂+ ŷ(γ̄1y + γ̄mw)
)

(1 − x̂γ̄m)2
. (144)

Therefore

w =
ŷ
(

1 + γ̄1y(1 + γ̄m(ŷ − x̂))
)

(x̂γ̄m − 1 + ŷγ̄m)(x̂γ̄m − 1 − ŷγ̄m)
(145)

5 Electrical Impedance and Transmission Sen-

sitivity

In transmission mode there is no force incident on the front face of the transducer

and so AL = 0. Consider one edge in the lattice connecting vertex 1 to vertex

N , and apply a charge Q at vertex N . The voltage V is defined as follows

V =

∫ L

0

Edx (146)

and using equation (77)

V =

∫ L

0

(

− ζS +
D

ε

)

dx

=

∫ L

0

(

− ζ
∂ū

∂x
+
D

ε

)

dx.

Now using Gauss’ law

V = −ζ(UN − U1) +
QL

Arε

= −ζ(UN − U1) +
Q

C0
(147)
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where the capacitance is given by C0 = Arε/L. Since the charge Q =
∫

Idt =
√

(ρT/YT )h
∫

Idθ where θ = cT t/h then, by taking Laplace transforms gives

Q =

√

ρT

YT
h
I

q
. (148)

That is

I =
qQYT ξ

ZT

, (149)

where ZT =
√
YTρTAr. The electrical impedance of the device, denoted by ZE ,

is given by

ZE =
V

I
=

VE

qQ

(YT ξ

ZT

)−1

=
(−ζC0(UN − U1) +Q

QC0q

)(YT ξ

ZT

)−1

=
( ZT

C0qYT ξ

)(

1 − ζC0(UN − U1)

Q

)

. (150)

Now using equation (97)

U
(n)
1 = G

(n)
11 δ̄

(n)
1 +G

(n)
1mδ̄

(n)
m +G

(n)
1N δ̄

(n)
N

= G
(n)
11 δ̄

(n)
1 + δ̄(n)

m (G
(n)
1m +G

(n)
1N)

= G
(n)
11 δ̄

(n)
1 + 2G

(n)
1mδ̄

(n)
m

since G
(n)
1m = G

(n)
1N and δ̄

(n)
N = δ̄

(n)
m . From equation (90)

U
(n)
1 = − ζQ

YT ξ

(

η
(n)
1

(

1 − q
ZB

ZT

)−1

G
(n)
11 − η(n)

m

(

1 − q
ZL

ZT

)−1

2G
(n)
1m

)

. (151)

Similarly,

U
(n)
N = G

(n)
N1δ̄

(n)
1 +G

(n)
Nmδ̄

(n)
m +G

(n)
NN δ̄

(n)
N

= G
(n)
N1δ̄

(n)
1 + δ̄(n)

m (G
(n)
Nm +G

(n)
NN).

Therefore

U
(n)
N = − ζQ

YT ξ

(

η
(n)
1

(

1− q
ZB

ZT

)−1

G
(n)
N1 − η(n)

m

(

1− q
ZL

ZT

)−1

(G
(n)
Nm +G

(n)
NN)

)

. (152)
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Note that in equation (89) δ
(n)
m = ζQ/(YT ξ)

(

1 − q(ZL/ZT )
)−1

since AL = 0.

Substituting equations (151) and (152) into equation (150) gives

ZE =
( ZT

C0qYT ξ

)(

1 +
ζ2C0

YT ξ

((

1 − q
ZB

ZT

)−1

η
(n)
1 (G

(n)
N1 −G

(n)
11 )

+
(

1 − q
ZL

ZT

)−1

η(n)
m (−G(n)

Nm −G
(n)
NN + 2G

(n)
1m)

))

=
( ZT

C0qYT ξ

)(

1 +
ζ2C0

YT ξ
(σ1 + σ2)

)

. (153)

Hence, the non-dimensionalised electrical impedance is given by

ẐE(f ;n) = ZE/Z0 =
( ZT

C0qYT ξZ0

)(

1 +
ζ2C0

YT ξ
(σ1 + σ2)

)

(154)

where σ1 =
(

1−q(ZB/ZT )
)−1

η
(n)
1 (G

(n)
N1−G

(n)
11 ) and σ2 =

(

1−q(ZL/ZT )
)−1

η
(n)
m (−G(n)

Nm−

G
(n)
NN +2G

(n)
1m) and Z0 is series electrical load. This can be compared with the non-

dimensionalised from for the electrical impedance of the standard (Euclidean)

transducer [18]

Z̄E =
1

qC0Z0

(

1 − ζ2C0

2qZT
(KFTF +KBTB)

)

, (155)

where TF and TB are non-dimensional transmission coefficients and KF and KB

are also non-dimensional and are given by

KF =
(1 − e−qτ )(1 −RBe

−qτ )

(1 − RFRBe−2qτ )
(156)

and

KB =
(1 − e−qτ )(1 −RF e

−qτ )

(1 − RFRBe−2qτ )
(157)

where RF and RB are non-dimensionalised reflection coefficients and τ is the

wave transit time across the device. In order to calculate the transmission sensi-

tivity, consider the circuit shown in Figure 7. The current across the transducer

I is given by [18]

I =
aV

ZE + b
(158)

33



where

a =
Zq

Z0 + Zq
and b =

Z0Zq

Z0 + Zq
. (159)

Note, V denotes the voltage supply. Continuity of force at the front face given

by equation (83) and continuity of displacement given by equation (67) (with

AL = 0) gives

F = FL(xL = 0) = ArYL

( qcT
hcL

)

UC . (160)

Substituting equation (87) into equation (160) gives

F = ArYL

(qcT
hcL

)

(γmUm + δm). (161)

From equations (88) and (89) with AL = 0 then

F = ArYL

(qcT
hcL

)((

1 − q
ZL

ZT

)−1

Um +
ζQ

YT ξ

(

1 − q
ZL

ZT

)−1)

. (162)

Therefore

F =
ξYLqcT
cL

(

1 − q
ZL

ZT

)−1(

Um +
ζQ

YT ξ

)

, (163)

since ξ = Ar/h. To obtain Um we make use of equation (97) to obtain

U (n)
m =

ζQ

YT ξ

(

− η
(n)
1

(

1− q
ZB

ZT

)−1

G
(n)
m1 + η(n)

m

(

1− q
ZL

ZT

)−1

(G(n)
mm +G

(n)
mN)

)

. (164)

Therefore equation (163) becomes

F =
YLqcT
cL

(ζQ

YT

)(

1 − q
ZL

ZT

)−1(

− η
(n)
1

(

1 − q
ZB

ZT

)−1

G
(n)
m1 +

η(n)
m

(

1 − q
ZL

ZT

)−1

(G(n)
mm +G

(n)
mN) + 1

)

. (165)

From equations (149) and (158)

Q =
IZT

qYT ξ
=

aV

(ZE + b)

ZT

qYT ξ
, (166)
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then substituting in equation (165) gives

F

V
=

ZLζa

(ZE + b)YT ξ

(

1 − q
ZL

ZT

)−1(

− η
(n)
1

(

1 − q
ZB

ZT

)−1

G
(n)
m1 +

η(n)
m

(

1 − q
ZL

ZT

)−1

(G(n)
mm +G

(n)
mN) + 1

)

, (167)

and so

F

V
=

ZLζa

(ZE + b)YT ξ
K(n) (168)

where

K(n) =
(

1−qZL

ZT

)−1(

−η(n)
1

(

1−qZB

ZT

)−1

G
(n)
m1+η

(n)
m

(

1−qZL

ZT

)−1

(G(n)
mm+G

(n)
mN)+1

)

.

(169)

The non-dimensionalised transmission sensitivity ψ is then given by

ψ(f ;n) =
(F

V

)

/ζC0 =
aZL

(ZE + b)YT ξC0

K(n). (170)

This expression can be compared to the equivalent transmission sensitivity ψ̄ in

a homogeneous (Euclidean) domain [10]

ψ̄(f) =
( F̄

V

)

/ζC0

= −aAFλKF

2C0

(

1 − ζ2λ(KFTF +KBTB)

2qZT

)−1

, (171)

where λ = C0/(1+ qC0b) and AF = 2ZL/(ZL +ZT ) are dimensionless constants.

6 Reception Sensitivity

In reception mode AL is now non zero because the front face will be subject to

a force (given by the incoming signal). From equations (89) and (95)

U
(n)
1 = − ζQ

YT ξ
η

(n)
1

(

1 − q
ZB

ZT

)−1

G
(n)
11 +

( ζQ

YT ξ
− 2ALq

ZL

ZT

)

η(n)
m

(

1 − q
ZL

ZT

)−1

2G
(n)
1m

(172)
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and

U
(n)
N = − ζQ

YT ξ
η

(n)
1

(

1−qZB

ZT

)−1

G
(n)
N1+

( ζQ

YT ξ
−2ALq

ZL

ZT

)

η(n)
m

(

1−qZL

ZT

)−1

(G
(n)
Nm+G

(n)
NN).

(173)

Putting these into equation (147) gives

V =
[ζ2Q

YT ξ
η

(n)
1

(

1 − q
ZB

ZT

)−1

(G
(n)
N1 −G

(n)
11 ) +

(ζ2Q

YT ξ
− 2ζALq

ZL

ZT

)

η(n)
m

(

1 − q
ZL

ZT

)−1

(2G
(n)
1m −G

(n)
Nm −G

(n)
NN)

]

+
Q

C0
.

Then

V =
[ζ2Q

YT ξ
σ1 +

ζ2Q

YT ξ
σ2 − 2ζALq

ZL

ZT
σ2

]

+
Q

C0
(174)

and so

V = Q
( ζ2

YT ξ
(σ1 + σ2) +

1

C0

)

− 2ζALq
ZL

ZT
σ2. (175)

From equation (82) the force in the load (ζ = 0) is given by

F = ArYL
∂ūL

∂x
. (176)

From equation (63)

∂ūL

∂x
=

( qcT
hcL

)(

BLe
(−qcT xL/hcL) −ALe

(−qcT xL/hcL)
)

, (177)

and so, at xL = 0,

∂ūL

∂x
=

(qcT
hcL

)(

− AL

)

, (178)

since in receiving mode BL = 0. Substituting this equation into equation (176)

we get

F =
ξqcTZL

Ar

(

−AL

)

(179)

since ξ = Ar/h and ZL = YLAr/cL. Then

AL =
−FAr

ξqcTZL
. (180)
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Therefore equation (175) becomes

V =
aV ZT

(ZE + b)qYT ξ

( ζ2

YT ξ
(σ1 + σ2) +

1

C0

)

+
2Fζσ2

ξYT
, (181)

using equation (166) and since YT = ZT cT/Ar, and so

V
[

1 − aZT

(ZE + b)qYT ξ

( ζ2

YT ξ
(σ1 + σ2) +

1

C0

)]

=
2Fζσ2

ξYT
, (182)

and hence

V

F
=

2ζσ2

ξYT

(

1 − ζ2aZT (σ1 + σ2)

(ZE + b)qY 2
T ξ

2
− aZT

(ZE + b)qYT ξC0

)−1

. (183)

The non-dimensionalised reception sensitivity φ is then

φ(f ;n) =
(V

F

)

(e24L)

=
2ζe24Lσ2

ξYT

(

1 − ζ2aZT (σ1 + σ2)

(ZE + b)qY 2
T ξ

2
− aZT

(ZE + b)qYT ξC0

)−1

. (184)

This expression can be compared to the equivalent reception sensitivity φ̄ in the

Euclidean case [9]

φ̄ =
( V̄

F

)

(e24L) =
(−ζTFKFHe24L

qZT

)(

1 − ζ2H(KFTF +KBTB)

2q2ZTZE

)−1

, (185)

where H = qC0b/(1 + qC0b). Having derived expressions for the main operating

characteristics of this new device it is necessary to compare these with those of

a standard device to assess any practical benefits arising from this novel design.

7 Steady State Solution

The fractal case arises when we allow the generation level n to tend to infinity

and we assume that the recursion relationships converge to a steady state (we

denote these steady state solutions by a ∗ superscript). Note we will examine

the convergence of these recursion relationships later when we consider the pre-

fractal SG(3) transducer (finite generation levels).
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Case A: ŷ∗ = 0

If ŷ∗ = 0 then equation (116) is automatically satisfied (since X̂ = x̂ = x̂∗) and

from equations (117) and (118) we get

Ĝ∗
e1 = −βx̂∗Ĝ∗

b1 (186)

and

Ĝ∗
b1 = −βx̂∗Ĝ∗

e1. (187)

Substituting equation (186) into equation (187) gives

Ĝ∗
b1(1 − β2x̂∗2) = 0. (188)

Therefore Ĝ∗
b1 = 0 or x̂∗ = ±1/β. In the former case then Ĝ∗

e1 = 0 and in the

latter case Ĝ∗
b1 = ∓Ĝ∗

e1. From equation (119) we get

Ĝ∗
z1(1 + βx̂∗) = 0. (189)

Therefore Ĝ∗
z1 = 0 or x̂∗ = −1/β. Now bringing in the boundary conditions

equation (142) gives

z =
x̂∗

1 − x̂∗γ̄m

(190)

where x̂∗ 6= 1/γ̄m. From equation (138) we get

x =
x̂∗

1 − x̂∗γ̄1
(191)

where x̂∗ 6= 1/γ̄1. From equation (135) we get

y = x̂∗γ̄my. (192)

That is

y = 0 (193)
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since x̂∗ 6= 1/γ̄m. From equation (137) we get

w = x̂∗γ̄mw. (194)

That is

w = 0 (195)

since x̂∗ 6= 1/γ̄m. In the case where Ĝ∗
b1 = Ĝ∗

e1 = Ĝ∗
z1 = 0 we denote the solution

as x∗ = χ, χ ∈ C and in the case where x̂∗ = ±1/β we denote the solutions as

Ĝ∗
b1 = ∓λ, Ĝ∗

e1 = ∓λ and Ĝ∗
z1 = θ (or 0 when x̂∗ = 1/β) where λ, θ ∈ C. The

full set of solutions are summarised in the table below.

Case x̂∗ ŷ∗ Ĝ∗
b1 Ĝ∗

e1 Ĝ∗
z1 x y w z note

A1 −1
β

0 λ −λ θ −1
β+γ̄1

0 0 −1
β+γ̄m

β 6= γ̄1, β 6= γ̄m

A2 1
β

0 −λ λ 0 1
β−γ̄1

0 0 1
β−γ̄m

β 6= γ̄1, β 6= γ̄m

A3 χ 0 0 0 0 χ
1−χγ̄1

0 0 χ
1−χγ̄m

γ̄1 6= 1
χ
, γ̄m 6= 1

χ
,χ 6= ± 1

β

Case B: ŷ∗ 6= 0

If ŷ∗ 6= 0 then from equation (116) we get

−2βŷ∗Ĝ∗
e1 = 0 (196)

since X̂ = x̂ = x̂∗ and Ŷ = ŷ = ŷ∗. That is

Ĝ∗
e1 = 0 (197)

since β 6= 0, ŷ∗ 6= 0. Substituting this into equations (117) and (118) we get

x̂∗Ĝ∗
b1 + ŷ∗Ĝ∗

z1 = 0 (198)

39



and

Ĝ∗
b1 = ŷ∗. (199)

Substituting equation (199) into equation (198) gives

Ĝ∗
z1 = −x̂∗. (200)

Substituting equations (199) and (200) into equation (119) gives

x̂∗ + βx̂∗2 − βŷ∗2 = 0. (201)

Note that x̂∗ 6= 0 since this would imply that ŷ∗ was zero. Also substituting

equations (199) and (200) into equation (131) gives

ŷ∗ = −βŷ∗(ŷ∗ − x̂∗). (202)

That is

ŷ∗ = x̂∗ − 1

β
. (203)

Putting this into equation (201) gives

x̂∗ =
1

3β
. (204)

Putting this into equation (203) gives

ŷ∗ =
−2

3β
. (205)

Now putting equations (204) and (205) into the boundary conditions equation

(140) gives

y =
−2β

3β2 − 3γ̄1γ̄m + β(−γ̄1 + γ̄m)
. (206)

Putting equations (204),(205) and (206) into equations (138) and (145) gives

x =
β + 3γ̄m

3β2 − βγ̄1 + βγ̄m − 3γ̄1γ̄m
(207)
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and

w =
−2β(β − γ̄1)

(β − γ̄m)
(

3β2 − 3γ̄1γ̄m + β(−γ̄1 − γ̄m)
) . (208)

Substituting equations (204),(205),(206) and (208) into equation (142) gives

z =
β2 − 3γ̄1γ̄m + β(γ̄1 + γ̄m)

(β − γ̄m)
(

3β2 − 3γ̄1γ̄m + β(−γ̄1 + γ̄m)
) . (209)

Note that from equation (101), h(n) → 0 and q(n) → 0 as n → ∞, and so from

equation (154) the non-dimensionalised electrical impedance tends to infinity

((ẐE(f ;n)) → ∞), from equation (170) the non-dimensionalised transmission

sensitivity tends to zero (ψ(f ;n) → 0), and from equation (88) γj → 1 and from

equation (90) γ̄j → η∗j . From equation (56) we get

η∗j =















4
3
, j = 1

1, j = m or N.

(210)

From equation (184) the non-dimensionalised reception sensitivity is

φ∗(f ;n) =
2ζe24Lσ

∗
2

ξYT (1 − a)
, (211)

where

σ∗
2 =















































1
1+β

, in case A1

1
1−β

, in case A2

χ
χ−1

, in case A3

−3(3β+4)
9β2+β−12

, in case B

(212)

8 Results

From a practical perspective, these fractal transducers will only be able to be

manufactured at low generation levels. The formulation presented above will
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allow us to compare the fractal design with a conventional (Euclidean) design

in terms of the key operating characteristics of the reception and transmission

sensitivity spectra. Within each, the presence of higher amplitudes, multiple

resonances, and improved bandwidth (the range of frequencies over which the

performance exceeds a certain decibel level) are the key performance indicators

of interest in this section.

8.1 Electrical Impedance and Transmission/Reception Sen-

sitivities

Let us start by examining the performance of the first generation lattice (n = 1).
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ZE(f ;n) (dB)

Figure 10: Non-dimensionalised electrical impedance (equation (154)) versus

frequency for the SG(3) lattice transducer at fractal generation level n = 1

(dashed line). The non-dimensionalised electrical impedance of the standard

(Euclidean) transducer (equation (155)) is plotted for comparison (full line).

Parameter values are given in Table 5.
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Figure 10 shows that the electrical impedance of the fractal lattice has its first

resonance at around 1 MHz (at a lower frequency than the Euclidean case) and

that the higher frequency resonances are absent.
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Figure 11: Non-dimensionalised transmission sensitivity (equation (170)) versus

frequency for the SG(3) lattice transducer at fractal generation level n = 1

(dashed line). The non-dimensionalised transmission sensitivity of the standard

(Euclidean) transducer (equation (171)) is plotted for comparison (full line).

Parameter values are given in Table 5.

The transmission sensitivity has a maximum amplitude (gain) that is higher

than the Euclidean case (standard design) at its lower operating frequency (25

dB at 0.6 MHz compared to 23 dB at 2.2 MHz for the Euclidean case). Although

the bandwidth around this peak sensitivity is smaller than that of the Euclidean

case. It can been seen, unusually, that the SG(3) device has a very flat response

from 3 MHz upwards at a sensitivity level of 14 dB albeit at a much reduced

decibel level from the main peak.
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Figure 12: Non-dimensionalised reception sensitivity (equation (184)) versus

frequency for the SG(3) lattice transducer at fractal generation level n = 1

(dashed line). The non-dimensionalised reception sensitivity of the standard

(Euclidean) transducer (equation (185)) is plotted for comparison (full line).

Parameter values are given in Table 5.

With regard to the reception sensitivity the fractal design does show same en-

couraging results with a much higher peak amplitude than that of the Euclidean

case and at a lower operating frequency (at 1.2 MHz its sensitivity is 31 dB

whereas the peak sensitivity of the standard device is 12 dB at 2.2 MHz). Fol-

lowing this is an examination of next generation level (n = 2).
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Figure 13: Non-dimensionalised electrical impedance (equation (154)) versus

frequency for the SG(3) lattice transducer at fractal generation level n = 2

(dashed line). The non-dimensionalised electrical impedance of the standard

(Euclidean) transducer (equation (155)) is plotted for comparison (full line).

Parameter values are given in Table 5.

The electrical impedance profile of the fractal design and the standard design

follow a similar profile with more resonances being present in the fractal case

due to the presence of a range of length scales in the new design. Indeed, for all

the results that we will show, the resonant modes occur at higher frequencies

as the generation level increases (that is, as the length scale of the lattice edges

decreases).
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Figure 14: Non-dimensionalised transmission sensitivity (equation (170)) versus

frequency for the SG(3) lattice transducer at fractal generation level n = 2

(dashed line). The non-dimensionalised transmission sensitivity of the standard

(Euclidean) transducer (equation (171)) is plotted for comparison (full line).

Parameter values are given in Table 5.

In terms of the transmission sensitivity the maximum amplitude is somewhat

higher in the fractal design than the Euclidean case (32 dB at 4.6 MHz compared

to 24.7 dB at 2.2 MHz for the Euclidean case). Once again the bandwidth around

this peak sensitivity is smaller than that of the Euclidean case.
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Figure 15: Non-dimensionalised reception sensitivity (equation (184)) versus

frequency for the SG(3) lattice transducer at fractal generation level n = 2

(dashed line). The non-dimensionalised reception sensitivity of the standard

(Euclidean) transducer (equation (185)) is plotted for comparison (full line).

Parameter values are given in Table 5.

The reception sensitivity has again a much higher peak amplitude than that of

the Euclidean case at its lower operating frequency (at 2.2 MHz its sensitivity is

27 dB whereas the Peak sensitivity of the standard (Euclidean) device is 15.5 dB

at 2.3 MHz). This examination can continue and below we consider the third

generation level (n = 3) performance.
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Figure 16: Non-dimensionalised electrical impedance (equation (154)) versus

frequency for the SG(3) lattice transducer at fractal generation level n = 3

(dashed line). The non-dimensionalised electrical impedance of the standard

(Euclidean) transducer (equation (155)) is plotted for comparison (full line).

Parameter values are given in Table 5.

As the generation level increases a grater range of length scales exist within the

fractal design and so on increasing number of resonant modes emerge.
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Figure 17: Non-dimensionalised transmission sensitivity (equation (170)) versus

frequency for the SG(3) lattice transducer at fractal generation level n = 3

(dashed line). The non-dimensionalised transmission sensitivity of the standard

(Euclidean) transducer (equation (171)) is plotted for comparison (full line).

Parameter values are given in Table 5.

As before the transmission sensitivity maximum amplitude is higher than the

Euclidean case (39.7 dB at 8.2 MHz compared to 27.3 dB at 6.7 MHz for the

Euclidean case), wih the bandwidth around this peak sensitivity being smaller

than that of the Euclidean case.
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Figure 18: Non-dimensionalised reception sensitivity (equation (184)) versus

frequency for the SG(3) lattice transducer at fractal generation level n = 3

(dashed line). The non-dimensionalised reception sensitivity of the standard

(Euclidean) transducer (equation (185)) is plotted for comparison (full line).

Parameter values are given in Table 5.

The reception sensitivity is now more closely matched to the standard design

in terms of peak amplitude (at 4.5 MHz its sensitivity is 19.3 dB and the peak

sensitivity of the standard (Euclidean) device is 17.8 dB at 2.3 MHz).

8.2 Convergence

The norm of the difference between the energy in the power spectrum at suc-

cessive generation levels, integrated with respect to frequency, is calculated for

the transmission/reception sensitivities, as follows

m
∑

i=1

|ψ(fi;n) − ψ(fi;n+ 1)| = ψ∗(n), (213)
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and
m

∑

i=1

|φ(fi;n) − φ(fi;n+ 1)| = φ∗(n). (214)

where ψ∗(n) and φ∗(n) record the convergence of the transmission and reception

sensitivities respectively as the fractal generation level increases. Figures 19

and 20 shows the dependence of these norms on the generation level.

5 10 15 20

1

2

3

4

5

6

n

ψ∗(n) (dB)

Figure 19: Non-dimensionalised transmission sensitivity (ψ∗(n)) (equa-

tion (213)) converges as the fractal generation level increases. This sensi-

tivity converges by generation level n = 10 over this frequency range where

fi ∈ [0.1, 10]MHz.
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Figure 20: Non-dimensionalised reception sensitivity (φ∗(n)) (equation (214))

versus successive generation levels. This sensitivity converges by generation

level n = 16 over this frequency range where fi ∈ [0.1, 10]MHz.

9 Conclusions

A model of a piezoelectric ultrasound transducer with a fractal geometry has

been constructed and its operational qualities compared with that of a stan-

dard (Euclidean) design. The fractal that was used to simulate this self-similar

transducer was the Sierpinski gasket [7]. The lattice counterpart of the Sierpin-

ski gasket SG(3) [20] was used to express the electrical and mechanical fields

in terms of a finite element methodology [14]. As this was the first time that

a finite element analysis has been performed on this structure then some new

basis functions were derived. The fractal design has multiple length scales (the

standard design typically has a single length scale) and, since these are res-

onating devices, this resulted in a rich set of resonating frequencies. Indeed the

broadband resonators found in nature and in musical instruments rely on this
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principle. The finite element formulation resulted in a matrix equation whose

solution yielded to a renormalisation approach. This is turn led to a small set of

recursion relationships for the pivotal Green’s functions that drive the calcula-

tion of the transmission/reception sensitivities of the device. The focus was on

low generation levels of the fractal as these are most likely to adhere to manufac-

turing constraints. The results showed that the fractal transducer resonates at

many more frequencies than the standard (Euclidean) transducer. Importantly,

the fractal transducer gave rise to a significantly higher amplitude transmission

and reception sensitivity than the standard (Euclidean) design. The convergence

of the fractal device’s performance as the fractal generation level increases was

also considered. It was seen that, in both transmission and reception modes, the

outputs converge by generation levels n = 10 and n = 16 respectively. These

encouraging results suggest that it will be worthwhile studying other fractal de-

signs. A program to manufacture these fractal transducers has been instigated

and the comparison between the theoretical and experimental results will be the

subject of a future investigation.
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10 Appendix

Adjacent vertices to (xj , yj)

j (xj , yj) (xj+1, yj+1) (xj+2, yj+2) (xj+3, yj+3)

1 (0, 0) A 2 3

2 (h, 0) 1 3 B

3 (h
2
,
√

3
2
h) 1 2 C

A (−h, 0) 1

B (2h, 0) 2

C (h,
√

3h) 5

Table 1: Coordinates of the vertices and a list of the adjacent vertices to vertex

(xj , yj) for generation level n = 1. The vertex labelling is given in Figure 5.
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Adjacent vertices to (xj, yj)

j (xj , yj) (xj+1, yj+1) (xj+2, yj+2) (xj+3, yj+3)

1 (0, 0) A 2 3

2 (h, 0) 1 3 4

3 (h
2
,
√

3
2
h) 1 2 7

4 (2h, 0) 2 5 6

5 (3h, 0) B 4 6

6 (5h
2
,
√

3
2
h) 4 5 8

7 (h,
√

3h) 3 8 9

8 (2h,
√

3h) 6 7 9

9 (3h
2
, 3

√
3

2
h) C 7 8

A (−h, 0) 1

B (4h, 0) 5

C (2h, 2
√

3h) 9

Table 2: Coordinates of the vertices and a list of the adjacent vertices to vertex

(xj , yj) for generation level n = 2. The vertex labelling is given in Figure 6.
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j a b c d

1 1 0 0 − 1
h2

2 0 2
h

0 − 1
h2

3 0 1
h

√
3

h
− 1

h2

A 0 1
h2

B −1
3

1
3h2

C −1
3

1
3h2

Table 3: Coefficients of the basis functions φj for generation level n = 1.

j a b c d

1 1 0 0 − 1
h2

2 0 2
h

0 − 1
h2

3 0 1
h

√
3

h
− 1

h2

4 -3 4
h

0 − 1
h2

5 -8 6
h

0 − 1
h2

6 -6 5
h

√
3

h
− 1

h2

7 -3 7
h

2
√

3
h

− 1
h2

8 -6 4
h

2
√

3
h

− 1
h2

9 -8 3
h

3
√

3
h

− 1
h2

A 0 1
h2

B −9
7

1
7h2

C −9
7

1
7h2

Table 4: Coefficients of the basis functions φj for generation level n = 2.
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Design Parameter Symbol Magnitude Dimensions

Parallel electrical load Zq 1000 Ohms

Series electrical load Z0 50 Ohms

Mechanical impedance of backing layer ZB 0.022 MRayls

Mechanical impedance of load ZL 1.5 MRayls

Length of fractal L 1 mm

The wave speed of the load Mechanical impedance cL 1500 N/m2

Density of the load Mechanical impedance ρL 1000 kgm−3

Density of the transducer Mechanical impedance ρT 7500 kgm−3

Table 5: Parameter Values for the Sierpinski Gasket Transducer.

The material properties of PZT-5H are [3]

cpq =

































12.6 7.95 8.41 0 0 0

7.95 12.6 8.41 0 0 0

8.41 8.41 11.7 0 0 0

0 0 0 2.3 0 0

0 0 0 0 2.3 0

0 0 0 0 0 2.325

































× 1010N/m2, (215)

eip =













0 0 0 0 17 0

0 0 0 17 0 0

−6.5 −6.5 23.3 0 0 0













C/m2, (216)

εij =













1700ε0 0 0

0 1700ε0 0

0 0 1470ε0













C/(V m). (217)
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where ε0 = 8.854 × 10−12 C/(Vm).

References

[1] J. Abdulbake, A. J. Mulholland, and J. Gomatam. A renormalization ap-

proach to reaction-diffusion processes on fractals. Fractas, 11(4):315–330,

(2003).

[2] J. Abdulbake, A. J. Mulholland, and J. Gomatam. Existence and stability

of reaction-diffusion waves on a fractal lattice. Chaos, Solitons and Fractas,

20(4):799–814, (2004).

[3] B. A. Auld. Acoustic Fields and Waves in Solids, volume 1. John Wiley

and Sons, New York, (1973).

[4] A. M. Chiselev, L. Moraru, and A. Gogu. Localization of an object using

a bat model inspired from biology, romanian. J. Biophys, 19(4):251258,

(2009).

[5] F. M. de Espinosa, O. Martinez, L. E. Segura, and L. Gomez-Ullate. Double

frequency piezoelectric transducer design for harmonic imaging purposes in

ndt. IEEE T. Ultrason. Ferr, 52(6):980986, (2005).

[6] D. F. Eberl, R. W. Hardy, and M. J. Kernan. Genetically similar trans-

duction mechanisms for touch and hearing in drosophila. J. Neurosci,

20(16):59815988, (2000).

[7] K. Falconer. Fractal Geometry: Mathematical Foundations and Applica-

tions. John Wiley and Sons Ltd, Chichester, England, (2003).

58



[8] K. Falconer and J. Hu. Nonlinear diffusion equations on unbounded fractal

domains. J Math Anal App, 256:606–624, (2001).

[9] G. Hayward. A systems feedback representation of piezoelectric transducer

operational impedance. Ultrasonics, 22:153–162, (1984).

[10] G. Hayward, C. J. MacLeod, and T. S. Durrani. A systems model of the

thickness mode piezoelectric transducer. J. Acoust. Soc. Am, 76(2):369–382,

(1984).

[11] J. Kigami. Analysis on Fractals. Cambridge University Press, Cambridge,

UK, (2001).

[12] Giona M. Transport phenomena in fractal and heterogeneous media: In-

put/output renormalization and exact results. Chaos, Solitons and Fractas,

7(9):1371–1396, (1996).

[13] R. N. Miles and R. R. Hoy. The development of a biologically-inspired

directional microphone for hearing aids. Audiol Neurootol, 11(2):86–94,

(2006).

[14] A. J. Mulholland. Bounds on the Hausdorff dimension of a renormalisation

map arising from an excitable reaction-diffusion system on a fractal lattice.

Chaos, Solitons and Fractals, 35(2):274–284, (2008).

[15] R. Mller. A numerical study of the role of the tragus in the big brown bat.

J. Acoust. Soc. Am, 116(6):37013712, (2004).

[16] R. Mller, H. Lu, S. Zhang, and H. Peremans. A helical biosonar scan-

ning pattern in the chinese noctule nycatalus plancyi. J. Acoust. Soc. Am,

119(6):40834092, (2006).

59



[17] B. Nadrowski, J. T. Albert, and M. C. Gpfert. Transducer-based force

generation explains active process in drosophilia hearing. Curr. Biol,

18:13651372, (2008).

[18] L. A. Orr, A. J. Mulholland, R. L. O’Leary, A. Parr, R. Pethrick, and

G. Hayward. Theoretical modelling of frequency dependent elastic loss in

composite piezoelectric transducers. Ultrasonics, 47:130–137, (2007).

[19] D. Robert and M. C. Gpfert. Novel schemes for hearing and orientation in

insects. Curr. Opin. Neurobiol, 12:715720, (2002).

[20] W. A. Schwalm and M. K. Schwalm. Extension theory for lattice Green

functions. Phys.Rev.B. 37(16):9524–9542, (1988).

[21] J. Yang. The Mechanics of Piezoelectric Structures. World Scientific, Sin-

gapore, (2006).

60


