

Validation in a Component-Based Design Flow
for Multicore SoCs

Gabriela Nicolescu Sungjoo Yoo Aimen Bouchhima Ahmed Amine Jerraya
SLS Group, TIMA Laboratory

46, Av. Felix Viallet, 30831, Grenoble, France
{Gabriela.Nicolescu, Sungjoo.Yoo, Aimen.Bouchhima, Ahmed.Jerraya}@imag.fr

ABSTRACT
Currently, since many SoCs include heterogeneous components
such as CPUs, DSPs, ASICs, memories, buses, etc., system
integration becomes a major step in the design flow. To enable
this integration, we use a design approach called component
based-design approach. In this approach, the validation of
system integration takes most of design efforts. This paper
presents an automatic method of SoCs design validation. Based
on a generic simulation wrapper architecture, the presented
method provides automatic generation of executable models
throughout different stages of SoC design flow. A case study of
validating a VDSL application shows the effectiveness of the
method.

Categories and Subject Descriptors
J.6. [Computer-Aided Engineering]: Computer-Aided Design

General Terms
Design, Verification.

Keywords
SoC, Component-Based Design, Validation, Cosimulation,
Abstraction Levels

1. INTRODUCTION
ITRS roadmap predicts that in 2004, 70% of ASICs will include
at least one embedded instruction set processor [1]. SoCs
already include several instruction-set processors in such
applications as mobile terminals (e.g. GSM [2]), set-top boxes
(e.g. pnx 8500 from Philips [3]), game processors (e.g.
PlayStation2 from Sony [4]) and network processors [5]. Most
system and semiconductor houses are developing and using
design environments and target architecture platforms allowing
the integration of multiple cores (CPU, DSP, MCU, co-
processors, memory, etc.) [21] [22].

In SoC design with multiple cores, designers need to integrate
heterogeneous cores. They are heterogeneous in terms of
communication protocols, abstraction levels, and specification
languages. Communication protocols of different cores (e.g.

AMBA [22] and Open Core Protocol [8]) need to be adapted via
protocol conversion, buffering, (de)multiplexing, etc. [24]. The
designers need also to integrate cores described at different
abstraction levels (e.g. an interconnection between a behavioral
core and an RTL core). The specification languages of cores can
be different (e.g. cores in VHDL, C, SDL, etc.).

In SoC design, most of design cycle (more than 60%) is devoted
to validation [7]. Validation needs to be performed as many
times as possible throughout the design cycle to obtain a reliable
SoC implementation. However, for the designers, the validation
of multicore SoCs is one of the most difficult design steps. It is
mostly because the designers need to make simulatable the SoC
specification with heterogeneous cores. To be more specific, for
instance, the designers need to make simulatable the entire
system specification, which consists of cores with different
abstraction levels and languages. In current SoC design practice,
since such a job is done manually, it is time consuming. It needs
to be automated to shorten the design cycle thereby allowing
the designers to focus on the validation of system
specification.

In several commercial SoC design environments, the job of
making simulatable the SoC specification with heterogeneous
cores can be done mostly in a manual manner. For instance,
Coware N2C enables mixed-level cosimulation for system
specifications with behavioral and RT level cores [9]. In the case
of SystemC, a method of mixed-level simulation based on the
concept of interface is presented though it does not automate
the generation of mixed-level interfaces [10].

Basically, for the simulation of SoCs with heterogeneous cores,
commercial and academic tools are based on the concept of
simulation wrapper to adapt different abstraction levels or
languages. The wrapper concept is not new and has been widely
used. However, the concept has not been used in a systematic
way. In other words, there has been no systematic method of
generating wrappers for the simulation of SoCs with
heterogeneous components.

Such systematic methods of generating wrappers become more
required as the abstraction levels of system description are
getting higher and the number of abstraction levels is getting
larger. For instance, in our SoC design flow called component-
based SoC design flow, we use three abstraction levels for
software cores, two for communication channels, and two for
hardware cores. In such a case, the design of wrappers becomes
much more difficult than the cases where only two abstraction
levels, i.e. functional and RT levels, are used. To enable more
extensive design space exploration and higher design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSS ’02, October 2-4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-562-9/02/0010…$5.00.

162

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194453258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

productivity, the designers will use more and higher abstraction
levels. Thus, systematic methods of generating wrappers will
become more and more required.

In this paper, we present a systematic method of wrapper
generation for multicore SoC design. To enable automatic
generation of wrappers, we use a generic wrapper architecture
and a wrapper generation flow. The generic wrapper
architecture enables the adaptation of different communication
protocols, abstraction levels, and specification languages as well
as the reuse of wrapper components in the simulation of
different SoCs. Since the same generic architecture is used for
any SoC validation, wrappers can be generated automatically by
instantiating components in the wrapper architecture.

This paper is organized as follows. Section 2 gives a review of
simulation methods for systems with heterogeneous cores.
Section 3 introduces our SoC design flow. Section 4 explains
the generic wrapper architecture and wrapper generation.
Section 5 gives a case study of applying our method to the
design of an industrial SoC. Section 6 concludes the paper.

2. RELATED WORK
For the simulation of cores with different abstraction levels, the
bus functional model (BFM) [14] is widely used. It is a
conventional method to connect functional simulation models
and cycle–accurate simulation models. It performs
transformation between functional memory access and cycle-
accurate memory access. SystemC provides a concept of
interface for mixed abstraction level simulation [10]. Mixed-
level interfaces have to be designed manually, which can be a
source of errors and of lost of design time. Moreover, designers
need also to design wrappers for multi-language simulation.
SystemCSV extends SystemC and makes the simulation of all of
its abstraction levels of interfaces [23]. Thus, the
interconnection of interfaces with different abstraction levels is
possible. However, automatic generation of mixed-level
simulation interface is not supported.
As a study of multi-language simulation methodology,
Valderrama et. al. presents a tool called VCI for the automatic
generation of cosimulation interface in C-VHDL cosimulation
[17]. Coste et. al. presents a tool called MCI that enables multi-
language cosimulation [18]. These solutions are very efficient
for multi-language simulation, but they don’t treat in a
systematic way the multi-level cosimulation.
VSIA [26] proposes VCI (Virtual Component Interface) and
SLI (System Level Interface) for heterogeneous components
interconnection, where several abstraction levels are taken into
account. VCI enables only point-to-point and unidirectional
connections. VSIA standard presents a design guide (not an
automatic design method) to enable multi-level simulation
consisting of VCI and SLI by using the wrapper concept. Our
work shares the same approach and our contribution is to enable
automatic design of such wrappers.

3. COMPONENT-BASED SoC DESIGN
FLOW
Figure 1 illustrates our component-based SoC design flow. The
RT level architecture consists of processors connected to the
communication network via wrappers. Wrappers are constructed

in the form of software (e.g. operating system) as well as in the
form of hardware. Our design flow starts from a system
specification called virtual architecture specification and gives
automatically an RTL implementation by generating hardware
and software wrappers.

R T L A rch ite ctu re

V irtu a l A rch ite ctu re

S w w ra p pe r
g e n e ra tio n

H W w ra p pe r
g e n e ra tio n

E x te n d e d
S yste m C

A

B

C

µP 1

C om m unicatio n netw ork

A B

µP 2

C

S W w rap per S W w rap per.

H W w rapperH W w rapper

R T L A rch ite ctu re

V irtu a l A rch ite ctu re

S w w ra p pe r
g e n e ra tio n

H W w ra p pe r
g e n e ra tio n

E x te n d e d
S yste m C

A

B

C

µP 1

C om m unicatio n netw ork

A B

µP 2

C

S W w rap per S W w rap per.

H W w rapperH W w rapper

Figure 1. Component-based SoC design flow.

3.1 Virtual Architecture Specification
The virtual architecture specification represents a system as a
hierarchical network of modules and communication channels
(see Figure 2). Modules and communication channels can have
different abstraction levels, communication protocols or they
can be described in different specification languages. To enable
the interconnection specification of such heterogeneous modules
and communication channels, we use the concepts of virtual
component, virtual port and virtual channel.

A virtual component consists of a module and its wrapper. The
wrapper is composed of internal and external ports. The
internal ports are the ports of the module and the external ports
enable interconnections with external communication channels.
The internal and external ports are grouped in virtual ports (see
Figure 2). In a virtual port, there can be an n to m (n and m are
natural numbers) correspondence between internal and external
ports. A virtual channel is a set of several channels having a
logical relationship (e.g. multiples nets belonging to the same
communication protocol of AMBA [22]).

Figure 3 exemplifies the concepts of virtual component, virtual
port and virtual channel. The module in the figure is connected
to the communication channels through a virtual port. This
module is described at a high abstraction level and it uses high-
level communication services (in the figure, it calls a
communication service send on the port P1) to communicate
with other modules via communication channels. The module
has to be connected to RT level signals with handshake protocol.
Thus, the virtual port used for this connection has an internal
port (the port P1 of the module) at a high abstraction level
(called OS architecture level to be presented in Figure 4) and
three external at RT level. Internal and external ports are
parameterized for refinement and validation purposes. Examples
of some parameters are illustrated in Figure 3.

In our design flow, the virtual architecture is described using an
extension of SystemC, where the presented new concepts are
introduced.

163

3.2 Abstraction Levels in SoC Component-
Based Design
Our design flow enables incremental SoC design through
multiple abstraction levels for hardware and software
components and communication networks. Figure 4 shows
abstraction levels used in our SoC design flow.

M3
blackbox

M1

M2

M1,1

M1,2

M2,1

: wrapper
: module

: task
: configuration parameters

: virtual component
: virtual port

: virtual channel

Figure 2. A virtual architecture specification.

…

P1.send(data);

…

Handshake protocol signal

P1.type = « internal »
P1.AbstLevel = « 0S architecture level »
P1.Protocol = « Pipe »
Pack.type = « external »
Preq.type = « external »
Pdata.type = « external »
Pack.AbstLevel = « RTL »
Preq. AbstLevel = « RTL »
Pdata. AbstLevel = « RTL »
……….

M1
M1,1

M1,2

Pack
Preq

Pdata

P1

Figure 3. Examples of virtual component, virtual port and

virtual channels.

For the design of software wrappers, we use three abstraction
levels as follows:
- at OS architecture level, the OS is abstract and only the

system calls corresponding to the OS services are visible.
- at driver level, the implementation of the OS services is fixed

but device drivers are still abstracted. Thus, the hardware on
which software is executed (e.g. CPU, memory) can be
variable. The application code is extended with OS layers
implementing OS services (e.g. task scheduling management,
interruption management, etc.).

- at instruction set architecture (ISA) level, software is
described in assembly code specific to the fixed hardware (e.g.
processor, memory).

For hardware design, we use two abstraction levels:
- at behavioral level, only the functionality is fixed but the

physical implementation of this functionality is not yet fixed.

Communication with the rest of system is realized via high-
level communication services.

- at register transfer level (RTL) the physical
implementation including communication protocols is fixed.

For communication networks design, we use two abstraction
levels:
- at abstract netlist level, communication channels provide

communication services (e.g. pipe, semaphore, etc.). The
implementation of the services is not yet fixed.

- at physical netlist level, communication is modeled by
physical signals (e.g. shared buses or point-to-point
interconnection). At this level, all the communication details
(i.e. communication protocols, interruption management,
address decoding, etc.) are fixed

Note that, throughout the SoC design flow, components and
communication networks can be situated at any of the above-
mentioned abstraction levels.

Virtual Architecture

Software Hardware

Driver Level

ISA Level

Behavioral

RTL

Communication

Abstract Netlist

Netlist

Architecture OS Level
Abstraction

Levels

Virtual Architecture

Software Hardware

Driver Level

ISA Level

Behavioral

RTL

Communication

Abstract Netlist

Netlist

Architecture OS Level
Abstraction

Levels

Figure 4. Abstraction levels in our SoC design flow.

4. SoC VALIDATION IN COMPONENT-
BASED SoC DESIGN
The virtual architecture specification is only a specification
model and it is not executable as is since the internal and
external ports of the virtual ports are heterogeneous (they can
have different abstraction levels and different specification
languages). Thus, we need to make it executable by adapting
different abstraction levels and different specification languages.

4.1 Simulation Wrapper
To resolve the problem, we use simulation wrappers for software
and hardware modules as shown in Figure 5. Modules are
connected with the cosimulation network via simulation
wrappers. In fact, the components are separated from the
cosimulation bus by simulation wrappers that implement the
simulation model of wrappers specified in the initial virtual
architecture.

As shown in Figure 6, the simulation wrapper has a generic
architecture. A wrapper needs to adapt different abstraction
levels and different languages. Since an abstraction level and a
language are, in general, independent of each other, we have
two interfaces in the wrapper architecture: simulator interface
to adapt different languages and communication interface to
adapt different abstraction levels.

164

C om m u nication N etw ork

H WS W

S im ulation
W rappers

S im ulation
W rappers

S W

C om m u nication N etw ork

H WS W

S im ulation
W rappers

S im ulation
W rappers

S W

Figure 5. Simulation model for multiprocessor SoC.

C hannel
A d ap te r

InternalC om m . M edia

C hannel
A d ap te r

C hannel
A d ap te r

S im ulato r Interface

P o rt
A d ap te r

P o rt
A d ap te r

C om m unicatio n Interface

M o d ule A d ap ter

Figure 6. Generic architecture of simulation wrapper.

• Simulator interface
For the simulator interface, we use the methodology already
presented in the literature [17] [18]: to adapt different languages,
i.e. different simulators, we use simulation libraries (provided by
the simulators) for communication between different simulators
(e.g. CLI/PLI for VSS Vhdl simulator, S-function for
Simulink/Matlab simulator) and we use IPC (Inter Process
Communication), e.g. Unix shared memory or socket, for data
transfer and synchronization between different simulators.

• Communication interface
The communication interface presents a modular internal
structure presented in Figure 6. It is composed of three types of
elements: module adapter (MA), channel adapter (CA), and
internal communication media (ICM).
- module adapter (MA) provides module with required
communication services. It performs also data conversion and
channel resolution. As we shown in Figure 6, MA may be
decomposed in several port adapters (PA), where a PA represent
a grouping of related ports. For instance, to represent a bus
interface for AMBA, we use an elementary interface by
grouping all the ports of AMBA interface (e.g. address bus, data
bus, control signals, etc.); in the case of multi-port memory, we
need to use as many elementary interfaces as the number of
ports.
- internal communication media (ICM) transfers data between
module adapter and channel adapter. ICM can be implemented
in any forms such as remote procedure calls (RPCs) or signals.
In our simulation environment, we use RPC as the ICM.
- channel adapter (CA) enables the module to access the
external channel. To do that, after receiving a channel access
request (via MA) from the module, it uses channel
communication services. To each channel, a channel adapter is
assigned.

As an example of wrapper, Figure 7 shows a simulation model
of the virtual architecture specification in Figure 2. Module M3
is simulated in a different simulation environment. Thus, in the
simulation wrapper of module M3, we use a simulator interface
as well as a communication interface. Since virtual modules of
M1 and M3 have two virtual ports (see Figure 2), the MA of
each of them has two PAs. The virtual module of M2 has three
virtual ports. Consequently, the MA of M2 has three PAs.

4.2 Hardware Simulation with Software at
Different Abstraction Levels
We apply the wrapper architecture to all the possible
combinations of different abstraction levels presented in Figure
4. In other words, we have the wrapper architecture orthogonal
to the abstraction levels. That is why we call the wrapper
architecture generic.
In this paper, we will illustrate the following combinations of
abstraction levels:
- RT level for the hardware – abstract netlist communication –

OS Architecture level for the software
- RT level for the hardware – physical netlist communication –

ISA level for the software
To allow RT level hardware simulation with software at OS
Architecture level, the communication interface adapts the cycle
accurate communication of the hardware part and the
communication by high level communication primitives of the
software part.
For the RT level hardware simulation with the software at ISA
level, the communication interface acts as a classical BFM. We
use corresponding simulation models: instruction set simulators
(ISSs) for processors, HDL simulators for HW cores, etc. In the
case of processor simulation, two types of simulation models
(ISS and native OS simulation) are supported. For the native
simulation we use an OS simulation model presented in [27].

4.3 Automatic Generation of Simulation
Wrappers
The overview of simulation environment in our component-
based design flow is illustrated in Figure 8. The simulation
wrapper generator receives as input a virtual architecture
specification. To generate wrappers, we use a simulation library
where we have templates for ports adapters and channel
adapters.
The wrapper generator analyzes the virtual architecture
specification and determines the functionality of each of
required wrappers, i.e. adaptation of different languages or
different abstraction levels, or both and port grouping in
elementary interfaces. According to the functionality, for each
wrapper generation, the generator extracts and configures the
appropriate elements (CA, MA/PA) from the simulation library.
New CA, PA are developed by core providers and/or the
designers. They can be reused for different SoCs
implementations.
Figure 8 also shows simulation models in our simulation flow.
Figure 8.c illustrates a simulation model in the case where the
hardware (at RTL or behavioral level) is simulated with software
at OS Architecture Level. Figure 8.a and Figure 8.b illustrate
simulation models for systems containing software at ISA level,

165

hardware at RT level and the communication at physical netlist
level. Figure 8.a shows the ISS based simulation model for the
software part and Figure 8.b shows the case where a native
simulation model is used for the software part.

P A P A

C A C A P A

C A

C A

P A P A S im ulator interface

C A
C om m un ication intf. C om m un ication intf.

C om m un ication intf.

M 1 M 2 M 3

M A

M A

P A

P A

C A

C A

C A

M A

C osim u lation N etw o rk
Figure 7. Example of simulation model of a virtual

architecture specification
Virtual Architecture

A

B

C

Hw/Sw wrapper
generation

SW wr.

RTL Architecture

Comm. network

HW wr.

A B
µP

Simulation
wrappers

generation

Simulation
library

B C

Cosim. Intf. Cosim. Intf.

A

Comm. Network

MAMA MAMACA

IP
C

SW wr.

Comm. Network

HW wr.

A B

Cosim. Intf.

ISS

BFM
C

HDL sim.

PA

Simulator interface

Native sim.

SW wr.

Comm. Network

HW wr.

A B

Cosim. Intf.

C

HDL sim.

(a) (b) (c)

BFM

Figure 8. Automatic generation of simulation models and

wrappers for multiprocessor SoC validation.

5. COMPONENT-BASED VALIDATION
OF A VDSL APPLICATION
This section demonstrates the application of the presented
method to the component-based SoC design of a VDSL
application. We designed a part of a VDSL system using two
ARM7 processors. The part we design as a multi-processor SoC
is shown in Figure 9 (the shaded region). The VDSL core
functions, analog interface, and a DSP core are implemented in a
third-party block.

5.1 Virtual Architecture Specification of the
VDSL Modem
Figure 10 shows a graphical representation of the virtual
architecture specification of the VDSL system. Modules VM1
and VM2 correspond to the CPU1 and CPU2 in Figure 9. VM3
correspond to the rest of the VDSL designed part.
The software applications on the two CPUs (VM1 and VM2 in
Figure 10) are described at OS Architecture Level using a high
level language (C++). Intra-processor communication in VM1
and VM2 and inter-processor communication between VM1 and
VM2 and between VM2 and VM3 are described at abstract

netlist level. As explained previously, VM3 is at RTL. Since the
abstraction level of VM3 (RTL) and that of channels (abstract
netlist level) connected to VM3 are different, the wrapper of M3
is composed of virtual ports containing RTL internal ports (ports
specific to M3) and high-level external ports (for the connection
with the virtual channels connected to VM3). For instance, in
Figure 10, virtual port Pvirt of VM3 contains an external high
level port that is connected to the abstract channel (fifo) and
three internal RT-level ports of which the communication
protocol is called a guarded register protocol.

Host PC

CPU 1
(ARM7)

CPU 2
(ARM7)

FIFO

Local
Memory

Local
Memory

Local
Memory

DSP
(STxxx)

Shared
Memory

ASIC

R
egisters

Twisted-Pair
Copper line

Host PC

CPU 1
(ARM7)

CPU 2
(ARM7)

FIFO

Local
Memory

Local
Memory

Local
Memory

DSP
(STxxx)

Shared
Memory

ASIC

R
egisters

Twisted-Pair
Copper line

Figure 9. VDSL modem application

T5

T6
I/O

O

I/O

T6p
O

I/O I/O

T2

T3
I

O

T1
O

O

II

T4
O

I O

T8 O

O
I

T7I
I/O

I/O

O
pipe

reg reg

fifo

shm

gshm

sig

sig
sig

pipe pipe

M1

sig

M2 M3
VM1 VM3VM2

O

I I

I

O

OO

I I

O O I

O

I

O

O

I

II O

I

Pvirt.O I

O

II Tx_framer

T5

T6
I/O

O

I/O

T6p
O

I/O I/O

T2

T3
I

O

T1
O

O

II

T4
O

I O

T8 O

O
I

T7T7I
I/O

I/O

O
pipe

reg reg

fifo

shm

gshm

sig

sig
sig

pipe pipe

M1

sig

M2 M3
VM1 VM3VM2

O

I I

I

O

OO

I I

O O I

O

I

O

O

I

II O

I

Pvirt.O I

O

II Tx_framer

Figure 10. Virtual architecture specification for the VDSL

application.

5.2 Results
To obtain the simulation model of the VDSL virtual
architecture specification, a simulation wrapper has to be
generated for module VM3. In Figure 11, the shaded region
illustrates the simulation wrapper of module M3 generated by
the simulation wrapper generator. The simulation wrapper
adapts module M3 to the rest of the system. ICM is implemented
as RPC (remote procedure call). PAs transfer data between the
ICM and module M3, Tx_framer respecting the RTL protocols
required by module M3. CAs transfer data between the ICM and
the external abstract channels by calling communication services
provided by the abstract communication channels.
To be more specific, in the case of virtual port Pvirt explained in
Section 5.1, the CA reads data from the abstract communication
channel (pipe) by calling communication services of the channel
(e.g. send/receive) (see Figure 11). The PA takes the data from
the CA by calling an RPC (as the ICM), performs channel
resolution and sets the right ports of M3 according to the
guarded register protocol (see Figure 11).
In terms of combinations of different abstraction levels
presented in Figure 4, the simulation wrapper in Figure 11
combines different abstraction levels: OS architecture level
(SW) – abstract netlist level (channel) – RTL (HW).

Table 1 summarizes results obtained for the simulation model
and wrapper generation of the VDSL application. Assuming that

166

in manual simulation model building, the efforts of building
simulation models is proportional to the code size of simulation
models, we compare the code sizes of simulation models and the
numbers of interconnections between modules and
communication networks. Compared with the code size of
virtual architecture specification, that of mixed-level simulation
model is three times larger. In our simulation flow, the designer
has only to write a virtual architecture specification (in this case,
150 lines of code). In our case, it took around one hour and half.
Thus, compared with the case where the designer needs to build
manually the mixed-level simulation model (475 lines of code),
automatic generation of simulation wrapper gives a gain of
factor 3 in terms of efforts in building mixed-level simulation
models.

T5

T6
I/O

O

I/O

T6p
O

I/O I/O

T2

T3
I

O

T1
O

O

II

T4
O

I O

T8 O

O

I

T7T7I
I/O

I/O

O
pipe

reg

shm

gshm

sig

sig
sig

pipe pipe

M1

sig

M2 M3

O

I

I

O

O

I

O

O

I

O

I

I

O

I

C
A

Communication Wrapper

PA

C
A PA

C
A PA

Tx_framer

CA :: entry() {
while (1){

// call ch. comm. primitive
temp = P.receive();
//data conversion
data = (short)temp;

}
}
CA: : get_data {

return(data);
}

PA :: entry() {
while (1){

// get data from the CA
data = CA.get_data();
// sets the right ports according
// to the graded register protocol
Preq =1;
Pdata = data;
wait_for(ack);

}
}

C
A

M
A

PA

Figure 11. Simulation model of VDSL virtual architecture

 Code size (lines) No. of interconnections
Virtual architecture specification 150 21

Generated sim. model 475 60 Mixed-
level Generation time 90 s

Generated sim. model 600 187 RTL
Generation time 10 min.

Table 1. Results of simulation model and wrapper generation
The generation of mixed simulation models takes 90 second on a
Linux PC (500MHz Pentium). This time encloses also the time
needed to parse the intermediate format of our application (in
our case in XML). We have spent most of the time in writing the
virtual architecture specification.
The simulation runtime of mixed-level specification (4 min.)
was much less then the time of building mixed-level simulation
model (1h30 + 90s. in our case, around 4h30 in the case of
manually building).
After the validation of the virtual architecture and the generation
of RTL architecture as shown in Figure 1, we generated an RTL
simulation model. Table 1 shows the code size and generation
time of the RTL simulation model. Since our simulation flow
generates RTL simulation models, the designer can obtain
additional gain in reducing the design cycle to build RTL
simulation models.

6. CONCLUSION
In this paper, we presented a validation method for multi-
processor SoC component-based design. The presented method
is based on automatic simulation wrapper generation starting

from a virtual architecture specification, where different cores
can be described at different abstraction levels and/or in
different specification languages. Our case study of validating a
mixed-level specification of a commercial VDSL modem
application shows the effectiveness of the presented method in
reducing the design cycle.
REFERENCES

[1] ITRS, http://public.itrs.net/.
[2] A. Nagari, et al., A 2.7V 11.8 mW Baseband ADC with 72 dB
Dynamic Range for GSM Applications, 21st annual Custom Integrated
Circuits Conference, San Diego, 1999.
[3] http://www-us.semiconductors.philips.com/platforms/nexperia/
[4] Oka and Suzuoki, "Designing and Programming the Emotion
Engine", IEEE Micro, vol. 19:6, Nov/Dec 1999, pp. 20-28.
[5] P. Paulin, F. Karim, and P. Bromley, “Network Processors: A
Perspective on Market Requirements, Processor Architectures and
Embedded S/W Tools”, Proc. of DATE, Germany, 2001.
[6] A.A. Jerraya, "Application-Specific Multiprocessor Systems-on-
Chip", SASIMI 2001, The Tenth Workshop on Synthesis And System
Integration of MIxed Technologies, Nara, Japan, October 18-19 2001.
[7] M. Keating and P. Bricaud, “Reuse Methodology Manual”, Kluwer
Academic Publisher, 1999.
[8] D. Wingard, "MicroNetwork-Based Integration for SOCs", Proc.
38th Design Automation Conference 2001, Las Vegas, June 2001.
[9] Coware Inc., “N2C” , http://www.coware.com/cowareN2C.html/;
[10] Synopsys, Inc., “SystemC, Version 2.0”, http://www.systemc.org/.
[11] T . W Albercht, et al., “Hw/Sw CoVerification Performance
Estimation & Benchmark for a 224 Embedded RISC Core Design”,
Proc. Design Automation Conf., June 1998.
[12] Mentor Graphics, Seamless CVE, http://www.metorg.com/semless
[13] Eaglei, http://www.synopsys.com/products/hwsw/eagle_ds.html
[14] L. Semeria et A. Ghosh, Methodology for Hardware/Software Co-
verification in C/C++ , Proc. ASPDAC, Jan. 2000
[15] F. Balarin et al., “Haedware-Software Co-design of Embedded
systems”, Kluwer Academic Publishers, 1997.
[16] P.H. Chou, et al., « The Chinook Hardware/Software Co-Synthesis
System », Proc. of International Symposium on System Synthesis, 1995.
[17] C. Valderrama et al., “Automatic VHDL-C Interface Generation of
Distributed Cosimulaiton : Application to Large Design Exemples “,
Design Automation for Embedded Systems vol. 3, no. 2/3, Apr. 1994.
[18] P. Coste, et al., “Multilanguage Design of Heterogeneous
systems”, Proc. Int. Workshop on Hardware-Software Codesign, May
1999.
[19] W.O. Cesario, et al., "Colif: A design representation for
application-specific multiprocessor SOCs", IEEE Design & Test of
Computers, Vol. 18, Issue: 5, pp. 8-20, Sept.-Oct. 2001.
[20] D.J.G. Mestdagh, M.R. Isaksson, P. Odling, “Zipper VDSL: A
Solution for Robust Duplex Communication over Telephone Lines”,
IEEE Communication Magazine, May 2000.
[21] IBM Corp., CoreConnect Bus Architecture, available at
http://www-3.ibm.com/chips/products/coreconnect/
[22] ARM Ltd. AMBA Specification, available at
http://www.arm.com/armtech/AMBA_Spec?OpenDocument
[23] R. Siegmund and D. Muller, “SystemCSV – An Extension of
SystemC for Mixed Multi-Level Communication Modeling and
Interface-Based System Design”, Proc. Design Automation and Test in
Europe, Mars 2001.
[24] J. Smith and G. De Micheli, “Automated Composition of Hardware
Components”, Proc. Design Automation Conference, 1998.
[25] Motorola, Inc., available at http://e-www.motorola.com
[26] C.K. Lennard, el al. “Standards for System-Level Design : Practical
Reality or Solution in Search of a Question ? ”, Proc. of Design
Automation and Test in Europe, Mars 2000.
[27] S. Yoo, G. Nicolescu, L. Gauthier, A.A. Jerraya, “Automatic
Generation of Fast Timed Simulation Models for Operating Systems in
SoC Design”, Proc. Design Automation an Test in Europe, Mars 2001

167

	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index

