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A natural first step when dealing with a nonlinear problem is an application of some version of linearization
principle. This includes the well known linearization principles for controllability, observability and stability
and also first-order optimality conditions such as Lagrange multipliers rule or Pontryagin’s maximum
principle. In many interesting and important problems of nonlinear control the linearization principle fails
to provide a solution. In the present paper we provide some examples of how higher-order methods of
differential geometric control theory can be used for the study nonlinear control systems in such cases.
The presentation includes: nonlinear systems with impulsive and distribution-like inputs; second-order
optimality conditions for bang—bang extremals of optimal control problems; methods of high-order
averaging for studying stability and stabilization of time-variant control systems.
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1 INTRODUCTION

This paper contains a survey of some results concerning nonlinear control systems. A natural
first step when dealing with a nonlinear problem is an application of some version of
linearization principle. In a broad sense this includes the well known linearization principles
for controllability, observability and stability and also first-order optimality conditions such
as Lagrange multipliers rule or Pontryagin’s maximum principle which deal with the first
variation (linearization) of the problem.

Obviously for many interesting and important problems of nonlinear control the linear-
ization principle fails to provide a solution. These are the cases of systems with non-
controllable or nonobservable linearizations, critical equilibria, singular extremals in optimal
control problems. In this presentation we predominantly deal with this kind of problems.

Over the last three decades methods of differential geometric control theory proved to be
effective in nonlinear control especially in the critical cases. In our presentation we will show
how these methods can be applied to the study of nonlinear control systems, in particular to
the study of:

— nonlinear systems with impulsive and distribution-like inputs;
— necessary/sufficient high-order optimality conditions for bang—bang extremals in optimal
control problems;

* E-mail: asazychev@unifi.it (On leave from Institute for Control Sciences (IPU), Russian Academy of Sciences,
Moscow, Russia).

ISSN 1024-123X print; ISSN 1563-5147 online © 2002 Taylor & Francis Ltd



414 A. V. SARYCHEV

— high-order averaging and study of stability and stabilization for time-variant systems.

We keep this introduction short providing instead introductory subsections for each
section.

This paper has been submitted a few weeks before two birthdays of two people who taught
me most of what I managed to learn in mathematics. Revaz Valerianovich Gamkrelidze will
be 75 and Andrey Alexandrovich Agrachev will be 50. Happy birthday to you both!

2 CONTROL-AFFINE SYSTEMS WITH IMPULSIVE AND
DISTRIBUTION-LIKE INPUTS

2.1 Introduction

In this section we will work with control affine nonlinear systems of the form:
x(1) = £i(x(7)) + G.(x(z))u(zr), x€R", ue R, G,(x)eR™ 2.1

where G.(x) = (g} (x), ..., g/(x)) and f;(x), g/(x) (i = 1, ..., 1) are time-variant vector fields
in R". We develop a formalism for dealing with distribution-like inputs for the system (2.1).

There are various difficulties arising when one tries to define trajectory corresponding to a
distribution-like input u. For example if the input u of a system x(t) = g.(x(1))u(7),
x(0) = xo, is a Dirac measure §(t — 7p), then it is natural to expect that the corresponding
trajectory x(-) will ‘jump’ at 7. Transforming the differential equation into integral one
x(f) = xo + L; g:(x(t))u(r)dr we encounter a necessity to integrate an apparently dis-
continuous function g.(x(t)) with respect to a measure d(t — 7o), which contains an atom
exactly at the point of discontinuity. Such an integration is not defined properly.

Here we describe an approach to a construction of generalized trajectories for the system
(2.1). The idea (which is close to the one represented in [1, 2]) amounts to furnishing the
space of ‘ordinary’, say, integrable, inputs u(-) (say ¢ = L}[0, T]) and of trajectories x(-) with
weak topologies for which the input-trajectory map u(-) +> x(-) is still (uniformly) con-
tinuous. In this case one can extend this map by continuity onto a completion of the space of
inputs, which may contain distributions.

The core issue of this approach is proving the continuity of the input/trajectory map. It is
convenient to introduce topology in the space of inputs as an induced one by a topology in the
space of their primitives. Note that for the integrable inputs their primitives and also the
corresponding trajectories belong to W) ([0, T'] — the space of absolutely continuous functions.

Let us survey briefly the existing results. In the early 70’s Krasnosel’sky and Pokrovsky [1]
considered C%-metric in the space W; [0, T] of the primitives and of the trajectories, and
established continuity (called by them vibrocorrectness) of the input/trajectory map. They
proved the extensibility of the input-trajectory map onto the space of continuous measures —
generalized derivatives of continuous (but not absolutely continuous) functions. Orlov [2] used
similar method to prove extensibility of the input—trajectory map to the space of Radon
measures (the generalized derivatives of the functions of bounded variation). Our method [3-5]
allows not only to extend the input—trajectory map onto a larger space W_; o, of generalized
derivatives of measurable essentially bounded functions, but also to obtain a representation of
the generalized trajectories via the generalized primitives of the inputs. About the same time
Bressan proved [6] extensibility of the input—trajectory map on the same space.

The key tool of our approach is a class of representation formulae for the trajectories of the
system (2.1). These formulae are multiplicative analogies of the classical integration by parts
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formula. They allow to represent the (generalized) trajectories via solutions of ODE,
involving the (generalized) primitives of the (generalized) inputs.

There is another approach to the construction of generalized trajectories corresponding to
the distribution-like inputs — the one based on completion and reparametrization of graphs of
discontinuous functions. It allows to deal with the systems for which the ‘commutativity
assumption’ fails, but also the continuity of the input/trajectory map is not maintained. We
refer to the publications of Miller [7], Bressan, Rampazzo [8] and to the bibliography therein
for the detailed description of this approach.

2.2 Multiplicative Analogy of Integration by Parts Formula

First consider control-linear (without a drift term) system
x(7) = Y(x(r)u(z), t€[0,T], xeR", ueR 2.2)

For a moment assume the control # € R to be scalar-valued, u(-) € L[0, T]. Let the right-hand
side Y, be differentiable with respect to x and C' with respect to . If for a given u(-) the solution
(the flow) generated by Eq. (2.2) exists for 7 € [0, T], we will denote it (following [9]) by
P, = exp f(; Yiu(r)dr, t € [0, T] and call it right chronological exponential. The following
proposition provides an expression for P; in terms of the primitive v(-) = Jo w(€)dé of u(-).

We make an agreement concerning the notation. If a composition of diffeomorphisms
P o Qs applied to a point x” this means that first P and then Q is applied. In general a result
of application of a diffeomorphism P to a point x° will be denoted by x° o P.

PROPOSITION 2.1  If the solution of Eq. (2.2) and the diffeomorphisms """ exist for all
t € [0, T then the following equality holds:

t 1
P, = exp L Y.u(t)dt = exp j; (— L(e—fyrvm)*i’,v(r) dé)dr o e, (2.3)

Remark The diffeomorfism e"*() = exp jol Yv(#) d¢ in the formula (2.3) is generated by
the time-invariant vector field ¥,v(¢) with # fixed. The notation (e=¢1¥()_ ¥,v() stays for the
pullback of the vector field ¥;v(t) by the differential of the diffeomorfism e~¢¥"(*) with t
fixed.

We relate (2.3) to the integration by parts formula due to the following reason. If for all

7 € [0, 7] the vector fields ¥, and ¥, commute, then ¢%¥Y, = ¥, V1 € [0, ], and the
formula (2.3) takes form

t t
exp J Yu(t) dt = exp j (=Y:u())dt o e, (2.4)
0 0
becoming a multiplicative analogy of the integration by parts formula

Jr Yu(r)dr = Jt Y, dv(r) = — J' Yv(t) dt + Yu(2).
0 0 0

The result of the Proposition 2.1 can be reformulated for the multiinput system with
Y:(1) = Y_'_; Yiui(t) dv under one crucial additional assumption.
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COMMUTATIVITY ASSUMPTION The vector fields le, ..., YI' are pairwise commuting for
eacht:[Y., Y]=0,Vi,j=1,...,r; Y1 €[0,T]

Krasnoselsky and Pokrovsky proved [1], that this condition is necessary for vibro-
correctness, or in other words for the extensibility by continuity of the input/trajectory map.

This condition is equivalent to the Frobenius integrability condition for the differential
(Pfaffian) systems span {Y!:i=1,...,r} with arbitrary fixed t. These systems are called
‘distributions’ in differential geometry and global analysis; we keep the name ‘distribution’
for the generalized inputs.

PROPOSITION 2.2  If the commutativity assumption is verified then the formula (2.3) holds
Jfor the flow Ek_ﬁ fé Yu(t) dt generated by the multiinput system x = Y (x)u(t).

In [4] more versions of the integration by parts formula can be found, The following result
provides representation formula for the flow generated by control-affine nonlinear systems.

THEOREM 2.3 Let vector fields f,, gi(i=1,...,r) be differentiable with respect to x,
continuous with respect to t and g be C' with respect to t. Let the vector fields
gi=1,...,r) satisfy the commutativity assumption for all © € [0,1]. If for the input

u(-) € L}[0, 7] the solution exp [;( f, + G.u(1))dt of Eq. (2.1) and the diffeomorfisms "
exist for all t € [0, T], then

t t 1
aﬁ J (fr + Gru(r)) dr = e—xﬁ J ((e-GIV(r))*ﬁ _ J (e—éva(r))*Gtv(T) dﬁ) dro eG’V('),
0 0 0

2.5)
where v(-) = [ u(n)dn.

Up to the end of this section we assume the commutativity assumption to hold for the
vector fields gi(i = 1,...,7).

2.3 Continuity of the Input—Trajectory Map. Generalized Inputs and
Trajectories

As long as we have obtained the formulae for trajectories in terms of the primitives of the
inputs, the extensibility of the input/trajectory map follows rather easily from standard
results on continuous dependence of solutions of ODE on the right-hand side.

Let us fix the initial point x of our trajectories (we do it for the sake of simplicity of
presentation; in [3] it is done for flows). Consider an input u(-) € L{[0, T], its primitive
W) = Jyu(£)d¢ and the vector field

1
F.(v) = (e ), f, — J (e79), G.v(r) de. (2.6)
0
According to (2.5), the trajectory corresponding to the input u(-) can be represented as

Pi(u(-)) = Q) = xo o exp JO F,(W(x))dt 0 €90,
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Consider the triple of maps u(-) A v(-) > Qy(v(-)), where u(-) € L[0,T], v(-) €
W1 10, T]. Introduce L{-norm in the space W7 [0, T] of v(-) s. The induced norm in the space
of inputs will be denoted by DL;:

1O, = “L u(r) dn

Ly

As long as W7 [0, T] is dense subspace of L{[0, T], then the completion of the space L{[0, T]
of inputs with respect to the DL;-norm coincides with the space of distributions, which are
generalized derivatives of the functions from Lj[0, 7]. With some abuse of notation we
denote this space of distributions by W’ [0, T]. (Recall that the smaller space of generalized
derivatives of the square-integrable functions is Sobolev space denoted by W', ,[0, T] or
[0, T)).

We will need another space of generalized inputs — the one adjoint to W7 [0, T]. Recall
that any linear continuous functional on W7 [0, 7] can be defined by the formula:

T

Vz(-) € Wy ,[0, T]:  z(-) = voz(0) — Jo w(t)z(t)dt, wp€R’, v()eLl.

This adjoint space will be denoted by W”, ; it can be identified with R” x Lo,. The sub-

1,00°
space of W’  identified with {(0, v(-)} is denoted by W”_, _; the function v(-) € L will be
called generalized primitive of the corresponding element from W’ .

What for the space of trajectories (which are absolutely continuous) then we furnish it with
the L;-norm.

Let us take any a > 0 and consider the set U, of the inputs from L}[0, T'] whose primitives
are uniformly bounded by « on [0, T]. The DL;-completion of U,, coincides with the a-ball in
the space W’ Loo

We proved in [3], that the input-trajectory map is uniformly continuous on U,, furnished
with DL;-norm, if the space of trajectories is furnished with the L; norm. This means that we
can (as Jong as « > 0 is arbitrary) extend the input-trajectory map onto the set of generalized
inputs W”_, .. The corresponding generalized trajectories will be the functions from Lf[0, 7.
They can be computed via the generalized primitives of the inputs by means of Eq. (2.5).
This gives us the following result.

THEOREM 2.4  Consider control-affine nonlinear system (2.1)
1) =f(x(0)) + )_ gix(x)u(x), qE€R', uek.
i=1

Let f;,gi(i =1, ..., r) be time-variant vector fields which are infinitely differentiable with
respect to x, continuous with respect to t. Let g' (i =1, ...,r) be C" with respect to T and
satisfy the commutativity assumption. Then for each generalized input from W' | . with the
generalized primitive v(-) the formula (2.5) defines the DL-continuous extension of the
input/trajectory of this system. The extension coincides with the classical input/trajectory
map on the space of ordinary inputs and is continuous with respect to DL\-norm of the space

W' | « and Li-norm in the space of trajectories.
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2.4 Example: Impulsive Controls

To illustrate the previous result let us compute the trajectory of the control-affine system (2.1)
x(7) = f:(x(7)) + Ge(x(7))u(7)

driven by the impulsive control # = 3"V | #;0(t — 7;) — a linear combination of Dirac mea-
sures located on the time-axis. In principle N can be finite or infinite; in the latter case we
assume the series Y -, u; to be convergent.

Let N be finite and 0 =19 <] <--- <ty <T. The primitive of u is v(t) =
Zf-V:, wh(t — 7;),v(0) =0, with A(r) being Heavyside function: A(r)=0, for
T < 0, A() = 1, for T > 0. The function v(7) is piecewise constant and equals v,, = Z:’;l u;,
on the interval [7,,, T+1), While v(0) = 0. The expression (2.5) can be splitted into the
product

!

N T; 1 .
o=[]= j ((e—G’V"—’)* fie J (56, Goviy dg)droas j
i=1 Ti-1 0

Tm

((e-GfV"')*fz

1
—J (e‘éG“"")*GTv,,, df) dtoe®™),  fort, <t < Tit1- 2.7
0

The following equality is established in [4].

— JC
exp
n

1 . {
((e—GrV)* fi— J (e, Gy dé)dr = %" o exp [ fedéoe G,
0 on

Applying it to the product (2.7) we obtain

O = (ll_v-[(e—xl)) JT" Sfodr oeG’i“‘)> o exp J’ fedr. 2.8)

i=1 Ti-1 Tm

From (2.8) one derives the following facts for the trajectories generated by the impulsive
controls: (i) they are piecewise continuous functions; (ii) their continuous parts are pieces of
the trajectories of the vector field f;; (iii) their jumps occur at the instances 7; i = 1,...,N)
are along the trajectories of the time-invariant vector field G,,u; and correspond to the time-
duration 1.

If N is infinite and u =) o, u;0(t —1;), with 7, <741 (=0, 1,...),limi 00 7; =
T < T, then for ¢t < 7, we proceed as in the previous example (only finite number of impulses
occur before #). If t > 7, then Q; is defined by (2.8) with N = oc.

We proved in [3], that if Y >, #; < oo then this infinite product can be computed as a limit
of partial finite products []-,, m — ooc.

2.5 Time-Optimality of Generalized Controls

In this subsection we will use the representation of the generalized trajectories for studying
optimal control problems with generalized controls, We will formulate first-order optimality
condition for these problems in the Hamiltonian form. An alternative approach and many
results regarding optimality of generalized controls can be found in the book of Orlov [10].
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Let us start with the definition of attainability for generalized controls. As long as the
generalized trajectories are measurable functions, their values at a given instant ¢ are not
properly defined, and we define the attainability in approximative sense.

DEFINITION 2.5 Given a system (2.1), a point X is qttainable from the point xo on the
interval [0, ] by means of a generalized control u € W' |  if there exists a sequence of
controls u™(:) € L{[0, T], which converges to the control i in DLy-norm, such that the points
x"(f) of the corresponding trajectories x™(-), (starting at x(0) = xq) converge to Xx.

According to (2.5) the set A, (u; [0, ¢]) of points attainable from x, on the interval [0, 7] by
means of the control u € W”, ., is contained in the integral manifold O:(G;) of the
integrable (by virtue of the commutativity assumption) differential system G, =
span{g/, ..., g} (with ¢ fixed). This manifold passes through the point

t 1 .
% = xg 0 exp J ((e-Grv(ﬂ)* fi— J (e749"D), G,w(1) d«f) dr.
0 0

Here again v(-) is the generalized primitive of the control .

In [11] we proved that the attainable set .A,,(u; [0, #]) coincides with this integral manifold.
Therefore there is an r-dimensional manifold of points attainable from given xp on a given
time interval [0, /] by means of a given (1) generalized control u € W’ .

If U is a set of generalized controls, then the set of points attainable from xg on the time
interval [0, #] by means of some control from ¢/ will be denoted by A, (U; [0, ¢]).

Let us consider time-optimal problem for the system (2.1) with generalized controls
uewr

—l.oo:

t — min, 2.9
x(7) = fr(x()) + G:(x(1))u, x(0)=2x9, x€R", ue Vcifr_l,oo, (2.10)
x1 € Ay (4, [0, £]). (2.11)

Note that the condition (2.11) corresponds to the fixed end-point condition in the classical
problem of time optimality.

DEFINITION 2.6 The generalized control i € wr is locally optimal for the problem

—1,00

(2.9)—(2.11), if for some d-neighborhood Us of u in DL,-metric
Vi<t AxO({l, [O, t]) N Axo(uév [0’ T]) = ﬂ‘

From the representation formula (2.5) it is easy to conclude that the generalized time-
optimal control problem (2.9)-(2.11) can be reduced to the following classical time-optimal
control problem with variable end-point condition

x(1) € Oy, (G)). (2.12)

for the system

1
(1) = (7)), £, — L(e"fcf““)*érv(r) d&)(x(x)),  x(0) = xo, (2.13)



420 A. V. SARYCHEV

with admissible controls v(-) € L [0, 7]. Here Ox,(é,) is the integral manifold of the
differential system G, passing through the point x;.

PROPOSITION 2.7 A pair (t, 1) € Ry x W_] oo 18 locally optimal for the problem
(2.9)-(2.11) if and only if for ¥(-) being the generalized primitive of the control u the cor-
responding pair (1, () € L [0, T] is Ly-locally optimal for the time-optimal problem
(2.9), (2.13), (2.12).

By virtue of the Proposition 2.7 a first-order necessary optimality conditions for the
problem (2.9)-(2.11) can be derived from (in fact is equivalent to) the corresponding
necessary condition for the reduced problem (2.9), (2.13), (2.12).

If the end-point condition (2.12) were admitting an explicit form Q,(x(#)) = 0, then the
first-order optimality condition is well known and looks as follows.

PrROPOSITION 2.8 [12] If the control v(-) is a Ly-local minimizer for the problem
(2.9), (2.13) with the variable end-point condition Q,(x(t)) = 0, then there exists an abso-
lutely continuous covector-function y(-) and a covector v € R, (w( -), V) # 0, such that the
quadruple (x(-), v(-), W( ), V) satisfies:

(1) (pseudo)-Hamiltonian system

= %g(x, vov1), Y= —aa-—i[(x, v, v, 1), (2.14)
with the Hamiltonian
1
Hx, ¢, v, 1) = (.//, (e 9 fi — L(e‘fG'”)*Grvdf)(x)) (2.15)

(ii) the maximality condition
H(E(), Y(1), #(1), 1) = ME(), Y1), ©) = sup HE), Y(), v, 1), a.e.; (2.16)

(iii) the transversality condition

a( Q( a( Qf)

W) = /\M( x(0), Y(0), 1) + > 0. (2.17)

In general it is not a feasible option to put the condition (2.12) into an explicit form,
because it means ‘integrating’ the differential system G;. We choose another way which
allows us to avoid such an integration. This is done by introducing an auxiliary Hamiltonian

= (4, Gy(x)V) and corresponding Hamiltonian system with boundary conditions:

V
G, 0z

iy 0w 218)
2(0) = e_G"./(xl)» ) =x;, A0)=y(). (2.19)

&z OF . di_ OF _ <16(G,I~/)>
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Then (see [4]) the transversality conditions (2.17) for the boundary condition (2.12) can be
written as

l . ~ ~
(1), glo)) =0, I=1,....r, /\jou(n), G=)7 dn > MG(t), (@), 1), (2:20)

THEOREM 2.9 If a pair (,i1) € R x W" " 1.00 I8 local minimizer for the generalized problem
(2.9)-(2.11) and (-) € L., [0, 7] is the generalized primitive of the control u, then there exists
a quadruple of absolutely continuous functions (x(t), Y(¥), (1), A(t)) such that the triple
(X(), ¥(-), ¥(-) satisfies the ( pseudo) Hamiltonian system (2.14) with the Hamiltonian (2.15),
the initial condition x(0) = xo and the maximality condition (2.16), while the solution
(1), M(?)) of the auxiliary Hamiltonian system (2.18) satisfies the boundary conditions
(2.19) and the transversality conditions (2.20).

Remark Note that %(-) is not a generalized trajectory of the system (2.10).

2.6 Generalized Minimizers in Highly-Singular Linear-Quadratic
Optimal Control Problem

We provide here a brief description of the results contained in Ph.D. thesis of Guerra
(University of Aveiro, Portugal, 2001).
One considers classical linear quadratic problem of optimal control

T
J(x(-), u(’)) = J ('Px + 24/ Ox + v/'Ru)(f) dt - min, x = Ax + Bu,
0
X0) =% x(T)=% @.21)

Here x € R",u € R, 4, B, P, O, R are constant matrices of suitable dimensions.

It is well known that for this problem to have finite infimum (one presumes then that X is
attainable from x for the system x = 4x + Bu) the positive semidefiniteness of the matrix R is
necessary. If, in particular, R is positive definite then we get a regular LQ-problem and the
existence of minimizing control in L, is guaranteed. The extremal controls, which are
candidates for minimizers, are determined by the Pontryagin maximum principle, its
optimality is studied by the theory of second variation (conjugate points, Jacobi condition,
Riccati differential equation, Hamilton—Jacobi equation etc.)

Much more difficult and challenging is the singular case where R is singular, i.e. has
nontrivial kernel. Here minimizer may lack to exist in L,[0, T'] due to noncoerciveness of the
functional. The singular L-Q problems have been extensively studied over the last 30-40
years. Still the following questions remained unanswered for the LQ problem with an
arbitrary singularity: (i)if minimizers lack to exist in L,[0, 7] can the problem be transferred
to a bigger space, where generalized minimizers exist? what space could it be? (ii) how to
compute (describe) the generalized minimizers? (iii) do these generalized minimizers admit
approximation by minimizing sequences of ordinary (square integrable) controls?

These questions have been answered in the thesis of Guerra. The problem has additional
difficulties for the vector-valued u. The detailed description of the results can be found in
[13-15]; here they are just listed.

e a series of necessary-generalized Goh and generalized Legendre—Clebsch conditions have
been obtained; they guarantee that the functional J has finite infimum for some boundary
data; order r of singularity for an LQ problem has been introduced;
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e if the previous conditions are satisfied and the order of singularity equals 7, then it is
proved that the singular LQ-problem can be extended onto a set of generalized controls,
which is a subspace of Sobolev space H_,[0, T]; whenever the infimum of the problem is
finite the problem possesses a generalized minimizer in this space of distributions;

e the generalized minimizer is a sum of an analytic function and of a distribution which is
a linear combination of the Dirac measures 6/(f), 8)(t = T), j=1,...,r — 1 located
at the boundary of the interval [0, T]; the corresponding generalized trajectory is a
distribution (!) belonging to the Sobolev space H_(_[0, T].

o following approximation result is established: the elements of minimizing sequence must
converge to the minimizer in corresponding topology of the Sobolev space H_,; this
implies (for r > 2) high-gain oscillation behaviour of ordinary trajectories, which
approximate the minimizing generalized trajectory;

o the notion of conjugate point is introduced and Jacobi-type optimality condition for the
generalized control is established;

e the optimal generalized solution in a feedback form is constructed; the feedback can be
computed via solution of a couple of Riccati type and linear-matrix differential equations.

e Hamiltonian formalism for the generalized extremals is developed and its relation to
Dirac’s theory of constrained Hamiltonian mechanics is established.

The most interesting aspects of this work are: (i) a complete theory of existence,
uniqueness, optimality, and approximative properties for minimizers of LQ-problem suffer-
ing arbitrary singularity; (ii) appearance of distributions of order > 1 as generalized inputs
and generalized trajectories; (iii) reformulation of the Dirac theory of constrained
Hamiltonian mechanics for the LQ-problem.

3 SECOND VARIATION AND OPTIMALITY OF BANG-BANG CONTROLS

3.1 Introduction

In this section we deal with a nonlinear time-optimal control problem:

t — min, 3.1)
g =f(@)+G@u(x), q0)=¢qo, geM, uel, (3.2)
q(t) = qi, (3.3)

for an affine control system (3.2) with end-point condition (3.3) on a C*-smooth
n-dimensional manifold M. Here G(q) = (g'(9), ..., £g"(¢)) and f(g), g'(q). ..., g (q) are
C*-smooth vector fields on M; admissible controls u(t) = (u;(7), ..., u,(7)) are measurable
and take their values in a convex compact polyhedron U C R".

We set the problem of L;-local optimality according to the following definition.

DEFINITION 3.1 A4 pair (u(-), q(-)) meeting (3.2)-(3.3) for t =T is called L;-locally
optimal, if there exist A > 0 and a ball U D u(-) in L}[0, T] such that no admissible control
Jrom U can steer the system (3.2) from qq to q, in time T' € [T — A, T).

We call the vector field j, = f(q) + G(q)u(t) the reference vector field and the corres-
ponding flow P, = exp Jofe dt the reference flow.

A first-order necessary optimality condition for the problem (3.1)—(3.3) is provided by
Pontryagin Maximum Principle (see [12]). If a pair (u(-), g(-)) meets this principle for some
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covector function (Hamiltonian multiplier) J/(-), then the triple (#(-), x(-), IZ/(-)) is called
Pontryagin extremal, and (') is called extremal control; there can exist different Pontryagin
extremals with different /() corresponding to the same extremal control #(-).

In what follows we assume that the extremal control i(-) is piecewise C'-smooth function
of 1. Then due to the Maximum Principle the domain [0, 7] of #(-) can be subdivided into
subintervals 0 =19p <7y <+++ < Ty < Tmy1 = I in such way that for each t € (t;, Ti31)
the maximality condition of the Maximum Principle is fullfilled on a k;-dimensional (k; > 0)
face W; of the polyhedron U. The subinterval (t;, 7,31) is called bang—bang, if k; = 0, i.e. the
maximum is achieved at a vertex of U, and is called singular, if k; is positive. The points
7; (i =1,..., m) are called switching points.

As it is well known, the extremality of control #(-) does not imply its optimality. To
ascertain optimality one should at least investigate the second variation of the control system
(3.2) on singular subintervals. But even bang—bang Pontryagin extremals, which have no
singular arcs, may happen to be nonoptimal. ‘Often’ a bang-bang extremal ceases to be
optimal after certain number of switchings. Corresponding examples, as well as some high-
order necessary optimality conditions for bang—bang extremals, can be found in [16-19].

One should note a characteristic feature of bang—bang Pontryagin extremals: the first
variation of the system (3.2) along these extremals do not vanish. Due to this fact the
traditional approach of the Calculus of Variations and Optimal Control Theory is no longer
applicable in this case. Indeed the first-order conditions do not guarantee optimality, while
the high-order variations, which are to be defined on the kernel of the first variation,
simply do not exist, because this kernel is trivial. To deal with this situation ant to derive
high-order necessary optimality conditions Agrachev and Gamkrelidze constructed in [20]
first and second variations for bang—bang extremals based on the variation of the instants
of switching.

Our approach is close to the one of [20]. We introduce below an extension of the first
variation by adding to the space of admissible variations of the extremal control #(-) some
finite-dimensional space of Dirac measures, located at the switching points of the extremal.

This extension results in new addends for the first and the second variations, which are
called first and second variations of the system at switching points of extremal.

Studying the first variation at switching points we derive a first-order sufficient condition
of Li-local optimality for bang—bang Pontryagin extremals (Theorem 3.9). When this
condition is not met for a bang—bang extremal, we bring into consideration a corres-
ponding second variation at switching points. 1t is finite-dimensional quadratic form and its
negative definiteness is the crucial point for setting second-order sufficient conditions of
optimality for bang—bang Pontryagin extremals (Theorems 3.10 and 3.11). Most of these
results has been published in the preprint [21]; part of the formulations have been pre-
sented in [22-24].

3.2 First and Second Variations of Control System.
Pontryagin Maximum Principle

In this subsection we define first and second variations of the control system (3.2). We also
formulate the Pontryagin Maximum Principle, which provides first-order necessary opti-
mality condition for u(-).

Consider the linear operator

T

Dhu() = JO Xdgoyu(2) dr, G4)
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defined on L[ [0, T'l; where
X, =X, ....XD), X =P HYxg (i=1,...,n. (3.5)

are the pull-backs of the vector fields g; by the reference flow P, to the point go. Obviously
@}, is linear operator from L/ [0, T] to the tangent space 7 4, M.

Let () € U, where U is the set of admissible controls of the system (3.2). A cone of
admissible variations of #(-) is by definition the (convex) conic hull of the set U — (). We
denote this cone by Kzl

DEFINITION 3.1  The restriction of ®} to the cone KU is called the first variation of the
system (3.2) on [0, T] along the control u(-). The image (DIT(K;,L{) is called the first varia-
tional cone along u(-).

The pull-forward of the first variational cone by Pr is a subset of the set of tangent vectors
at X(T) to the (time-T)-attainable set of the system.

DEFINITION 3.2 4 control i(-) is called an extremal control for the problem (3.1)-(3.3) if
the vector Yr = (P7') x fr can be separated from the first variational cone along i(-).

The Pontryagin Maximum Principle claims (see [12]) that separability of the vector fr
from this subset is necessary for optimality of #(-), or equivalently any optimal control for the
problem (3.1)-(3.3) must be an extremal one.

By the definition for an extremal control #(-) there exists a covector {y € T ;“M such that
Vu(-) € Kzl there holds:

T
J, €0 Xetaohon de <0 Az, 1) > 0. (3.6)

The last inequality is so called Transversality Condition. We call its strengthened form
(Co, Y1) > 0 the Strong Transversality Condition.
The inequality (3.6) implies the inequalities

(o, go o Xe(u — it(z))) <0, VYue U, ae onl0,T], & iu(r) € argmax({y, go o X;u).
uelU

3.7

The conditions (3.6) and (3.7) can be transformed into a standard form of Maximum
Principle.

THEOREM 3.3 (Pontryagin Maximum Principle; [12]) If a triple (q(-), #(:), T) is a solution
of the optimal control problem (3.1)~(3.3), then there exists a non-zero absolutely continuous
covector-function Yy:R — T x M (with Y(I) € Tg,)M) such that (4(-), ¥(:)) satisfy a
(pseudo)Hamiltonian system with the Hamiltonian

H(g, Y, u) = (W.f(q) + G(g)u), (3.8)
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and for (q(-), u(-), 1/~/(-), T) the following conditions hold:
(i) Maximality Condition:

H(q(), l]l(t), u(t)) = max{H(q(?), V@), u):ue U} ae. on [0, 73 3.9

(ii) Transversality Condition H(§(T),y(T),a(T)) > 0.
We call Strong Transversality Condition the inequality

H(@G(D), y(T), i(T)) > 0. (3.10)

We denote l/NI(t)G(é(t)) by y, and call it switching function. The maximality condition (3.9) is
equivalent to (y,, #(f)) = max{{y,, u)lu € U}.

Obviously for any t€[0,7] the latter maximum is attained at some (perhaps
0-dimensional) face W, of the polyhedron U; we will denote by V., a directing subspace of
this face; V; = span{W, — w}, where w € W can be chosen arbitrarily. Evidently V, € V7,
1€[0,T]: (), v) =0.

In what follows we assume the mapping t — ¥, to be piecewise-constant with
0=1<7171 <+ <Tp <Tpp1 =T determining the intervals of constancy. We call
(ti, Tiy1] @ bang—bang interval of the extremal control u(-) if dim V; = 0, or equivalently W,
is a vertex of U for t € (t;, 7;41) and a singular interval if dim V; > 0 on (t;, Ti4;). The points
7; are called switching points; if 1; separates two bang—-bang intervals, then we shall call it a
bang-bang switching point. It is obvious that W; .o € W, for any t; and dimW,, > 1. The
face W., is called face of switching at ;.

Below we put X;, W, V;, Xixo, Wixo, Vizo instead of X, Wy, V2, X 20, Weto, Veto.

Let us consider two faces W € W’ of the polyhedron U C R". For all points w € relint W
the conic hulls of the sets W’ — w coincide. We shall call any of them the fangent cone to W’
at W and denote this cone by Ky #’. These tangent cones are closed.

Any of these cones is naturally imbedded into the directing linear space ¥’ of the face W’.
The cone Ky W’ is pointed if and only if W is a vertex of U; otherwise the directing space V'
of the face W is the maximal linear subspace of Ky W":V = KyW' N (—=KwW’).

The following two Genericity Assumptions will be involved in the optimality conditions.

STRONG GENERICITY ASSUMPTION FOR BANG-BANG SWITCHINGS For every bang—bang
switching point t; the maximum max{H(q(t),yt,u):u € U} is achieved on an edge
= 1-dimensional face) of U; the left and right derivatives . 1o of the switching function x.
are not orthogonal to this edge of switching.

The nonorthogonality of .., to the edge of switching can be better visualized in the
case of scalar u’s, when the segment U (for example U =[—1, 1]) is edge itself. By
virtue of the Maximum Principle the sign of extremal control #(t) must coincide with the
sign of the (scalar valued) function y, and the ‘non-orthogonality’ means y, ., # 0, that
implies the transversality of the graph © > y, to the t-axis at the point (z;, 0).

WEAK GENERICITY ASSUMPTION FOR BANG-BANG SWITCHINGS ~ For every switching point t;
the maximum max{H(q(t), Y(t), u):u € U} is achieved on a face W; of U. For the cones
K = Kw_ Wi, Kt = Kw,,,W; and the switching function y, we have

Taol #0, VEEKT;  isl#0, VEeK;. (3.11)
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Actually the inequalities (3.11) together with the maximality condition (3.9) imply:
Xe—0€ > 0,VE € K75 jo o0& < 0,VE € K. For a bang-bang switching point t; the cones
K;,K;" are the tangent cones to the face W; at the vertices #(z; — 0) and #(t; + 0) corres-
pondingly. It is clear that for bang—bang switchings the Strong Genericity Assumption is a
particular case of the Weak one.

In what follows we assume the Weak Genericity Assumption and the Strong Transversality
Condition to hold for any extremal under consideration. .

Now we introduce second variation of the system (3.2) along an extremal (&1(-), X(-), ¥(-))
on [0, T1. It is defined on the kernel of the first variation ®/.:

T
ker @ = {u(-) € K,—,M:J

X:(qo)u(t)dr = 0}. (3.12)
0

This equality fOT X:(qo)u(t) dr = 0 together with (3.6) imply an inclusion u(t) € V; a.e. on
[0, T]; in particular, u(t) must vanish on the bang-bang intervals of #(-). If () is a bang—
bang extremal control, then ker @}, is trivial linear subspace.

DEFINITION 3.4  The second variation of the system (3.2) along the extremal (u(-), X(-), 171(-))
on [0, T is the quadratic form:

T T
Co@F(u() = Jo (Co, U Xou(0) do, Xru(r)](qo)>d‘c, u(-) € ker @j. (3.13)

0

3.3 Extended First and Second Variations

From now on we deal with a fixed Pontryagin extremal (#(-), X(-), z/~/(-)). Our idea is to define
first variation with extended domain in such a way that the triviality of the kernel of the
extended first variation along the bang—bang extremal control #(-) implies L;-local optimality
of &(-). If this extended first variation can be nullified, then we define an extended second
variation on its kernel and formulate second-order sufficient conditions of L;-local opti-
mality for the bang—bang extremal control u(-).

We extend the domain of ®@}. by adding some Dirac measures located at the switching
points of the bang—bang extremal. To introduce them let us consider the directing subspaces
Vi =Vy, of the switching faces W; = Wy(j=1,...,m) and introduce the generalized
functions of the form:

m
w:ijé(t—tj), wjeV(j=1,...,m); (3.14)
J=1

where 7; (j = 1, ..., m) are the switching points of the extremal. We will denote by A{z;, V}}
the set of the generalized controls (3.14).

A natural way to construct extended first and second variations would be extending the
input/trajectory map <I)'T onto the extended domain (see the previous section), which includes
the Dirac measures (3.14), and then defining extended first and second variations as first and
second differentials of this extension.
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DEFINITION 3.1 Let A{t;, V;} be the set of Dirac measures (3.14). The linear operator
O KU @ Alt), Vi) — T, M, defined by

T m
05 (u() ® w) = (L X(qoyu(r) de + ZX,-(qo)wj) (3.15)

J=1

is called an extended first variation along the extremal. The summand

Xi(q0)w; (3.16)

m
=1

J

is called the first variation at the switching points of the extremal.

This definition is justified by the following proposition.

LEMMA 3.5 For every j=1,...,m let a d-sequence of controls w,{(-)(k =1,...) tend
weakly to the Dirac measure w;0(t — ;). Put wi(-) = >, w{(-). Then as k — oo the values
of the first variation ®7(u(-) + wi(-)) = qo o (J; Xc(u(t) + wi(7)) dt tend to the value of the
extended first variation (3.15).

(Note that we are not able to approximate Dirac measures by admissible controls, since the
latter are bounded.)

If the extended first variation along #(-) can be nullified, then we define on its kernel an
extended second variation along the extremal.

DEFINITION 3.6 The extended second variation of the system (3.2) along the Pontryagin
extremal (u(-), X(-), Y(-)) is the quadratic form:

T| ¢t
%<c0, | U Xeu(®)dé + Zx,-w,-,xfu(r)] (q0)dr

0 <t
+ Zl: go o UO Xeu(&)dé + 2)(’“’” X,-wi](qo)>, (3.17)

Jj=

where u(-) ® w € ker (D‘;, ie u(-) ®w e Kid ® Afz;, V;) and

T m
L Xgou(z) e + Y Xi(go)e; = 0. (3.18)

J=1

Putting #(-) = 0 in (3.17) and (3.18), one obtains the quadratic form

1 i
'2‘<C0, qo o [j:zl)(jwj,)(iwijl> (3.19)
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defined on the kernel of the first variation at the switching points, which is a finite-
dimensional subspace:

m m

®=(w,...,0n) € B Viiqgoo Yy X =0{. (3.20)
J=1 j=1

DEFINITION 3.7  The quadratic form (3.19) defined on the subspace (3.20) is called the

second variation of the system (3.2) at the switching points of the extremal (u(-), X(-), Y(-)).

3.4 First- and Second-Order Sufficient Optimality Condition for
Bang—Bang Pontryagin Extremals

We have introduced above the extended first and second variations along a Pontryagin
extremal. It turns out that if the kernel of the extended first variation is trivial, or, equiva-
lently, if the kernel of the first variation at the switching points is trivial, then the bang—bang
Pontryagin extremal is optimal (under the following additional assumption).

DEFINITION 3.8 We say, that second-order Horizontality Conditions for Switchings of the
bang—bang Pontryagin extremal (u(-), x(-), Y(-)) hold, if:

W1, 4(1)) o [Gv, V) =0, WV eV, Vi=1,...,m, (3.21)
0 4T J
Jor all its switching points t;(j=1,...,m).

Goh has established that the fulfillment of the second-order Horizontality Condition along
a singular subarc of extremal is necessary for optimality of this subarc. We require this
condition to hold ‘along’ the degenerate singular ‘subarcs’, which are the switching points.

If the Strong Genericity Assumption holds, then dimV; =1 (j=1,...,m), and the
second-order Horizontality Condition (3.21) for Switchings holds automatically.

THEOREM 3.9 (first-order sufficient optimality condition for bang-bang extremals) Let a
bang—bang Pontryagin extremal (u4(-), X(-), ¥(-)) meet the Strong Transversality Condition
(3.10), the Weak Genericity Assumption (4.12) and the second-order Horizontality Condition
Sfor Switchings. If the first variation at the switching points of the bang—bang extremal has
trivial kernel, i.e.,

m
Y Xigovi=0, vieVi(i=1,...m=v=00G=1,..,m), (3.22)
i=1

then the bang—bang extremal control u(-) is optimal for the problem (1.1)—(1.3).

If the first variation at the switching points possesses a nontrivial kernel we establish in this
case the second-order sufficient optimality condition (Theorem 3.10). Regretably this con-
dition is not as sharp as one could wish. Below we shall provide some comments and also a
sharper form of the sufficient condition for the case where Strong Genericity Assumption
holds (Theorem 3.11).

THEOREM 3.10 (second-order sufficient optimality condition for bang-bang extremals) Let
the Strong Transversality Condition (3.10), the Weak Genericity Assumption and the
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second-order Horizontality Condition for Switchings (3.21) hold for the bang-bang
Pontryagin extremal (u(-), x(-), Y(-)). If the second variation at the switching points
17 (j=1,...,m) of the extremal, i.e. the quadratic form

o) = Z<co. go 0 [Z)g-v,-,xivib, (3.23)

i=1 j<i

is nonpositive (negative semidefinite) on the kernel of the first variation at switching points
m m

v=(1...,vm) € ® Vil D _qooXw; =0, (3.24)
=1 i=1

then u(-) is optimal for the problem (3.1)—(3.3).

As one can see the formulation of the sufficient condition is somewhat unusual, in the
sense that it involves negative semidefiniteness of the second variation, while usually second
order sufficient optimality conditions involve strict definiteness of the second variation. We
should also emphasize, that negative semidefiniteness of the second variation at the switching
points is not necessary for the optimality of #(-). The reason is that the first and the second
variations at switching points have been constructed on the basis of Dirac measures (located
at switching points) used as generalized variations of #(-). If it were possible to approximate
these Dirac measures by ‘ordinary’ controls, this construction would be quite adequate. Since
the admissible controls are bounded we cannot arrange such approximations.

If Strong Genericity Assumption holds let us consider the unit directing vectors
¢ (=1,...,m) of the switching edges V; (i=1,...,m); &=} —n7)/Int —n; |,
where 7 = @ (t; — 0), i = @i(t; + 0). Let M; = |5 — ;| (i =1, ..., m) be the lengths of
the switching edges. The variables v; (i =1, ..., m) involved into the expression for the
second variation are scalar. Let us introduce the quadratic form

(&, s R
= (;@0, Xa0)t) 557+ ;<C0 [Z X,-v;,va,-} (qo)>> (325)

J<i

with the domain (3.24); obviously its values are less than the values of the quadratic form
(3.23)-(3.24).

THEOREM 3.11 (second-order sufficient optimality condition under Strong Genericity
Assumption) Let the Strong Transversality Condition (3.10) and the Strong Genericity
Assumption hold for the bang—bang Pontryagin extremal (u(-), X(-), Y(-)). If the quadratic
form (3.25) with the domain (3.24) is negative definite, then u(-) is optimal for the problem
(3.1)(3.3).

There is a recent result by Agrachev et al. [25] which establishes a stronger sufficient
condition under strong genericity assumption. It is a development of the previous work of
Agrachev and Gamkrelidze [20] on necessary conditions for optimality of bang-—bang
extremals. The key tool are first and second variation corresponding to the variation of the
moments of switchings. The sufficiency is proved by the field theory techniques.
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4 HIGH-ORDER AVERAGING AND STABILITY

4.1 Introduction and General Problem Setting

In this section we study stability and asymptotic stability properties of periodically time-
varying systems. In particular we will deal with linear systems with fast oscillating
coefficients x = A(¢/¢)x and with nonlinear systems x = f(#, x) whose stability can not be
concluded by the use of linearization principle.

The systems of this type draw much attention for a number of reasons. Differential
equations with periodic terms and the corresponding averaging techniques were studied since
the 18th century. Stability issues for periodic differential equations have been addressed since
long ago. Substantial contributions to the theory were made by Lyapunov; further results
have been obtained by Perron, Chetaev, Malkin, Erugin, Barbashin, Bellman, Krasovsky,
LaSalle, Massera, Cesari among others.

In control theory and mechanics the discovery of stabilizing effect of vibration in the
reverse pendulum example inspired the study of time varying feedback laws. A regular
approach to the issues of ‘vibrational controllability’ and ‘vibrational stabilizability’ for
control systems has been developed by Bellman et al. [26]. This topic got a new impulse
after the discovery of obstructions (e.g. Brockett’s criterion) to time-invariant stabilizability
and after Coron [27] obtained a general result on time-variant stabilizability for controllable
nonlinear control systems. Since then many important contributions to the problem of design
of time-varying feedbacks for the control systems have been done.

The most famous tool for studying stability — the Lyapunov direct method — is much more
difficult to apply to time-variant systems. It is much harder to construct a corresponding
Lyapunov function, which decreases along trajectories of time-variant (in particular of fast-
oscillating) systems. It has been observed (see [28] and references therein) that weaker
condition of partial decrease may guarantee asymptotic stability, but this weaker condition
is difficult to verify. One can find many interesting results of this kind in publications by Aeyels,
M’Closkey, Moreau, Murray, Peuteman (see for example [28—30] and references therein).

What we suggest is kind of high-order averaging procedure for studying stability/
asymptotic stability properties of time-variant systems. The result of this procedure is a time-
invariant vector field represented as a (formal) series. The first-term of the series (first-order
averaging) corresponds to standard averaging defined in Bogoliubov’s theorem. Obviously
we only need high-order averagings if the standard averaging leads to a system with critical
equilibria. This for example always will be the case in a problem of time-varying stabilization
of a nonholonomic system.

When computing the high-order averagings we use tools of chronological calculus —
a technique of asymptotic expansions for the flows generated by time-varying nonlinear
vector fields; this calculus has been developed by Agrachev and Gamkrelidze [9] in 70’. This
approach is Lie algebraic in its nature; also the high-order averagings are computed via Lie-
Poisson brackets of the vector fields appearing in the right-hand side of the differential
equation. The computation of the high-order averagings is technically rather involved. Below
we just provide formulae for the first three terms of the expansion of the logarithm.

One can find in [31-33] a description of the technique of high-order averaging and some
of its applications to studying stability, in particular: (i) stability results for time-periodic
linear systems, and in particular for the second- and third-order linear differential equations,
with fast oscillating coefficients, (ii) results on time variant stabilization of bilinear systems
and of nonholonomic systems without drift term; (iii) stability of equilibrium for time-
periodic nonlinear system. In this presentation we illustrate the techniques by an example of
reversed pendulum and by study of asymptotic stability of a nonlinear time-periodic system.
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4.2 High-Order Averaging for Linear Systems

It is much easier to introduce the notions of high-order averaging for linear time-variant
systems.
Consider the system

(‘;—’t‘ =)5c(t) - A(g)x(t), @4.1)

where x € R” or C", A(7) is R™" or C"*"-valued function continuous and 1-periodic with
respect to 7, ¢ > 0 is a small parameter. What one can say about stability/asymptotic stability
of such a system? Clearly spectra of the matrices A(t) for ‘frozen’ 7 do not define the stability
properties of this system.

Averaging is another option. The classical averaging result says that, if all the eigenvalues
of the corresponding averaged matrix fol A(t) dr are located in the open left complex half-
plane, then one can assert asymptotic stability of the system (4.1) for all sufficiently small
e> 0.

We want to find out what happens in the critical cases where some of the eigenvalues of
this averaged matrix are located on the imaginary axis (for example vanish). This question
can be reduced to a more explicit one. Proceeding with the time substitution T = ¢/¢ and
denoting the derivative dx/dt again by x we arrive to the equation

:—f = eA(t)x(t) 4.2)

with 1-periodic coefficients. Consider the corresponding matrix differential equation

%X =¢ed(1)X(r), X eR"™or, XeC" 4.3)
and introduce the monodromy matrix M; = X(1). This monodromy matrix determines sta-
bility or instability of the system (4.2): if the eigenvalues of M, (the multiplicators) all belong
to the interior of the unit circle, then the system is asymptotically stable. If at least one of
these eigenvalues lies outside the unit circle, then the system is unstable.

Obviously the principal difficulty in applying this result is impossibility to compute the
spectra of the matrix M,. The only feasible idea is to deal with an expansion of M, with
respect to ¢; as it is known for small ¢ > 0 the matrix M, can be represented as a convergent
power series in &.

Instead of dealing with M; we will deal with its logarithm. It is more suitable object in a
nonlinear case, where the monodromy map is a nonlinear diffeomorphism. In this latter case
the ‘logarithm’ of this map, (if exists!) is a vector field — an element of a Lie algebra whose
linear structure is suitable for expansions into series.

We denote by A, the logarithm of the matrix M;. The corresponding stability criterion
becomes: the equilibrium of the system (4.1) (with fixed ¢ > 0) is asymptotically stable if all
the eigenvalues of the logarithm A, are located in the open left half-plane and unstable if any
of them belongs to the open right half-plane.

The matrix A, admits a power series representation:

Ap=eAV + AP + ...
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(It is easy to see that AV =4 = jol A(t)dr.) One can come to a conclusion about the
stability properties by analyzing the truncations of the latter series. It has been said already
that asymptotic stability of x = AVx implies asymptotic stability for the system (4.1) if
¢ > 0 is sufficiently small.

Obviously the logarithm A, of the monodromy matrix M, provides a complete information
concerning turnpike or averaged behaviour of the solution of the time-variant system (4.1).
According to Floquet theorem this solution ‘oscillates around’ the trajectory e of the time-
invariant system dX/dt = A X, X(0) = I. Therefore A; can be seen as kind of ‘complete
averaging’ of the system (4.2), while the truncations of its expansion can be seen as partial
averagings of the system.

A major problem is the computation of the expansion for A,. Below we provide the
expressions for the first terms of the series in nonlinear setting.

4.3 High-Order Averaging for Nonlinear Systems

Let us consider the nonlinear system

x=f(",x),

where f (7, x), denoted below as f;(x), is 1-periodic with respect to T. Assume f;(0) = 0, V.
Introducing the fast time variable t = #/¢ we come to the equation

& . (4.4)
T

Let P! be the flow generated by f;(x). This flow is denoted by P; = exp fot ¢fp(x) dO. The
diffeomorphism M; = P! is a time-1-map or a monodromy map. Obviously P7*! = M, o P!
and the origin is a fixed point of M,.

It is known that the origin O is asymptotically stable for the system if it is an asymptotically
stable fixed point for the map M;: VA > 0 3 > 0 such that p(x, 0) < 6 = p(M](x),0) < A
and p(M}'(x),0) — 0 as n - +4o00.

As we said it is more proper to deal with a linear object — the logarithm of the
diffeomorphism M,. Time-invariant vector field A, being a logarithm of the diffeomorphism
M, means that M, is included in the flow e generated by the vector field A;:
M, = eM|,_, = e. We may consider the expansion of A,

o0
A, = Zs"A“) 4.5)

i=1

and try to proceed in a similar way as in the linear case.

There are additional difficulties on this way. In contrast to the linear case it is not always
that the logarithm A, exists. It is known that not any diffeomorphism can be included into a
flow generated by time-invariant vector field. Still if one manages to construct a formal power
expansion for A,, then the exponentials of its truncations provide ‘nice asymptotics’ for the
diffeomorphism M, and we are often able to conclude asymptotic stability or instability.

If the logarithm A, exists, then the origin is its equilibrium point and we can state the
following two results, the second one being a nonlinear version of Floquet theorem for
time-periodic systems.
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THEOREM 4.1  If the origin is an asymptotically stable equilibrium point for A, then it is an
asymptotically stable equilibrium point for the system x = f(e7't, x).

THEOREM 4.2 (nonlinear Floquet theorem) Assume that P* is the flow generated by a time-
periodic (of period 1) differential equation dx/dt = f;(x). If the vector field A is the
logarithm of the diffeomorphism P'| then the flow P* can be represented as a composition
Pt =N ol ®@° of the flow €’ and of the 1-periodic flow ®° (1-periodicity of a flow ® means
o = o),

4.4 Computation of the Logarithm of a Diffeomorphism

For a diffeomorphism included into the flow generated by time-varying ODE one can
compute the logarithm via ‘formal chronological series’. It has been accomplished in [9]; in
[34] another method of its computation has been provided.

Here we provide only the first terms of this series expressed via Lie-Poisson brackets:

o ! N
A(X.)—LXtdt, A(X.)—Ej[

1
J X}z dtzyf\,n]dtl,
0

0

1 5]
A3(X)=—-1-[A'(X), AZ(X,)]+lJ adZ(J X, dtz)X,l dt.
2 3Jo 0

Here ad XY = [X, Y], ad’ XY = [X, ad~' Xv),i > 2.

Let us comment on a particular case of linear vector fields X;(x) = A.x. For linear vector
fields Ax and Bx the Lie bracket is again a linear vector field equal to
[Ax, Bx] = BAx — ABx = —[A, B]x, where [4, B] is the commutator of matrices 4 and B.
Suppressing x we may treat the terms AP(4) in the expansion (4.5) as matrices. To compute
these matrices one has to substitute in the previous expressions X by 4. and multiply each
Lie monomial of order & by (—1)"‘1.

4.5 Asymptotic Stability for Linear Systems: an Example

Here we arrange an example of linear systems, whose stability properties are determined by
high-order averaging(s).

Example Consider the linear system

. . &€X
X, = —X, X =X +—=,

3

for which the origin is an unstable equilibrium. We put the question if one can perturb this
system by a fast oscillating term with a zero average and achieve asymptotic stability. For
example can the origin be asymptotically stable for the system

. . 2mt .
X1 = —x) + axp sin —:—, x2=x1+%. 4.6)

To answer this question we have to calculate first- and second-order averagings. The first-
order averaging equals to eA") = diag{—e, ¢2/3), being unstable. The second order
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averaging equals £2A® = (¢2/2) J'ol [4,,, |y X, dt2)dt1, where A(?) is the coefficient matrix of
the system (4.6). Proceeding with the computations we obtain

2 2
AW £ 27D = (‘8 toag —ar(l +§))_
€ T
Its trace equals —¢ + o(e), while its determinant equals &*(—1/3 + a/n). It easy to verify that
AW with k > 2 contribute to the value of determinant o(e*). Therefore we may conclude, that
if a > m/3 (respectively o < m/3) then there exists & such that Ve < gy the origin is
asymptotically stable (respectively unstable) for the system (4.6).

4.6 Stabilization of Equilibrium of Linearized Reverse Pendulum

As it is well known the upper position of a pendulum — the reverse pendulum — can be made
stable if the suspension of the pendulum is subject to (sufficiently) fast harmonic oscillation
(see [35]). Here we represent the case where the suspension is subject to fast oscillation of
arbitrary form ds(kf) and establish conditions for it to stabilize the upper position of the
pendulum. We assume ¢ > 0 and £ > 0 to be a small and a large parameter respectively, and
s(t) to be 1-periodic C?-function. Small oscillations of the pendulum in a neighborhood of
upper equilibrium point are described by the equation

¥ — (0 + 0k*5(kf))x = 0, 4.7)
where  is proper frequency of the pendulum. The sign ¢ — in this equation corresponds to
the upper equilibrium of the pendulum. Without loss of generality we may assume $(0) = 0.
The stability condition for the reverse pendulum is provided by the following theorem
(see [32]).

THEOREM 4.3  For each ¢ > 0 there exist o9 > 0, kg > 0 such that the equilibrium of the

reverse pendulum is stable provided that 0 < & < 8, k > ko and &* fol ¥ (t)ydt > (0?/k*) + ¢
and is unstable provided that 0 < & < ¢, k > ko and 6* fol F(r)dt < (0?/k?) —e.

Putting x = y, rewriting Eq. (4.7) as a system of first-order equations and proceeding with
the substitution t = k¢ we arrive to the system

dz

= (k™4 + 6k B,)z, (4.8)

where

z=(x,y), A=(a())2 (1)), Bf:(g((:;) 8)

Applying the variational formula of the chronological calculus (see [9, 34]) we derive the
following formula for the fundamental matrix of the system (4.8):

1 1 1
=P J (k'4 + 5k B,)dt = exp [ M 7 Bdt =1 g g o O ), Bede
0 Jo
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The second factor of the composition equals I because fol $(t)dt =0 and hence
jo B,dt =0. What for the first factor then the expansion for the exponential
inC, = oo [T BS -1 4 terminates by the second term due to nilpotency of B; and we get

C - —385(c) k!
T \k'w? - 0*k(e) 5(0) )

Matrix C, is 1-periodic in o; taking its (first-order) averaging we obtain

1 -1
0 k
— A —
L Codo=AT" = (k~'w2 — 0%k [} *(@)do 0 ) “49)

The first-order rest term admits an estimate O(6> + k=2), as  — 0, k — oco. As far as the
complete averaging of C, is a trace-free matrix then the stability of the system is defined by
(the sign of) its determinant. According to the above estimates the determinant of the
complete averaging equals

1
—k720? + 6° J P(0)do + 06" + k™,
0

from where the result of the Theorem 4.3 follows.
For the lack of space we do not present here a more technically involved result on sta-
bilization of reverse double pendulum; it will appear elsewhere.

4.7 High-Order Averaging for Time-Periodic Nonlinear
Systems and Stability

Let us show how the technique works in time-periodic nonlinear case. Assume X;(x) to be
nonlinear time-periodic vector field in R”, continuous together with all its partial derivatives
with respect to x;’s; X;(0) = 0, V.

We will need to introduce a notion of homogeneity. To this end let us consider a dilation

OR" > R" 0(x1,...,x%)=("x1,...,8"x,), €>0, >0, i=1,...,n.
The dilation establishes weights for (actually defines the filtrations in the algebras of ) smooth
functions, differential operators and vector fields in R” (see [34] for details). For example the
weight of a monomial x{' ---x% equals ) ;_, ox; the weight of a monomial vector field
x)' - -x20/0xp equals —rg + Y ;_, ax. In particular case of a; = - -- = a, = 1 the weight of
a monomial is equal to its degree, the weight of a monomial vector field is 1 less then the
degree of the monomial.

Let us say that a vector field is of weight > s if all the monomials of its Taylor expansion
with respect to x are of weights > s (see [34] for ‘more invariant’ definition). For the rest of
this section the following assumption holds: X;(x) is of weight >s (s > 0) with respect to x.

Consider the Fourier expansion Y o Xte keik' for X;(x). Obviously X° coincides with
the first-order averaging of X:X° = (1/2n) fo X,(x)dt and all the vector fields X* are of

weight > 5. We assume that arbitrary weight can be assigned to the vanishing vector field. Let
us represent X* as X* + .. ., where the principal parts X* are homogeneous of weight s while
the rest terms are of weights > s for k # 0. A condition for X° will be specified later on.

We establish a sufficient local asymptotic stability condition for the vector field X;(x) using
its second-order averaging.
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THEOREM 4.4  Let X)(x) ~ Y 22 _ Xkt Let X* = X* + .- will be of weight >s and
X0 = X* 4 ... of weight >2s. If the origin is locally asymptotically stable equilibrium for
the time-invariant homogeneous vector field

X') - i ik~ (X%, X8 (4.10)
k=1

then it is locally asymptotically stable for the vector field X;(x) = X° + Y o _ . X*e.

If one considers a real form Fourier series X;(x) = X(x) + Y i, (Z* cos kt+Y "~sin kt)
then one concludes with the following corollary (we denote again X°, Zk, Y* the
principal parts of X°, Z¥, Y*).

COROLLARY 4.5 If the origin is locally asymptotically stable equilibrium for the time-
invariant homogeneous vector field

X'(x) +%ik"'[2", Y4 4.11)
k=1

then it is locally asymptotically stable for the vector field X(x).

Remark The latter result can be compared with the result of M’Closkey and Morin [36]
who studied the system

x = X(x) + X' (x) cos 2nt + Y'(x) sin 27t

under similar homogeneity assumptions for the vector fields X°, X', ¥'.

We sketch the proof of the Theorem 4.4. Take the time-27 map for X;(x). Calculating the
first two terms of the expansion of its logarithm one obtains: AV =272X%x), A® =
273" % ik xR, X, Let AV =27X0 A® = 2232 ik~'[X*, X*]. Then A =
AD + A® 4 ... where the omitted terms are of weights >2s. Therefore the homogeneous of
weight 2s vector field AD + AD, coinciding with (24.1~0), is the homogeneous principal part
of A. It can be proven that exp foz "X dt = exp [o" AV + A + Z,(x) dt, where Z,(x) has
weight >2s. If the origin is asymptotically stable equilibrium for A + A® then its
asymptotic stability for X;(x) can be concluded by application of Massera—Hermes theorem
[37, 38].

What happens if X° = 0 and [X*, X %] =0,Vk =1,...?

It is easy to see that the second-order averaging A® vanishes in this case. We need to
invoke higher-order averagings to try to establish asymptotic stability. In the next result the
notation is the same as in the Theorem 4.4.

THEOREM 4.6 If X)(x) = Y o _.. X*e, and X = 0 \IX*, X% =0,Vk=1,..., then
the origin is locally asymptotically stable equilibrium for X,(x) if it is asymptotically stable
equilibrium for the time-invariant homogeneous vector field

- i %[X" X’ ,)"(—(“’)]]. 4.12)

kJ=—00
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