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ABSTRACT 
Currently, since many SoCs include heterogeneous components 
such as CPUs, DSPs, ASICs, memories, buses, etc., system 
integration becomes a major step in the design flow. To enable 
this integration, we use a design approach called component 
based-design approach. In this approach, the validation of 
system integration takes most of design efforts. This paper 
presents an automatic method of SoCs design validation. Based 
on a generic simulation wrapper architecture, the presented 
method provides automatic generation of executable models 
throughout different stages of SoC design flow. A case study of 
validating a VDSL application shows the effectiveness of the 
method.  

Categories and Subject Descriptors 
J.6. [Computer-Aided Engineering]: Computer-Aided Design 

General Terms 
Design, Verification. 

Keywords 
SoC, Component-Based Design, Validation, Cosimulation, 
Abstraction Levels  

1. INTRODUCTION 
ITRS roadmap predicts that in 2004, 70% of ASICs will include 
at least one embedded instruction set processor [1]. SoCs 
already include several instruction-set processors in such 
applications as mobile terminals (e.g. GSM [2]), set-top boxes 
(e.g. pnx 8500 from Philips [3]), game processors (e.g. 
PlayStation2 from Sony [4]) and network processors [5]. Most 
system and semiconductor houses are developing and using 
design environments and target architecture platforms allowing 
the integration of multiple cores (CPU, DSP, MCU, co-
processors, memory, etc.) [21] [22]. 

In SoC design with multiple cores, designers need to integrate 
heterogeneous cores. They are heterogeneous in terms of 
communication protocols, abstraction levels, and specification 
languages. Communication protocols of different cores (e.g. 

AMBA [22] and Open Core Protocol [8]) need to be adapted via 
protocol conversion, buffering, (de)multiplexing, etc. [24]. The 
designers need also to integrate cores described at different 
abstraction levels (e.g. an interconnection between a behavioral 
core and an RTL core). The specification languages of cores can 
be different (e.g. cores in VHDL, C, SDL, etc.). 

In SoC design, most of design cycle (more than 60%) is devoted 
to validation [7]. Validation needs to be performed as many 
times as possible throughout the design cycle to obtain a reliable 
SoC implementation. However, for the designers, the validation 
of multicore SoCs is one of the most difficult design steps. It is 
mostly because the designers need to make simulatable the SoC 
specification with heterogeneous cores. To be more specific, for 
instance, the designers need to make simulatable the entire 
system specification, which consists of cores with different 
abstraction levels and languages. In current SoC design practice, 
since such a job is done manually, it is time consuming. It needs 
to be automated to shorten the design cycle thereby allowing 
the designers to focus on the validation of system 
specification. 

In several commercial SoC design environments, the job of 
making simulatable the SoC specification with heterogeneous 
cores can be done mostly in a manual manner. For instance, 
Coware N2C enables mixed-level cosimulation for system 
specifications with behavioral and RT level cores [9]. In the case 
of SystemC, a method of mixed-level simulation based on the 
concept of interface is presented though it does not automate 
the generation of mixed-level interfaces [10].  

Basically, for the simulation of SoCs with heterogeneous cores, 
commercial and academic tools are based on the concept of 
simulation wrapper to adapt different abstraction levels or 
languages. The wrapper concept is not new and has been widely 
used. However, the concept has not been used in a systematic 
way. In other words, there has been no systematic method of 
generating wrappers for the simulation of SoCs with 
heterogeneous components. 

Such systematic methods of generating wrappers become more 
required as the abstraction levels of system description are 
getting higher and the number of abstraction levels is getting 
larger. For instance, in our SoC design flow called component-
based SoC design flow, we use three abstraction levels for 
software cores, two for communication channels, and two for 
hardware cores. In such a case, the design of wrappers becomes 
much more difficult than the cases where only two abstraction 
levels, i.e. functional and RT levels, are used. To enable more 
extensive design space exploration and higher design 
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productivity, the designers will use more and higher abstraction 
levels. Thus, systematic methods of generating wrappers will 
become more and more required. 

In this paper, we present a systematic method of wrapper 
generation for multicore SoC design. To enable automatic 
generation of wrappers, we use a generic wrapper architecture 
and a wrapper generation flow. The generic wrapper 
architecture enables the adaptation of different communication 
protocols, abstraction levels, and specification languages as well 
as the reuse of wrapper components in the simulation of 
different SoCs. Since the same generic architecture is used for 
any SoC validation, wrappers can be generated automatically by 
instantiating components in the wrapper architecture. 

This paper is organized as follows. Section 2 gives a review of 
simulation methods for systems with heterogeneous cores. 
Section 3 introduces our SoC design flow. Section 4 explains 
the generic wrapper architecture and wrapper generation. 
Section 5 gives a case study of applying our method to the 
design of an industrial SoC. Section 6 concludes the paper. 

2.  RELATED WORK 
For the simulation of cores with different abstraction levels, the 
bus functional model (BFM) [14] is widely used. It is a 
conventional method to connect functional simulation models 
and cycle–accurate simulation models. It performs 
transformation between functional memory access and cycle-
accurate memory access. SystemC provides a concept of 
interface for mixed abstraction level simulation [10]. Mixed-
level interfaces have to be designed manually, which can be a 
source of errors and of lost of design time. Moreover, designers 
need also to design wrappers for multi-language simulation. 
SystemCSV extends SystemC and makes the simulation of all of 
its abstraction levels of interfaces [23]. Thus, the 
interconnection of interfaces with different abstraction levels is 
possible. However, automatic generation of mixed-level 
simulation interface is not supported.  
As a study of multi-language simulation methodology, 
Valderrama et. al. presents a tool called VCI for the automatic 
generation of cosimulation interface in C-VHDL cosimulation 
[17]. Coste et. al. presents a tool called MCI that enables multi-
language cosimulation [18]. These solutions are very efficient 
for multi-language simulation, but they don’t treat in a 
systematic way the multi-level cosimulation. 
VSIA [26] proposes VCI (Virtual Component Interface) and 
SLI (System Level Interface) for heterogeneous components 
interconnection, where several abstraction levels are taken into 
account. VCI enables only point-to-point and unidirectional 
connections. VSIA standard presents a design guide (not an 
automatic design method) to enable multi-level simulation 
consisting of VCI and SLI by using the wrapper concept.  Our 
work shares the same approach and our contribution is to enable 
automatic design of such wrappers. 

3. COMPONENT-BASED SoC DESIGN 
FLOW 
Figure 1 illustrates our component-based SoC design flow. The  
RT level architecture consists of processors connected to the 
communication network via wrappers. Wrappers are constructed 

in the form of software (e.g. operating system) as well as in the 
form of hardware. Our design flow starts from a system 
specification called virtual architecture specification and gives 
automatically an RTL implementation by generating hardware 
and software wrappers.  
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Figure 1. Component-based SoC design flow. 

3.1 Virtual Architecture Specification  
The virtual architecture specification represents a system as a 
hierarchical network of modules and communication channels 
(see Figure 2). Modules and communication channels can have 
different abstraction levels, communication protocols or they 
can be described in different specification languages. To enable 
the interconnection specification of such heterogeneous modules 
and communication channels, we use the concepts of virtual 
component, virtual port and virtual channel.  

A virtual component consists of a module and its wrapper. The 
wrapper is composed of internal and external ports. The 
internal ports are the ports of the module and the external ports 
enable interconnections with external communication channels. 
The internal and external ports are grouped in virtual ports (see 
Figure 2). In a virtual port, there can be an n to m (n and m are 
natural numbers) correspondence between internal and external 
ports. A virtual channel is a set of several channels having a 
logical relationship (e.g. multiples nets belonging to the same 
communication protocol of AMBA [22]).  

Figure 3 exemplifies the concepts of virtual component, virtual 
port and virtual channel. The module in the figure is connected 
to the communication channels through a virtual port. This 
module is described at a high abstraction level and it uses high-
level communication services (in the figure, it calls a 
communication service send on the port P1) to communicate 
with other modules via communication channels. The module 
has to be connected to RT level signals with handshake protocol. 
Thus, the virtual port used for this connection has an internal 
port (the port P1 of the module) at a high abstraction level 
(called OS architecture level to be presented in Figure 4) and 
three external at RT level. Internal and external ports are 
parameterized for refinement and validation purposes. Examples 
of some parameters are illustrated in Figure 3.  

In our design flow, the virtual architecture is described using an 
extension of SystemC, where the presented new concepts are 
introduced. 
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3.2 Abstraction Levels in SoC Component-
Based Design 
Our design flow enables incremental SoC design through 
multiple abstraction levels for hardware and software 
components and communication networks.  Figure 4 shows 
abstraction levels used in our SoC design flow. 
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Figure 2. A virtual architecture specification. 

…

P1.send(data);

…

Handshake protocol signal

P1.type = « internal »
P1.AbstLevel = « 0S architecture level »
P1.Protocol = « Pipe »
Pack.type = « external »
Preq.type = « external »
Pdata.type = « external »
Pack.AbstLevel = « RTL »
Preq. AbstLevel = « RTL »
Pdata. AbstLevel = « RTL »
……….

M1
M1,1

M1,2

Pack
Preq

Pdata

P1

 
Figure 3. Examples of virtual component, virtual port and 

virtual channels. 
 
For the design of software wrappers, we use three abstraction 
levels as follows: 
- at OS architecture level, the OS is abstract and only the 

system calls corresponding to the OS services are visible. 
- at driver level, the implementation of the OS services is fixed 

but device drivers are still abstracted. Thus, the hardware on 
which software is executed (e.g. CPU, memory) can be 
variable. The application code is extended with OS layers 
implementing OS services (e.g. task scheduling management, 
interruption management, etc.).  

- at instruction set architecture (ISA) level, software is 
described in assembly code specific to the fixed hardware (e.g. 
processor, memory). 

For hardware design, we use two abstraction levels: 
- at behavioral level, only the functionality is fixed but the 

physical implementation of this functionality is not yet fixed. 

Communication with the rest of system is realized via high-
level communication services.  

- at register transfer level (RTL) the physical    
implementation including communication protocols is fixed.  

For communication networks design, we use two abstraction 
levels: 
- at abstract netlist level, communication channels provide 

communication services (e.g. pipe, semaphore, etc.). The 
implementation of the services is not yet fixed. 

- at physical netlist level, communication is modeled by 
physical signals (e.g. shared buses or point-to-point 
interconnection). At this level, all the communication details 
(i.e. communication protocols, interruption management, 
address decoding, etc.) are fixed  

Note that, throughout the SoC design flow, components and 
communication networks can be situated at any of the above-
mentioned abstraction levels.  
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Figure 4. Abstraction levels in our SoC design flow. 

4. SoC VALIDATION IN COMPONENT-
BASED SoC DESIGN 
The virtual architecture specification is only a specification 
model and it is not executable as is since the internal and 
external ports of the virtual ports are heterogeneous (they can 
have different abstraction levels and different specification 
languages). Thus, we need to make it executable by adapting 
different abstraction levels and different specification languages. 

4.1 Simulation Wrapper 
To resolve the problem, we use simulation wrappers for software 
and hardware modules as shown in Figure 5. Modules are 
connected with the cosimulation network via simulation 
wrappers. In fact, the components are separated from the 
cosimulation bus by simulation wrappers that implement the 
simulation model of wrappers specified in the initial virtual 
architecture. 

As shown in Figure 6, the simulation wrapper has a generic 
architecture. A wrapper needs to adapt different abstraction 
levels and different languages. Since an abstraction level and a 
language are, in general, independent of each other, we have 
two interfaces in the wrapper architecture: simulator interface 
to adapt different languages and communication interface to 
adapt different abstraction levels. 
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Figure 5. Simulation model for multiprocessor SoC. 
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Figure 6. Generic architecture of simulation wrapper. 

• Simulator interface 
For the simulator interface, we use the methodology already 
presented in the literature [17] [18]: to adapt different languages, 
i.e. different simulators, we use simulation libraries (provided by 
the simulators) for communication between different simulators 
(e.g. CLI/PLI for VSS Vhdl simulator, S-function for 
Simulink/Matlab simulator) and we use IPC (Inter Process 
Communication), e.g. Unix shared memory or socket, for data 
transfer and synchronization between different simulators.   

• Communication interface 
The communication interface presents a modular internal 
structure presented in Figure 6. It is composed of three types of 
elements: module adapter (MA), channel adapter (CA), and 
internal communication media (ICM).  
- module adapter (MA) provides module with required 
communication services. It performs also data conversion and 
channel resolution. As we shown in Figure 6, MA may be 
decomposed in several port adapters (PA), where a PA represent 
a grouping of related ports. For instance, to represent a bus 
interface for AMBA, we use an elementary interface by 
grouping all the ports of AMBA interface (e.g. address bus, data 
bus, control signals, etc.); in the case of multi-port memory, we 
need to use as many elementary interfaces as the number of 
ports. 
- internal communication media (ICM) transfers data between 
module adapter and channel adapter. ICM can be implemented 
in any forms such as remote procedure calls (RPCs) or signals. 
In our simulation environment, we use RPC as the ICM. 
- channel adapter (CA) enables the module to access the 
external channel. To do that, after receiving a channel access 
request (via MA) from the module, it uses channel 
communication services. To each channel, a channel adapter is 
assigned. 

As an example of wrapper, Figure 7 shows a simulation model 
of the virtual architecture specification in Figure 2. Module M3 
is simulated in a different simulation environment. Thus, in the 
simulation wrapper of module M3, we use a simulator interface 
as well as a communication interface. Since virtual modules of 
M1 and M3 have two virtual ports (see Figure 2), the MA of 
each of them has two PAs. The virtual module of M2 has three 
virtual ports. Consequently, the MA of M2 has three PAs. 

4.2 Hardware Simulation with Software at 
Different Abstraction Levels 
We apply the wrapper architecture to all the possible 
combinations of different abstraction levels presented in Figure 
4. In other words, we have the wrapper architecture orthogonal 
to the abstraction levels. That is why we call the wrapper 
architecture generic.  
In this paper, we will illustrate the following combinations of 
abstraction levels: 
-  RT level for the hardware – abstract netlist communication – 

OS Architecture level for the software 
-  RT level for the hardware – physical netlist communication – 

ISA level for the software 
To allow RT level hardware simulation with software at OS 
Architecture level, the communication interface adapts the cycle 
accurate communication of the hardware part and the 
communication by high level communication primitives of the 
software part.  
For the RT level hardware simulation with the software at ISA 
level, the communication interface acts as a classical BFM. We 
use corresponding simulation models: instruction set simulators 
(ISSs) for processors, HDL simulators for HW cores, etc. In the 
case of processor simulation, two types of simulation models 
(ISS and native OS simulation) are supported. For the native 
simulation we use an OS simulation model presented in [27]. 

4.3 Automatic Generation of Simulation 
Wrappers 
The overview of simulation environment in our component-
based design flow is illustrated in Figure 8. The simulation 
wrapper generator receives as input a virtual architecture 
specification. To generate wrappers, we use a simulation library 
where we have templates for ports adapters and channel 
adapters.  
The wrapper generator analyzes the virtual architecture 
specification and determines the functionality of each of 
required wrappers, i.e. adaptation of different languages or 
different abstraction levels, or both and port grouping in 
elementary interfaces. According to the functionality, for each 
wrapper generation, the generator extracts and configures the 
appropriate elements (CA, MA/PA) from the simulation library. 
New CA, PA are developed by core providers and/or the 
designers. They can be reused for different SoCs 
implementations. 
Figure 8 also shows simulation models in our simulation flow.  
Figure 8.c illustrates a simulation model in the case where the 
hardware (at RTL or behavioral level) is simulated with software 
at OS Architecture Level. Figure 8.a and Figure 8.b illustrate 
simulation models for systems containing software at ISA level, 
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hardware at RT level and the communication at physical netlist 
level. Figure 8.a shows the ISS based simulation model for the 
software part and Figure 8.b shows the case where a native 
simulation model is used for the software part. 
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Figure 8. Automatic generation of simulation models and 

wrappers for multiprocessor SoC validation. 

5. COMPONENT-BASED VALIDATION 
OF A VDSL APPLICATION 
This section demonstrates the application of the presented 
method to the component-based SoC design of a VDSL 
application. We designed a part of a VDSL system using two 
ARM7 processors. The part we design as a multi-processor SoC 
is shown in Figure 9 (the shaded region). The VDSL core 
functions, analog interface, and a DSP core are implemented in a 
third-party block.  

5.1 Virtual Architecture Specification of the 
VDSL Modem 
Figure 10 shows a graphical representation of the virtual 
architecture specification of the VDSL system. Modules VM1 
and VM2 correspond to the CPU1 and CPU2 in Figure 9. VM3 
correspond to the rest of the VDSL designed part.   
The software applications on the two CPUs (VM1 and VM2 in 
Figure 10) are described at OS Architecture Level using a high 
level language (C++). Intra-processor communication in VM1 
and VM2 and inter-processor communication between VM1 and 
VM2 and between VM2 and VM3 are described at abstract 

netlist level. As explained previously, VM3 is at RTL. Since the 
abstraction level of VM3 (RTL) and that of channels (abstract 
netlist level) connected to VM3 are different, the wrapper of M3 
is composed of virtual ports containing RTL internal ports (ports 
specific to M3) and high-level external ports (for the connection 
with the virtual channels connected to VM3). For instance, in 
Figure 10, virtual port Pvirt of VM3 contains an external high 
level port that is connected to the abstract channel (fifo) and 
three internal RT-level ports of which the communication 
protocol is called a guarded register protocol. 
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Figure 9.  VDSL modem application 
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Figure 10. Virtual architecture specification for the VDSL 

application. 

5.2 Results 
To obtain the simulation model of the VDSL virtual 
architecture specification, a simulation wrapper has to be 
generated for module VM3. In Figure 11, the shaded region 
illustrates the simulation wrapper of module M3 generated by 
the simulation wrapper generator. The simulation wrapper 
adapts module M3 to the rest of the system. ICM is implemented 
as RPC (remote procedure call). PAs transfer data between the 
ICM and module M3, Tx_framer respecting the RTL protocols 
required by module M3. CAs transfer data between the ICM and 
the external abstract channels by calling communication services 
provided by the abstract communication channels.  
To be more specific, in the case of virtual port Pvirt explained in 
Section 5.1, the CA reads data from the abstract communication 
channel (pipe) by calling communication services of the channel 
(e.g. send/receive) (see Figure 11). The PA takes the data from 
the CA by calling an RPC (as the ICM), performs channel 
resolution and sets the right ports of M3 according to the 
guarded register protocol (see Figure 11). 
In terms of combinations of different abstraction levels 
presented in Figure 4, the simulation wrapper in Figure 11 
combines different abstraction levels: OS architecture level 
(SW) – abstract netlist level (channel) – RTL (HW).    

Table 1 summarizes results obtained for the simulation model 
and wrapper generation of the VDSL application. Assuming that 
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in manual simulation model building, the efforts of building 
simulation models is proportional to the code size of simulation 
models, we compare the code sizes of simulation models and the 
numbers of interconnections between modules and 
communication networks. Compared with the code size of 
virtual architecture specification, that of mixed-level simulation 
model is three times larger. In our simulation flow, the designer 
has only to write a virtual architecture specification (in this case, 
150 lines of code). In our case, it took around one hour and half. 
Thus, compared with the case where the designer needs to build 
manually the mixed-level simulation model (475 lines of code), 
automatic generation of simulation wrapper gives a gain of 
factor 3 in terms of efforts in building mixed-level simulation 
models.   
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Figure 11. Simulation model of VDSL virtual architecture 

 Code size (lines) No. of  interconnections 
Virtual architecture specification 150 21 

Generated sim.  model 475 60 Mixed-
level Generation time 90 s 

Generated sim.  model 600 187 RTL 
Generation time 10 min. 

Table 1. Results of simulation model and wrapper generation 
The generation of mixed simulation models takes 90 second on a 
Linux PC (500MHz Pentium). This time encloses also the time 
needed to parse the intermediate format of our application (in 
our case in XML). We have spent most of the time in writing the 
virtual architecture specification. 
The simulation runtime of mixed-level specification (4 min.) 
was much less then the time of  building mixed-level simulation 
model (1h30 + 90s. in our case, around 4h30 in the case of 
manually building).  
After the validation of the virtual architecture and the generation 
of RTL architecture as shown in Figure 1, we generated an RTL 
simulation model. Table 1 shows the code size and generation 
time of the RTL simulation model. Since our simulation flow 
generates RTL simulation models, the designer can obtain 
additional gain in reducing the design cycle to build RTL 
simulation models. 

6. CONCLUSION  
In this paper, we presented a validation method for multi-
processor SoC component-based design. The presented method 
is based on automatic simulation wrapper generation starting 

from a virtual architecture specification, where different cores 
can be described at different abstraction levels and/or in 
different specification languages. Our case study of validating a 
mixed-level specification of a commercial VDSL modem 
application shows the effectiveness of the presented method in 
reducing the design cycle. 
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