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Abstract i

Abstract

Multi-antenna processing is widely adopted as one of the key enabling technologies for cur-

rent and future cellular networks. Particularly, multiuser downlink beamforming (also known

as space-division multiple access), in which multiple users are simultaneously served with

spatial transmit beams in the same time and frequency resource, achieves high spectral ef-

ficiency with reduced energy consumption. To harvest the potential of multiuser downlink

beamforming in practical systems, optimal beamformer design shall be carried out jointly

with network resource allocation. Due to the specifications of cellular standards and/or im-

plementation constraints, resource allocation in practice naturally necessitates discrete de-

cision makings, e.g., base station (BS) association, user scheduling and admission control,

adaptive modulation and coding, and codebook-based beamforming (precoding).

This dissertation focuses on the joint optimization of multiuser downlink beamforming

and discrete resource allocation in modern cellular networks. The problems studied in this

thesis involve both continuous and discrete decision variables and are thus formulated as

mixed-integer programs (MIPs). A systematic MIP framework is developed to address the

problems. The MIP framework consists of four components: (i) MIP formulations that sup-

port the commercial solver based approach for computing the optimal solutions, (ii) analytic

comparisons of the MIP formulations, (iii) customizing techniques for speeding up the MIP

solvers, and (iv) low-complexity heuristic algorithms for practical applications.

We consider first joint network topology optimization and multi-cell downlink beam-

forming (JNOB) for coordinated multi-point transmission. The objective is to minimize

the overall power consumption of all BSs while guaranteeing the quality-of-service (QoS)

requirements of the mobile stations (MSs). A standard mixed-integer second-order cone

program (MISOCP) formulation and an extended MISOCP formulation are developed, both

of which support the branch-and-cut (BnC) method. Analysis shows that the extended for-

mulation admits tighter continuous relaxations (and hence less computational complexity)

than that of the standard formulation. Effective strategies are proposed to customize the BnC

method in the MIP solver CPLEX when applying it to the JNOB problem. Low-complexity

inflation and deflation procedures are devised for large-scale applications. The simulations

show that our design results in sparse network topologies and partial BS cooperation.

We study next the joint optimization of discrete rate adaptation and downlink beam-

forming (DRAB), in which rate adaptation is carried out via modulation and coding scheme

(MCS) assignment and admission control is embedded in the MCS assignment procedure.

The objective is to achieve the maximum sum-rate with the minimum transmitted BS power.

As in the JNOB problem, a standard and an extended MISOCP formulations are developed,
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and analytic comparisons of the two formulations are carried out. The analysis also leads to

efficient customizing strategies for the BnC method in CPLEX. We also develop fast infla-

tion and deflation procedures for applications in large-scale networks. Our numerical results

show that the heuristic algorithms yield sum-rates that are very close to the optimal ones.

We then turn our attention to codebook-based downlink beamforming. Codebook-based

beamforming is employed in the latest cellular standards, e.g., in long-term evolution ad-

vanced (LTE-A), to simplify the signaling procedure of beamformers with reduced signaling

overhead. We consider first the standard codebook-based downlink beamforming (SCBF)

problem, in which precoding vector assignment and power allocation are jointly optimized.

The objective is to minimize the total transmitted BS power while ensuring the prescribed

QoS targets of the MSs. We introduce a virtual uplink (VUL) problem, which is proved to

be equivalent to the SCBF problem. A customized power iteration method is developed to

solve optimally the VUL problem and hence the SCBF problem. To improve the performance

of codebook-based downlink beamforming, we propose a channel predistortion mechanism

that does not introduce any additional signalling overhead or require modification of the mo-

bile receivers. The joint codebook-based downlink beamforming and channel predistortion

(CBCP) problem represents a non-convex MIP. An alternating optimization algorithm and an

alternating feasibility search algorithm are devised to approximately solve the CBCP prob-

lem. The simulation results confirm the efficiency of the channel predistortion scheme, e.g.,

achieving significant reductions of the total transmitted BS power.

We study finally the worst-case robust codebook-based downlink beamforming when

only estimated channel covariance matrices are available at the BS. Similar to the DRAB

problem, user admission control is embedded in the precoding vector assignment procedure.

In the robust codebook-based downlink beamforming and admission control (RCBA) prob-

lem, the objective is to achieve the maximum number of admitted MSs with the minimum

transmitted BS power. We develop a conservative mixed-integer linear program (MILP) ap-

proximation and an exact MISOCP formulation of the RCBA problem. We further propose

a low-complexity inflation procedure. Our simulations show that the three approaches yield

almost the same average number of admitted MSs, while the MILP based approach requires

much more transmitted BS power than the other two to support the admitted MSs.

The MIP framework developed in this thesis can be applied to address various discrete re-

source allocation problems in interference limited cellular networks. Both optimal solutions,

i.e., performance benchmarks, and low-complexity practical algorithms are considered in

our MIP framework. Conventional approaches often did not adopt the exact discrete models

and approximated the discrete variables by (quantized) continuous ones, which could lead to

highly suboptimal solutions or infeasible problem instances.
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Zusammenfassung

Mehrantennensignalverarbeitung ist als eine der Schlüsseltechnologien für moderne und

zukünftige Mobilfunknetze weit verbreitet. Insbesondere das Multiuser Downlink Beam-

forming (auch bekannt als Space-Division Multiple Access), bei dem mehrere Teilnehmer

mit räumlichen Sendestrahlenbündeln (oder Sende Beams) in derselben Zeit- und Frequenz-

ressource gleichzeitig bedient werden, erreicht eine hohe spektrale Effizienz bei gleichzeitig

reduzierter Sendeleistung. Um das Potential von Multiuser Downlink Beamforming in der

Praxis nutzbar zu machen, soll der optimale Beamforming Entwurf gemeinsam mit der

Netzwerkressourcenvergabe durchgeführt werden. Aufgrund der Spezifikationen in Mobil-

funkstandards und/oder Einschränkungen bei der Implementierung erfordert die Ressourcen-

vergabe diskrete Entscheidungen wie z.B. die Basisstationszuordnung (BS Zuordnung), das

Scheduling der Teilnehmer und die Zugangskontrolle, adaptive Modulation und Kodierung

sowie Codebuch-basiertes Beamforming (Vorkodierung).

Diese Dissertation legt den Schwerpunkt auf die gemeinsame Optimierung von Multiuser

Downlink Beamforming und diskreter Ressourcenvergabe in modernen zellularen Mobil-

funknetzen. Die Probleme, die in dieser Arbeit untersucht werden, beinhalten sowohl kon-

tinuierliche als auch diskrete Entscheidungsvariablen und werden daher als gemischt ganz-

zahlige Programme (engl. mixed-integer programs, MIPs) formuliert. Ein systematisches

MIP Rahmenwerk wird entwickelt, um die Probleme anzugehen. Es besteht aus den fol-

genden vier Komponenten: (i) den MIP Formulierungen, die den Ansatz unterstützen, opti-

male Lösungen mittels kommerzieller Software-Lösern zu berechnen (Leistungsfähigkeits-

Benchmarks), (ii) verschiedener analytische Leistungsfähigkeitsuntersuchungen, (iii) der in-

dividuellen Anpassung der Verfahren, um die MIP Löser zu beschleunigen, und (iv) heuristi-

sche Algorithmen, die insbesondere für den Einsatz in praktischen Anwendungen eine ge-

ringe Rechenkomplexität aufweisen.

Zunächst betrachten wir die simultane Optimierung, Netzwerktopologie und Multi-Cell

Downlink Beamformings (JNOB) für Coordinated Multi-Point Übertragung. Ziel ist es,

den gesamten Leistungsverbrauch aller BSs zu minimieren und gleichzeitig die Anforderun-

gen an die Service-Qualität (engl. Quality-of-Service, QoS) der mobilen Teilnehmer (MSs)

zu gewährleisten. Eine herkömmliche Mixed-Integer Second-Order Cone Program Formu-

lierung (MISOCP Formulierung) sowie eine erweiterte MISOCP Formulierung werden ent-

wickelt, die beide das Branch-and-Cut Verfahren (BnC Verfahren) unterstützen. Analysen

zeigen, dass die erweiterte Formulierung engere kontinuierliche Relaxierungen zulässt (und

somit einen geringere Rechenaufwand), als die der herkömmlichen Formulierung. Es wer-

den darüber hinaus effektive Strategien entwickelt, um das BnC Verfahren in den Software-



iv Zusammenfassung

Lösern CPLEX für die Anwendung des JNOB Problems individuell anzupassen. Rechengün-

stige Inflations- und Deflationsverfahren werden für groß dimensionierte Anwendungen ent-

wickelt. Die Simulationen zeigen, dass unser Entwurf im Ergebnis dünn besetzte Netzwerk-

topologien und Teil BS Kooperation hervorbringt.

Wir untersuchen als Nächstes die gemeinsame optimierte diskrete Ratenanpassung und

das Downlink Beamforming (DRAB), bei dem die Ratenanpassung mittels Modulations-

und Kodierungsverfahrenzuweisung (engl. Modulation and Coding, MCS Zuweisung) er-

folgt. Bei diesem Ansatz ist die Teilnehmerauswahl auf natürliche Weise in MCS Zuweisung

eingebettet. Ziel ist es, die maximale Summenrate mit einem Minimum an abgestrahlter

BS Leistung zu erreichen. Wie für das JNOB Problem, werden eine herkömmliche und

eine erweiterte MISOCP Formulierung entwickelt, und anschließend analytische Vergleiche

angestellt. Die Analyse führt auch zu effizienten Anpassungsstrategien für das BnC Ver-

fahren in CPLEX. Wir entwickeln außerdem schnelle Inflations- und Deflationsverfahren

für die Anwendung in groß dimensionierten Netzwerken. Unsere numerischen Ergebnisse

zeigen, dass die heuristischen Algorithmen Summenraten liefern, die sehr nahe an den opti-

mal möglichen Summenraten liegen.

Wir richten unsere Aufmerksamkeit dann auf den Codebuch-basierten Downlink Beam-

former Entwurf. Codebuch-basiertes Beamforming kommt in den neuesten Mobilfunkstan-

dards zum Einsatz, z.B. in Long Term Evolution Advanced (LTE-A), um die Signalisierung

des gewählten Beamformers zu vereinfachen. Wir betrachten als Erstes das herkömm-

liche Codebuch-basierte Downlink Beamforming Problem (SCBF Problem), bei dem die

Zuweisung der Precodingvektoren und die Sendeleistung gemeinsam optimiert werden. Ziel

ist es, die Gesamtsendeleistung der BS zu minimieren, während die vorgegebenen QoS An-

forderungen der MSs einzuhalten sind. In unserem Ansatz greifen wir auf ein Virtuelles

Uplink Problem (VUL Problem) zurück, welches mathematisch equivalent zu dem betra-

chteten SCBF Problem ist. Ein individuell angepasstes Potenzverfahren wird entwickelt, um

das Optimum des VUL Problems, und somit das des SCBF Problems, zu finden. Um die

Leistungsfähigkeit des Codebuch-basierten Downlink Beamformings zu verbessern, schla-

gen wir ein Kanalvorverzerrungsverfahren vor, das ohne zusätzliche Signalisierung oder

Modifizierung der mobilen Empfänger eingesetzt werden kann. Das gemeinsame Codebuch-

basierte Downlink Beamforming- und Kanalvorverzerrungs Problem (CBCP Problem) stellt

ein nicht-konvexes MIP dar. Ein alternativer Optimierungsalgorithmus und ein alternatives

Zulässigkeitsverfahren werden entwickelt um das CBCP Problem näherungsweise zu lösen.

Die Simulationsergebnisse bestätigen die Effizienz des Kanalvorverzerrungsschritts. So wird

numerisch gezeigt, dass sich mit dem Verfahren eine erhebliche Reduzierung der Gesamt-

sendeleistung der BS erreichen lässt.
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Wir untersuchen zuletzt das robuste Codebuch-basierte Worst-Case Downlink Beam-

forming wobei angenommen wird, dass sich die Kanalinformation an der BS lediglich auf

geschätzte Kanalkovarianzmatrizen beschränkt. Ähnlich wie bei dem DRAB Problem ist

die Teilnehmerauswahl in die Auswahl der Precodingvektoren eingebettet. In dem robusten

Codebuch-basierten Downlink Beamforming und Zugangskontroll Problem (RCBA Prob-

lem) ist es das Ziel, die maximale Anzahl an ausgewählten MSs bei minimaler Sendeleis-

tung der BS zu erreichen. Wir entwickeln eine konservative Mixed-Integer Linear Program

Approximierung (MILP Approximierung) des RCBA Problems, sowie eine exakte MIS-

OCP Umformulierung. Ferner entwickeln wir ein recheneffizentes Inflationsverfahren für

das RCBA Problem. Unsere Simulationen zeigen, dass die drei Ansätze nahezu die gle-

iche durchschnittliche Anzahl an zugelassenen MSs erzielen, wobei die BS bei dem MILP-

basierten Ansatz dafür jedoch wesentlich mehr Sendeleistung aufwenden muss, als bei den

anderen beiden Ansätzen.

Das MIP Rahmenkonzept, das in dieser Dissertation entwickelt wird, kann auf eine

Vielzahl von diskreten Ressourcenvergabeproblemen in Interferenz begrenzten Mobilfunk-

netzen angewendet werden. Sowohl optimale Leistungsfähigkeits-Benchmarks als auch

praxistaugliche Algorithmen mit geringer Komplexität werden in unserem MIP Rahmen-

werk berücksichtigt. Herkömmliche Ansätze haben sich oftmals nicht mit den exakten

diskreten Modellen auseinandergesetzt, sondern die diskreten Variablen mit kontinuierlichen

angenähert, was zu hochgradig suboptimalen Lösungen oder unzulässigen Probleminstanzen

führen kann.
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Mathematical notation

Sets:

R Real numbers

Rm×n Real matrices (vectors)

C Complex numbers

Cm×n Complex matrices (vectors)

∅ The empty set

Vectors and matrices:

0 Matrix (vector) of zeros with conformable dimensions

1 Matrix (vector) of ones with conformable dimensions

I Identity matrix with conformable dimensions

(·)T Transpose

(·)H Hermitian (conjugate transpose)

Tr{·} Trace of a square matrix

vec{·} Vectorization of a matrix by stacking the columns on top of each other

Norms:

‖ · ‖2 Euclidean (l-2) norm of a vector

‖ · ‖F Frobenius norm of a matrix
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Miscellaneous:

Re{·} Real part of a variable

Im{·} Imaginary part of a variable

E{·} Statistical expectation

, Defined as

∀ For all

∃ Exists/exist

A � 0 Matrix A is positive semidefinite

a ≥ b Element-wise inequalities of vectors a and b

a > b Element-wise strict inequalities of vectors a and b
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Chapter 1

Introduction

1.1 Joint downlink beamforming and discrete resource al-

location

The information and communications technology (ICT) contributes a notable percentage

to global greenhouse gas emissions [1, 2], and therefore the cellular network operators are

encouraged to employ green (energy-efficient) communications technologies by regulatory

bodies and governmental associations. Further, the wireless data traffic has been growing ex-

ponentially in recently years, due to, e.g., the prevailing of smartphones and tablet personal

computers (PCs) for mobile web-browsing, audio- and video-streaming [3–5]. Given the

limited spectrum resource, the unprecedented mobile data explosion compels the cellular net-

work operators to seek for more energy- and spectrum-efficient wireless technologies [6–10].

Furthermore, it has long been known that energy- and spectrum-efficient wireless commu-

nications technologies are the essential apparatuses for the cellular operators to reduce the

capital expenditures (CAPEX) and the operational expenditures (OPEX) [1, 2, 6–11].

Transmit beamforming with smart antennas is widely recognized as a promising tech-

nique to realize energy- and spectrum-efficient wireless communications. In multiuser down-

link transmit beamforming, the base station (BS) forms a very narrow transmission beam (in

baseband processing) towards each intended mobile station (MS). Hence, transmit beam-

forming is more energy-efficient, as compared to omnidirectional transmissions and analog

directional radiations with directional antennas [7–10,12–14]. Moreover, in multiuser down-

link beamforming, the BS is able to generate nulls towards the unintended MSs to minimize

the co-channel interference, e.g., by employing multiuser zero-forcing beamforming [15–

17]. As a result, multiple MSs can be served jointly on the same time and frequency re-

sources, resulting in the so-called space-division multiple access (SDMA) schemes [18, 19].

1
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Through concurrently serving multiple MSs with SDMA, multiuser downlink beamforming

achieves high spectrum efficiency. In light of the potential advancement towards energy-

and spectrum-efficient mobile communications, multiuser downlink beamforming has been

adopted into modern third generation (3G) and fourth generation (4G) cellular standards,

e.g., in long-term evolution (LTE) and LTE-advanced (LTE-A) of the third generation part-

nership project (3GPP) [7–10, 20].

In multiuser downlink beamforming, when the BS applies the beamforming vector (also

called beamformer) to transmit data to a MS, the MS sees the composite channel, i.e., the

inner product of the beamformer and the original downlink channel vector. While the optimal

beamformers generally need to be computed at the BS, the MSs require the information of

the respective composite channels for coherent data symbols detection. Additional signaling

procedures have to be introduced for the MSs to acquire the knowledge of the composite

channels [7, 8, 14]. Depending on how the composite channels are made available at the

MSs, downlink beamforming techniques can be classified into two categories, namely non-

codebook-based beamforming and codebook-based beamforming [7, 8, 12, 13]. Both non-

codebook-based and codebook-based beamforming schemes are adopted in the most recent

cellular standards, e.g., in 3GPP LTE and LTE-A [7–10, 20].

In non-codebook-based multiuser downlink beamforming (also called conventional adap-

tive beamforming [14]), the optimal beamforming vectors (i.e., the beamformers) of the MSs

are taken from a continuous complex vector space [7, 12–14]. After computing the optimal

beamformers, including transmission power allocations, at the BS, the BS applies the optimal

beamformers to transmit user-specific reference signals. A MS can estimate the correspond-

ing composite channel (also known as precoded channel) using the predefined user-specific

reference signals sent by the BS [7, 8, 20].

In contrast to non-codebook-based beamforming, in codebook-based downlink beam-

forming (also known as switched beamforming) [7, 8, 14, 20, 21], the BS and the MSs share

the information of a codebook that consists of a finite number of predetermined beam pat-

terns, i.e., a predefined precoding vector codebook of unit-norm precoding vectors (beam-

formers). The BS assigns the precoding vectors from the precoding vector codebook to the

MSs, together with proper transmission power allocations. The BS then signals the indices

of the assigned precoding vectors and the allocated transmission powers to the respective

MSs [7, 8, 14, 20–22]. Note that codebook-based beamforming is referred to as codebook-

based single-layer-per-user precoding in cellular standards, e.g., in 3GPP LTE and LTE-

A [7, 8, 20].

In the open technical literature, there is a large volume of technical contributions deal-

ing with non-codebook-based multiuser downlink beamforming. The standard quality-of-
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service (QoS) based downlink beamformer design problem, in which the total transmitted

BS power is minimized while guaranteeing the received signal-to-interference-plus-noise ra-

tio (SINR) targets (representing the QoS requirements [23]) of the admitted MSs, has been

extensively investigated, see, e.g., [12, 13, 18, 24–33]. Since the standard SINR-constrained

multiuser downlink beamforming problem can be formulated as (or can be equivalently con-

verted to) a convex program [12, 24, 31, 34], both efficient convex optimization techniques

(e.g., the interior-point method [34]) and low-complexity optimal iterative algorithms (e.g.,

the power iteration method [26, 35, 36]) have been developed to solve the problem (see,

e.g., [12, 13, 26, 31]).

Due to the limited channel training and/or feedback resources, the downlink channel state

information (CSI), in terms of either the downlink channel vectors, i.e., instantaneous CSI

in slow-fading scenarios, or the downlink channel covariance matrices, i.e., statistical CSI

in fast-fading scenarios, may not be perfectly known at the BS, e.g., in frequency-division

duplex (FDD) systems. To accommodate the scenarios that only estimated and/or erroneous

CSI is available at the BS, various robust downlink beamforming schemes have been pro-

posed, see, e.g., [12, 37–48]. The existing contributions on robust beamforming can gen-

erally be categorized into two classes, namely the deterministic (worst-case) design, see,

e.g., [12, 37–42], and the probabilistic design (also known as chance-constrained approach

and outage-constrained approach), see, e.g., [43–48]. Unlike multiuser downlink beamform-

ing with perfect CSI [12,13,18,25–33], the robust multiuser downlink beamforming problem

cannot be efficiently solved to optimality and convex approximation methods are widely ap-

plied (see, e.g., [38, 42, 48]).

Different from the SINR-constrained multiuser downlink beamforming problem [12, 13,

18, 25–33, 37–42], in the sum-rate maximization based multiuser downlink beamforming,

the objective is to maximize the (weighted) sum-rate of the downlink system under the given

transmission power budget of the BS, see, e.g., [13,49–59]. In contrast to the standard SINR-

constrained downlink beamforming problem [12, 24, 28, 31], the sum-rate maximization

based downlink beamforming problem has been proved to be non-deterministic polynomial-

time (NP) hard and thus cannot be efficiently solved to global optimality [55–58]. In addition

to carrying out local search for suboptimal solutions [50–53], global optimization techniques,

e.g., the branch-and-bound (BnB) method and its variations [60], have also been proposed to

solve the problem of multiuser downlink beamforming for (weighted) sum-rate maximiza-

tion, see, e.g., [54–56].

There are much fewer technical contributions dealing with codebook-based multiuser

downlink beamforming, as compared to non-codebook-based multiuser downlink beam-

forming. The codebook-based beamforming (also known as single-layer-per-user precod-
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ing) is mainly studied within the standardization bodies, e.g., within 3GPP [7, 8, 20]. Re-

cently, the authors of [22] have considered codebook-based beamforming for sum-rate max-

imization in a multi-group multi-casting scenario. Since the beamformers have to be se-

lected from a predetermined precoding vector codebook and precoding vector assignments

of different MSs are coupled through co-channel interference in the downlink SINR con-

straints, the codebook-based multiuser downlink beamforming problem inherently involves

integer (binary) decision variables and naturally leads to combinatorial optimization prob-

lems [7, 8, 14, 20–22]. Further, effective convex approximations are not directly applicable

because of the constraints that at most one of the candidate precoding vectors can possibly

be assigned to each MS. Due to the integer (binary) decision variables and the combinatorial

precoding vector assignments, codebook-based multiuser downlink beamforming problem

is generally more challenging than non-codebook-based multiuser downlink beamforming

problem.

Besides codebook-based multiuser downlink beamforming, a lot of resource allocation

problems in practical telecommunications networks involve discrete (integer) decision vari-

ables. Since the MSs are coupled by co-channel interference when they are served in the

same time and frequency resources, the discrete resource allocation problems in practice

naturally result in combinatorial discrete (mixed-integer) optimization programs [61–66].

For instance, the joint optimization of adaptive modulating and coding (AMC) and multiuser

downlink beamforming, as illustrated in Fig. 1.1, inherently involve binary decision mark-

ings, i.e., assigning at most one of the candidate modulation and coding schemes (MCSs) to

each MS (cf. Chapter 3). Since MCS assignments of different MSs are coupled through the

co-channel interference in the downlink received SINRs, the problem of joint discrete rate

adaptation and downlink beamforming represents a combinatorial mixed-integer nonlinear

program (MINLP) [60, 67–69].
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MS 1 16-QAM

Users MCSs

MS 2

MS 3 QPSK
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……

Figure 1.1: Illustration of joint adaptive modulating and coding (AMC) and multiuser down-

link beamforming, e.g., MS 1 is admitted and assigned the MCS 16-QAM, while MS 2 is

not admitted.

Another well-known example is the problem of BS clustering, i.e., BS association, for

coordinated multi-point (CoMP) processing, in which a subset of the total BSs are assigned

to each MS jointly with beamformer design (see, e.g., [70–78]). Since the MSs are cou-

pled through co-channel interference under SDMA, the BSs clustering problem also be-

longs to the class of combinatorial MINLPs (cf. Chapter 2). The joint optimization of

multiuser downlink beamforming and discrete resource allocation usually results in supe-

rior performance than the separate approaches in practical telecommunications systems (see,

e.g., [77–80]). Readers are referred to the works of [61–66] for more detailed examples of

combinatorial discrete resource allocation problems in practical wireless networks.

In this dissertation, we propose to address the discrete resource allocation problems us-

ing the exact discrete models. That is, we start with exact mixed-integer program (MIP)

formulations. The MIP formulations provide a way to compute the optimal solutions of the

discrete resource allocation problems. The optimal solutions serve as performance bench-

marks for the low-complexity practical algorithms and can be used for network planning

and system performance predictions. Most of the existing approaches (see, e.g., [75–77]) do

not adopt the exact discrete models and the discrete decision variables are approximated by

(quantized) continuous variables, which generally cannot reach the optimal solutions of the

discrete resource allocation problems. The existing approximation and quantization based

approaches may also result in infeasible problem instances due to quantization operations

even if the original discrete problems are feasible.

However, due to the challenges of discrete (mixed-integer) optimization problems, lim-

ited attention has been devoted to the joint optimization of multiuser downlink beamforming

and discrete resource allocation even though they are practically relevant. To promote prac-

tical applications of multiuser downlink beamforming techniques, we consider in this thesis
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the joint optimization of (multi-cell) multiuser downlink beamforming and discrete resource

allocation in modern cellular networks. Both non-codebook-based and codebook-based mul-

tiuser downlink beamforming are covered, and the problems are addressed within the devel-

oped systematic MIP framework. In our MIP framework, we consider (i) MIP based prob-

lem formulations that support the commercial solver (e.g., IBM ILOG CPLEX [81]) based

approach for computing the optimal solutions (performance benchmarks), (ii) analytic com-

parisons of different MIP problem formulations, (iii) customizing techniques for speeding up

the standard branch-and-cut (BnC) method [67–69,81,82] for reaching the optimality certifi-

cates, and (iv) low-complexity practical algorithms for large-scale applications. Particularly,

by analyzing the characteristics of the considered problems, we propose efficient strategies

to specifically customize the standard BnC method implemented in the MIP solver CPLEX

for each problem. Thanks to the mathematical advancement of MIP techniques and the fast

development of commercial MIP solvers [67–69, 81, 82], applying MIP based approaches

to address practical discrete resource allocation problems in wireless networks is gaining

wider interests of the research community (see, e.g., [61–66]). The next section presents an

overview and the contributions of this thesis.

1.2 Overview and contributions

The technical contributions of this dissertation can be divided into two parts. The first tech-

nical part of this thesis, including Chapters 2 and 3, deals with the joint optimization of

non-codebook-based multiuser downlink beamforming and discrete resource allocation. The

second technical part of this thesis, consisting of Chapters 4 and 5, considers the joint opti-

mization of codebook-based multiuser downlink beamforming and discrete resource alloca-

tion. The problems are addressed within the developed systematic MIP framework. Several

efficient customizing strategies are introduced to customize the standard BnC method imple-

mented in the MIP solver CPLEX [67–69, 81, 82] when applying CPLEX to the respective

problems. It is assumed in Chapters 2, 3, and 4 that the perfect CSI in terms of the instan-

taneous downlink channel vectors is available at the BSs. Only erroneous statistical CSI in

terms of the estimated downlink channel covariance matrices is assumed to be known at the

BS in Chapter 5. Furthermore, Chapter 2 considers the multi-cell case, while Chapters 3, 4,

and 5 focus on the single-cell and signal-BS scenario.

In Chapter 2, we address the joint optimization of network topology and multi-cell down-

link beamforming (JNOB) for CoMP transmission (see, e.g., [70–78]), with the objective

to minimize the overall BSs power consumption (including the operational overhead of



1.2. Overview and contributions 7

CoMP transmission) while guaranteeing the QoS requirements (expressed through the re-

ceived SINR targets) of the MSs. The JNOB problem is addressed within the mixed integer

second-order cone program (MISOCP) framework [82]. We first develop a standard big-

M MISOCP formulation of the JNOB problem, which can be solved using, e.g., the BnC

method [67–69,81,82]. To reduce the computational complexity of the BnC method, we fur-

ther propose an improved extended MISOCP formulation of the JNOB problem. Analytic

studies show that the extended MISOCP formulation admits tighter continuous relaxations

(and hence lower computational complexity) than that of the big-M MISOCP formulation.

For practical applications in large-scale networks, we also develop low-complexity SOCP

based inflation and deflation procedures [83, 84]. The simulation results show that the infla-

tion and deflation procedures yield total BSs power consumptions that are very close to the

lower bounds computed by the MIP solver CPLEX (and therefore very close to that of the

optimal solutions). The numerical results also confirm that minimizing the total BSs power

consumption results in partial BSs cooperation and sparse network topologies for CoMP

transmission and some of the BSs are powered off for further reduction of the unnecessary

power expenditures.

Chapter 3 deals with the joint optimization of discrete rate adaptation and downlink

beamforming (DRAB) in the scenarios employing discrete rate adaption in the form of

AMC [7, 8, 20, 85–90]. In the DRAB problem, the discrete rate adaptation, i.e., modula-

tion and coding scheme (MCS) assignment, is jointly optimized along with the multiuser

beamformer design, with the objective to achieve the maximum downlink sum-rate with

minimum total transmitted BS power. User admission control is naturally embedded in the

discrete rate assignment procedure. As in Chapter 2, we address the DRAB problem using

the MISOCP based approach, developing a standard big-M MISOCP formulation and an

improved extended MISOCP formulation. We analytically show that the extended formu-

lation generally admits strictly tighter continuous relaxations (and hence less computational

complexity) than that of the big-M formulation. Effective customizing strategies for the

standard BnC method implemented in the MIP solver CPLEX are adopted when applying

CPLEX on the DRAB problem. As in Chapter 2, we also devise low-complexity SOCP

based inflation and deflation procedures to find near-optimal solutions of the DRAB prob-

lem for applications in large-scale networks. Our simulation results demonstrate that the

inflation and deflation procedures yield sum-rates that are very close to that of the optimal

solutions computed by CPLEX. The numerical results also confirm that when applying the

solver CPLEX to the DRAB problem, the extended MISOCP formulation requires much less

runtime to solve than the standard big-M MISOCP formulation.

In Chapter 4, we study the codebook-based multiuser downlink beamforming. We con-



8 Chapter 1. Introduction

sider first the standard codebook-based downlink beamforming (SCBF) problem, in which

precoding vector assignment and power allocation are jointly optimized to minimize the to-

tal transmitted BS power while guaranteeing the prescribed QoS targets (SINR constraints)

of the MSs. We propose a mixed-integer linear program (MILP) formulation of the SCBF

problem, which can be solved using, e.g., the BnC method [67–69, 81, 82]. To derive low-

complexity solutions, we introduce a virtual uplink problem, in which precoding vector as-

signments of different MSs are nicely decoupled. We establish the uplink-downlink duality

properties of the two problems and develop a customized power iteration method for the

SCBF problem. Analytic studies show that the customized iterative algorithm yields ei-

ther optimal solutions of the SCBF problem (when it is feasible), or infeasibility certificates

(when it is infeasible). To enhance the performance of the codebook-based downlink beam-

forming, we further propose a linear adaptive channel predistortion mechanism, by applying

a common predistortion on the downlink channel vectors. The channel predistortion scheme

does not involve any additional signalling overhead or modifications of the mobile receivers.

We propose to jointly optimize codebook-based downlink beamforming and channel predis-

tortion (CBCP), taking into account the smoothness constraints on the predistorted channel

processes. The CBCP problem represents a non-convex MIP. An alternating optimization

algorithm (ATOA) and an alternating feasibility search algorithm (AFSA) are developed to

approximately solve the CBCP problem. The simulation results verify that the proposed

customized power iteration method either optimally solves the SCBF problem or detects its

infeasibility. Our numerical results also demonstrate the superior performance of the channel

predistortion procedure in terms of, e.g., achieving significant reductions of the total trans-

mitted BS power and substantial increases of the percentage of feasible Monte Carlo runs,

as compared to the standard codebook-based beamforming (without channel predistortion).

This practically means that with channel predistortion, a significant reduction of transmitted

BS power can be realized and more MSs can be jointly served in the same time and frequency

resources. That is, the proposed channel predistortion design effectively alleviates the perfor-

mance degradation of codebook-based beamforming, as compared to non-codebook-based

beamforming.

Finally, we investigate in Chapter 5 the worst-case robust codebook-based downlink

beamforming problem in the scenarios where only estimated (and thus erroneous) down-

link channel covariance matrices are available at the BS. In this thesis, robustness refers to

that the minimum SINR requirements of the admitted MSs are guaranteed to be satisfied,

regardless of the quality of the CSI known at the BSs. Similar to Chapter 3, user admis-

sion control is naturally embedded in the precoding vector assignment procedure. In the

robust codebook-based downlink beamforming and admission control (RCBA) problem, the
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objective is to achieve the maximum number of admitted MSs (representing revenue) with

the minimum total transmitted BS power (representing expenditure). Due to the worst-case

SINR constraints, the RCBA problem leads to a bi-level MIP (BL-MIP). We first adopt the

conservative approach as presented in [12, 37] and develop a MILP approximation of the

RCBA problem. While the MILP approximation can be efficiently solved using, e.g, the

BnC method [67–69, 81, 82], it yields solutions with unnecessarily increased total transmit-

ted BS power (see, e.g., [38]). We then follow a similar procedure as given in [38] and

convert the RCBA problem into an equivalent MISOCP. Based on the exact MISOCP re-

formulation, a low-complexity SOCP based inflation procedure (i.e., a greedy algorithm) is

further devised to compute near-optimal solutions of the RCBA problem for applications in

large-scale systems. Our simulation results show that the MILP based approach, the MIS-

OCP based approach, and the inflation procedure achieve almost the same average number of

admitted MSs. However, the total transmitted BS power required for ensuring the SINR tar-

gets of the admitted MSs in the MILP based approach is significantly larger than that of the

other two methods. Furthermore, the inflation procedure has much less computational com-

plexity than the MILP based approach when the number of admissible MSs is large. The

MISOCP based approach yields the least total transmitted BS power, but with the highest

computational complexity.

This dissertation is based on the following publications, which have been published or

submitted during the course of my doctoral studies:

Journal articles:

• Y. Cheng and M. Pesavento, “Joint rate adaptation and downlink beamforming using

mixed integer conic programming,” submitted to IEEE Trans. Signal Process., Jun.

2013.

• Y. Cheng and M. Pesavento, “An optimal iterative algorithm for codebook-based down-

link beamforming,” IEEE Signal Process. Lett., vol. 20, no. 8, pp. 775–778, Aug.

2013.

• Y. Cheng, M. Pesavento, and A. Philipp, “Joint network optimization and downlink

beamforming for CoMP transmissions using mixed integer conic programming,” IEEE

Trans. Signal Process., vol. 61, no. 16, pp. 3972-3987, Aug. 2013.

• Y. Cheng and M. Pesavento, “Joint optimization of source power allocation and dis-

tributed relay beamforming in multiuser peer-to-peer relay networks,” IEEE Trans.

Signal Process., vol. 60, no. 6, pp. 2962-2973, Jun. 2012.
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Conference papers:

• Y. Cheng and M. Pesavento, “Predistortion and precoding vector assignment in code-

book-based downlink beamforming,” in Proc. IEEE Int. Workshop on Signal Process.

Advances for Wireless Commun. (SPAWC), Jun. 2013, pp. 440–444.

• Y. Cheng and M. Pesavento, “Robust codebook-based downlink beamforming using

mixed integer conic programming,” in Proc. IEEE Int. Conf. on Acoustics, Speech

and Signal Process. (ICASSP), May 2013, pp. 4187–4191.

• Y. Cheng, A. Philipp, and M. Pesavento, “Dynamic rate adaptation and multiuser

downlink beamforming using mixed integer conic programming,” in Proc. European

Signal Process. Conf. (EUSIPCO), Aug. 2012, pp. 824–828.

• Y. Cheng, S. Drewes, A. Philipp, and M. Pesavento, “Joint network optimization and

beamforming for coordinated multi-point transmission using mixed integer conic pro-

gramming,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Process.

(ICASSP), Mar. 2012, pp. 3217–3220.

• Y. Cheng, S. Drewes, A. Philipp, and M. Pesavento, “Joint network topology optimiza-

tion and multicell beamforming using mixed integer conic programming,” in Proc. Int.

ITG Workshop on Smart Antennas (WSA), Mar. 2012, pp. 187–192.



Chapter 2

Network optimization and multi-cell

beamforming for CoMP transmission

2.1 Introduction

Coordinated multi-point (CoMP) processing is widely recognized as an effective mecha-

nism for managing inter-cell interference (ICI) and improving system throughput in cellular

networks with universal frequency reuse (see, e.g., [7, 33, 70–78, 91–96]). The potential of

CoMP transmission has been validated in both theoretic studies [71, 91, 92] and field tri-

als [71, 94, 95], and CoMP processing has therefore already been included in the emerging

cellular standards, e.g., in the third generation partnership project (3GPP) long-term evolu-

tion advanced (LTE-A) [7,71,93]. While CoMP operation with full cooperation between all

base stations (BSs) that jointly serve the mobile stations (MSs) offers significant increases

in network capacity and cell-edge throughput, it induces also considerable operational over-

head, such as power expended in collecting and exchanging CSI among multiple BSs and

MSs, signaling beamforming weights and forwarding user payload data to multiple cooper-

ating BSs [71, 75].

To balance the benefits and the operational costs, CoMP processing shall be carried out

among a limited number of cooperating BSs, resulting in the so-called partial BS cooperation

designs. Several partial BS cooperation schemes have been proposed in the literature, see,

e.g., [33, 71–78, 96]. These existing contributions can generally be categorized into two

classes, namely coordinated beamforming [33, 71, 96] and clustered BSs cooperation [71–

78]. In the coordinated downlink beamforming designs, the beamforming weights of the

MSs are jointly designed across the network, but each MS is served by a single BS and

therefore there is no need to route payload data or control information, e.g., beamforming

11
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weights, corresponding to one MS over the backhaul network to multiple serving BSs [33,

71, 96]. In the clustered BS cooperation frameworks, CoMP processing is implemented

within clusters of BSs, with full BSs cooperation inside each cluster and no cooperation

between clusters [71–78]. Since the CoMP operation is restricted to a small number of BSs

in each cluster, the communication overhead of CoMP processing is bounded by the size of

the cooperating BSs clusters.

While the existing approaches [33, 71–78, 96] can alleviate the additional expenses in

CoMP transmission to a certain extent, several important issues remain open. For instance,

in coordinated beamforming [33, 71, 96], the performance of cell-edge MSs may still suffer

from ICI and large pathloss, as in conventional cellular systems. Even though cell-edge MSs

can enjoy the performance gain from CoMP processing in the clustered BSs cooperation

frameworks [71–78], the MSs located at the cluster edges still suffer from ICI and large

path-loss. In addition, determining the optimal size of the BSs clusters is a very challenging

open problem [71–78].

More recently, mechanisms to jointly optimize BS selection and multi-cell beamforming

are proposed in [75–77] to reduce the overhead of CoMP transmission, in which the BS

selection is carried out based on the solution of an optimization problem that gives preference

to sparse beamforming vectors [74–77]. However, the sparsity patterns of the beamformers

are more appropriate for antenna selection, rather than for BS selection or network topology

optimization.

In contrast to the existing contributions [70–78], we propose in this chapter a systematic

approach to find the optimal tradeoff between the gain and the overhead of CoMP trans-

mission. Specifically, we consider the problem of joint network topology optimization and

multi-cell downlink beamforming (JNOB), with the objective to minimize the overall BSs

power consumption (including the overhead of CoMP operation) while guaranteeing the

quality-of-service (QoS) requirements of the admitted MSs. The JNOB problem under con-

sideration includes coordinated beamforming [33, 71, 96], partial BS cooperation [71–78],

and full BS cooperation [71,91,92] as special cases. In our systematic approach, the number

of cooperating BSs that transmit to each MS is optimally determined on-the-fly according to

the system parameters and the channel conditions. In addition, we consider the possibility

of switching off the power amplifiers (PAs) of the BSs in the JNOB problem formulation

to further reduce unnecessary BSs power dissipations, which has not been considered in the

previous works [33, 71–78, 96].

We address the JNOB problem using the mixed-integer second order cone program

(MISOCP) approach [82], proposing a standard big-M MISOCP formulation that supports

the convex continuous relaxation based BnC method [67–69, 81, 82]. Based on the big-M
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formulation, we introduce auxiliary variables and develop an extended MISOCP formula-

tion [67–69], also known as perspective formulation [68, 97] and lifting [68, 82], which ex-

hibits several appealing properties that are exploited in the numerical algorithms. Analytic

studies are carried out. The analysis shows that the extended MISOCP formulation admits

tighter continuous relaxations than that of the big-M MISOCP formulation and thus yields

significantly reduced computational complexity when applying the standard branch-and-cut

(BnC) method. The insights of the analysis allow us to introduce several customizing tech-

niques (e.g., customized node selection rules and branching priorities) to further speed up the

BnC method by generating tighter lower bounds of the minimum total BSs power consump-

tions. We develop low-complexity second-order cone program (SOCP) based inflation and

deflation procedures [83,84] that yield with very low computational complexity high-quality

solutions of the JNOB problem. The fast heuristic algorithms are suitable for practical ap-

plications in large-scale networks.

Extensive simulations are carried out to evaluate the developed algorithms and to con-

firm the analytic studies. The commercial mixed-integer program (MIP) solver IBM ILOG

CPLEX [81] is employed in our numerical experiments. The simulation results show that

the proposed fast inflation and deflation procedures achieve total BSs power consumptions

that are very close to the lower bounds computed by CPLEX (and hence very close to that

of the optimal solutions). The proposed heuristic algorithms outperform the BS clustering

schemes of [75–78] in terms of the achieved total BSs power consumptions. The reduction in

the computational complexity of the extended MISOCP formulation over the standard big-M

MISOCP formulation when applying the BnC method is also confirmed in the simulations.

Our numerical results further show that minimizing the total BSs power consumption re-

sults in sparse network topologies rather than full BSs cooperation. The network topologies

become sparser as the power consumption overhead associated with CoMP transmission is

increased, and some of the BSs are switched off when possible to further reduce the overall

BSs power consumption.

This chapter is based on my original work that has been published in [98–100].

2.2 System model and problem statement

2.2.1 Network model

Consider a cellular network consisting of L multiple-antenna BSs and K single-antenna

MSs, where the lth BS is equipped with Ml ≥ 1 transmit antennas, ∀l ∈ L , {1, 2, · · · , L},
as illustrated in Fig. 2.1. The K MSs are admitted with the prescribed QoS requirements.
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Similar to [70–78, 91, 92], it is assumed that the BSs are mutually connected over a BS

network interface (e.g., the X2-type interface in LTE-A systems [93]), and therefore the

data of a MS can be made available at the cooperating BSs with associated backhauling

cost [71, 75]. The L BSs are assumed to be synchronized so that CoMP processing can

possibly be employed for downlink data transmissions [7, 71], as shown in Fig. 2.1.

BS 1

BS 4 BS 3

BS 2

MS 1

MS 3

MS 2

Figure 2.1: Downlink CoMP transmission, with L = 4 BSs, each of which equipped with

Ml = 4 transmit antennas, and K = 3 single-antenna MSs. MS 1 is jointly served by BS 1,

BS 2, and BS 3. MS 3 is jointly served by BS 3 and BS 4.

Let hH
k,l ∈ C1×Ml denote the frequency-flat channel vector between the lth BS and the

kth MS, ∀l ∈ L, k ∈ K , {1, 2, · · · , K}, and define hH
k ,

[
hH
k,1, h

H
k,2, · · · , hH

k,L

]
∈ C

1×M

as the aggregate channel vector of the kth MS, ∀k ∈ K, with M ,
∑L

l=1Ml. Accord-

ingly, we denote wk,l ∈ CMl×1 as the beamforming vector (i.e., the antenna weights) used

at the lth BS for transmitting data to the kth MS, ∀l ∈ L, k ∈ K, and we define wk ,[
wT

k,1, wT
k,2, · · · , wT

k,L

]T ∈ CM×1 as the collection of all beamforming weights corre-

sponding to the kth MS, ∀k ∈ K. When all BSs share the same frequency bands and CoMP

processing is employed in the downlink data transmission, the received signal yk ∈ C at the
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kth MS can be written as (see, e.g., [70, 71, 73–78])

yk = hH
k wkxk +

K∑

j=1,j 6=k

hH
k wjxj + zk, ∀k ∈ K (2.1)

where xk ∈ C denotes the normalized data symbol designated for the kth MS with unit-

power, i.e., E {|xk|2} = 1, and zk ∈ C stands for the additive circularly-symmetric white

Gaussian noise [19] at the kth MS, with zero mean and variance σ2
k, ∀k ∈ K.

Similar to the existing works [33,71–78,91,92,96], it is assumed that the data symbols for

different MSs are mutually statistically independent and also independent from the noise, and

single user detection is adopted at the MSs, i.e., the co-channel interference in (2.1) is treated

as noise. When the channel vectors {hk, ∀k ∈ K} are quasi-static and the beamformers

{wk, ∀k ∈ K} are adaptive only to the instantaneous channel vectors, the received SINR at

the kth MS, denoted by SINRk, can be expressed as (see, e.g., [70, 71, 73–78])

SINRk ,

∣∣hH
k wk

∣∣2
∑K

j=1,j 6=k |hH
k wj|2 + σ2

k

, ∀k ∈ K. (2.2)

We remark that when the lth BS does not participate in transmitting data to the kth MS

in CoMP transmission, i.e., when the lth BS is not assigned to the kth MS, for some l ∈ L
and k ∈ K, then the equality wk,l = 0 shall hold.

As in the prior contributions [7,33,70–78,91,92,94–96], it is assumed in this chapter that

the lth BS has perfect knowledge of the instantaneous channel vectors
{
hH
k,l, ∀k ∈ K

}
, ∀l ∈

L. This assumption can practically be realized, e.g., in time-division duplex (TDD) systems

by exploiting uplink-downlink channel reciprocity and channel calibration techniques at the

BSs [7, 19]. The lth BS reports the channel vectors
{
hH
k,l, ∀k ∈ K

}
to the central processing

node (CPN), ∀l ∈ L. The CPN, which can be implemented on one of the L BSs, assigns one

or multiple BSs to each MS and computes the optimal beamformers for the K MSs.

2.2.2 BS power consumption model

According to the prior works [71, 101–104], the power consumption of a cellular BS can

be categorized into non-transmission related power dissipations (e.g., battery backup costs)

and transmission related power consumptions (e.g., signal processing overhead and power

amplifier costs). The non-transmission related power consumption, i.e., the offset power, can

be treated as a constant [71, 101–104], while the transmission related power consumption of

a BS depends on the activities of the power amplifier (PA). The PA (and also the RF chain) of
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a BS may be in one of the three states, namely (i) powered off (OFF), (ii) powered on but not

transmitting, i.e., idle (IDL), and (iii) powered on and transmitting. We introduce the binary

variable bl ∈ {0, 1} to indicate that the PA of the lth BS is switched on with bl = 1, and

bl = 0 otherwise, ∀l ∈ L. Furthermore, we adopt the binary indicators {ak,l ∈ {0, 1}, ∀k ∈
K, ∀l ∈ L} to represent BS assignments, with ak,l = 1 meaning that the lth BS is assigned to

the kth MS, and ak,l = 0 otherwise. In case that ak,l = 0, the equalities wk,l = 0 shall hold.

When the PA of the lth BS is powered off, i.e., when bl = 0, the lth BS cannot be assigned

to any MSs, i.e., it shall hold ak,l = 0, ∀k ∈ K. Hence, the case of bl = 0 implies that

{ak,l = 0,wk,l = 0, ∀k ∈ K}. The aforementioned properties regarding the binary integer

variables {ak,l, bl, ∀k ∈ K, ∀l ∈ L} can be summarized into the following conventions:

wk,l = ak,lwk,l, ∀k ∈ K, ∀l ∈ L (2.3)

bl

K∑

k=1

‖wk,l‖22 =
K∑

k=1

‖wk,l‖22, ∀l ∈ L (2.4)

bl

K∑

k=1

ak,lP
(CMP)
k,l =

K∑

k=1

ak,lP
(CMP)
k,l , ∀l ∈ L (2.5)

where the user-specific constant P
(CMP)
k,l represents the fixed power consumption associated

with forwarding the payload data and the beamforming weights wk,l of the kth MS to the

lth BS. That is, the constants
{
P

(CMP)
k,l , ∀k ∈ K, ∀l ∈ L

}
model the operational overhead

associated with CoMP transmission.

Let the constants P
(OFT)
l , P

(IDL)
l , and P

(TPA)
l denote the offset power, the idle-state PA

power consumption, and the power required to turn off and turn on the PA, respectively,

of the lth BS, ∀l ∈ L. We consider in this chapter the scenarios that P
(TPA)
l < P

(IDL)
l ,

∀l ∈ L, so that powering off an idle-state PA can indeed save power [101–103]. With the

constant 1/Λl denoting the PA efficiency, the total power consumption of the lth BS, denoted

by P
(TOT)
l , can then be expressed as (see, e.g., [71, 101–104]):

P
(TOT)
l ,P

(OFT)
l + bl

(
P

(IDL)
l + Λl

K∑

k=1

‖wk,l‖22

)
+ (1− bl)P

(TPA)
l + bl

K∑

k=1

ak,lP
(CMP)
k,l

=P̃
(OFT)
l + blP̃

(IDL)
l + Λl

K∑

k=1

‖wk,l‖22 +
K∑

k=1

ak,lP
(CMP)
k,l , ∀l ∈ L (2.6)

where Eqs. (2.4) and (2.5) are used in the development of Eq. (2.6), with the new constants

P̃
(OFT)
l , P

(OFT)
l + P

(TPA)
l and P̃

(IDL)
l , P

(IDL)
l − P

(TPA)
l > 0. Since the constants{

P̃
(OFT)
l , ∀l ∈ L

}
are immaterial to the network optimization problem, for ease of elabo-
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ration, it is assumed without loss of generality that P̃
(OFT)
l = 0, ∀l ∈ L, and we define the

total BSs power consumption function f
(
{ak,l}, {bl}, {wk,l}

)
as

f ({ak,l}, {bl}, {wk,l}) ,
L∑

l=1

blP̃
(IDL)
l +

L∑

l=1

(
Λl

K∑

k=1

‖wk,l‖22 +
K∑

k=1

ak,lP
(CMP)
k,l

)
. (2.7)

2.2.3 The standard big-M formulation of the JNOB problem

In order to limit the overall power dissipations, the cellular network shall be operated in a

power-efficient way. Towards this end, we consider in this chapter the network optimization

problem with the objective to minimize the overall power consumptions of the L BSs while

guaranteeing the minimum QoS requirements of the K MSs. Similar to [12, 23, 33, 71, 75],

we adopt the following QoS constraints for the K MSs:

SINRk =

∣∣hH
k wk

∣∣2
∑K

j=1,j 6=k |hH
k wj|2 + σ2

k

≥ Γ
(MIN)
k , ∀k ∈ K (2.8)

where the constant Γ
(MIN)
k > 0 denotes the minimum SINR requirement of the kth MS, and

SINRk is defined in Eq. (2.2).

We observe from Eqs. (2.6) and (2.8) that the beamformers are phase-invariant in the

sense that if the beamformers
{
wk, ∀k ∈ K

}
are feasible for the SINR constraints (2.8), the

beamformers
{
wke

θk
√
−1, ∀k ∈ K

}
also satisfy the SINR requirements (2.8), ∀θk ∈ [0, 2π),

∀k ∈ K. Further, the beamformers
{
wk, ∀k ∈ K

}
and

{
wke

θk
√
−1, ∀k ∈ K

}
result in the

same total per-BS power consumption in (2.6) and the same received SINRs at the MSs.

Hence, without loss of generality, the phase of the beamformer wk can be chosen such that

the term hH
k wk is real and non-negative, ∀k ∈ K, and the SINR constraints defined in (2.8)

can be rewritten as the second-order cone (SOC) constraints (see, e.g., [12, 31, 75, 83]):

Im{hH
k wk} = 0, ∀k ∈ K (2.9a)

∥∥[hH
k W, σk

]∥∥
2
≤ γkRe{hH

k wk}, ∀k ∈ K (2.9b)

where the beamformer matrix W ∈ CM×K and the constant γk > 1 are defined, respectively,

as

W , [w1, w2, · · · , wK ] (2.10)

γk ,

√
1 + 1/Γ

(MIN)
k , ∀k ∈ K. (2.11)
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With the BS power consumption model in (2.6) and the SINR constraints in (2.9), the

JNOB problem can be formulated as the following MISOCP (see, e.g., [82]):

Φ(BMI) , min
{wk,l,ak,l,bl}

f
(
{ak,l}, {bl}, {wk,l}

)
(2.12a)

s.t. (2.9a): Im{hH
k wk} = 0, ∀k ∈ K

(2.9b):
∥∥[hH

k W, σk

]∥∥
2
≤ γkRe{hH

k wk}, ∀k ∈ K√√√√
K∑

k=1

‖wk,l‖22 ≤ bl

√
P

(MAX)
l , ∀l ∈ L (2.12b)

‖wk,l‖2 ≤ ak,l

√
P

(MAX)
l , ∀k ∈ K, ∀l ∈ L (2.12c)

ak,l ≤ bl, ∀k ∈ K, ∀l ∈ L (2.12d)

L∑

l=1

ak,l ≥ 1, ∀k ∈ K (2.12e)

ak,l ∈ {0, 1}, bl ∈ {0, 1}, ∀k ∈ K, ∀l ∈ L (2.12f)

where the constraints in (2.12b) denote the per-BS sum-power constraints, with the constant

P
(MAX)
l denoting the maximum transmission power of the lth BS, and the objective function

f ({ak,l}, {bl}, {wk,l}) is defined in (2.7). The constraints in (2.12d) and (2.12e) are re-

dundant and can be removed, i.e., Eqs. (2.12d) and (2.12e) represent problem-specific cuts,

which will be discussed in detail in Section 2.3.2. Note that the on-off constraints in (2.12c)

implement the well-known big-M method [67–69] that is used in problem (2.12) to ensure

that the beamforming vector wk,l = 0 if the indicator ak,l = 0 (see Eq. (2.3)), and that no

additional constraint is enforced on the beamforming vector wk,l in problem (2.12) when

ak,l = 1. The latter property follows because the per-BS sum-power budget P
(MAX)
l repre-

sents an upper bound on the term ‖wk,l‖22 according to Eq. (2.12b). In the following we refer

to problem (2.12) as the big-M integer (BMI) JNOB problem formulation.

We remark that the JNOB problem (2.12) includes as special cases the coordinated beam-

forming designs [33, 71, 96], clustered BS cooperation schemes [71–78], and full BS coop-

eration scenarios [71, 91, 92]. Specifically, by introducing the constraints
{∑L

l=1 ak,l =

1, ∀k ∈ K
}

,
{
1 <

∑L

l=1 ak,l < L, ∀k ∈ K
}

, and
{∑L

l=1 ak,l = L, ∀k ∈ K
}

, the pro-

posed JNOB problem formulation (2.12) can be reduced into the problems of coordinated

beamforming [33,71,96], (dynamically) clustered BS cooperation [71–78], and full BS coop-

eration [71, 91, 92], respectively. Moreover, the proposed JNOB problem formulation (2.12)

considers powering off the PAs of the BSs to further reduce unnecessary power dissipations,
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which has not been considered in CoMP transmission in prior works [71].

2.3 Optimal solutions via the BnC method

2.3.1 The continuous relaxation of the big-M formulation

The formulated JNOB problem (2.12) and other general MISOCPs, can be solved using the

convex continuous relaxation based BnC method [67–69, 81, 82]. The continuous relaxation

of a MISOCP is the SOCP obtained by relaxing all the integer constraints. The convex

continuous relaxation of the formulated JNOB problem in (2.12) can be expressed as the fol-

lowing SOCP, which is referred to as the big-M continuous relaxation (BMC) in the sequel:

Φ(BMC) , min
{wk,l,ak,l,bl}

f
(
{ak,l}, {bl}, {wk,l}

)
(2.13a)

s.t. (2.9a): Im{hH
k wk} = 0, ∀k ∈ K

(2.9b):
∥∥[hH

k W, σk

]∥∥
2
≤ γkRe{hH

k wk}, ∀k ∈ K

(2.12b):

√√√√
K∑

k=1

‖wk,l‖22 ≤ bl

√
P

(MAX)
l , ∀l ∈ L

(2.12c): ‖wk,l‖2 ≤ ak,l

√
P

(MAX)
l , ∀k ∈ K, ∀l ∈ L

(2.12d): ak,l ≤ bl, ∀k ∈ K, ∀l ∈ L

(2.12e):

L∑

l=1

ak,l ≥ 1, ∀k ∈ K

0 ≤ ak,l ≤ 1, 0 ≤ bl ≤ 1, ∀k ∈ K, ∀l ∈ L (2.13b)

where the variables {ak,l, bl, ∀k ∈ K, ∀l ∈ L}, originally constrained to take integer values

in (2.12f), are relaxed to continues variables in the closed interval [0, 1] in (2.13b).

We assume that the point characterized by the parameter tuple
{
w

(BMC)
k,l , a

(BMC)
k,l , b

(BMC)
l ,

∀k ∈ K, ∀l ∈ L
}

is an optimal (not necessarily unique) solution of the SOCP in (2.13).

Since the objective function in (2.13a) is minimized, we can easily prove by contradicting



20 Chapter 2. Network optimization and multi-cell beamforming for CoMP transmission

argument the following properties:

L∑

l=1

b
(BMC)
l ≥ 1 (2.14)

K∑

k=1

a
(BMC)
k,l ≥ b

(BMC)
l , ∀l ∈ L. (2.15)

Assume that the point
{
w

(BMI)
k,l , a

(BMI)
k,l , b

(BMI)
l , ∀k ∈ K, ∀l ∈ L

}
is an optimal (unneces-

sarily unique) solution of the JNOB problem in (2.12). We show next that the optimal ob-

jective value of the continuous relaxation in (2.13) is strictly smaller than that of the JNOB

problem (2.12) for practical systems with CoMP transmission. Towards this end, we first

present the necessary conditions for which the JNOB problem (2.12) and the associated con-

tinuous relaxation (2.13) achieve the same optimal objective value, as summarized in the

following theorem.

Theorem 2.1 (Necessary Conditions). If the JNOB problem in (2.12) and the associated

continuous relaxation in (2.13) achieve the same optimal objective value, i.e., if Φ(BMI) =

Φ(BMC), the following conditions must hold:

K∑

j=1

a
(BMI)
j,l =

K∑

j=1

a
(BMI)
j,m = 1, if a

(BMI)
k,l = a

(BMI)
k,m = 1,

for some k ∈ K, l 6= m, ∀l, m ∈ L. (2.16)

That is if the lth BS cooperates with the mth BS to serve the kth MS, then the lth and the mth

BSs exclusively serve the kth MS in the case that Φ(BMI) = Φ(BMC).

Proof 2.1. Please refer to Appendix A.1 for the proof.

We know from Theorem 2.1 that the special case of Φ(BMI) = Φ(BMC) may happen if

each of the cooperating BSs (i.e., the BSs that jointly serve MSs in CoMP transmission)

serves exclusively a single MS. However, in practical cellular networks employing CoMP

transmission, the necessary conditions in (2.16) generally do not hold, since cooperating

BSs usually serve multiple MSs to suppress ICI and to improve spectral efficiency. As a

result, the following corollary represents a direct application of Theorem 2.1.

Corollary 2.1. In cellular networks with multiple MSs served jointly by cooperating BSs in

CoMP transmission, the optimal objective value of the continuous relaxation (2.13) is strictly
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smaller than that of the JNOB problem (2.12), i.e.,

Φ(BMC) < Φ(BMI). (2.17)

We further observe that we can set ak,l = 1 and bl = 1, ∀k ∈ K, ∀l ∈ L, for testing the

feasibility of the JNOB problem (2.12). If the JNOB problem (2.12) is feasible, then a fully

connected network is a feasible network topology. This suggests that if the SOCP in (2.13)

is feasible, e.g., with a feasible solution given by the parameter tuple
{
w

(FES)
k,l , a

(FES)
k,l , b

(FES)
l ,

∀k ∈ K, ∀l ∈ L
}

, then the point
{
w

(FES)
k,l , ak,l = 1, bl = 1, ∀k ∈ K, ∀l ∈ L

}
is a feasible

solution of the JNOB problem (2.12). As a result, the JNOB problem (2.12) is feasible if and

only if the associated continuous relaxation in (2.13) is feasible.

2.3.2 Overview of the BnC method and the solver CPLEX

Thanks to the vast advancement of parallel computing, the convex continuous relaxation

based BnC method [67–69, 81, 82] is widely adopted for solving MISOCPs and is imple-

mented in the commercial solvers, e.g., in IBM ILOG CPLEX [81]. We present here a

brief overview of the continuous relaxation based BnC method, based on the JNOB problem

in (2.12) and the associated continuous relaxation in (2.13).

The BnC method is a combination of the branch-and-bound (BnB) procedure and the

cutting plane (CP) algorithm [67–69, 81, 82]. As in the BnB procedure, a binary search

tree that consists of nodes is constructed in the BnC algorithm, as shown in Fig. 2.2. Each

node on the search tree represents the continuous relaxation, which is a SOCP as that of the

SOCP in (2.13), of a subproblem resulted from fixing one or more binary integer variables

in the original MISOCP (2.12) [67–69, 81, 82]. The BnC search tree is initialized with one

node, e.g., the root node that represents the continuous relaxation in (2.13) of the JNOB

problem (2.12), as illustrated in Fig. 2.2. If the solution of the SOCP represented by a

node is not integer-feasible, the BnC procedure chooses one relaxed binary variable that is

not integer-valued in the solution to perform a branching step. As a result, parting from

the current node, two subproblems are created by fixing the chosen variable to be one and

zero, respectively, which are represented by two descendant nodes of the current node (cf.

Fig. 2.2). This branching process is carried out recursively at each node on the BnC search

tree. Considering a minimization problem such as the JNOB problem in (2.12), a node and

its descendants (i.e., the subtree rooted at that node) can be removed from the BnC search

tree if one of the following pruning conditions is satisfied [67–69, 81, 82]:

(C1) The continuous relaxation represented by the node is infeasible (deleting the node).
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(C2) The solution of the continuous relaxation at the node is integer-feasible (deleting the

node and recording the integer-feasible solution).

(C3) The optimal objective value of the continuous relaxation at the node is larger than that

of the incumbent solution (deleting the node and its descendants). The incumbent

solution is the best-known integer-feasible solution, i.e., the one with the smallest

objective value among the recorded integer-feasible solutions.

The pruning conditions (C1) – (C3) are also displayed in Fig. 2.2.

���� ����

, [0,1], [0,1], ,k l la b k l∈ ∈ ∀ ∈ ∀ ∈K L
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�������
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1,2 1a = 1,2 0a =

Figure 2.2: Illustration of the BnC solution process and the pruning conditions.

Further, we know from the pruning conditions (C1) – (C3) that the size of the search tree

and the computational complexity of the BnC algorithm depend critically on the formulation

of the MISOCP, as well as the tightness of the continuous relaxation of the sub-MISOCP at

each node [67–69, 81, 82]. Throughout this thesis, the tightness of a continuous relaxation

refers to the absolute gap between the optimal objective value of a MISOCP and that of the

associated continuous relaxation. For instance, the term
∣∣Φ(BMI) − Φ(BMC)

∣∣ represents the

tightness of the continuous relaxation in (2.13). In this sense, a smaller gap of
∣∣Φ(BMI) −

Φ(BMC)
∣∣ corresponds to a tighter continuous relaxation in (2.13).

The solution of the continuous relaxation at a node provides a local lower bound (LLB)

on the optimal objective value of the corresponding sub-MI-SOCP at that node and its de-

scendants. The LLBs are important for pruning nodes and reducing the size of the search tree

according to the pruning condition (C3). The minimum among the LLBs of the nodes repre-

sents a global lower bound (GLB) of the optimal objective value of the JNOB problem (2.12).

The GLB is important for computing optimality certificates (see Section 2.5.1) [67–69, 81,

82]. In the BnC procedure, the GLB on the optimal objective value of the original MIS-

OCP (2.12) is successively improved due to the branching operations on some of the relaxed

binary variables. Hence, the optimality certificate is eventually obtained as the branching
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process continues if the runtime allows. The standard BnC method is commonly imple-

mented with parallel processing threads as in, e.g., the commercial MIP solver IBM ILOG

CPLEX [81].

During the tree-searching process of the BnC algorithm, cuts may be generated at each

node. Cuts are linear (and/or convex) constraints added to a MISOCP to reduce the size of

the feasible set of the associated continuous relaxations [67–69,81,82]. That is, cuts are con-

straints that are redundant (i.e., not affecting the feasible set) for the original MISOCPs, but

they reduce the size of the feasible sets of the associated continuous relaxations, as illustrated

in Fig. 2.3. For instance, the following constraints, i.e., the constraints in Eq. (2.12e):

(2.12e):

L∑

l=1

ak,l ≥ 1, ∀k ∈ K

are redundant in the JNOB problem formulation in (2.12), but they are not necessarily au-

tomatically satisfied in the associated continuous relaxation in (2.13) (cf. Section 2.3.1).

As a result, adding the cuts in (2.12d) and (2.12e) into the continuous relaxation (2.13) can

remove some non-integer solutions and tighten the continuous relaxation in (2.13). In addi-

tion to such problem-specific cuts in (2.12e), there are also general cuts that are valid for all

MISOCPs, like the Clique-cuts, and the Gomory-cuts [67–69, 81, 82].

Disconnected set Continuous relaxation Applying cuts

Figure 2.3: From left to right: the feasible set of a MISOCP, the feasible set of the associ-

ated continuous relaxation, and the feasible set of the associated continuous relaxation after

applying cuts.

The MIP solver IBM ILOG CPLEX implements the standard parallel BnC method [67–

69, 81, 82]. CPLEX offers users the full control of the BnC solution process, such as adding

problem-specific cuts, and stopping the BnC tree-search when needed [81]. Control of the

BnC solution process is the subject of various problem reformulations and customizing tech-

niques discussed later in Section 2.4 and Section 2.5, respectively. The customizing strate-

gies for the BnC method are part of the main contributions of this thesis and they will be
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discussed in all the technical chapters. Moreover, the solver CPLEX also records the best-

known GLB computed in the BnC procedure. The best-known GLB, or the best-known

global upper bound (GUB) for maximization problems (see, e.g., Chapter 3), can be utilized

to characterize the quality of the solutions found by CPLEX and to evaluate the performance

of low-complexity heuristic algorithms.

2.4 The extended formulation and analytic studies

2.4.1 The extended MISOCP formulation

The standard big-M formulation (2.12) results in loose continuous relaxations (2.13) and

very large BnC search trees [67–69]. To improve the standard big-M formulation (2.12), we

adopt a similar approach as in [68, 97] and introduce the auxiliary variable tk,l ≥ 0 to model

the power transmitted from the lth BS to the kth MS (i.e., the term ‖wk,l‖22), ∀k ∈ K, ∀l ∈ L.

We use tk,l to replace the loose upper bound P
(MAX)
l used in Eq. (2.12c) and rewrite the on-

off constraints in (2.12c) as

‖wk,l‖22 ≤ ak,ltk,l, ∀k ∈ K, ∀l ∈ L. (2.18)

which are equivalent to (see, e.g., [34, 105])

∥∥[2wT
k,l, ak,l − tk,l

]∥∥
2
≤ ak,l + tk,l, ∀k ∈ K, ∀l ∈ L. (2.19)

The on-off constraints in (2.19) become SOC constraints when the binary integer variables

{ak,l, ∀k ∈ K, ∀l ∈ L} are relaxed to be continuous variables taking values in the closed

interval [0, 1]. We redefine accordingly the new total BSs power consumption function

g ({ak,l}, {bl}, {tk,l}) as

g
(
{ak,l}, {bl}, {tk,l}

)
,

L∑

l=1

blP̃
(IDL)
l +

L∑

l=1

(
Λl

K∑

k=1

tk,l +

K∑

k=1

ak,lP
(CMP)
k,l

)
. (2.20)

With the auxiliary variables {tk,l, ∀k ∈ K, ∀l ∈ L}, the new on-off constraints in (2.19),

and the new objective function in (2.20), we can convert the big-M MISOCP formula-

tion (2.12) of the JNOB problem into the following extended MISOCP, which is labeled
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as the extended integer (EXI) formulation:

Φ(EXI) , min
{wk,l,ak,l,bl,tk,l}

g
(
{ak,l}, {bl}, {tk,l}

)
(2.21a)

s.t. (2.9a): Im{hH
k wk} = 0, ∀k ∈ K

(2.9b):
∥∥[hH

k W, σk

]∥∥
2
≤ γkRe{hH

k wk}, ∀k ∈ K
(2.12d): ak,l ≤ bl, ∀k ∈ K, ∀l ∈ L

(2.12e):

L∑

l=1

ak,l ≥ 1, ∀k ∈ K

(2.19):
∥∥[2wT

k,l, ak,l − tk,l
]∥∥

2
≤ ak,l + tk,l, ∀k ∈ K, ∀l ∈ L

K∑

k=1

tk,l ≤ blP
(MAX)
l , ∀l ∈ L (2.21b)

0 ≤ tk,l ≤ ak,lP
(MAX)
l , ∀k ∈ K, ∀l ∈ L (2.21c)

ak,l ∈ {0, 1}, bl ∈ {0, 1}, ∀k ∈ K, ∀l ∈ L (2.21d)

where the constraints in (2.21b) denote the per-BS sum-power constraints, as that in (2.12b).

Note that the constraints in (2.21c) represent problem-specific cuts added to the extended

MISOCP formulation (2.21) to obtain tighter continuous relaxations. The extended MISOCP

formulation in (2.21) is also known as the perspective reformulation [68, 97] and lifting [68,

82] of the standard big-M MISOCP formulation in (2.12).

Assume that the point
{
w

(EXI)
k,l , a

(EXI)
k,l , b

(EXI)
l , t

(EXI)
k,l , ∀k ∈ K, ∀l ∈ L

}
is an optimal

(unnecessarily unique) solution of the extended formulation (2.21) of the JNOB problem.

From the equivalence of Eqs. (2.18) and (2.19), and considering that the objective function

in (2.21a) is minimized, we can straightforwardly establish by contradicting argument that

∥∥w(EXI)
k,l

∥∥2
2
= a

(EXI)
k,l t

(EXI)
k,l = t

(EXI)
k,l , ∀k ∈ K, ∀l ∈ L. (2.22)

We know from Eq. (2.22) that adding the equality constraints ‖wk,l‖22 = tk,l, ∀k ∈
K, ∀l ∈ L, will not change the optimal solution set of the extended MISOCP formula-

tion (2.21). However, substituting the KL equalities {‖wk,l‖22 = tk,l, ∀k ∈ K, ∀l ∈ L} into

the extended MISOCP formulation (2.21), we obtain exactly the big-M MISOCP formula-

tion (2.12). As a result, the extended formulation (2.21) and the big-M formulation (2.12) are

equivalent in the sense that both yield the same optimal objective value, i.e., Φ(EXI) = Φ(BMI),

and from an optimal solution of the extended formulation (2.21), an optimal solution of the

big-M formulation (2.12) can directly be computed, and vice versa [68, 97].



26 Chapter 2. Network optimization and multi-cell beamforming for CoMP transmission

We remark that although the proposed MISOCP formulations in (2.12) and (2.21) rep-

resent the same JNOB problem, the extended formulation (2.21) admits tighter continuous

relaxations than that of the big-M formulation (2.12), which shall be analyzed in the next

subsection. The former admits less computational complexity than the latter when applying

the BnC method, which will be demonstrated in Section 2.7.

2.4.2 Analytic comparison of the two formulations

The continuous relaxation associated with the extended MISOCP formulation (2.21) can be

expressed as the following SOCP, referred as the extended continuous relaxation (EXC):

Φ(EXC) , min
{wk,l,ak,l,bl,tk,l}

g
(
{ak,l}, {bl}, {tk,l}

)
(2.23a)

s.t. (2.9a): Im{hH
k wk} = 0, ∀k ∈ K

(2.9b):
∥∥[hH

k W, σk

]∥∥
2
≤ γkRe{hH

k wk}, ∀k ∈ K
(2.12d): ak,l ≤ bl, ∀k ∈ K, ∀l ∈ L

(2.12e):

L∑

l=1

ak,l ≥ 1, ∀k ∈ K

(2.19):
∥∥[2wT

k,l, ak,l − tk,l
]∥∥

2
≤ ak,l + tk,l, ∀k ∈ K, ∀l ∈ L

(2.21b):

K∑

k=1

tk,l ≤ blP
(MAX)
l , ∀l ∈ L

(2.21c): 0 ≤ tk,l ≤ ak,lP
(MAX)
l , ∀k ∈ K, ∀l ∈ L

0 ≤ ak,l ≤ 1, 0 ≤ bl ≤ 1, ∀k ∈ K, ∀l ∈ L. (2.23b)

Assume that the point
{
w

(EXC)
k,l , a

(EXC)
k,l , b

(EXC)
l , t

(EXC)
k,l , ∀k ∈ K, ∀l ∈ L

}
is an opti-

mal (not necessarily unique) solution of the SOCP (2.23). Similar to the development of

Eqs. (2.14), (2.15), and (2.22), the following results can readily be established resorting to

proof-by-contradiction:

L∑

l=1

b
(EXC)
l ≥ 1 (2.24)

K∑

k=1

a
(EXC)
k,l ≥ b

(BMC)
l , ∀l ∈ L (2.25)

∥∥w(EXC)
k,l

∥∥2
2
= a

(EXC)
k,l t

(EXC)
k,l ≤ t

(EXC)
k,l , ∀k ∈ K, ∀l ∈ L. (2.26)
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In case that there exist indices j ∈ K and m ∈ L such that a
(EXC)
j,m is non-integer valued,

i.e., if 0 < a
(EXC)
j,m < 1, we know from the equalities in (2.26) and the constraints in (2.21b)

that

∥∥w(EXC)
j,m

∥∥2
2
< t

(EXC)
j,m =

∥∥w(EXC)
j,m

∥∥2
2

a
(EXC)
j,m

(2.27)

K∑

k=1

∥∥w(EXC)
k,m

∥∥2
2
< b(EXC)

m P (MAX)
m . (2.28)

Eq. (2.27) suggests that if there exists a non-integer-valued variable a
(EXC)
j,m , the objective

value in (2.23a) is strictly larger than that of (2.13a) at the point
{
w

(EXC)
k,l , a

(EXC)
k,l , b

(EXC)
l ,

t
(EXC)
k,l , ∀k ∈ K, ∀l ∈ L

}
. Eq. (2.28) further reveals that the feasible set described by

Eqs. (2.19) and (2.21b) when projected onto the variables {wk,l, ak,l, bl, ∀k ∈ K, ∀l ∈ L},
i.e., projecting the parameter tuple {wk,l, ak,l, bl, tk,l, ∀k ∈ K, ∀l ∈ L} to the parameter tuple

{wk,l, ak,l, bl, ∀k ∈ K, ∀l ∈ L}, is always contained in the corresponding feasible set defined

by Eqs. (2.12b) and (2.12c).

We know directly from the constraints in (2.12d) and (2.21c) that

a
(EXC)
k,l ≤ b

(EXC)
l , ∀k ∈ K, ∀l ∈ L (2.29)

t
(EXC)
k,l ≤ a

(EXC)
k,l P

(MAX)
l , ∀k ∈ K, ∀l ∈ L. (2.30)

Eqs. (2.26) and (2.30) together imply that

∥∥w(EXC)
k,l

∥∥2
2
≤
(
a
(EXC)
k,l

)2
P

(MAX)
l , ∀k ∈ K, ∀l ∈ L (2.31)

and Eqs. (2.21b), (2.26), and (2.29) together suggest that

K∑

k=1

∥∥w(EXC)
k,l

∥∥2
2
≤
(
b
(EXC)
l

)2
P

(MAX)
l , ∀l ∈ L. (2.32)

Eqs. (2.31) and (2.32), together with the constraints in (2.12d) and (2.12e), suggest

that the point
{
w

(EXC)
k,l , a

(EXC)
k,l , b

(EXC)
l , ∀k ∈ K, ∀l ∈ L

}
, i.e., the projection of the point{

w
(EXC)
k,l , a

(EXC)
k,l , b

(EXC)
l , t

(EXC)
k,l , ∀k ∈ K, ∀l ∈ L

}
, satisfies all the constraints of the SOCP

in (2.13) and therefore it is a feasible solution of the SOCP (2.13). Based on this result, we

can compare the tightness of the continuous relaxations in (2.13) and (2.23), as summarized

in the following theorem.

Theorem 2.2 (Tighter Continuous Relaxation). The optimal objective value of the extended
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continuous relaxation in (2.23) is no smaller than that of the big-M continuous relaxation in

(2.13), i.e., it always holds that

Φ(EXC) ≥ Φ(BMC). (2.33)

Proof 2.2. Please refer to Appendix A.2 for the proof.

We know from Theorem 2.2 that the extended continuous relaxation (2.23) generally

provides a larger lower bound Φ(EXC) on the optimal objective value Φ(EXI) = Φ(BMI) than

the corresponding lower bound Φ(BMC) provided by the big-M continuous relaxation (2.13).

We can further show that the optimal objective value of the continuous relaxation (2.23) is

strictly larger than that of the continuous relaxation (2.13) for cellular networks employing

CoMP transmission. To this end, we first make use of Eq. (2.26) to identify the necessary

conditions for the special case of Φ(BMC) = Φ(EXC) to hold, which is summarized in the

following theorem.

Theorem 2.3 (Necessary Conditions). If the continuous relaxations (2.13) and (2.23) achieve

the same optimal objective value, i.e., if Φ(BMC) = Φ(EXC), then it must hold that

a
(EXC)
k,l ∈ {0, 1}, b(EXC)

l ∈ {0, 1}, ∀k ∈ K, ∀l ∈ L (2.34)

Φ(BMC) = Φ(BMI) = Φ(EXI) = Φ(EXC) (2.35)

K∑

j=1

a
(EXC)
j,l =

K∑

j=1

a
(EXC)
j,m = 1, if a

(EXC)
k,l = a

(EXC)
k,m = 1,

for some k ∈ K, l 6= m, ∀l, m ∈ L. (2.36)

That is, in the case that Φ(BMC) = Φ(EXC), the point
{
w

(EXC)
k,l , a

(EXC)
k,l , b

(EXC)
l , t

(EXC)
k,l , ∀k ∈

K, ∀l ∈ L
}

and the projected point
{
w

(EXC)
k,l , a

(EXC)
k,l , b

(EXC)
l , ∀k ∈ K, ∀l ∈ L

}
are optimal

solutions of problems (2.21) and (2.12), respectively. Further, the special case of Φ(BMC) =

Φ(EXC) may occur if each of the cooperating BSs (i.e., the BSs that jointly serve MSs in CoMP

transmission) serves only a single MS.

Proof 2.3. Please refer to Appendix A.3 for the proof.

It is important to note that in practical cellular networks employing CoMP transmission,

the cooperating BSs usually serve more than one MS to mitigate ICI and to improve spectral

efficiency, and therefore the necessary conditions in (2.36) practically do not hold. As a

result, the following corollary can directly be concluded from Theorem 2.3.



2.5. Techniques for customizing the BnC method 29

Corollary 2.2. In cellular networks with BSs collaboratively serving multiple MSs in CoMP

transmission, the lower bound of the minimum total BSs power consumption provided by the

SOCP (2.23) is strictly larger than that given by the SOCP (2.13), i.e.,

Φ(BMC) < Φ(EXC) ≤ Φ(BMI) = Φ(EXI). (2.37)

The advantages of the extended MISOCP formulation (2.21) over the standard big-M

MISOCP formulation (2.12) in terms of computational complexity when applying the BnC

method will be further demonstrated with numerical results in Section 2.7.2.

2.5 Techniques for customizing the BnC method

We introduce in this section several customizing strategies to further speed up the parallel

BnC algorithm implemented in, e.g., the MIP solver CPLEX [81], to solve the JNOB prob-

lem. The customizing techniques also enable the BnC algorithm to compute tight lower

bounds on the minimum total BSs power consumptions, which can be employed to evaluate

the performance of fast heuristic algorithms.

2.5.1 Customized optimality criterion

Define Ψ(BIF) and Ψ(GLB) as the objective value of the best-known integer-feasible (BIF)

solution (also called the incumbent solution [69, 81, 82]) of the JNOB problem (2.21) and

the largest GLB of the optimal objective value Φ(EXI), respectively, computed in the BnC

procedure. Since Ψ(BIF) and Ψ(GLB) represent the best-known global upper bound (GUB)

and GLB of the optimal objective value Φ(EXI), respectively, we have that

0 < Ψ(GLB) ≤ Φ(EXI) ≤ Ψ(BIF). (2.38)

A widely adopted measure of the maximum relative deviation from optimality of an incum-

bent solution (i.e., the best-known integer-feasible solution), is the relative MIP gap, defined

as [69, 81, 82]:

Relative MIP gap ,

∣∣Ψ(GLB) −Ψ(BIF)
∣∣

Ψ(BIF)
= 1− Ψ(GLB)

Ψ(BIF)
. (2.39)

However, the runtime required to establish the exact optimality certificate, i.e., Ψ(BIF) =

Ψ(GLB), for large-scale networks is prohibitive (even if the incumbent solution is indeed
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optimal). The quality of the incumbent solution is commonly measured by the relative MIP

gap defined in (2.39). According to [69,81,82], an incumbent solution computed in the BnC

procedure is declared as an optimal solution of the JNOB problem (2.21) if it satisfies that

1− Ψ(GLB)

Ψ(BIF)
≤ η (2.40)

where the constant η ≥ 0 denotes the prescribed relative optimality tolerance, which can

be customized for specific applications [69, 81, 82]. Particularly, the constant η can be set

to be strictly larger than zero. This implies that an incumbent solution is declared as the

optimal (not necessarily unique) solution of problem (2.21) if it meets the optimality criterion

in (2.40), despite the fact that there may exist integer-feasible solutions with smaller objective

values [69, 81, 82].

Further, we know from Eq. (2.40) that it is of great interest to find high-quality integer-

feasible solutions resulting in a small GUB Ψ(BIF) and to compute a large GLB Ψ(GLB).

Small Ψ(BIF) and large Ψ(GLB) are essential for speeding up the process of computing the

optimality certificate in (2.40).

2.5.2 Customized node selection and branching rules

The computational complexity of solving the JNOB problem with the BnC method depends

on the total number of nodes on the BnC search tree that are visited. We can reduce the

number of nodes that need to be processed by customizing the BnC algorithm according to

the specific characteristics of the JNOB problem (2.21). Several customizing strategies can

be applied to control the execution of the BnC search process, e.g., defining the branching

priorities. The customizing strategies are supported by the solver CPLEX [81].

In the BnC procedure, the node selection rule decides which node that has not been vis-

ited before on the BnC search tree will be visited after processing the current node. Several

node selection strategies are supported in the solver CPLEX [81]. When applying CPLEX

on the JNOB problem, we employ the best-bound search rule, which chooses the node that

has the smallest objective value of the SOCP among all active nodes [67–69], i.e., the node

with the smallest LLB. The best-bound search rule yields small GLB Ψ(GLB) of the opti-

mal objective value Φ(EXI) since the smallest LLB is replaced by two larger LLBs of the

two descendant nodes after processing the current node [67–69] and therefore it speeds up

computing the optimality certificate (2.40).

When the SOCP at a node of the BnC search tree is solved, a decision needs to be taken to

determine which one of the non-integer-valued variable among the relaxed binary variables
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in the solution to branch on, i.e., which variable to fix to integer values in the next step

of the BnC algorithm. Branching variable selection at a node is carried out according to

the branching priorities of the (relaxed) binary integer variables. At each branching step,

the variable that has the largest branching priority among all the non-integer-valued relaxed

binary variables is selected.

Recall that the point
{
w

(EXC)
k,l , a

(EXC)
k,l , b

(EXC)
l , t

(EXC)
k,l , ∀k ∈ K, ∀l ∈ L

}
represents an

optimal solution of the continuous relaxation (2.23) and therefore the vectors
{
w

(EXC)
k,l ∀k ∈

K, ∀l ∈ L
}

can be treated as the virtual beamformers under a fully connected network. Due

to the specific scalar ambiguity of the variables
{
a
(EXC)
k,l , ∀k ∈ K, ∀l ∈ L

}
and

{
t
(EXC)
k,l , ∀k ∈

K, ∀l ∈ L
}

expressed in the left equality of Eq. (2.26), it is generally not useful to choose

a variable to branch on based solely on the values of
{
a
(EXC)
k,l , ∀k ∈ K, ∀l ∈ L

}
. Hence, to

determine proper branching priorities of the non-integer-valued relaxed binary variables, we

define in this chapter the incentive measure, denoted by Υk,l, of assigning the lth BS to serve

the kth MS (i.e., setting ak,l = 1) as

Υk,l ,

∑K

j=1

∣∣hH
j,lw

(EXC)
k,l

∣∣2

Λlt
(EXC)
k,l + P

(CMP)
k,l

, ∀k ∈ K, ∀l ∈ L. (2.41)

The numerator of Eq. (2.41) represents the total power received at the K MSs from the

virtual beamformer w
(EXC)
k,l , and the denominator of Eq. (2.41) can be interpreted as the

power expended to obtain this total received power. As a result, the incentive measure in

Eq. (2.41) can be interpreted as the normalized system utility obtained from assigning the

lth BS to the kth MS. In other words, the incentive measure Υk,l represents the normalized

importance of the link between the lth BS and the kth MS to the entire network and to the

JNOB problem (2.21).

Similarly, we define the incentive measure Ωl of switching on the PA of the lth BS (i.e.,

setting bl = 1) as

Ωl ,

∑K

k=1

∑K

j=1

∣∣hH
j,lw

(EXC)
k,l

∣∣2

Λl

∑K

k=1 t
(EXC)
k,l + P̃

(IDL)
l

, ∀l ∈ L. (2.42)

The numerator of Eq. (2.42) represents the total power received at the K MSs when the

lth BS is powered on and transmitting, and the denominator of Eq. (2.42) represents the

total power expended at the lth BS when it is transmitting. Hence, the incentive measure

Ωl given in (2.42) can be interpreted as the normalized system utility that can be potentially

gained from powering on the PA of the lth BS. In other words, the incentive measure Ωl

represents the normalized importance of the lth BS to the whole network and to the JNOB
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problem (2.21).

Intuitively, the relaxed binary variables that have large impacts (i.e., large incentive mea-

sures) on the JNOB problem (2.21) shall be processed first. We propose here to carry out

variable selection in the BnC procedure based on the proposed incentive measures defined

in Eqs. (2.41) and (2.42). Specifically, we define the branching priority, denoted as Υk,l,

associated with the (relaxed) binary variable ak,l as

Υk,l ,

K∑

j=1

L∑

m=1

I (Υj,m ≤ Υk,l) , ∀k ∈ K, ∀l ∈ L (2.43)

where the indicator function I (Υj,m ≤ Υk,l) is defined as

I (Υj,m ≤ Υk,l) =

{
1, if Υj,m ≤ Υk,l

0, otherwise.
(2.44)

Accordingly, we define the branching priority Ωl of the (relaxed) binary variable bl as

Ωl , max
j∈K,m∈L

Υj,m +
L∑

m=1

I (Ωm ≤ Ωl) , ∀l ∈ L (2.45)

where the term maxj∈K,m∈LΥj,m is used in (2.45) to enforce larger branching priorities of

the variables {bl, ∀l ∈ L} than that of the variables {ak,l, ∀k ∈ K, ∀l ∈ L}, so that the PA of

a BS is powered on (off) before assigning (unassigning) the BS to any MSs.

We remark that the proposed branching prioritizing principles in (2.43) and (2.45) take

into account not only the channel vectors
{
hH
k,l, ∀k ∈ K, ∀l ∈ L

}
, but also the system param-

eters
{
Λl, P̃

(IDL)
l , P

(CMP)
k,l , ∀k ∈ K, ∀l ∈ L

}
. In addition, the dependence of the branching

priorities (2.43) and (2.45) on the SINR requirements
{
Γ
(MIN)
k , ∀k ∈ K

}
is implicitly in-

corporated through the virtual beamformers
{
w

(EXC)
k,l , ∀k ∈ K, ∀l ∈ L

}
, which are obtained

from solving the SOCP in (2.23). Furthermore, fixing the branching priorities of the (relaxed)

binary variables favors parallel implementations of the BnC procedure [67–69, 81, 82].

2.5.3 Integer-feasible initializations

According to the pruning conditions (C3) specified in Section 2.3.2, high-quality integer-

feasible solutions can also reduce the number of visited nodes in the BnC method and

therefore reduce the computational complexity of the BnC algorithm. High-quality integer-

feasible initializations can be obtained through low-complexity heuristic algorithms, which
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are discussed in the subsequent section.

2.6 The low-complexity heuristic algorithms

2.6.1 The SOCP based inflation procedure

We propose in this subsection a fast inflation procedure [83, 84] to compute high-quality

integer-feasible solutions of the JNOB problem (2.12). Let the point
{
a
(n)
k,l , b

(n)
l , ∀k ∈ K, ∀l ∈

L
}

denote the solution of the binary variables obtained in the nth iteration. The inflation

procedure is initialized with none of the BSs assigned to any MSs, i.e., a
(0)
k,l = 0, b

(0)
l = 0,

∀k ∈ K, ∀l ∈ L, and a sufficiently large objective value Φ(0), e.g., set Φ(0) ,
∑L

l=1

(
P̃

(IDL)
l +

ΛlP
(MAX)
l +

∑K

k=1 P
(CMP)
k,l

)
. The BSs are gradually assigned to the MSs by fixing one of the

zero-valued variables in
{
a
(n−1)
k,l , ∀k ∈ K, ∀l ∈ L

}
to one in the nth (n ≥ 1) iteration of the

inflation procedure.

It is a critical decision how to choose and fix to one a particular zero-valued variables in

the set
{
a
(n−1)
k,l , ∀k ∈ K, ∀l ∈ L

}
in the nth iteration. Intuitively, we shall consider the binary

variables that have large impacts on the JNOB problem (2.21). Hence, we propose here to

select variables according to the associated incentive measures defined in (2.41). That is, in

the nth iteration, the variable that has the largest incentive measure (2.41) among the zero-

valued variables in the set
{
a
(n−1)
k,l , ∀k ∈ K, ∀l ∈ L

}
is chosen and set to one. If two or more

zero-valued variables in the set
{
a
(n−1)
k,l , ∀k ∈ K, ∀l ∈ L

}
have the same largest incentive

measure, we randomly pick one of them. Note that according to Eqs. (2.5) and (2.12d), we

need to set b
(n)

l
= 1 if we fix a

(n)

k,l
= 1, for the chosen k ∈ K, l ∈ L.

After obtaining the binary variables
{
a
(n)
k,l , b

(n)
l , ∀k ∈ K, ∀l ∈ L

}
in the nth iteration of

the inflation procedure, we then solve the following SOCP, which represents a subproblem

of the JNOB problem in (2.12) with all the variables {ak,l, bl, ∀k ∈ K, ∀l ∈ L} fixed:

Φ(n) , min
{wk,l}

f
({

a
(n)
k,l

}
,
{
b
(n)
l

}
,
{
wk,l

})
(2.46a)

s.t. (2.9a): Im{hH
k wk} = 0, ∀k ∈ K

(2.9b):
∥∥[hH

k W, σk

]∥∥
2
≤ γkRe{hH

k wk}, ∀k ∈ K
K∑

k=1

‖wk,l‖22 ≤ P
(MAX)
l , if b

(n)
l = 1, ∀l ∈ L (2.46b)

wk,l = 0, if a
(n)
k,l = 0, ∀k ∈ K, ∀l ∈ L (2.46c)

where the total BSs power consumption function f({ak,l}, {bl}, {wk,l}) is defined in (2.7).
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If the SOCP in (2.46) is infeasible, we set Φ(n) = Φ(0) and proceed to the next iteration.

Otherwise, after solving problem (2.46), we compare the objective value Φ(n) with that of

Φ(n−1). If Φ(n) ≤ Φ(n−1), we proceed to the next iteration. If Φ(n) > Φ(n−1), i.e., if a worse

solution is reached, we stop with one-step backtracking, i.e., stop and return the objective

value Φ(n−1) and the solution
{
w

(n−1)
k,l , a

(n−1)
k,l , b

(n−1)
l , ∀k ∈ K, ∀l ∈ L

}
. The simple neces-

sary conditions that:
∑L

l=1 a
(n)
k,l ≥ 1, ∀k ∈ K, can be verified before solving the SOCP (2.46)

to reduce the computational efforts. The low-complexity inflation procedure is summarized

in Alg. 2.1.

Init.: Set Φ(0) ,
∑L

l=1

(
P̃

(IDL)
l + ΛlP

(MAX)
l +

∑K

k=1 P
(CMP)
k,l

)
, set a

(0)
k,l = 0, b

(0)
l = 0,

∀k ∈ K, ∀l ∈ L, and set the iteration number n = 1.

Step 1: Compute
(
k, l
)
, argmax

(k,l)∈P(n)

Υk,l,

with the set P(n) ,
{
(k, l)

∣∣k ∈ K, l ∈ L, a(n−1)
k,l = 0

}
.

Step 2: If no index pair
(
k, l
)

can be found, the inflation procedure stops and returns

the results of the (n− 1)th iteration. Otherwise, copy a
(n)
k,l = a

(n−1)
k,l , b

(n)
l = b

(n−1)
l ,

∀k ∈ K, ∀l ∈ L, and fix a
(n)

k,l
= b

(n)

l
= 1.

Step 3: Check the necessary conditions:
∑L

l=1 a
(n)
k,l ≥ 1, ∀k ∈ K. If not all of them are

satisfied, update the iteration number n← n + 1 and go back to Step 1 and repeat.

Step 4: Solve the SOCP (2.46) with the obtained indicators{
a
(n)
k,l , b

(n)
l , ∀k ∈ K, ∀l ∈ L

}
.

Step 5: If the SOCP (2.46) is feasible and Φ(n) > Φ(n−1), stop and return the results of

the (n− 1)th iteration.

Step 6: Update n← n+ 1 and go back to Step 1 and repeat.

Algorithm 2.1: The proposed SOCP based inflation procedure

Since there are in total KL binary indicators
{
ak,l, ∀k ∈ K, ∀l ∈ L

}
, the worst-case

computational complexity of the inflation procedure in Alg. 2.1 mainly consists in solving

K(L − 1) instances of the SOCP (2.46) and hence the inflation procedure is a polynomial-

time algorithm and it converges in finite iterations [34, 105]. We will show via numerical

examples in Section 2.7 that the proposed Alg. 2.1 yields near-optimal solutions of prob-

lem (2.21) with very low computational complexity.

2.6.2 The SOCP based deflation procedure

Similar to the inflation procedure, we develop here an efficient deflation procedure to com-

pute close-to-optimal solutions of the considered JNOB problem (2.21). In contrast to the

inflation procedure in Alg. 2.1, the deflation procedure starts with a fully connected network
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topology, i.e., a
(0)
k,l = 1, b

(0)
l = 1, ∀k ∈ K, ∀l ∈ L, which is inspired by the fact that if the

JNOB problem (2.21) is feasible, then a fully-connected configuration yields a feasible so-

lution. The sparsity of the network topology is then gradually increased via fixing one of the

one-valued variables in the set
{
a
(n−1)
k,l , ∀k ∈ K, ∀l ∈ L

}
to zero in the nth (n ≥ 1) iteration

of the deflation procedure.

The performance of the deflation procedure depends highly on the rules defining how a

particular one-valued variables in the set
{
a
(n−1)
k,l , ∀k ∈ K, ∀l ∈ L

}
is chosen and set to zero

in the nth iteration. Similar as in Alg. 2.1, we propose here to select variables according

to the associated incentive measures defined in Eq. (2.41). Specifically, in the nth iteration,

the variable that has the smallest incentive measure (2.41) among the one-valued variables

in
{
a
(n−1)
k,l , ∀k ∈ K, ∀l ∈ L

}
is selected and set to zero. If multiple one-valued variables in

the set
{
a
(n−1)
k,l , ∀k ∈ K, ∀l ∈ L

}
have the same smallest incentive measure, we randomly

choose one of them. Note that according to Eqs. (2.5) and (2.12d), we need to update b
(n)

l̃
=

maxj∈K a
(n)

j,l̃
after setting a

(n)

k̃,l̃
= 0, for the chosen k̃ ∈ K, l̃ ∈ L, in the nth iteration.

After updating the binary variables
{
a
(n)
k,l , b

(n)
l , ∀k ∈ K, ∀l ∈ L

}
in the nth iteration, we

then solve the SOCP in (2.46). If the SOCP (2.46) is feasible and Φ(n) ≤ Φ(n−1), i.e., a better

solution is obtained, we record the results and proceed to the next iteration. Conversely, if

the SOCP (2.46) is infeasible, or if it is feasible and Φ(n) > Φ(n−1), we initiate a one-step

backtracking procedure, i.e., we set a
(n)

k̃,l̃
= 1, b

(n)

l̃
= 1, Φ(n) = Φ(n−1), and mark Υ

k̃,l̃
= +∞

(for preventing infinite loop), with a
(n)

k̃,l̃
denoting the variable that is picked up in the nth

iteration. Similar to the inflation procedure, the necessary conditions that
∑L

l=1 a
(n)
k,l ≥ 1,

∀k ∈ K, can also be used here to quickly certify the feasibility of the SOCP (2.46). The
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low-complexity deflation procedure is summarized in Alg. 2.2.

Init.: Set Φ(0) ,
∑L

l=1

(
P̃

(IDL)
l + ΛlP

(MAX)
l +

∑K

k=1 P
(CMP)
k,l

)
, set a

(0)
k,l = 1, b

(0)
l = 1,

∀k ∈ K, ∀l ∈ L, and set the iteration number n = 1.

Step 1: Compute
(
k̃, l̃
)
, argmin

(k,l)∈Q(n)

Υk,l, s.t.
∑L

m=1 ak,m ≥ 2,

with the set Q(n) ,
{
(k, l)

∣∣k ∈ K, l ∈ L, a(n−1)
k,l = 1

}
.

Step 2: If no index pair
(
k̃, l̃
)

can be found, the deflation procedure stops and returns

the results of the (n− 1)th iteration. Otherwise, copy a
(n)
k,l = a

(n−1)
k,l , b

(n)
l = b

(n−1)
l ,

∀k ∈ K, ∀l ∈ L, and fix a
(n)

k̃,l̃
= 0 and b

(n)

l̃
= maxj∈K a

(n)

j,l̃
.

Step 3: Solve the SOCP (2.46) with the obtained indicators{
a
(n)
k,l , b

(n)
l , ∀k ∈ K, ∀l ∈ L

}
.

Step 4: If the SOCP (2.46) is feasible and Φ(n) > Φ(n−1), or if the SOCP (2.46) is

infeasible, we set a
(n)

k̃,l̃
= 1, b

(n)

l̃
= 1, Φ(n) = Φ(n−1), and mark Υ

k̃,l̃
= +∞.

Step 5: Update n← n+ 1 and go back to Step 1 and repeat.

Algorithm 2.2: The proposed SOCP based deflation procedure

The computational complexity of the deflation procedure in Alg. 2.2 mainly consists

in solving K(L − 1) times the SOCP (2.46) since there are only KL binary variables of{
ak,l, ∀k ∈ K, ∀l ∈ L

}
and therefore the deflation procedure is a polynomial-time algo-

rithm [34]. In addition, we shall show via numerical results in Section 2.7 that the deflation

procedure yields close-to-optimal solutions of the JNOB problem (2.21) with very low com-

putational complexity.

2.7 Simulation results

In the simulations, we consider a cellular network comprising 13 identical hexagonal cells

with one BS located at each cell-center. The layout of the 13 cells in a two-dimensional

coordinate system is depicted in Fig. 2.4 with a cell-radius of 1 kilometer (km). A total of

K = 15 MSs are randomly and uniformly dropped in the rectangular coverage area defined

by the dashed lines as shown in Fig. 2.4. Similar to the existing works [72, 75–78], we

consider the following channel model [106]: (i) the 3GPP LTE pathloss (PL) mode: PL =

148.1 + 37.6 log10(d) (in dB), with d (in km) denoting the BS-MS distance, (ii) Log-norm

shadowing with zero mean, 8 dB variance, (iii) Rayleigh fading with zero mean and unit

variance, (iv) transmit antenna power gain of 9 dB and noise power σ2
k = −143 dB, ∀k ∈ K.

We adopt homogeneous parameter settings: the lth BS is equipped with Ml = 4 transmit

antennas, the per-BS transmission power budget P
(MAX)
l = 10 dB, the PA efficiency 1/Λl =
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25% [104], the system parameters Γ
(MIN)
k = 6 dB, P̃

(IDL)
l = 10 dB, and P

(CMP)
k,l = P (CMP),

∀k ∈ K, ∀l ∈ L, with the values of P (CMP) listed in the figures and the tables. The relative

optimality tolerance in (2.40) is set as η = 1%. The simulation results are averaged over 500

Monte Carlo runs (MCRs).

BS 1 BS 2

BS 3BS 4

BS 5

BS 6 BS 7 BS 8

BS 9

BS 10

1 km
(0, 0)

2
k
m

2
k
m

BS 11

BS 12

BS 13

3.46 km3.46 km

Figure 2.4: The layout of the 13 cells. The K = 15 admitted MSs are randomly uniformly

dropped in the rectangular area defined by the red dashed lines.

2.7.1 Performance of the low-complexity algorithms

We first evaluate the performance of the proposed low-complexity algorithms in Alg. 2.1

and Alg. 2.2. To provide a fair comparison with the existing schemes [75–78] and to further

motivate the proposed incentive measures in Eqs. (2.41) and (2.42), we consider two base-

line schemes: employing channel gain [78] and sparsity of the beamformers [75–77] based

incentive measures, respectively, in Step 1 of the inflation and deflation procedures. The

channel gain based incentive measure [78], denoted by Υ̂k,l, of assigning the lth BS to the

kth MS (i.e., setting ak,l = 1) is defined as:

Υ̂k,l , ‖hk,l‖2, ∀k ∈ K, ∀l ∈ L. (2.47)

In the sparse optimization based approaches [75–77], the following regularized convex
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optimization problem:

{
w

(SPA)
k

}
, argmin

{wk}

K∑

k=1

‖wk‖22 + µ
K∑

k=1

‖wk‖1 (2.48a)

s.t. (2.9a): Im{hH
k wk} = 0, ∀k ∈ K

(2.9b):
∥∥[hH

k W, σk

]∥∥
2
≤ γkRe{hH

k wk}, ∀k ∈ K
K∑

k=1

‖wk,l‖22 ≤ P
(MAX)
l , ∀l ∈ L (2.48b)

is firstly solved if it is feasible to obtain the sparse beamformers
{
w

(SPA)
k , ∀k ∈ K

}
under

full BS cooperation. The large constant µ > 0 in Eq. (2.48a) denotes the penalty factor on

the l1-norm of the beamformers. We then define accordingly the sparsity based incentive

measure [75–77], denoted by
̂̂
Υk,l, of assigning the lth BS to serve the kth MS as

̂̂
Υk,l ,

∥∥w(SPA)
k,l

∥∥
1
, ∀k ∈ K, ∀l ∈ L. (2.49)

We observe in the simulations that the performance of the inflation and deflation procedures

employing the incentive measure (2.49) is not sensitive to the penalty factor µ, e.g., choosing

µ ∈ {102, 103, 104, 105} resulting in the same performance, and we thus fix µ = 103 in the

simulations.
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Figure 2.5: Performance evaluation of the inflation procedure: the total power consumption

of all BSs vs. the system parameter P
(CMP)
k,l .
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Figure 2.6: Performance evaluation of the deflation procedure: the total power consumption

of all BSs vs. the system parameter P
(CMP)
k,l .

Fig. 2.5 and Fig. 2.6 display the total BSs power consumptions versus (vs.) the system

parameter P (CMP). The curves labeled with “Lower bound w/ CPLEX on (2.21)” correspond

to the largest global lower bounds computed by the solver CPLEX applied to the JNOB

problem formulation (2.21) under the runtime limit of 300 seconds. The BnC algorithm

implemented in CPLEX is customized according to the techniques discussed in Section 2.5

and it is initialized with the solutions found by the proposed deflation procedure in Alg. 2.2

equipped with the proposed incentive measure in Eq. (2.41).

We observe from Fig. 2.5 and Fig. 2.6 that: (i) the inflation and deflation procedures

employing the proposed incentive measure in (2.41) outperform in terms of the achieved

total BSs power consumptions their counterparts that adopt the channel gain based incentive

measure in (2.47) [78] and the sparsity based incentive measure in (2.49) [75–77], (ii) the

deflation procedure outperforms in terms of the achieved total BSs power consumptions the

inflation procedure, and (iii) the average total BSs power consumptions achieved by the

proposed inflation and deflation procedures are very close to the lower bounds computed by

CPLEX, e.g., exceeding the lower bounds by less than 11.7% and 7.6%, respectively, for the

considered settings.



40 Chapter 2. Network optimization and multi-cell beamforming for CoMP transmission

0 2 4 6 8 10
10

−1

10
0

10
1

10
2

 

 

Feasible solutions w/ CPLEX on Prob. (2.21)
Deflation procedure w/ incentive in (2.41)
Inflation procedure w/ incentive in (2.41)

A
lg

o
ri

th
m

ru
n

ti
m

e
[s

ec
o

n
d

s]

Power overhead of CoMP transmission P
(CMP)
k,l [dB]

Figure 2.7: The algorithm runtime vs. the system parameter P
(CMP)
k,l .

Fig. 2.7 depicts the runtime of the considered schemes vs. the parameter P (CMP). Since

almost the same runtime is required by the inflation procedure employing different incentive

measures, which holds also for the deflation procedure, we plot in Fig. 2.7 only the runtime

of the inflation and deflation procedures employing the proposed incentive measure in (2.41).

We observe from Fig. 2.7 that, while the proposed inflation and deflation procedures yield

the total BSs power consumptions that are very close to the lower bounds, the inflation and

deflation procedures admit much less computational complexity and consume much less

runtime, e.g., requiring respectively less than 0.46% and 21.4% of the runtime required by

the customized BnC method.

Table 2.1: The number of active BS-MS links vs. the parameter P
(CMP)
k,l .

P
(CMP)
k,l [dB] 0 2 4 6 8 10

Infl. proc. w/ incent. (2.47) 34.7 32.9 31.1 29.8 28.9 28.2

Infl. proc. w/ incent. (2.49) 32.5 30.7 29.3 28.1 27.2 26.7

Infl. proc. w/ incent. (2.41) 30.6 27.4 24.8 22.6 21.1 19.8

Defl. proc. w/ incent. (2.47) 18.9 17.3 16.6 16.1 15.7 15.6

Defl. proc. w/ incent. (2.49) 19.8 17.9 16.8 16.1 15.7 15.4

Defl. proc. w/ incent. (2.41) 21.0 18.9 17.5 16.8 16.2 15.9

Feas. soln. w/ CPLEX on (2.21) 21.7 19.7 18.0 17.0 16.2 15.7

Tab. 2.1 lists the number of active BS-MS links vs. the parameter P (CMP). Here, we
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denote the BS-MS link between the lth BS and the kth MS as “active” if ak,l = 1. We observe

from Tab. 2.1 that instead of the full BS cooperation with KL = 195 active links, the average

number of active BS-MS links obtained by applying CPLEX to the JNOB problem (2.21)

ranges from 21.7 to 15.7 as the power overhead of CoMP transmission P (CMP) is increased

from 0 dB to 10 dB. This shows that partial BS cooperation and sparse network topologies

are employed in the proposed CoMP transmission design to minimize the total BSs power

consumption, and to balance the gain and the overhead of CoMP transmission.

Table 2.2: The average number of powered on BSs vs. the parameter P (CMP).

P
(CMP)
k,l [dB] 0 2 4 6 8 10

Infl. proc. w/ incent. (2.47) 12.2 12.1 11.9 11.8 11.6 11.5

Infl. proc. w/ incent. (2.49) 10.9 10.9 10.8 10.8 10.8 10.8

Infl. proc. w/ incent. (2.41) 9.6 9.6 9.6 9.5 9.4 9.4

Defl. proc. w/ incent. (2.47) 10.1 9.7 9.6 9.4 9.3 9.2

Defl. proc. w/ incent. (2.49) 10.4 10.3 10.1 10.0 10.0 9.9

Defl. proc. w/ incent. (2.41) 9.4 9.2 9.1 9.1 9.0 8.9

Feas. soln. w/ CPLEX on (2.21) 7.6 7.7 7.8 7.9 8.0 8.1

Tab. 2.2 lists the average number of BSs that are switched on, i.e., the BSs that are

transmitting data to the MSs, in the proposed design. We see from Tab. 2.2 that when taking

into account the idle-state power consumptions of the PAs of the BSs, some of the BSs are

powered off to minimize the total BSs power consumption, e.g., on average more than 37.7%

of the BSs are switched off in the proposed design.

2.7.2 Comparison of the two MISOCP formulations

In this subsection, we compare the two problem formulations in (2.12) and (2.21) and the

corresponding continuous relaxations in (2.13) and (2.23). We also demonstrate the effec-

tiveness of the proposed branching priorities in (2.43) and (2.45). To provide meaningful and

fair comparison, we apply the solver CPLEX to problems (2.12) and (2.21) with (w/) and

without (w/o) issuing the branching priorities in Eqs. (2.43) and (2.45), respectively. The

solver CPLEX is initialized with the solutions obtained by the deflation procedure equipped

with the proposed incentive measure in (2.41). The BnC procedure in CPLEX terminates

once a strictly better solution, i.e., a solution with strictly smaller total BSs power consump-

tion, than the initial solution is reached within the runtime limitation of 150 seconds.
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We first compare the continuous relaxations in (2.13) and (2.23). Fig. 2.8 displays the

optimal objective values of the continuous relaxations in Eqs. (2.13) and (2.23) vs. the

parameter P (CMP). The figure clearly shows that the continuous relaxation (2.23) associated

with the extended formulation (2.21) provides strictly larger lower bounds on the minimum

total BSs power consumptions than that of the continuous relaxation (2.13) associated with

the standard big-M formulation (2.12). The lower bounds given by the SOCP (2.23) are

almost twice as large as that offered by the SOCP (2.13).
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Figure 2.8: The optimal objective values of the continuous relaxations in (2.23) and (2.13)

vs. the system parameter P
(CMP)
k,l .

Fig. 2.9, Fig. 2.10, and Fig. 2.11 depict the percentages of solutions that are strictly better

than the initializations, the normalized total BSs power consumptions achieved by the con-

sidered methods (normalized by the total BSs power consumptions achieved by the proposed

deflation procedure), and the algorithm runtime vs. the parameter P (CMP), respectively.

We observe from Figs. 2.9 – 2.11 that: (i) applying the BnC algorithm implemented in

CPLEX to the extended formulation (2.21) yields significantly more strictly better solutions,

i.e., solutions with strictly less total BSs power consumptions, than that computed by ap-

plying the BnC method to the standard big-M formulation (2.12), while the former requires

strictly less runtime than the latter, and (ii) employing the proposed branching priorities in

Eqs. (2.43) and (2.45) in the BnC method when applied to problem (2.21) achieves a larger

percentage of strictly better solutions than the initializations with much less runtime than

that without issuing the proposed branching priorities. These observations confirm that the

extended formulation (2.21) admits less computational complexity than the standard big-M
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formulation (2.12) when applying the BnC method, and that the proposed branching priori-

ties (2.43) and (2.45) are very effective in reducing the computational complexity of the BnC

method.
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Figure 2.9: The percentage of solutions strictly better than the initial solutions obtained from

the defl. proc. employing incentive (2.41) vs. the system parameter P
(CMP)
k,l .
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Figure 2.11: The algorithm run-time vs. the system parameter P
(CMP)
k,l .

2.8 Summary

We have considered in this chapter the JNOB problem aiming to balance the benefits and

operational cost of CoMP transmission and to minimize the overall network power con-

sumption. The standard big-M MISOCP formulation (2.12) and the extended MISOCP for-

mulation (2.21) have been developed. The advantages (e.g., admitting tighter continuous re-

laxations) of the latter over the former have been confirmed by analytic studies and numerical

results. Several techniques have been introduced to customize the BnC method implemented

in the solver CPLEX when applying it on the JNOB problem. We have also developed low-

complexity heuristic algorithms in Alg. 2.1 and Alg. 2.2 to compute near-optimal solutions

of the JNOB problem for applications in large-scale networks. The simulations results show

that Alg. 2.1 and Alg. 2.2 yield with very low computational complexity the total BSs power

consumptions that are very close to the lower bounds. Our numerical results have also con-

firmed the reduction of computational complexity of the extended formulation (2.21) over

the big-M formulation (2.12) and the effectiveness of the proposed customizing strategies.

Finally, it has been observed that balancing the gain and operational overhead of CoMP

transmission results in partial BS cooperation and sparse network topologies. Further, the

PAs of some of the BSs are switched off when possible to reduce the overall BSs power

consumption in the proposed sparse network design.



Chapter 3

Discrete rate adaptation, admission

control, and downlink beamforming

3.1 Introduction

The on-going wireless data explosion drives the mobile network operators to employ spectrum-

and energy-efficient wireless communications technologies in current and future cellular

networks [1–11]. As we have discussed in Chapter 1, multiuser downlink beamforming,

in which multiple mobile stations (MSs) are jointly served on the same time and frequency

resources, represents one of the promising technologies for achieving spectrum- and energy-

efficient wireless communications.

Multiuser downlink beamforming has been intensively investigated in the literature (see,

e.g., [12, 13, 18, 24–33, 49–53, 55–58]) and has already been adopted in the latest cellular

standard, e.g., in 3GPP LTE-A [7, 8]. Particularly, the problem of optimizing the beam-

formers to maximize the (weighted) sum-rate of the downlink system under the transmission

power budget of the base station (BS) has been examined in, e.g., [13, 49–53, 55–58], where

the problem has been proved to be NP-hard. In those existing works, the instantaneous data

rates of the MSs are assumed to be continuous and strictly increasing functions of the re-

ceived SINRs at the MSs, e.g., employing Shannon’s capacity formula [13, 49–53, 55–58].

As a result, the instantaneous data rates and the received SINRs of the MSs resulted from the

sum-rate maximization problem may take any arbitrary continuous values.

In practical cellular networks, to accommodate the variations in wireless channels, dis-

crete rate adaptation in the form of adaptive modulation and coding (AMC) is widely adopted

for controlling the block error rate (BLER) or to meet the prescribed BLER requirement

specified by the cellular standards [7, 8, 19, 20]. In this dissertation, discrete rate adapta-

45
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tion refers to the procedure of assigning an achievable date rate, i.e., a specific modula-

tion and coding scheme (MCS), to each MS according to their channel conditions [7, 8,

20, 85–90, 107, 108]. With AMC, the achievable physical-layer instantaneous data rates of

the MSs are determined by the specific MCSs assigned to them and thus take discrete val-

ues [7, 8, 20, 85–90, 107, 108]. As a result, under AMC, the data rate of a MS is not a

continuous function of the received SINRs and it is different from the Shannon’s capacity

formula. For instance, in LTE systems, discrete data rate adaptation in the form of AMC is

employed. The instantaneous data rates of the MSs are determined by the assigned MCSs

and attain discrete values, rather than arbitrary continuous values, as shown in Fig. 3.1. Fur-

ther, assigning a specific data rate (i.e., a specific MCS) to a MS in practical cellular systems

generally requires the received SINR at the MS to be above a predetermined threshold for

guaranteeing the prescribed block error rate (BLER) requirement of the wireless link, see,

e.g., Fig. 3.1.
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Figure 3.1: The achievable data rates vs. the thresholds of the received SINRs in LTE sys-

tems [7, 8, 20, 85–87].

To promote practical applications that employ discrete rate adaption in the form of AMC

and multiuser downlink beamforming, e.g., in LTE and LTE-A systems [7, 8, 20, 85–87], we

consider in this chapter the joint optimization of discrete rate adaptation and multiuser down-

link beamforming (DRAB) to achieve the maximum sum-rate of the downlink system with

minimum total transmitted BS power. In our discrete rate adaptation framework, it is allowed

that a zero data rate is assigned to a MS in a given time-slot, practically meaning that the MS

is not admitted in that particular time-slot. As a result, user admission control is embedded in
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the discrete rate assignment procedure. Furthermore, minimum received SINR requirements

corresponding to the assigned data rates (i.e., the assigned MCSs) of the admitted MSs are

included in the DRAB problem to meet the BLER targets prescribed by the wireless stan-

dards, e.g., by LTE [7, 8, 20, 85–90]. The DRAB problem that we consider in this chapter

can be interpreted as a nontrivial extension of the conventional sum-rate maximization prob-

lem (with continuous rate adaptation) [13,49–53,55–58], and it includes as special cases the

joint downlink beamforming and admission control problem (with fixed rate and SINR re-

quirements) [83,109–112], as well as the problem of joint rate adaptation and power control

(with fixed transmit beamformers) [85–90, 107, 108]. Note that inspired by our preliminary

work in [113], joint discrete rate adaptation and multiuser downlink beamforming has also

been studied in [114]. However, the practical minimum SINR requirements for ensuring the

prescribed BLER targets were not considered in [114].

Since the admitted MSs are coupled through the co-channel interference in the downlink

SINR constraints and the MCS assignment (i.e., the discrete data rate allocation) proce-

dure involves binary decision variables, the DRAB problem naturally leads to a non-convex

mixed integer nonlinear program (MINLP) [67–69]. That is, the DRAB remains a non-

convex program even after relaxing the integer constraints and thus cannot be efficiently

solved [67–69]. Similar to Chapter 2, instead of treating it as a general non-convex MINLP,

we address the DRAB problem using the mixed-integer second-order cone program (MIS-

OCP) framework [82]. We reformulate the SINR constraints in our discrete data rate adap-

tation framework using the big-M approach [67–69] and develop a standard big-M MISOCP

formulation of the DRAB problem, which supports the convex continuous relaxation based

BnC method [67–69, 81, 82]. Based on the big-M formulation, we introduce auxiliary op-

timization variables and develop an improved extended MISOCP formulation [68, 82] of

the DRAB problem. The extended formulation exhibits several interesting structural prop-

erties that are exploited in the algorithmic solutions, e.g., in the BnC method. We provide

in-depth theoretical analysis to show that the extended formulation generally admits strictly

tighter continuous relaxations than that of the standard big-M formulation (and thus yields

significantly reduced computational complexity when applying the BnC method). Based

on the analysis, several efficient strategies, e.g., customized node selection and branching

rules, are proposed to customize the standard BnC method implemented in the MISOCP

solver IBM ILOG CPLEX for further computational complexity reduction. We also de-

velop low-complexity second-order cone program (SOCP) based inflation and deflation pro-

cedures [83,84] to compute the close-to-optimal solutions of the DRAB problem for practical

application in large-scale systems.

Monte Carlo simulations are carried out to verify the analytic studies and to demonstrate
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the performance of the heuristic algorithms. The parallel BnC method implemented in the

MISOCP solver CPLEX [81], which are customized according to the DRAB problem and

our proposed customizing strategies, is applied to both DRAB problem formulations for

reference. Our simulation results show that the average sum-rates of the downlink system

achieved by the proposed fast inflation and deflation procedures are very close to that of the

optimal solutions computed by the BnC method in CPLEX, while the computational com-

plexity of the heuristic algorithms is much less than that of the customized BnC method.

Furthermore, the simulation results confirm that the extended MISOCP formulation yields a

significant reduction in computational complexity, as compared to the standard big-M MIS-

OCP formulation, when applying the customized BnC method on the two formulations. Par-

ticularly, the numerical results show that the percentages of the certified optimal solutions

(cf. Section 5.5.1) when applying the BnC method on the extended MISOCP formulation

are significantly larger than that of the standard big-M MISOCP formulation for the consid-

ered settings. This confirms the improvement of the extended formulation over the standard

big-M formulation in terms of computational complexity.

This chapter is based on my original work that has been submitted in [115] and my

original work that has been published in [113].

3.2 System model

For the ease of presentation, we consider a cellular downlink system comprising one cell,

with one BS and K > 1 single-antenna MSs. The BS is equipped with M > 1 antennas.

The K MSs are admissible under the predefined minimum data rate requirements (cf. Sec-

tion 3.3.1). Denote hH
k ∈ C1×M and wk ∈ CM×1 as the frequency-flat channel vector and

the beamformer of the kth MS, respectively, ∀k ∈ K , {1, 2, · · · , K}. The received signal

yk ∈ C at the kth MS is given by (see, e.g., [12, 13, 18, 25–28, 55–57])

yk = hH
k wkxk +

K∑

j=1,j 6=k

hH
k wjxj + zk, ∀k ∈ K (3.1)

where xk ∈ C represents the normalized data symbol, i.e., E {|xk|2} = 1, designated for the

kth MS, and zk ∈ C denotes the additive circularly-symmetric white Gaussian noise [19] at

the kth MS, with zero mean and variance σ2
k, ∀k ∈ K. Note that the signal model in (3.1)

has the same form as that given in Eq. (2.1) of Chapter 2.1.

Similar to the existing works [12,13,18,24–33,49–53,55–58,83,109–112], it is assumed

that the data symbols of the MSs are mutually independent and independent from the noise.
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With single user detection at the MSs, i.e., when the co-channel interference in Eq. (3.1) is

treated as noise, the received SINR at the kth MS, denoted by SINRk, can then be expressed

as (see, e.g., [12, 13, 28])

SINRk ,
|hH

k wk|2∑K

j=1,j 6=k |hH
k wj|2 + σ2

k

, ∀k ∈ K. (3.2)

Note that the term SINRk expressed in (3.2) has the same form as the one given in Eq. (2.2)

of Chapter 2.1.

Table 3.1: The candidate MCSs and data rates, and the corresponding SINR requirements of

LTE systems [7, 8, 20, 85–87]

Modulation Code Rate Data Rate Rl SINR Level Γ
(MIN)
l

Order (×1024) [bits/symbol] [dB]

QPSK 78 78/512 −9.478
QPSK 120 120/512 −6.658
QPSK 193 193/512 −4.098
QPSK 308 308/512 −1.798
QPSK 449 449/512 0.399

QPSK 602 602/512 2.424

16-QAM 378 756/512 4.489

16-QAM 490 980/512 6.367

16-QAM 616 1232/512 8.456

64-QAM 466 1398/512 10.266

64-QAM 567 1701/512 12.218

64-QAM 666 1998/512 14.122

64-QAM 772 2316/512 15.849

64-QAM 873 2619/512 17.786

64-QAM 948 2844/512 19.809

To exploit the diversity of the channel vectors {hH
k , ∀k ∈ K}, discrete data rate adapta-

tion in the form of AMC is widely adopted in practical wireless systems, e.g., in LTE net-

works [7,8,20,85–87]. With rate adaptation, the data rate of the kth MS is determined by the

specific MCS that is assigned to the MS and therefore takes discrete values [7, 8, 20, 85–87].

For instance, Tab. 3.1 lists the set of candidate MCSs and the resulting data rates defined

in the cellular standard LTE [7, 8, 20]. Corresponding to each MCS and data rate, there
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exists a minimum received SINR requirement for guaranteeing the target BLER prescribed

by the wireless standards, e.g., by 3GPP LTE [7, 8, 20, 85–87]. While the candidate MCSs

and the resulting data rates are defined in cellular standards, the corresponding minimum

received SINR requirements are generally equipment and implementation dependent. For

instance, typical SINR requirements in LTE systems are also listed in Tab. 3.1. These SINR

thresholds in Tab. 3.1 are obtained from extensive simulations under the target BLER of

10% [7,8,20,85–87]. The candidate data rates and the corresponding SINR thresholds listed

in Tab. 3.1 are also displayed in Fig. 3.1.

We consider in this chapter the scenario that the BS assigns at most one specific MCS

out of the L > 1 candidate MCSs {MCS1,MCS2, · · · ,MCSL} to each MS in K. In the

case that no MCS (i.e., a zero data rate) is assigned to the kth MS, then the kth MS is not

admitted in the current time-slot. The problem of interest is to optimize the discrete data

rate adaptation and multiuser downlink beamforming jointly to achieve the maximum sum-

rate of the downlink system with minimum total transmitted BS power. To model the MCS

assignment procedure, we introduce the binary variable ak,l ∈ {0, 1}, with ak,l = 1 meaning

that the lth candidate MCS (i.e., the lth candidate data rate) is allocated to the kth MS, and

ak,l = 0 otherwise, ∀k ∈ K, ∀l ∈ L , {1, 2, · · · , L}. Since at most one MCS (i.e., one

specific data rate) needs to be assigned to the kth MS in one particular time-slot, we apply

the following multiple-choice constraints on the binary variables {ak,l, ∀k ∈ K, ∀l ∈ L} in

our DRAB problem:

L∑

l=1

ak,l ≤ 1, ∀k ∈ K. (3.3)

Under Eq. (3.3), the instantaneous (physical layer [7, 8, 20]) data rate of the kth MS,

denoted by rk, can be expressed as

rk =

L∑

l=1

ak,lRl, ∀k ∈ K (3.4)

where the constant Rl represents the data rate corresponding to the lth candidate MCS (see,

e.g., Tab. 3.1), ∀l ∈ L. If a nonzero data rate is assigned to the kth MS, i.e., if
∑L

l=1 ak,l = 1,

then the received SINR at the kth MS is required to be above a certain threshold to guarantee

the BLER target, as specified in, e.g., Tab. 3.1 of LTE systems [7, 8, 20, 85–87]. Under

Eq. (3.3), the minimum SINR requirements of the K MSs for ensuring the predefined BLER
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target can be formulated as

SINRk ≥
L∑

l=1

ak,lΓ
(MIN)
l , ∀k ∈ K (3.5)

where SINRk is given in Eq. (3.2) and the constant Γ
(MIN)
l denotes the SINR requirement

corresponding to the lth candidate MCS (see, e.g., Tab. 3.1), ∀l ∈ L. Note that the MCS

assignments {ak,l, ∀k ∈ K, ∀l ∈ L} and the beamformers {wk, ∀k ∈ K} are coupled in the

SINR constraints in (3.5) in the DRAB problem.

Similar to Chapter 2, it is assumed throughout this chapter that the BS has full knowledge

of the instantaneous channel vectors {hH
k , ∀k ∈ K}. The assumption of perfect CSI known

at the BS is commonly adopted in the existing works (see, e.g., [7,12,13,18,19,25,26,49–53,

55–58]), which practically realizable in time-division duplex (TDD) systems [7, 19]. Note

that the results presented in this chapter can directly be extended to a multi-cell downlink

system.

3.3 The standard big-M formulation of the DRAB problem

3.3.1 The big-M MISOCP formulation

The problem of interest is to jointly optimize the discrete rate adaptation (i.e., the MCS

assignment and admission control) and the beamformer design for the K MSs. The objective

is to maximize the system utility function f({ak,l}, {wk}), which is defined as

f({ak,l}, {wk}) ,
K∑

k=1

L∑

l=1

ak,lRl − ρ

K∑

k=1

‖wk‖22 (3.6)

where the terms
∑K

k=1

∑L

l=1 ak,lRl and
∑K

k=1 ‖wk‖22 represent the downlink sum-rate and the

total transmitted power of the BS, respectively. Taking into account the per-BS sum-power

constraint, which is given by [49–53, 55–58]:

K∑

k=1

‖wk‖22 ≤ P (MAX) (3.7)

where P (MAX) denotes the maximum allowable transmission power of the BS. The constant

weighting factor ρ can be configured to ensure that among all feasible data rate assignments

having the same maximum sum-rate, the ones with the least total transmitted BS power are
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selected as the optimal solutions. That is, there exists a constant ρ such that maximizing

the utility function f({ak,l}, {wk}) yields the maximum sum-rate with the minimum total

transmitted BS power. For instance, for the discrete data rates listed in Tab. 3.1, we can

simply choose ρ = 1/
(
1 + 512P (MAX)

)
[83, 110, 111].

The SINR constraints in the form of Eq. (3.5) are non-convex constraints even after the

binary variables {ak,l, ∀k ∈ K, ∀l ∈ L} are relaxed to be continuous variables taking values

in the closed interval [0, 1]. To derive more tractable equivalent expressions of the SINR

constraints in (3.5), we rewrite the K SINR constraints (3.5) into the following KL SINR

constraints:

( K∑

j=1,j 6=k

∣∣hH
k wj

∣∣2 + σ2
k

)
ak,lΓ

(MIN)
l ≤

∣∣hH
k wk

∣∣2 , ∀k ∈ K, ∀l ∈ L. (3.8)

Note that due to Eq. (3.3) and the fact that ak,l ∈ {0, 1}, ∀k ∈ K, ∀l ∈ L, the SINR

constraints in (3.8) are equivalent to that in (3.5). However, the products of the binary

variables {ak,l, ∀k ∈ K, ∀l ∈ L} and the beamformers {wk, ∀k ∈ K} in the SINR con-

straints in (3.8) still impose non-convexity, besides the integer constraints on the indicators

{ak,l, ∀k ∈ K, ∀l ∈ L}. To cope with this difficulty, we adopt the so-called big-M ap-

proach [67–69] to further rewrite the KL SINR constraints in (3.8) as

K∑

j=1

∣∣hH
k wj

∣∣2 + σ2
k ≤ (1− ak,l)

2U2
k + γ2

l

∣∣hH
k wk

∣∣2 , ∀k ∈ K, ∀l ∈ L (3.9)

where the big-M constant Uk > 0 and the constant γl > 0 are defined, respectively, as

Uk ,

√
‖hk‖22P (MAX) + σ2

k, ∀k ∈ K (3.10)

γl ,

√
1 + 1

/
Γ
(MIN)
l , ∀l ∈ L. (3.11)

Taking into account the Cauchy-Schwarz inequality [34, 116] and the per-BS sum-power

constraint in (3.7), we have that

K∑

j=1

∣∣hH
k wj

∣∣2 + σ2
k ≤ ‖hk‖22

K∑

j=1

‖wj‖22 + σ2
k ≤ U2

k , ∀k ∈ K. (3.12)

As a result, due to Eq. (3.12), when ak,l = 0, i.e., when the lth candidate MCS is not

assigned to the kth MS, the resulting (k, l)th constraint in (3.9) is automatically satisfied, and

the resulting (k, l)th constraint in (3.8) is also automatically satisfied. When ak,l = 1, i.e.,
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when the lth candidate MCS is assigned to the kth MS, the resulting (k, l)th SINR constraint

in (3.9) is the same as that in (3.8). Hence, the SINR constraints in (3.9) are equivalent to

that of (3.8), which follows immediately from Eq. (3.12) and the fact that ak,l ∈ {0, 1}.
It is well-known that the beamformers exhibit a phase-invariance property in the sense

that the beamformers {wk, ∀k ∈ K} and the beamformers
{
wke

θk
√
−1, ∀k ∈ K

}
result in

the same received SINRs at the MSs and the same total transmitted BS power, ∀θk ∈ [0, 2π).

As a result, we can choose the phase of the beamformer wk such that the term hH
k wk is

real and non-negative [12, 13, 83]. In other words, the SINR constraints in Eq. (3.9) can be

equivalently rewritten as (see, e.g., [12, 13, 83]):

Im
{
hH
k wk

}
= 0, Re

{
hH
k wk

}
≥ 0, ∀k ∈ K (3.13a)

∥∥[hH
k W, σk

]∥∥
2
≤ (1− ak,l)Uk + γlRe

{
hH
k wk

}
, ∀k ∈ K, ∀l ∈ L (3.13b)

where the beamformer matrix W ∈ CM×K , i.e., the collection of the K beamformers of the

K MSs, is defined as

W , [w1,w2, · · · ,wK ] . (3.14)

Note that the SINR constraints in (3.13b) become second-order cone (SOC) constraints when

the binary variables {ak,l, ∀k ∈ K, ∀l ∈ L} are relaxed to be continuous variables that take

values in the closed interval [0, 1] [34, 105].

With the system utility function f({ak,l}, {wk}) defined in (3.6) and the reformulated

SINR constraints in (3.13), the joint discrete rate adaptation and multiuser downlink beam-
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forming (DRAB) problem can be cast as the following MISOCP:

Φ(BMI) , max
{ak,l,wk}

f({ak,l}, {wk}) (3.15a)

s.t. (3.3):

L∑

l=1

ak,l ≤ 1, ∀k ∈ K

(3.7):

K∑

k=1

‖wk‖22 ≤ P (MAX)

(3.13a): Im
{
hH
k wk

}
= 0, Re

{
hH
k wk

}
≥ 0, ∀k ∈ K

(3.13b):
∥∥[hH

k W, σk

]∥∥
2
≤ (1− ak,l)Uk + γlRe

{
hH
k wk

}
, ∀k ∈ K, ∀l ∈ L

rk ,

L∑

l=1

ak,lRl ≥ r
(MIN)
k

L∑

l=1

ak,l, ∀k ∈ K (3.15b)

σk

L∑

l=1

ak,l

√
Γ
(MIN)
l ≤ Re

{
hH
k wk

}
, ∀k ∈ K (3.15c)

ak,l ∈ {0, 1}, ∀k ∈ K, ∀l ∈ L (3.15d)

where the constraint in (3.15b) is included to guarantee the quality-of-service (QoS) of the

kth MS if it is admitted, i.e., if
∑L

l=1 ak,l = 1, with r
(MIN)
k denoting the minimum data rate

requirement of the kth MS when it is admitted. The constraints in (3.15c) represent problem-

specific cuts (cf. Section 2.3.2), which are derived from the SINR constraints in (3.8) by

dropping the co-channel interference. The DRAB problem formulation in (3.15) is referred

to as the big-M integer (BMI) formulation in the sequel. Note that it is of great practical in-

terest to include the SINR constraints in (3.13) in the DRAB problem (3.15) for guaranteeing

the prescribed BLER targets in practical cellular networks [7, 8, 20]. The SINR constraints

in (3.13) were considered in our preliminary work [113], however, not in the follow-up work

of [114].

We remark that in contrast to the conventional QoS-constrained multiuser downlink

beamforming problem [12, 13, 28], the considered DRAB problem in the form of the MIS-

OCP (3.15) is always feasible. For instance, the point described by the parameter tuple

{ak,l = 0,wk = 0, ∀k ∈ K, ∀l ∈ L} is a (trivial) feasible solution of problem (3.15).

As user admission control is embedded in the discrete rate assignment procedure via the

multiple-choice constraints in (3.3), the DRAB problem (3.15) contains as a special case

the problem of joint downlink beamforming and admission control [83, 109–112]. The for-

mulated DRAB problem (3.15) represents a MISOCP, which is commonly solved with the

convex continuous relaxation based BnC method [67–69, 81, 82].
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3.3.2 The continuous relaxation of the big-M formulation

We know from Section 2.3.2 that the BnC method relying on solving the convex continuous

relaxation of the DRAB problem (3.15). The convex continuous relaxation of the DRAB

problem (3.15), which is the convex SOCP resulted from relaxing all integer constraints in

the DRAB problem (3.15), is given by

Φ(BMC) , max
{ak,l,wk}

f ({ak,l}, {wk}) (3.16a)

s.t. (3.3):

L∑

l=1

ak,l ≤ 1, ∀k ∈ K

(3.7):

K∑

k=1

‖wk‖22 ≤ P (MAX)

(3.13a): Im
{
hH
k wk

}
= 0, Re

{
hH
k wk

}
≥ 0, ∀k ∈ K

(3.13b):
∥∥[hH

k W, σk

]∥∥
2
≤ (1− ak,l)Uk + γlRe

{
hH
k wk

}
, ∀k ∈ K, ∀l ∈ L

(3.15b): rk ,

L∑

l=1

ak,lRl ≥ r
(MIN)
k

L∑

l=1

ak,l, ∀k ∈ K

(3.15c): σk

L∑

l=1

ak,l

√
Γ
(MIN)
l ≤ Re

{
hH
k wk

}
, ∀k ∈ K

0 ≤ ak,l ≤ 1, ∀k ∈ K, ∀l ∈ L (3.16b)

where the variables {ak,l, ∀k ∈ ,∀l ∈ L}, which are originally constrained in the discrete set

{0, 1} as in Eq. (3.15d), are relaxed to be continuous variables taking values in the closed

interval [0, 1] in Eq. (3.16b). The SOCP in (3.16) is referred to as the big-M continuous

relaxation (BMC) in this chapter.

Since every feasible solution of the DRAB problem in (3.15) is also feasible for the

associated continuous relaxation in (3.16), it holds that

Φ(BMC) ≥ Φ(BMI). (3.17)

That is the optimal objective value of the SOCP in (3.16) provides an upper bound on the

optimal objective value of the MISOCP in (3.15). The gap between the two optimal objec-

tive values, i.e., the term
(
Φ(BMC) − Φ(BMI)

)
, represents the measure of the tightness of the

continuous relaxation in (3.16). A smaller gap
(
Φ(BMC) − Φ(BMI)

)
corresponds to a tighter

continuous relaxation in (3.16).
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3.4 The extended formulation and analytic studies

3.4.1 The extended MISOCP formulation

While the standard big-M formulation (3.15) represents a straightforward formulation of

the DRAB problem, it results in loose continuous relaxations (2.13) and very large BnC

search trees [67–69]. In order to develop an enhanced MISOCP formulation of the DRAB

problem (3.15), we introduce the vector vk,l ∈ CM×1 to represent the virtual beamformer

of the kth MS that corresponds to the lth candidate MCS (i.e., the lth candidate data rate

Rl), and we denote accordingly φk,l ≥ 0 as the virtual transmission power, i.e., the term

‖vk,l‖22, ∀k ∈ K, ∀l ∈ L. Considering the multiple-choice constraints in (3.3) and the actual

beamformer wk of the kth MS, we impose the following constraints:

wk ,

L∑

l=1

ak,lvk,l =
L∑

l=1

vk,l, ∀k ∈ K (3.18)

‖vk,l‖22 ≤ ak,lφk,l, ∀k ∈ K, ∀l ∈ L (3.19)

0 ≤ φk,l ≤ ak,lP
(MAX), ∀k ∈ K, ∀l ∈ L (3.20)

K∑

k=1

L∑

l=1

φk,l ≤ P (MAX) (3.21)

where Eq. (3.21) represents the per-BS sum-power constraint as that of Eq. (3.7). We use the

big-M method [67–69] in Eqs. (3.19) and (3.20) to ensure that φk,l = 0 and vk,l = 0 when

ak,l = 0. Furthermore, due to Eq. (3.21), Eqs. (3.19) and (3.20) are automatically satisfied

when ak,l = 1. Eq. (3.19) can further be rewritten as

∥∥[2vT
k,l, (ak,l − φk,l)]

∥∥
2
≤ ak,l + φk,l, ∀k ∈ K, ∀l ∈ L (3.22)

which become SOC constraints when the binary variables {ak,l, ∀k ∈ K, ∀l ∈ L} are relaxed

to be continuous variables taking values in the closed interval [0, 1] [34, 105].

For notational convenience, we define the binary integer variable bk ∈ {0, 1} as (cf.

Eq. (3.3)):

bk ,

L∑

l=1

ak,l, ∀k ∈ K. (3.23)

That is, the variable bk can be considered as the indicator for admission control of the kth

MS, with bk = 1 indicating that the kth MS is admitted, and bk = 0 otherwise.
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With Eqs. (3.20) – (3.23), the SINR constraints in (3.13) can be rewritten as

Im
{
hH
k vk,l

}
= 0,Re

{
hH
k vk,l

}
≥ 0, ∀k ∈ K, ∀l ∈ L (3.24a)

∥∥[hH
k W, σk]

∥∥
2
≤ (1− bk)Uk +

L∑

l=1

γlRe
{
hH
k vk,l

}
, ∀k ∈ K, ∀l ∈ L. (3.24b)

Since now the term
∑K

k=1

∑L

l=1 φk,l represents the total transmitted BS power, similar to

the system utility function f({ak,l}, {wk}) defined in Eq. (3.6), we redefine a new system

utility function g ({ak,l}, {φk,l}) as

g ({ak,l}, {φk,l}) ,
K∑

k=1

L∑

l=1

ak,lRl − ρ
K∑

k=1

L∑

l=1

φk,l. (3.25)

The DRAB problem (3.15) can then be equivalently reformulated as the following MISOCP,

which is referred to as the extended integer (EXI) formulation in the sequel:

Φ(EXI) , max
{ak,l,vk,l,φk,l,bk}

g({ak,l}, {φk,l}) (3.26a)

s.t. (3.3):

L∑

l=1

ak,l ≤ 1, ∀k ∈ K

(3.15b): rk ,

L∑

l=1

ak,lRl ≥ r
(MIN)
k

L∑

l=1

ak,l, ∀k ∈ K

(3.20): 0 ≤ φk,l ≤ ak,lP
(MAX), ∀k ∈ K, ∀l ∈ L

(3.21):

K∑

k=1

L∑

l=1

φk,l ≤ P (MAX)

(3.22):
∥∥[2vT

k,l, (ak,l − φk,l)]
∥∥
2
≤ ak,l + φk,l, ∀k ∈ K, ∀l ∈ L

(3.23): bk ,

L∑

l=1

ak,l, ∀k ∈ K

(3.24a): Im
{
hH
k vk,l

}
= 0,Re

{
hH
k vk,l

}
≥ 0, ∀k ∈ K, ∀l ∈ L

(3.24b):
∥∥[hH

k W, σk]
∥∥
2
≤ (1− bk)Uk +

L∑

l=1

γlRe
{
hH
k vk,l

}
, ∀k ∈ K, ∀l ∈ L

σkak,l

√
Γ
(MIN)
l ≤ Re

{
hH
k vk,l

}
, ∀k ∈ K, ∀l ∈ L (3.26b)

γlRe
{
hH
k vk,l

}
≤ Ukak,l, ∀k ∈ K, ∀l ∈ L (3.26c)

ak,l ∈ {0, 1}, bk ∈ {0, 1}, ∀k ∈ K, ∀l ∈ L (3.26d)
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where the constraints in (3.26b) represent the problem-specific cuts similar to that of (3.15c),

which are derived from the SINR constraints in (3.24b) by dropping the co-channel interfer-

ence. The constraints in (3.26c) also represent the problem-specific cuts, as shown in the

following lemma.

Lemma 3.1 (Valid Cuts). Under the integer constraints in (3.26d), the constraints in (3.26c)

in the DRAB problem (3.26) are automatically satisfied. That is, the constraints in (3.26c)

represent valid problem-specific cuts (cf. Section 2.3.2).

Proof 3.1. Please refer to Appendix A.4 for the proof.

Note that the devised extended MISOCP formulation in (3.26) is also known as perspec-

tive formulation and lifting in the mixed-integer programming literature [68, 82, 97].

We further remark that the extended MISOCP formulation (3.26) and the standard big-

M MISOCP formulation (3.15) are equivalent in terms of the optimal objective value, i.e.

Φ(EXI) = Φ(BMI), and the optimal solution set due to the fact that ak,l ∈ {0, 1}, ∀k ∈ K, ∀l ∈
L. However, the extended formulation (3.26) generally admits strictly tighter continuous re-

laxations than that of the standard big-M formulation (3.15), as analyzed in next subsection.

Due to the tighter continuous relaxations, the computational complexity of solving the ex-

tended formulation (3.26) when applying the BnC method is significantly less than that of the

big-M formulation (3.15), which will be demonstrated with numerical results in Section 3.7.

3.4.2 Analytic comparison of the two formulations

In this subsection, we analytically show that the extended MISOCP formulation (3.26) gen-

erally admits strictly tighter continuous relaxations than that of the standard big-M formula-

tion (3.15). The convex continuous relaxation of the extended MISOCP formulation (3.26)

can be expressed as the following SOCP, which is referred to as the extended continuous
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relaxation (EXC) in this chapter:

Φ(EXC) , max
{ak,l,vk,l,φk,l,bk}

g({ak,l}, {φk,l}) (3.27a)

s.t. (3.3):

L∑

l=1

ak,l ≤ 1, ∀k ∈ K

(3.15b): rk ,

L∑

l=1

ak,lRl ≥ r
(MIN)
k

L∑

l=1

ak,l, ∀k ∈ K

(3.20): 0 ≤ φk,l ≤ ak,lP
(MAX), ∀k ∈ K, ∀l ∈ L

(3.21):

K∑

k=1

L∑

l=1

φk,l ≤ P (MAX)

(3.22):
∥∥[2vT

k,l, (ak,l − φk,l)]
∥∥
2
≤ ak,l + φk,l, ∀k ∈ K, ∀l ∈ L

(3.23): bk ,

L∑

l=1

ak,l, ∀k ∈ K

(3.24a): Im
{
hH
k vk,l

}
= 0,Re

{
hH
k vk,l

}
≥ 0, ∀k ∈ K, ∀l ∈ L

3.24b:
∥∥[hH

k W, σk]
∥∥
2
≤ (1− bk)Uk +

L∑

l=1

γlRe
{
hH
k vk,l

}
, ∀k ∈ K, ∀l ∈ L

(3.26b): σkak,l

√
Γ
(MIN)
l ≤ Re

{
hH
k vk,l

}
, ∀k ∈ K, ∀l ∈ L

(3.26c): γlRe
{
hH
k vk,l

}
≤ Ukak,l, ∀k ∈ K, ∀l ∈ L

0 ≤ ak,l ≤ 1, 0 ≤ bk ≤ 1, ∀k ∈ K, ∀l ∈ L (3.27b)

where the variables {ak,l, bk, ∀k ∈ ,∀l ∈ L}, which are originally constrained to take binary

values as in Eq. (3.26d), are relaxed to be continuous variables constrained in the closed

interval [0, 1] in Eq. (3.27b). Similar to the continuous relaxation in (3.16) that is associated

with the standard big-M formulation (3.15), the continuous relaxation in (3.27) offers an

upper bound on the optimal objective value of the extended MISOCP formulation (3.26),

i.e., Φ(EXC) ≥ Φ(EXI), since every feasible solution of the MISOCP (3.26) is also feasible for

the associated continuous relaxation in (3.27).

Assume that the point
{
a
(EXC)
k,l ,v

(EXC)
k,l , φ

(EXC)
k,l , b

(EXC)
k , ∀k ∈ K, ∀l ∈ L

}
is an optimal

(not necessarily unique) solution of the SOCP in (3.27). We define according to Eqs. (3.18)
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and (3.14) the vector w
(EXC)
k ∈ CM×1 and the matrix W(EXC) ∈ CM×K , respectively, as

w
(EXC)
k ,

L∑

l=1

v
(EXC)
k,l , ∀k ∈ K (3.28)

W(EXC) ,

[
w

(EXC)
1 ,w

(EXC)
2 , · · · ,w(EXC)

K

]
. (3.29)

Taking into account the SINR constraints in (3.24b) and the problem-specific cuts in (3.26c),

the following results can readily be derived.

Lemma 3.2 (Dominated Constraints). The optimal solution
{
a
(EXC)
k,l ,v

(EXC)
k,l , φ

(EXC)
k,l , b

(EXC)
k ,

∀k ∈ K, ∀l ∈ L
}

of the continuous relaxation in (3.27) satisfies that:

∥∥[hH
k W

(EXC), σk

]∥∥
2
≤
(
1− a

(EXC)
k,l

)
Uk + γlRe

{
hH
k v

(EXC)
k,l

}
, ∀k ∈ K, ∀l ∈ L. (3.30)

Proof 3.2. Please refer to Appendix A.5 for the proof.

We know from Lemma 3.2 and its proof in Appendix A.5 that the constraints in (3.30) are

dominated by that of (3.24b), i.e.,

∥∥[hH
k W

(EXC), σk

]∥∥
2
≤
(
1− b

(EXC)
k

)
Uk +

L∑

l=1

γlRe
{
hH
k v

(EXC)
k,l

}

≤
(
1− a

(EXC)
k,l

)
Uk + γlRe

{
hH
k v

(EXC)
k,l

}
. (3.31)

Considering the constraints given in (3.22) and the fact that the objective function in

(3.27a) is maximized, we can straightforwardly prove by contradicting argument that the

constraints in (3.22) are active at optimal solutions, i.e.,

∥∥∥v(EXC)
k,l

∥∥∥
2

2
= a

(EXC)
k,l φ

(EXC)
k,l , ∀k ∈ K, ∀l ∈ L. (3.32)

Making use of Eqs. (3.30) and (3.32), we can make the following analytic statement

regarding the tightness of the continuous relaxations in (3.16) and (3.27).

Theorem 3.1 (Tighter Continuous Relaxation). The point characterized by the parameter

tuple
{
a
(EXC)
k,l , w

(EXC)
k , ∀k ∈ K, ∀l ∈ L

}
, which is directly constructed from the optimal

solution
{
a
(EXC)
k,l ,v

(EXC)
k,l , φ

(EXC)
k,l , b

(EXC)
k , ∀k ∈ K, ∀l ∈ L

}
of the continuous relaxation

in (3.27), is a feasible solution of the continuous relaxation in (3.16), and it further holds
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that

Φ(EXC) = g
({

a
(EXC)
k,l

}
,
{
φ
(EXC)
k,l

})
≤ f

({
a
(EXC)
k,l

}
,
{
w

(EXC)
k

})
≤ Φ(BMC). (3.33)

Proof 3.3. Please refer to Appendix A.6 for the proof.

We know from Theorem 3.1 that the SOCP in (3.27), i.e., the continuous relaxation of

the extended MISOCP formulation (3.26), generally offers a tighter (smaller) upper bound

on the optimal objective value of the DRAB problem (3.15) than that of the SOCP in (3.16),

i.e., the continuous relaxation of the standard big-M MISOCP formulation (3.15). Further,

as a direct consequence of Eqs. (3.28) and (3.32), and Theorem 3.1, the following special

case can readily be established.

Corollary 3.1 (Special Case). If the SOCPs in (3.16) and in (3.27) achieve the same optimal

objective value, i.e., if

Φ(BMC) = Φ(EXC) (3.34)

then the following properties must hold:

a
(EXC)
k,l ∈ {0, 1}, b(EXC)

k ∈ {0, 1}, ∀k ∈ K, ∀l ∈ L (3.35)

Φ(BMI) = Φ(BMC) = Φ(EXC) = Φ(EXI). (3.36)

We know from Corollary 3.1 that if Φ(BMC) = Φ(EXC), then all the relaxed binary

variables {a(EXC)
k,l , b

(EXC)
k , ∀k ∈ K, ∀l ∈ L} precisely attain integer values. As a result,

in the case that Φ(BMC) = Φ(EXC), the points
{
a
(EXC)
k,l ,w

(EXC)
k , ∀k ∈ K, ∀l ∈ L

}
and{

a
(EXC)
k,l ,v

(EXC)
k,l , φ

(EXC)
k,l , b

(EXC)
k , ∀k ∈ K, ∀l ∈ L

}
are respectively the optimal solutions

of the standard big-M formulation in (3.15) and the extended formulation in (3.26), and

therefore Φ(BMI) = Φ(BMC) = Φ(EXC) = Φ(EXI). Further, Corollary 3.1 suggests that the

SOCP in (3.27) provides strictly tighter (smaller) upper bounds of the optimal objective

value Φ(BMI) than that of the SOCP in (3.16), unless all the four problems in (3.15), (3.16),

(3.26), and (3.27) achieve the same optimal objective value.

We remark that although the extended formulation (3.26) involves more optimization

variables than the standard big-M formulation (3.15), the former has significantly reduced

computational complexity as compared to the latter when applying the customized BnC

method (cf. Section 3.5). This is because the former generally admits strictly tighter con-

tinuous relaxations than the latter, as analytically shown in Theorem 3.1 and Corollary 3.1.

The reduction in computational complexity of the extended MISOCP formulation in (3.26)
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as compared to the standard big-M MISOCP formulation in (3.15) will further be verified

with numerical examples in Section 3.7.

3.5 Techniques for customizing the BnC method

3.5.1 Customized optimality criterion

We denote Ψ(BIF) and Ψ(GUB) as the objective value of the incumbent solution (i.e., the best-

known integer-feasible solution) and the smallest global upper bound (GUB) of the optimal

objective value Φ(EXI) of the DRAB problem, respectively, that are computed in the BnC

procedure. Since Ψ(BIF) and Ψ(GUB) are the best-known global lower bound (GLB) and

GUB of the optimal objective value Φ(EXI), respectively, it holds that

0 ≤ Ψ(BIF) ≤ Φ(EXI) ≤ Ψ(GUB). (3.37)

As discussed in Section 2.5.1, an incumbent solution computed in the BnC procedure is

declared as an optimal solution of the DRAB problem (3.26) if it satisfies [69, 81]:

Relative MIP gap ,
Ψ(GUB)

Ψ(BIF)
− 1 ≤ η (3.38)

where the constant η ≥ 0 denotes the predetermined relative optimality tolerance, which can

be customized for the DRAB problem in specific practical applications [69, 81].

3.5.2 Customized node selection and branching rules

As in Section 2.5.2, we employ the best-bound search rule for node selection in the BnC

procedure when applying CPLEX on the DRAB problem. The best-bound search rule can

speed up the process of computing the optimality certificate defined in (3.38) [67–69].

Recall that the point
{
a
(EXC)
k,l ,v

(EXC)
k,l , φ

(EXC)
k,l , b

(EXC)
k , ∀k ∈ K, ∀l ∈ L

}
represents an

optimal solution of the SOCP in (3.27). We observe from Eqs. (3.3) and (3.23) that the

variables {a(EXC)
k,l , ∀k ∈ K, ∀l ∈ L} and {b(EXC)

k , ∀k ∈ K} are coupled and it follows from

Eq. (3.32) that there exists scalar ambiguity between the variables a
(EXC)
k,l and φ

(EXC)
k,l , ∀k ∈

K, ∀l ∈ L. As a result, the variables
{
a
(EXC)
k,l , b

(EXC)
k , ∀k ∈ K, ∀l ∈ L

}
are not appropriate

for determining the branching priorities of the (relaxed) binary variables. We propose here

to relate the branching priorities of the (relaxed) binary variables {ak,l, bk, ∀k ∈ K, ∀l ∈ L}
to the channel gains {‖hk‖2, ∀k ∈ K} and the candidate data rates {Rl, ∀l ∈ L}. Since
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the branching priorities are predefined and do not depend on the optimal solutions of the

continuous relaxations, the proposed prioritizing scheme facilitates parallel implementations.

Denote the set K as the collection of the K (0 ≤ K ≤ K) MSs that have the K largest

channel gains among {‖hk‖2, ∀k ∈ K}, and denote the integers Ωk and Υk,l as the branching

priorities of the (relaxed) binary variables bk and ak,l, respectively. For simplicity of presen-

tation, we introduce here the principles for determining the branching priorities, rather than

providing exact definitions as done in Section 2.5.2. We partition the (relaxed) binary vari-

ables into three disjoint groups, namely G1 ,
{
bk, ∀k ∈ K

}
, G2 , {ak,l, ∀k ∈ K, ∀l ∈ L},

and G3 ,
{
bk, ∀k ∈ K \ K

}
. The proposed prioritizing principles are as follows.

(P1) We prioritize firstly admitting the MSs in the set K, secondly data rate assignment,

and then admitting the MSs in the set K \ K. In other words, the branching priorities of the

variables in G1 are strictly larger than that of G2, which are strictly larger than that of G3, i.e.,

min
k∈K

Ωk > max
k∈K,l∈L

Υk,l ≥ min
k∈K,l∈L

Υk,l > max
k∈K\K

Ωk. (3.39)

(P2) The branching priorities of the variables in G1 and G3 are sorted according to the

channel gains, i.e.,

Ωj ≥ Ωk, if ‖hj‖2 ≥ ‖hk‖2, ∀j, k ∈ K. (3.40)

(P3) The branching priorities of the variables in G2 are determined by considering firstly

the channel gains and secondly the candidate data rates, i.e.,

min
l∈L

Υj,l ≥ max
l∈L

Υk,l, if ‖hj‖2 ≥ ‖hk‖2, ∀j 6= k, ∀j, k ∈ K (3.41a)

Υk,l ≥ Υk,m, if Rl ≥ Rm, ∀k ∈ K, ∀l 6= m, l,m ∈ L. (3.41b)

Appendix A.7 presents exemplary mathematical definitions of the branching priorities

Ωk and Υk,l following the proposed prioritizing principles (P1) – (P3), assuming that the

candidate data rates {Rl, ∀l ∈ L} and the associated SINR thresholds
{
Γ
(MIN)
l , ∀l ∈ L

}
can

be ordered as (see, e.g., Tab. 3.1)

R1 ≤ R2 ≤ · · · ≤ RL (3.42)

Γ
(MIN)
1 ≤ Γ

(MIN)
2 ≤ · · · ≤ Γ

(MIN)
L . (3.43)
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3.5.3 Preprocessing

We know from the SINR constraints in (3.8) and the minimum data rate requirements in

(3.15b) that the necessary conditions for assigning the lth candidate rate Rl to the kth MS

are:

Rl ≥ r
(MIN)
k (3.44)

‖hk‖22P (MAX) ≥ σ2
kΓ

(MIN)
l (3.45)

where the necessary condition in (3.45) is obtained by dropping the co-channel interference

in the SINR constraints (3.5). As a result, not all the candidate data rates {Rl, ∀l ∈ L}
can be assigned to the kth MS and a preprocessing step can be performed to reduce the

number of candidate data rates. Denote Lk as the set of indices of the candidate data rates

that can possibly be assigned to the kth MS. According to the necessary conditions in (3.44)

and (3.45), the set Lk can be defined as

Lk ,

{
l
∣∣l ∈ L, Rl ≥ r

(MIN)
k , ‖hk‖22P (MAX) ≥ σ2

kΓ
(MIN)
l

}
. (3.46)

To reduce the computational complexity, the preprocessing step should be performed be-

fore applying the customized BnC method to the two DRAB problem formulations in (3.15)

and in (3.26). Specifically, the following cuts shall be added to the extended MISOCP for-

mulation (3.26):

ak,l = 0, ∀k ∈ K, ∀l ∈ L \ Lk (3.47)

φk,l = 0, vk,l = 0, ∀k ∈ K, ∀l ∈ L \ Lk (3.48)

Accordingly, the problem-specific cuts defined in Eq. (3.47) shall be added to the standard

big-M MISOCP formulation in (3.15).

Furthermore, the BnC method can be initialized with high-quality integer-feasible solu-

tions of the DRAB problem. The high-quality integer-feasible initializations can be com-

puted by low-complexity heuristic algorithms, which are discussed in the next section.
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3.6 The low-complexity heuristic algorithms

3.6.1 The SOCP based inflation procedure

We propose in this subsection a fast SOCP based inflation procedure [83, 84] to compute

near-optimal solutions of the DRAB problem. The inflation procedure is initialized with the

zero data rate assigned to all MSs (i.e., none of the MSs is admitted). In each iteration, one of

the non-admitted MSs is selected and tentatively assigned a nonzero data rate. The selected

MS is admitted with the assigned data rate if the data rate assignments obtained in the previ-

ous iteration together with the new data rate assignment are feasible. The performance of the

inflation procedure depends on which one of the non-admitted MSs is chosen and what data

rate is assigned to the chosen MS in each iteration. We propose here to select the candidate

MS and the data rate according to the branching priorities {Υk,l, ∀k ∈ K, ∀l ∈ L} presented

in Section 3.5.2 and Appendix A.7. Denote K(n) and L(n)
k as the set of the indices of the

admitted MSs and the set of the indices of the candidate (assigned) MCSs of the kth MS,

respectively, generated in the nth iteration, with K(0) = ∅ (the empty set), and L(0)
k = Lk

(which is defined in (3.46)), ∀k ∈ K. In the nth iteration, the following step:

(
k, l
)
= argmax

k∈K\K(n−1), l∈L(n−1)
k

Υk,l (3.49)

is carried out. If no valid index pair
(
k, l
)

can be found from Eq. (3.49), the inflation

procedure terminates and returns the results obtained in the previous iteration. Otherwise,

we tentatively update the sets K(n) = K(n−1) ∪
{
k
}

, L(n)

k
=
{
l
}

, and L(n)
k = L(n−1)

k , ∀k ∈
K \

{
k
}

. Then, in the nth iteration, the following convex SOCP:

{
w

(n)
k

}
, argmin

{wk}

K∑

k=1

‖wk‖22 (3.50a)

s.t. (3.7):

K∑

k=1

‖wk‖22 ≤ P (MAX)

(3.13a): Im
{
hH
k wk

}
= 0, Re

{
hH
k wk

}
≥ 0, ∀k ∈ K

∥∥[hH
k W, σk

]∥∥
2
≤ γlRe

{
hH
k wk

}
, ∀k ∈ K(n), ∀l ∈ L(n)

k (3.50b)

is solved using, e.g., the interior-point method [34, 105] or fast specialized algorithms that

are built on the downlink-uplink duality theory [12, 13, 25, 26, 28]. If the SOCP in (3.50)

is feasible, the inflation procedure proceeds to the next iteration. Otherwise, one step back-

tracking is performed, i.e., we reset K(n) = K(n−1), and L(n)

k
= L(n−1)

k
\
{
l
}

to exclude the
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index pair
(
k, l
)

from future consideration. Since one of the candidate data rates is tested

for one of the non-admitted MSs in each iteration, the worst-case computational complexity

of the inflation procedure consists in solving
∑K

k=1 Lk instances of the SOCP in (3.50), with

the cardinality Lk , |Lk|, ∀k ∈ K. The fast inflation procedure is summarized in Alg. 3.1.

Init.: Initialize K(0) = ∅, and L(0)
k = Lk, ∀k ∈ K, and set the iteration number n = 1.

Step 1: Compute
(
k, l
)

according to Eq. (3.49). If no index pair
(
k, l
)

can be found

from Eq. (3.49), stop and return K(n−1) and
{
L(n−1)

k , ∀k ∈ K(n−1)
}

. Otherwise, update

the sets K(n) = K(n−1) ∪
{
k
}

, L(n)

k
=
{
l
}

, and L(n)
k = L(n−1)

k , ∀k ∈ K \
{
k
}

.

Step 2: Solve the SOCP in (3.50) with the obtained sets K(n) and
{
L(n)

k , ∀k ∈ K(n)
}

.

Step 3: If the SOCP in (3.50) is infeasible, set K(n) = K(n−1) and L(n)

k
= L(n−1)

k
\
{
l
}

.

Otherwise, update the iteration number n← n + 1 and go back to Step 1 and repeat.

Algorithm 3.1: The proposed SOCP based inflation procedure

3.6.2 The SOCP based deflation procedure

In this subsection we propose a low-complexity SOCP based deflation procedure, which

represents a non-trivial extension of the SOCP based deflation procedure presented in [83].

The deflation procedure yields integer-feasible solutions of the DRAB problem with better

objective function values than that of the inflation procedure in Alg. 3.1 (see Section 3.7),

at slightly increased computational complexity. Denote the binary variables
{
a
(n)
k,l , ∀k ∈

K, ∀l ∈ L
}

as the data rate assignments for the K MSs obtained in the nth iteration. The

deflation procedure is initialized with a
(0)
k,l = 1, ∀k ∈ K, ∀l ∈ Lk, and a

(0)
k,l = 0, ∀k ∈ K,

∀l ∈ L \ Lk, with the set Lk defined in (3.46). In the nth iteration, we firstly copy a
(n)
k,l =

a
(n−1)
k,l , ∀k ∈ K, ∀l ∈ L, and solve the following feasibility problem, which represents a

convex SOCP, using, e.g., the interior-point method [34, 105]:

{
v
(n)
k,l , s

(n)
k,l , c

(n)
k

}
, argmin
{vk,l,sk,l,ck}

K∑

k=1

L∑

l=1

‖vk,l‖22 + µ

K∑

k=1

L∑

l=1

sk,l (3.51a)

s.t. (3.7):

K∑

k=1

‖wk‖22 ≤ P (MAX)

(3.24a): Im
{
hH
k vk,l

}
= 0,Re

{
hH
k vk,l

}
≥ 0, ∀k ∈ K, ∀l ∈ L

∥∥[hH
k W, σk

]∥∥
2
≤ ck, if

L∑

l=1

a
(n)
k,l ≥ 1 (3.51b)

ck ≤ sk,l + γlRe
{
hH
k vk,l

}
, if a

(n)
k,l = 1 (3.51c)

sk,l ≥ 0, ∀k ∈ K, ∀l ∈ L (3.51d)
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where the auxiliary optimization variables {sk,l, ∀k ∈ K, ∀l ∈ L} are introduced in prob-

lem (3.51) to ensure that it is always feasible. In the objective function (3.51a), the constant

µ > 0 represents a large penalty factor for the total infeasibility measure, i.e., the term
∑K

k=1

∑L

l=1 sk,l. As shall be shown in Section 3.7, the performance of the deflation pro-

cedure is not sensitive to the penalty factor µ and thus it can easily be configured. The

auxiliary optimization variables {ck, ∀k ∈ K} are employed to simplify the formulation of

the relaxed SINR constraints in Eqs. (3.51b) and (3.51c). In the nth iteration, if the obtained

total infeasibility measure satisfies that
∑K

k=1

∑L

l=1 s
(n)
k,l < β, with the constant β > 0 denot-

ing the predefined infeasibility tolerance, the deflation procedure terminates. Otherwise, the

following step:

(
k̃, l̃
)
, argmax

k∈K,l∈L
s
(n)
k,l (3.52)

is carried out to find the index pair
(
k̃, l̃
)

, and we set a
(n)

k̃,l̃
= 0 to exclude assigning the

l̃th MCS to the k̃th MS. If two index pairs correspond to the same maximum infeasibility

measure in Eq. (3.52), i.e., if s
(n)

k̃1,l̃1
= s

(n)

k̃2,l̃2
= maxk∈K,l∈L s

(n)
k,l , we then choose the index

pair with the smaller branching priority, i.e., we choose
(
k̃, l̃
)
=
(
k̃1, l̃1

)
if Υ

k̃1,l̃1
≤ Υ

k̃2,l̃2
.

Otherwise, we choose
(
k̃, l̃
)
=
(
k̃2, l̃2

)
. That is we consider the infeasibility measures, the

channel gains, and the candidate data rates jointly when determining the index pair
(
k̃, l̃
)

.

Denote
{
a
(DFL)
k,l , ∀k ∈ K, ∀l ∈ L

}
and

{
v
(DFL)
k,l , ∀k ∈ K, ∀l ∈ L

}
as the data rate assign-

ments and the virtual beamformers, respectively, obtained from the deflation procedure. The

deflation procedure may lead to that more than one variables in the set
{
a
(DFL)
k,l , ∀l ∈ L

}
are

set to one for the kth MS, i.e., more than one data rates are assigned to the kth MS. In case

that
∑L

l=1 a
(DFL)
k,l > 1, a post-processing step shall be performed to assign the largest possible

data rate to the kth MS based on the indicators
{
a
(DFL)
k,l , ∀l ∈ L

}
, ∀k ∈ K. Assuming that

the candidate data rates are ordered as in Eq. (3.42), we obtain the final data rate assignments{
ã
(DFL)
k,l , ∀k ∈ K, ∀l ∈ L

}
and the beamformers

{
w̃

(DFL)
k , ∀k ∈ K

}
, respectively, as

ã
(DFL)
k,l =





a
(DFL)
k,l , if l = argmax

m∈Lk

a
(DFL)
k,m Rm

0, otherwise
, ∀k ∈ K, ∀l ∈ L (3.53)

w̃
(DFL)
k =

L∑

l=1

ã
(DFL)
k,l v

(DFL)
k,l , ∀k ∈ K. (3.54)

Similar to the proposed inflation procedure in Alg. 3.1, the worst-case computational
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complexity of the proposed deflation procedure consists in solving
∑K

k=1 Lk instances of

the SOCP in (3.51), since one of the candidate data rate assignments is excluded in each

iteration. The proposed low-complexity deflation procedure is summarized in Alg. 3.2.

Init.: Initialize a
(0)
k,l = 1, ∀k ∈ K, ∀l ∈ Lk, and set a

(0)
k,l = 0, ∀k ∈ K, ∀l ∈ L \ Lk.

Specify the infeasibility tolerance β, and set the iteration number n = 1.

Step 1: Set a
(n)
k,l = a

(n−1)
k,l , ∀k ∈ K, ∀l ∈ L, and solve the feasibility problem (3.51).

Step 2: If
∑K

k=1

∑L

l=1 s
(n)
k,l < β, go to Post-step. Otherwise, compute the index pair(

k̃, l̃
)

according to Eq. (3.52). If s
(n)

k̃1,l̃1
= s

(n)

k̃2,l̃2
= maxk∈K,l∈L s

(n)
k,l , set

(
k̃, l̃
)
=
(
k̃1, l̃1

)
if Υ

k̃1,l̃1
≤ Υ

k̃2,l̃2
. Otherwise, set

(
k̃, l̃
)
=
(
k̃2, l̃2

)
. Fix a

(n)

k̃,l̃
= 0.

Step 3: Set n← n+ 1 and go back to Step 1 and repeat.

Post-step: Compute the data rate assignments
{
ã
(DFL)
k,l , ∀k ∈ K, ∀l ∈ L

}
and the

beamformers
{
w̃

(DFL)
k , ∀k ∈ K

}
according to Eqs. (3.53) and (3.54), respectively.

Algorithm 3.2: The proposed SOCP based deflation procedure

3.7 Simulation results

As in Chapter 2, we adopt in the simulations the following channel model [106]: (i) the 3GPP

LTE pathloss (PL) mode: PL = 148.1 + 37.6 log10(d) (in dB), with d (in km) denoting the

BS-MS distance; (ii) log-norm shadowing with zero mean, 8 dB variance; (iii) Rayleigh

fading with zero mean and unit variance; and (iv) transmit antenna power gain of 9 dB; (v)

the noise power σ2
k = −143 dB, ∀k ∈ K. The BS is equipped with M = 4 transmit antennas,

and the distances between the BS and the K MSs are uniformly and randomly generated in

the interval [0.05, 1] km. The date rates and SINR requirements listed in Tab. 1 are used. We

choose the weighting factor ρ = 1/
(
1 + 512P (MAX)

)
(c.f Eqs. (3.6) and (3.25)), the relative

optimality tolerance η = 0.5% (cf. Eq. (3.38)), the parameter K = 12 (cf. Eq. A.17) and the

infeasibility tolerance β = 10−5 in Alg. 3.2. The maximum transmission power P (MAX) of

the BS, the penalty parameter µ (cf. Eq. (3.51a)), and the number of admissible MSs K are

listed under (or in) the figures. For comparison, the MIP solver CPLEX [81] is applied to

the DRAB problem formulations in (3.15) and in (3.26). All simulation results are averaged

over 600 Monte Carlo runs (MCRs).

3.7.1 Performance of the low-complexity algorithms

We first investigate the performance of the proposed low-complexity algorithms in Alg. 3.1

and Alg. 3.2. For all simulation results presented in this subsection, the runtime limit of the
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solver CPLEX is set as T = 720 seconds.
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Figure 3.2: The sum-rate vs. the parameter K, with P (MAX) = 14 dB.

Fig. 3.2 displays the average sum-rate in bits-per-channel-use (bpcu) versus (vs.) the

number of admissible MSs K, i.e., the total number of MSs available to be admitted, with the

maximum transmission power of the BS P (MAX) = 14 dB. Fig. 3.2 shows that the deflation

procedure in Alg. 3.2 yields sum-rates that are very close to that of the optimal solutions

satisfying the optimality criterion in (3.38). For instance, the relative gap is less than 0.7%

for K ≥ 14. The deflation procedure is not sensitive to the penalty factor µ (cf. Eq. (3.51a))

since choosing µ = 105 and µ = 103 yield almost identical sum-rates. Furthermore, the

inflation procedure in Alg. 3.1 also demonstrates good performance compared to the optimal

solutions computed by CPLEX. For example, the relative gap of the sum-rates achieved by

Alg. 3.1 and that of the optimal solutions is less than 1.7% for K ≥ 14. The inflation and

deflation procedures have much less computational complexity than that of the BnC method

(cf. Fig. 3.4).

Fig. 3.3 depicts the average total transmitted power vs. the number of admissible MSs

K. We observe from Fig. 3.3 that the excess in the total transmitted BS power achieved by

the deflation procedure in Alg. 3.2 is negligible, compared to that of the optimal solutions

computed by CPLEX. The inflation procedure in Alg. 3.1 yields the BS power consumption

that exceeds that of the optimal solutions by less than 0.4 dB for all considered values of K.

Further, Fig. 3.2 and Fig. 3.3 together suggest that the multiuser diversity gain in terms of

increased sum-rate and reduced total transmitted BS power is achieved from MS admission

control in the proposed design.
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Figure 3.3: The total transmitted BS power vs. the parameter K, with P (MAX) = 14 dB.
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Figure 3.4: The algorithm runtime vs. the parameter K, with P (MAX) = 14 dB.

The runtime of the considered schemes vs. the number of admissible MSs K is plotted

in Fig. 3.4. Fig. 3.4 clearly shows that the heuristic algorithms in Alg. 3.1 and Alg. 3.2 admit

significantly less computational complexity than that of the customized BnC method. While

the deflation procedure yields larger sum-rates with less BS power consumption than the

inflation procedure, the former has a slightly more computational complexity. In practice,

when employing application-specific hardware and software, the required runtime can be
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significantly reduced [67–69, 81, 82].
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Figure 3.5: The percentage of optimal solutions vs. the parameter K, with P (MAX) = 14 dB.

The percentage of certified optimal (with respect to the optimality certificate defined

in (3.38)) solutions vs. the number of admissible MSs K is shown in Fig. 3.5. It can be seen

from Fig. 3.5 that the proposed deflation procedure yields optimal solutions in more than

62% of the MCRs for all considered values of K, and it generates optimal solutions in more

than 83% of the MCRs with K = 20. The proposed inflation procedure computes optimal

solutions in more than 43% of the MCRs for all considered values of K, and it achieves

optimal solutions in more than 75% of the MCRs with K = 20.

3.7.2 Comparison of the two MISOCP formulations

We next compare the performance of the two DRAB problem formulations. As reference,

the performance of the deflation procedure in Alg. 3.2 is also presented. For all simulation

results presented in this subsection, the runtime limit of the solver CPLEX is set as T = 50

seconds.
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Figure 3.6: The sum-rate vs. the parameter P (MAX), with K = 10.
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Figure 3.7: The total transmitted BS power vs. the parameter P (MAX), with K = 10.

We plot in Fig. 3.6 the average sum-rate vs. the maximum transmission power of the BS

P (MAX), with the number of admissible MSs K = 10. The dotted curve with circles repre-

sents the results obtained by applying the solver CPLEX to the extended formulation (3.26)

and CPLEX is initialized with the integer-feasible solutions computed by the proposed de-

flation procedure in Alg. 3.2. We observe from Fig. 3.6 that all considered methods achieve

almost the same sum-rates. Furthermore, all considered schemes achieve almost the same

total transmitted power of the BS, which is displayed in Fig. 3.7.
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Figure 3.8: The algorithm runtime vs. the parameter P (MAX), with K = 10.

The average runtime of the considered methods vs. the maximum transmission power

of the BS P (MAX) is depicted in Fig. 3.8. Note that the runtime represented by the solid

curve with down-triangles, i.e., the method applying CPLEX on the standard big-M formu-

lation (3.15) without initialization, is about 50 seconds, which corresponds to the chosen

runtime limit. We see from Fig. 3.8 that the extended formulation (3.26) admits less compu-

tational complexity than that of the big-M formulation (3.15) when applying the customized

BnC method (cf. Section 3.5), and the computational complexity of the customized BnC

method applied to problem (3.26) is further reduced when it is initialized with the integer-

feasible solutions found by the proposed deflation procedure in Alg. 3.2.

Fig. 3.9 displays the percentage of certified optimal (under the optimality criterion in

(3.38)) solutions vs. the maximum transmission power of the BS P (MAX). Fig. 3.8 and

Fig. 3.9 together clearly show that the extended formulation (3.26) admits less computa-

tional complexity for computing the optimality certificate in (3.38) than that of the big-M

formulation (3.15) when applying the customized BnC method in CPLEX.
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Figure 3.9: The percentage of optimal solutions vs. the parameter P (MAX), with K = 10.

3.8 Summary

Similar to the contributions presented in Chapter 3, we have developed in this chapter two

MISOCP formulations for the considered DRAB problem. It has also been analytically

proved that the extended formulation (3.26) generally admits strictly tighter continuous re-

laxations than that of the standard big-M formulation (3.15). Several efficient strategies have

been proposed to customize the standard BnC method implemented in CPLEX for solving

the DRAB problem. We have furthermore developed the low-complexity SOCP based infla-

tion and deflation procedures in Alg. 3.1 and Alg. 3.2, respectively, to compute near-optimal

solutions of the DRAB problem for applications in large-scale networks. Our simulation

results have shown that the proposed inflation and deflation procedures yield with very low

computational complexity average sum-rates and BS power consumptions that are very close

to that of the optimal solutions computed by CPLEX for the considered simulation settings.

The numerical results have also confirmed the significant reduction in computational com-

plexity of the extended MISOCP formulation over the standard big-M MISOCP formulation

when applying the customized BnC method in CPLEX.



Chapter 4

Codebook-based downlink beamforming

and channel predistortion

4.1 Introduction

In modern cellular standards, e.g., in 3GPP LTE/LTE-A [7, 8, 20], both non-codebook-

based (i.e., adaptive) and codebook-based (i.e., switched) multiuser downlink beamform-

ing schemes are defined. In non-codebook-based multiuser downlink beamforming, af-

ter computing the (optimal) beamformers (including transmission power allocations), the

BS applies these beamformers to transmit user-specific reference signals (URSs) to inform

the MSs about the composite (precoded) channels (i.e., the inner products of the beam-

formers and the original channels). The MSs estimate the composite channels using the

known URSs. In contrast to this, in codebook-based multiuser downlink beamforming (also

known as single-layer-per-user precoding), the BS assigns the precoding vectors from the

predefined precoding vector codebook that consists of a finite number of predetermined

precoding vectors, to the MSs, along with proper transmission power allocations. The

BS then signals the indices of the assigned precoding vectors and the allocated transmis-

sion powers to the MSs [7, 8, 14, 20–22, 117, 118]. The multiuser downlink beamform-

ing schemes presented in Chapters 2 and 3, in which the beamforming vectors are cho-

sen from the continuous vector spaces, represent non-codebook-based beamforming tech-

niques [12, 13, 24]. In Chapters 4 and 5, we consider codebook-based multiuser down-

link beamforming schemes [7, 8, 14, 20–22, 117–120]. Similar to Chapter 2, we employ in

this chapter also the QoS-constrained approach when optimizing codebook-based multiuser

downlink beamforming, where the QoS targets of the admitted MSs are expressed through

the minimum received SINR requirements [23].

75
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We consider first the joint optimization of precoding vector assignment and transmis-

sion power allocation in the standard codebook-based multiuser downlink beamforming

(SCBF) problem. While it is well-known that the QoS based beamformer design problem in

non-codebook-based multiuser downlink beamforming can be efficiently solved using either

convex optimization techniques or customized iterative algorithms [12, 13, 25–31, 121], the

SINR-constrained SCBF problem represents a combinatorial mixed-integer program (MIP)

and is significantly more challenging. This is because in the SCBF problem precoding vec-

tor assignments involve binary decision makings, and the precoding vector assignments and

transmission power allocations of multiple MSs are coupled through co-channel interference

in the downlink SINR constraints. To facilitate algorithmic solutions of the SCBF problem,

we develop a mixed-integer linear program (MILP) reformulation of the SCBF problem,

which can be solved using, e.g., the standard BnC method [67–69, 81, 82]. The computa-

tional complexity of the BnC method when applying to the SCBF problem may not be af-

fordable for practical applications. To develop more efficient solutions, we follow a similar

idea as presented in [12, 13, 25–30] and introduce a virtual uplink (VUL) problem, in which

the precoding vector assignments of different MSs are naturally decoupled. We establish the

uplink-downlink duality between the VUL problem and the downlink SCBF problem, and

develop a customized power iteration algorithm to optimally solve the VUL problem and

hence the SCBF problem. Only very simple algebraic operations are performed in each iter-

ation of the proposed power iteration method. Resorting to the standard interference function

(SIF) approach [35, 36, 122, 123], we show analytically that the proposed power iteration al-

gorithm yields either the optimal (within the prescribed numerical accuracy) solutions of the

SCBF problem (when it is feasible), or the infeasibility certificates (when it is infeasible).

Since the beamformers are confined in the predefined precoding vector codebook con-

sisting of a small number of fixed precoding vectors, codebook-based downlink beamform-

ing inherently exhibits performance degradation in terms of, e.g., increased transmitted BS

power required to guarantee the QoS targets of the admitted MSs, as compared to non-

codebook-based downlink beamforming (cf. Section 4.5). To improve the performance of

codebook-based downlink beamforming, we introduce a channel predistortion procedure in

the standard codebook-based multiuser downlink beamforming [7, 8, 14, 20–22, 117–120].

The channel predistortion scheme consists in a common linear transformation of the down-

link channel vectors using one common channel predistortion matrix. The channel pre-

distortion mechanism introduces additional degrees of freedom for beamformer design in

the standard codebook-based downlink beamforming. As shall be discussed further in Sec-

tion 4.4.1, the channel predistortion scheme involves minor modifications in the transmis-

sion procedures of the cell-specific reference signals and user payload data. As a result,
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the channel predistortion scheme does not introduce any additional signaling overhead or

modifications of the mobile receivers. That is, the proposed channel predistortion mecha-

nism can be straightforwardly applied in current third generation (3G) and fourth generation

(4G) cellular standards, e.g., in 3GPP LTE/LTE-A [7, 8, 20]. To ensure that the predis-

torted channel vectors can still be tracked in the channel estimation procedures performed

at the MSs, smoothness constraints are imposed on the predistorted channel processes. The

SINR-constrained codebook-based beamforming and channel predistortion (CBCP) problem

represents a non-convex MIP, which remains a non-convex program even after relaxing the

integer constraints, and efficient optimal algorithmic solutions for non-convex MIPs are not

available in the literature [67, 68].

We develop an alternating optimization algorithm (ATOA) to approximately solve the

CBCP problem. The ATOA iterates between solving two subproblems: (i) optimizing the

precoding vector assignments and the power allocations under a fixed channel predistortion

matrix, which represents a MILP that can be efficiently solved using, e.g., the BnC method

and/or the proposed customized power iteration method, and (ii) optimizing the channel

predistortion matrix and the transmission power allocations under fixed precoding vector

assignments, which can be closely approximated by a second-order cone program (SOCP)

that can be efficiently solved using, e.g., the interior-point method [34]. Since either one

of the two subproblems in the ATOA may become infeasible even if the original CBCP

problem is feasible, an alternating feasibility search algorithm (AFSA), which follows a

similar procedure as the ATOA, is also developed to compute feasible solutions of the CBCP

problem, which are used to initialize the ATOA. Convergence properties of the proposed

ATOA and AFSA are discussed.

The simulation results show that, for the SCBF problem, the proposed customized power

iteration method yields with a few low-complexity iterations, either the same total transmit-

ted BS power as that of the optimal solutions computed by the BnC method (when the SCBF

problem is feasible), or the infeasibility certificates (when it is infeasible). Our numerical

results also demonstrate that the proposed channel predistortion design achieves significant

reductions in the total transmitted BS power and tremendous increases in the percentage

of feasible cases out of all Monte Carlo runs, as compared to the standard codebook-based

downlink beamforming (without channel predistortion).

This chapter is based on my original work that has been published in [124–126], and new

simulation results are presented in this chapter.
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4.2 System model

Similar to Chapter 3, we consider in this chapter a cellular downlink system with one BS

equipped with M > 1 transmit antennas, and K > 1 single-antenna MSs. All the K MSs

are admitted with the prescribed QoS requirements. We denote hH
k ∈ C1×M , uk ∈ CM×1,

and pk > 0 as the frequency-flat channel vector, the normalized beamformer (precoding

vector), i.e., ‖uk‖2 = 1, and the allocated transmission power, respectively, of the kth MS,

∀k ∈ K , {1, 2, · · · , K}. The received signal yk ∈ C at the kth MS can be written as (see,

e.g., [12, 13, 18, 25–33])

yk = hH
k uk

√
pkxk + hH

k

K∑

j=1,j 6=k

uj

√
pjxj + zk, ∀k ∈ K (4.1)

where xk ∈ C denotes the normalized data symbol, i.e., E {|xk|2} = 1, of the kth MS, and

zk ∈ C represents the additive circularly-symmetric white Gaussian noise [19] at the kth MS,

with zero mean and variance σ2
k, ∀k ∈ K. Note that the beamforming vector wk discussed in

Chapters 2 and 3, e.g., in Eqs. (2.1) and (3.1), corresponds to the term
√
p
k
uk in the signal

model (4.1), ∀k ∈ K.

We consider in this chapter the codebook-based multiuser downlink beamforming as

defined in modern wireless standards, e.g., in 3GPP LTE/LTE-A [7, 8, 20]. In codebook-

based multiuser downlink beamforming, the normalized beamformer uk is assigned from

one of the predetermined precoding vectors in the predefined precoding vector codebook B
that consists of L > 1 unit-norm precoding vectors, i.e.,

uk ∈ B , {v1, v2, · · · , vL} , ∀k ∈ K (4.2)

where the predetermined precoding vector vl ∈ CM×1 and ‖vl‖2 = 1, ∀l ∈ L , {1, 2, · · · , L}.
Assume that the data symbols of the MSs are mutually independent and are independent

from the noise. Under single-user detection, i.e., treating co-channel interference as noise at

the receivers, the downlink (DL) received SINR at the kth MS, denoted by SINR
(DL)
k , can

then be expressed as (see, e.g., [12, 13, 18, 25–33])

SINR
(DL)
k ,

pk
∣∣uH

k hk

∣∣2
∑K

j=1,j 6=k pj
∣∣uH

j hk

∣∣2 + σ2
k

, ∀k ∈ K. (4.3)

As in Chapters 2 and 3, we also assume in this chapter that the instantaneous downlink

channel vectors {hH
k , ∀k ∈ K} are known at the BS, which is practically realizable in, e.g.,
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TDD systems by exploiting channel reciprocity [7, 19].

4.3 The standard codebook-based downlink beamforming

problem

4.3.1 The SCBF problem formulation

Following the SINR-constrained approach [12, 13, 18, 25–33], we consider the joint opti-

mization of precoding vector assignment and transmission power allocation to minimize the

total transmitted power of the BS while guaranteeing the prescribed SINR target Γ
(MIN)
k ,

representing the subscribed QoS requirement of the kth MS [23], ∀k ∈ K. The standard

codebook-based multiuser downlink beamforming (SCBF) problem can be formulated as

the following discrete optimization problem:

Φ(SCBF) , min
{uk,pk}

K∑

k=1

pk (4.4a)

s.t. uk ∈ B, ∀k ∈ K (4.4b)

pk ≥ 0, ∀k ∈ K (4.4c)

K∑

k=1

pk ≤ P (MAX) (4.4d)

SINR
(DL)
k =

pk
∣∣uH

k hk

∣∣2
∑K

j=1,j 6=k pj
∣∣uH

j hk

∣∣2 + 1
≥ Γ

(MIN)
k , ∀k ∈ K (4.4e)

where the term SINR
(DL)
k is defined in Eq. (4.3). Eq. (4.4d) represents the per-BS sum-power

constraint, with the constant P (MAX) > 0 denoting the maximum transmission power of the

BS. The normalized downlink channel vector h
H

k ∈ C1×M in Eq. (4.4e) is defined as

h
H

k , hH
k /σk, ∀k ∈ K. (4.5)

Note that the conventional QoS-constrained non-codebook-based downlink beamform-

ing problem can be efficiently solved to optimality using convex optimization techniques

or specialized iterative algorithms [12, 13, 25–28, 121]. In contrast to this, efficient con-

vex optimization techniques cannot be applied to solve the SCBF problem (4.4) due to the

discrete constraints defined in (4.4b). To facilitate computing the optimal solutions of the

SCBF problem (4.4) using, e.g., the BnC method [67–69, 81, 82], we propose next a MILP
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reformulation of the SCBF problem (4.4).

We introduce the binary integer variable {ak,l ∈ {0, 1}, ∀k ∈ K, ∀l ∈ L} to model the as-

signments of precoding vectors from the precoding vector codebook as defined in Eq. (4.4b).

We indicate with ak,l = 1 that the lth precoding vector vl ∈ B is assigned to the kth MS, and

ak,l = 0 otherwise. Accordingly, we introduce the variable φk,l ≥ 0 to model the allocated

transmission power corresponding to the lth precoding vector vl ∈ B when it is assigned

to the kth MS, ∀k ∈ K, ∀l ∈ L. To derive a MILP formulation, we impose the following

constraints in the SCBF problem:

K∑

k=1

L∑

l=1

φk,l ≤ P (MAX) (4.6)

0 ≤ φk,l ≤ ak,lP
(MAX), ∀k ∈ K, ∀l ∈ L (4.7)

L∑

l=1

ak,l = 1, ∀k ∈ K (4.8)

where Eq. (4.6) represents the reformulation of the per-BS sum-power constraint as that

given in (4.4d). Eq. (4.7) implements the big-M method [67–69] to ensure that φk,l = 0

when ak,l = 0. Furthermore, Eq. (4.7) is automatically satisfied when ak,l = 1 due to

Eq. (4.6). Eqs. (4.7) and (4.8) together imply that one and only one binary variable in the set

{ak,l, ∀l ∈ L} is one, and one and only one variable in the set {φk,l, ∀l ∈ L} is non-zero for

the kth MS. As a result, we can express the transmission power pk and the beamformer uk

of the kth MS, respectively, as

pk =
L∑

l=1

ak,lφk,l =
L∑

l=1

φk,l, ∀k ∈ K (4.9)

uk =

L∑

l=1

ak,lvl, ∀k ∈ K. (4.10)

Eqs. (4.9) and (4.10) together further imply that

pj
∣∣uH

j hk

∣∣2 =
L∑

l=1

φj,l

∣∣vH
l hk

∣∣2 , ∀j, k ∈ K. (4.11)
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Making use of Eq. (4.11), the term SINRk given in Eq. (4.4e) can be rewritten as

SINR
(DL)
k =

∑L

m=1 φk,m

∣∣vH
mhk

∣∣2
∑K

j=1,j 6=k

∑L

l=1 φj,l

∣∣vH
l hk

∣∣2 + 1
, ∀k ∈ K. (4.12)

We obtain from the downlink SINR constraints in (4.4e) the following necessary condi-

tion for assigning the lth precoding vector vl ∈ B to the kth MS:

P (MAX)
∣∣vH

l hk

∣∣2 > Γ
(MIN)
k . (4.13)

The necessary condition defined in (4.13) is derived from the downlink SINR constraints

in (4.4e) by dropping the co-channel interference. Denote the set Lk as the indices of the

precoding vectors that can possibly be assigned to the kth MS. According to the necessary

condition in (4.13), the set Lk can be defined as

Lk ,

{
l
∣∣l ∈ L, P (MAX)

∣∣vH
l hk

∣∣2 > Γ
(MIN)
k

}
, ∀k ∈ K. (4.14)

With Eqs. (4.6) – (4.8), and (4.12), and the set Lk defined in (4.14), the SCBF prob-

lem (4.4) can be equivalently reformulated as the following MILP:

Φ(SCBF) , min
{ak,l,φk,l}

K∑

k=1

L∑

l=1

φk,l (4.15a)

s.t. (4.6):

K∑

k=1

L∑

l=1

φk,l ≤ P (MAX)

(4.7): 0 ≤ φk,l ≤ ak,lP
(MAX), ∀k ∈ K, ∀l ∈ L

(4.8):

L∑

l=1

ak,l = 1, ∀k ∈ K

SINR
(DL)
k =

∑L

m=1 φk,m

∣∣vH
mhk

∣∣2
∑K

j=1,j 6=k

∑L

l=1 φj,l

∣∣vH
l hk

∣∣2 + 1
≥ Γ

(MIN)
k , ∀k ∈ K (4.15b)

ak,l ∈ {0, 1}, ∀k ∈ K, ∀l ∈ L (4.15c)

ak,l = 0, ∀k ∈ K, ∀l ∈ L \ Lk. (4.15d)

The MILP formulation in (4.15) of the SCBF problem can be solved using, e.g., the

standard BnC method [67–69,81,82] that is implemented in, e.g., the commercial MIP solver

IBM ILOG CPLEX [81].
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4.3.2 The customized power iteration method

The computational complexity of the standard BnC method [67–69,81,82] when applying to

the MILP formulation (4.15) of the SCBF problem may be prohibitive for practical systems

with large numbers of MSs and/or candidate precoding vectors. We propose in this sub-

section a low-complexity customized iterative algorithm to more efficiently solve the SCBF

problem in the form of (4.15).

Similar to the existing contributions [12, 13, 25–30] that consider the conventional non-

codebook-based multiuser downlink beamforming, we introduce here the following codebook-

based virtual uplink (VUL) beamforming problem:

Φ(VUL) , min
{uk ,qk}

K∑

k=1

qk (4.16a)

s.t. uk ∈ B, ∀k ∈ K (4.16b)

qk ≥ 0, ∀k ∈ K (4.16c)

K∑

k=1

qk ≤ Pmax (4.16d)

SINR
(VUL)
k ,

qk
∣∣uH

k hk

∣∣2
∑K

j=1,j 6=k qj
∣∣uH

k hj

∣∣2 + 1
≥ Γ

(MIN)
k , ∀k ∈ K (4.16e)

where the variable qk and the term SINR
(VUL)
k denote the VUL transmission power and the

VUL received SINR of the kth MS, respectively, ∀k ∈ K.

Leveraging the results regarding the uplink-downlink duality in the conventional non-

codebook-based multiuser downlink beamforming problem presented in [13, 27–30], the

following property can readily be proved.

Proposition 4.1 (Feasibility). The SINR-constrained downlink SCBF problem (4.4) is feasi-

ble if and only if (iff) the virtual uplink problem (4.16) is feasible [13, Section 27.2.4].

Assume for now that the VUL problem (4.16) is feasible and that the vectors {ũk, ∀k ∈
K} are the optimal (not necessarily unique) beamformers of the VUL problem (4.16). We

define the beamformer matrix Ũ ∈ CM×K , the coupling matrix C(Ũ) ∈ RK×K , and the
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diagonal matrix D(Ũ) ∈ RK×K , respectively, as

Ũ , [ũ1, ũ2, · · · , ũK ] (4.17)

[
C(Ũ)

]
k,j

,

{
0, if k = j

ũH
j Qkũj, otherwise

, ∀k, j ∈ K (4.18)

[
D(Ũ)

]
k,j

,





Γ
(MIN)
k

ũH
k
Qkũk

, if k = j

0, otherwise
, ∀k, j ∈ K (4.19)

where the matrix Qk ∈ CM×M is defined as

Qk , hkh
H

k , ∀k ∈ K. (4.20)

With the definitions given in (4.17) - (4.19), the following statements regarding the uplink-

downlink duality between the VUL problem (4.16) and the combinatorial downlink SCBF

problem (4.4) can readily be concluded [13, Section 27.2.4].

(D1) The beamformers
{
ũk, ∀k ∈ K

}
are optimal (not necessarily unique) for both the

VUL problem (4.16) and the downlink SCBF problem (4.4).

(D2) Both the optimal VUL transmission power vector q̃ , [q̃1, q̃2, · · · , q̃K ]T and the

optimal downlink transmission power vector p̃ , [p̃1, p̃2, · · · , p̃K ]T are unique and are re-

spectively given by

q̃ =
(
(D(Ũ))−1 − (C(Ũ))T

)−1

1 (4.21)

p̃ ,

(
(D(Ũ))−1 −C(Ũ)

)−1

1 (4.22)

with the all-ones vector 1 , [1, 1, · · · , 1]T ∈ RK×1.

(D3) The same minimum total transmitted BS power is achieved both in the VUL prob-

lem (4.16) and the downlink SCBF problem (4.4), i.e.,

Φ(VUL) = 1T q̃ = 1T p̃ = Φ(SCBF). (4.23)

We know from Proposition 4.1 and the uplink-downlink duality properties (D1) – (D3)

that we can focus on the VUL problem (4.16) when solving the downlink SCBF prob-

lem (4.4). Note that the VUL problem (4.16) is much easier to solve since the precoding

vector assignments in the VUL SINR constraints in (4.16e) are naturally decoupled.

Following the idea of the power iteration method that was originally proposed for solving
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the conventional non-codebook-based multiuser downlink beamforming problem [12, 25,

26], we propose here a customized iterative algorithm to compute the optimal solutions of

the SCBF problem (4.4) (when it is feasible). The algorithm also yields the infeasibility

certificates (when problem (4.4) is infeasible). In the initialization of the customized power

iteration algorithm, the following necessary conditions:

P (MAX)max
l∈L

vH
l Qkvl > Γ

(MIN)
k , ∀k ∈ K (4.24)

are evaluated. The necessary conditions given in (4.24) are derived from the necessary con-

dition defined in (4.13). If any one of the necessary conditions in (4.24) is violated, the

SCBF problem (4.4) is clearly infeasible and the algorithm terminates. Otherwise, in the nth

(n ≥ 1) iteration, the VUL power vector q(n) ,
[
q
(n)
1 , q

(n)
2 , · · · , q(n)K

]T
is computed according

to the following power iteration process (see, e.g., [12, 25, 26]):

q(n) = f
(
q(n−1)

)
(4.25)

where the vector function f(q(n)) : RK×1 7→ RK×1 is defined as

f
(
q(n−1)

)
,
[
f1(q

(n−1)), f2(q
(n−1)), · · · , fK(q(n−1))

]T
(4.26a)

fk
(
q(n−1)

)
, max

l∈Lk

fk,l(q
(n−1)), ∀k ∈ K (4.26b)

fk,l
(
q(n−1)

)
,

Γ
(MIN)
k + Γ

(MIN)
k

∑K

j=1,j 6=k

(
vH
l Qjvl

)
q
(n−1)
j

vH
l Qkvl

, ∀k ∈ K, ∀l ∈ Lk (4.26c)

If it holds that 1Tq(n) > P (MAX) in the nth iteration, the algorithm declares that the

downlink SCBF problem (4.4) is infeasible and terminates. Otherwise, the beamforming

(precoding) vector of the kth MS is updated according to

u
(n)
k = v

l
(n)
k

, ∀k ∈ K (4.27)

where the precoding vector index l
(n)
k is given by

l
(n)
k , argmax

l∈L
fk,l
(
q(n−1)

)
, ∀k ∈ K. (4.28)

The proposed iterative algorithm starts with the all-zeros vector q(0) = 0, and iterates

until 1Tq(n)−1Tq(n−1) < ǫ (when the SCBF problem (4.4) is feasible), or 1Tq(n) > P (MAX)

(when it is infeasible). Here, ǫ denotes the prescribed numerical accuracy. The proposed
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customized power iteration method is summarized in Alg. 4.1. Note that each iteration of

Alg. 4.1 only involves simple algebraic operations. The convergence and optimality analysis

of Alg. 4.1 is presented in the next subsection.

Init.: (i) If not all conditions in Eq. (4.24) are satisfied, declare infeasibility and stop.

(ii) Specify the numerical accuracy ǫ, initialize q
(0)
k = 0, ∀k ∈ K, and set the iteration

number n = 1.

Step 1: Compute q(n) according to Eq. (4.25).

Step 2: If 1Tq(n) > P (MAX), declare infeasibility of the SCBF problem (4.4) and

terminate.

Step 3: Compute
{
u
(n)
k , ∀k ∈ K

}
according to Eq. (4.27).

Step 4: If 1Tq(n) − 1Tq(n−1) < ǫ, go to ”Post-step”. Otherwise, set n← n + 1 and

go back to ”Step 1” and repeat.

Post-step: Set the beamformer matrix Ũ =
[
u
(n)
1 ,u

(n)
2 , · · · ,u(n)

K

]
and compute the

downlink power vector p̃ according to Eq. (4.22).

Algorithm 4.1: The proposed customized power iteration method

4.3.3 Optimality of the power iteration method

We study in this subsection the convergence and optimality of the proposed customized

power iteration procedure in Alg. 4.1 using the standard interference function (SIF) ap-

proach [35,36,122,123]. The SIF approach is well-known to be a very effective and elegant

way to prove the convergence and optimality of the power iteration method [35,36,122,123].

We first revisit the definition of a SIF [35, 36].

Definition 4.1. The vector function g(q) : RK×1 7→ R
K×1 defined on the VUL power vector

q , [q1, q2, · · · , qK ]T is called a SIF if it satisfies the following properties [36, Definition 1],

where the inequalities between vectors are element-wise inequalities:

(P1) Positivity: g(q) > 0 (the all-zeros vector).

(P2) Monotonicity: if q(1) ≥ q(2), then g
(
q(1)
)
≥ g

(
q(2)
)
.

(P3) Scalability: for all α > 1, αg(q) > g(αq).

We next show that the function f
(
q(n−1)

)
defined in Eq. (4.26a), which is used in the

proposed power iteration procedure in (4.25), represents a SIF.

Lemma 4.1 (SIF). The vector interference function f
(
q(n−1)

)
defined in (4.26a) and used in

the power iteration procedure of (4.25) represents a SIF.

Proof 4.1 (Sketch of the Proof). It can directly be verified that the function fk,l
(
q(n−1)

)
de-

fined in (4.26c) satisfies (P1) – (P3) of Definition 4.1 and thus it is a SIF, ∀l ∈ Lk. According
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to [36, Theorem 5], the function fk
(
q(n)

)
defined in (4.26b) is also a SIF, ∀k ∈ K. As a

result, the vector interference function f
(
q(n−1)

)
defined in (4.26a) represents a SIF.

Since the vector interference function f
(
q(n)
)

used in the power iteration process in (4.25)

represents a SIF, the following two propositions can readily be established. The proofs of

the propositions can be found in the reference [36].

Proposition 4.2 (Monotonicity). The sequence of the VUL power vectors
{
q(n)
}

generated

by the proposed Alg. 4.1 (when it is initialized with the all-zeros vector) is element-wisely

non-decreasing [36, Lemma 2].

Proposition 4.3 (Feasible Case). If the VUL problem in (4.16) is feasible, then the following

results hold [36, Theorem 2]:

(i) The SIF f
(
q(n−1)

)
defined in (4.26a) has a unique fixed point [36], which is the unique

optimal VUL power vector q̃, i.e.,

q̃ = f (q̃) . (4.29)

(ii) From any non-negative starting vector, the power iteration process in (4.25) con-

verges to the unique fixed point q̃ as n→∞.

(iii) The proposed power iteration method in Alg. 4.1 yields the optimal beamformer

matrix Ũ (not necessarily unique), and the unique optimal power vectors q̃ and p̃ (within

the prescribed numerical accuracy ǫ) as n→∞.

Proposition 4.2 further implies the following conclusions.

Corollary 4.1 (Infeasible Case). If the SCBF problem (4.4) is infeasible (but all the nec-

essary conditions in Eq. (4.24) are satisfied), there exists an iteration number n̆ ≥ 1 such

that 1Tq(n̆) > P (MAX). In other words, the proposed customized power iteration method in

Alg. 4.1 yields the infeasibility certificates when the SCBF problem (4.4) is infeasible.

We know from Proposition 4.3 and Corollary 4.1 that the proposed customized power

iteration method in Alg. 4.1 yields either optimal (within the prescribed numerical accuracy)

solutions of the SCBF problem (4.4) (when it is feasible) or the infeasibility certificates

(when it is infeasible). That is, the proposed Alg. 4.1 optimally solves the SCBF prob-

lem (4.4). Note that in contrast to the standard BnC method [67–69, 81, 82], the proposed

Alg. 4.1 represents a low-complexity optimal algorithm for the combinatorial SCBF prob-

lem (4.4) and it can easily be implemented in practice (see, e.g., [25, 36]).
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4.4 Channel predistortion for performance improvement

4.4.1 The CBCP problem formulation

The codebook-based multiuser downlink beamforming naturally admits performance degra-

dation in terms of, e.g., increased transmitted BS power required for guaranteeing the SINR

targets of the admitted MSs [7, 8, 14, 20–22], as compared to non-codebook-based multiuser

downlink beamforming [12]. To improve the performance of codebook-based downlink

beamforming, e.g., to reduce the transmitted power of the BS, we propose in this section

an adaptive channel predistortion scheme. The proposed channel predistortion procedure

applies a common linear transformation of the downlink channel vectors {hH
k , ∀k ∈ K}

using one common channel predistortion matrix G ∈ C
M×M . With the linear channel pre-

distortion, we define the predistorted channel vector h̆H
k ∈ C1×M as

h̆H
k , hH

k G, ∀k ∈ K (4.30)

where hH
k represents the original downlink channel vector of the kth MS (cf. Section 4.2),

∀k ∈ K.

Following the expression of the downlink received SINR of the kth MS, i.e., SINR
(DL)
k ,

given in (4.3), with channel predistortion the downlink received SINR at the kth MS, denoted

by SINR
(CP)
k , can be expressed as

SINR
(CP)
k ,

pk
∣∣uH

k h̆k

∣∣2
∑K

j=1,j 6=k pj
∣∣uH

j h̆k

∣∣2 + σ2
k

=
pk
∣∣uH

k G
Hhk

∣∣2
∑K

j=1,j 6=k pj
∣∣uH

j G
Hhk

∣∣2 + σ2
k

, ∀k ∈ K. (4.31)

It is important to note that the channel predistortion procedure can be embedded in the

transmitter chains of the cell-specific reference signals and user payload data. Instead of

transmitting
∑K

j=1 u
H
j

√
pjxj , the BS transmits

∑K

j=1 u
H
j G

H√pjxj when the channel pre-

distortion scheme is applied, as illustrated in Fig. 4.1. The kth MS directly estimates the

predistorted channel vector h̆H
k with the help of cell-specific reference signals that are trans-

mitted by the BS, e.g., in every downlink subframe in LTE systems [7, 8]. The kth MS then

uses the predistorted channel vector h̆H
k for coherent data symbols detection. As a result,

the proposed predistortion mechanism does not introduce additional signalling overhead or

modifications of the mobile receivers.
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Figure 4.1: Illustration of embedding the channel predistortion procedure in the transmitter

chains, e.g., the kth MS sees the effective composite channel hH
k Guk.

To ensure that the channel estimation procedure carried out at the kth MS, which is de-

signed for the original channel process {hH
k (τ)}, is not adversely affected and can be equiv-

alently performed on the predistorted channel process
{
h̆H
k (τ)

}
, we impose the following

smoothness-constraints on the predistorted channel vectors:

∥∥GH(τ)hk(τ)− hk(τ)
∥∥
2
≤ δk(τ), ∀k ∈ K (4.32)

where δk(τ) denotes a small constant at the τ th (τ ≥ 1) time-slot. Note that we omit the

time-slot index τ for succinctness of presentation when it is clear from the context.

Eq. (4.32) further implies that

∥∥h̆k(τ)− h̆k(τ − 1)
∥∥
2
=
∥∥GH(τ)hk(τ)−GH(τ − 1)hk(τ − 1)

∥∥
2

=
∥∥GH(τ)hk(τ)− hk(τ) + hk(τ)− hk(τ − 1) + hk(τ − 1)−

GH(τ − 1)hk(τ − 1)
∥∥
2

≤ δk(τ) + ζk(τ) + δk(τ − 1), ∀k ∈ K. (4.33)

with the constant ζk(τ) , ‖hk(τ)− hk(τ − 1)‖2, ∀k ∈ K. Eq. (4.33) suggests that the norm

of the change of the predistorted channel process
{
h̆H
k (τ)

}
in two consecutive time-slots

is bounded and the parameter δk(τ) can be configured so that the kth MS can successfully

estimate the predistorted channel process
{
h̆H
k (τ)

}
, ∀k ∈ K.
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We know from Eqs. (4.32) and (4.33) that the smoothness-constraints defined in (4.32)

not only limit the deviation of the predistorted channel vector h̆H
k (τ) from the original chan-

nel vector hH
k (τ), but also restrict the changes of the predistorted channel process

{
h̆H
k (τ)

}

in two consecutive time-slots, ∀k ∈ K.

When applying channel predistortion, i.e., when the BS transmits
∑K

j=1 u
H
j G

H√pjxj ,

the actual transmission power allocated to the kth MS, denoted by p̆k, is given by

p̆k = E
{∥∥Guk

√
pkxk

∥∥2
2

}
= pk‖Guk‖22 =

K∑

k=1

L∑

l=1

φk,l‖Gvl‖22, ∀k ∈ K (4.34)

where we have used the constraints in (4.8) and (4.10) to obtain the last equality in Eq. (4.34).

Correspondingly, to take into account the channel predistortion procedure, the constraints

in (4.6) and (4.7) shall be reformulated, respectively, as

K∑

k=1

p̆k =

K∑

k=1

L∑

l=1

φk,l‖Gvl‖22 ≤ P (MAX) (4.35)

0 ≤ φk,l‖Gvl‖22 ≤ ak,lP
(MAX), ∀k ∈ K, ∀l ∈ L (4.36)

where Eq. 4.35 represents the per-BS sum-power constraint. Eq. (4.36) implements the cel-

ebrated big-M method [67–69] to ensure that φk,l‖Gvl‖22 = 0 and φk,l = 0, when ak,l = 0.

Furthermore, Eq. (4.36) is automatically satisfied when ak,l = 1 due to Eq. (4.35). Eqs. (4.8),

(4.10), and (4.36) together further imply that

pj
∣∣uH

j G
Hhk

∣∣2 =
L∑

l=1

φj,l

∣∣vH
l G

Hhk

∣∣2, ∀j, k ∈ K. (4.37)

Substituting Eq. (4.37) into Eq. (4.31), we obtain that

SINR
(CP)
k =

∑L

m=1 φk,m

∣∣vH
mG

Hhk

∣∣2
∑K

j=1,j 6=k

∑L

l=1 φj,l

∣∣vH
l G

Hhk

∣∣2 + σ2
k

, ∀k ∈ K. (4.38)

To improve the performance (e.g., to reduce the total transmitted BS power) of the stan-

dard codebook-based downlink beamforming, i.e., the SCBF problem in (4.15), we incor-

porate the channel predistortion procedure in the SCBF problem and consider the joint op-

timization of codebook-based beamforming and channel predistortion (CBCP). Specifically,
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based on the SCBF problem (4.15), the CBCP problem can be formulated as

Φ(CBCP) , min
{ak,l,φk,l,G}

K∑

k=1

L∑

l=1

φk,l‖Gvl‖22 (4.39a)

s.t. (4.8):

L∑

l=1

ak,l = 1, ∀k ∈ K

(4.15d): ak,l = 0, ∀k ∈ K, ∀l ∈ L \ Lk

(4.32):
∥∥GHhk − hk

∥∥
2
≤ δk, ∀k ∈ K

(4.35):

K∑

k=1

L∑

l=1

φk,l‖Gvl‖22 ≤ P (MAX)

(4.36): 0 ≤ φk,l‖Gvl‖22 ≤ ak,lP
(MAX), ∀k ∈ K, ∀l ∈ L

SINR
(CP)
k =

∑L

m=1 φk,m

∣∣vH
mG

Hhk

∣∣2
∑K

j=1,j 6=k

∑L

l=1 φj,l

∣∣vH
l G

Hhk

∣∣2 + σ2
k

≥ Γ
(MIN)
k , ∀k ∈ K (4.39b)

ak,l ∈ {0, 1}, ∀k ∈ K, ∀l ∈ L. (4.39c)

We remark that it can straightforwardly be shown that when the number of admitted

MSs is less than the number of transmit antennas at the BS and the smoothness constraints

in (4.32) are not presented, i.e., when K ≤ M and δk → +∞, ∀k ∈ K, the CBCP prob-

lem (4.39) reduces to the conventional non-codebook-based multiuser downlink beamform-

ing problem [12,13,18,28]. In this case, the proposed channel predistortion scheme improves

the performance of codebook-based downlink beamforming to be the same as that of non-

codebook-based downlink beamforming.

It is further observed that the CBCP problem in (4.39) is reduced to the SCBF prob-

lem (4.15) when setting G = I (the identity matrix). Hence, the total transmitted BS power

achieved in the CBCP problem (4.39) is no larger than that of the SCBF problem (4.15)

(when the SCBF problem (4.15) is feasible), i.e., it always holds that

Φ(CBCP) ≤ Φ(SCBF). (4.40)

Due to the constraints in (4.35), (4.36), (4.38), and the integer constraints in (4.39c), the

CBCP problem (4.39) represents a non-convex MIP, which remains a non-convex program

even after relaxing the integer constraints (4.39c) and it can not be efficiently solved to global

optimality [67–69].

However, we observe that when the channel predistortion matrix G is fixed, e.g., when

setting G = I, the CBCP problem (4.39) reduces to a MILP that has the same structure
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as the SCBF problem (4.15) and it can be efficiently solved using the proposed customized

power iteration method in Alg 4.1. In addition, when the precoding vector assignments

{ak,l, ∀k ∈ K, ∀l ∈ L} are fixed, the CBCP problem (4.39) reduces to a difference-of-convex

(DC) program [54,60,127] that can be closely approximated by a convex SOCP [126] and the

SOCP approximation can be efficiently solved using, e.g., the interior-point method [34,105].

This observation motivates us to consider the alternating optimization (AO) based approach,

as elaborated in detail in the next two subsections.

4.4.2 The alternating optimization algorithm

We propose in this subsection an alternating optimization algorithm (ATOA) to solve ap-

proximately the CBCP problem (4.39). In each alternation of the ATOA, one MILP and one

SOCP are solved, where the MILP can be efficiently solved using the proposed customized

power iteration method in Alg. 4.1.

We first consider optimizing the precoding vector assignments and the transmission

power allocations under a fixed channel predistortion matrix. Denote G(n−1) as the chan-

nel predistortion matrix used to initialize the nth (n ≥ 1) alternation stage, e.g., choosing

G(0) = I in the first alternation stage. With G = G(n−1), The constraints in (4.35) and

(4.36), and the SINR constraints in (4.39b) can be rewritten, respectively, as

K∑

k=1

L∑

l=1

φk,l‖G(n−1)vl‖22 ≤ P (MAX) (4.41)

0 ≤ φk,l‖G(n−1)vl‖22 ≤ ak,lP
(MAX), ∀k ∈ K, ∀l ∈ L (4.42)

( K∑

j=1,j 6=k

L∑

l=1

φj,l

∣∣hH
k G

(n−1)vl

∣∣2 + σ2
k

)
γ̄k ≤

L∑

m=1

φk,m

∣∣hH
k G

(n−1)vm

∣∣2, ∀k ∈ K (4.43)

where the constant γ̄k is defined as

γ̄k , 1
/
Γ
(MIN)
k , ∀k ∈ K. (4.44)

With the fixed channel predistortion matrix G(n−1), the constraints in (4.41) – (4.43)

become linear constraints in the variables {ak,l, φk,l, ∀k ∈ K, ∀l ∈ L} and therefore the
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CBCP problem (4.39) reduces to the following MILP:

{
a
(n)
k,l , φ

(n)
k,l

}
, argmin

{bk,l,φk,l}

K∑

k=1

L∑

l=1

φk,l‖G(n−1)vl‖22 (4.45a)

(4.8):

L∑

l=1

ak,l = 1, ∀k ∈ K

(4.39c): ak,l ∈ {0, 1}, ∀k ∈ K, ∀l ∈ L

(4.41):

K∑

k=1

L∑

l=1

φk,l‖G(n−1)vl‖22 ≤ P (MAX)

(4.42): 0 ≤ φk,l‖G(n−1)vl‖22 ≤ ak,lP
(MAX), ∀k ∈ K, ∀l ∈ L

(4.43):
( K∑

j=1,j 6=k

L∑

l=1

φj,l

∣∣hH
k G

(n−1)vl

∣∣2 + σ2
k

)
γ̄k ≤

L∑

m=1

φk,m

∣∣hH
k G

(n−1)vm

∣∣2, ∀k ∈ K.

We further define the virtual precoding vector v̆l, the virtual precoding vector codebook

B̆, and the virtual beamformer ŭk, respectively, as

v̆l ,

{
G(n−1)vl

‖G(n−1)vl‖2
, if ‖G(n−1)vl‖2 > 0

0, otherwise
, ∀l ∈ L (4.46)

B̆ , {v̆1, v̆2, · · · , v̆L} (4.47)

ŭk ,

{
G(n−1)uk

‖G(n−1)uk‖2
, if ‖G(n−1)uk‖2 > 0

0, otherwise
, ∀k ∈ K. (4.48)

With the channel predistortion matrix G(n−1) and the newly defined vector ŭk, the term

SINR
(CP)
k defined in (4.31) can be rewritten as

SINR
(CP)
k =

p̆k
∣∣ŭH

k hk

∣∣2
∑K

j=1,j 6=k p̆j
∣∣ŭH

j hk

∣∣2 + σ2
k

, ∀k ∈ K. (4.49)
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The reduced MILP (4.45) can then be equivalently reformulated as

{
ŭ
(n)
k , p̆

(n)
k

}
, min

{ŭk ,p̆k}

K∑

k=1

p̆k (4.50a)

s.t. ŭk ∈ B̆, ∀k ∈ K (4.50b)

p̆k ≥ 0, ∀k ∈ K (4.50c)

K∑

k=1

p̆k ≤ P (MAX) (4.50d)

SINR
(CP)
k =

p̆k
∣∣ŭH

k hk

∣∣2
∑K

j=1,j 6=k p̆j
∣∣ŭH

j hk

∣∣2 + 1
≥ Γ

(MIN)
k , ∀k ∈ K. (4.50e)

Problem (4.50) has exactly the same structure as the SCBF problem in (4.4). Therefore,

problem (4.50) and hence the reduced MILP in (4.45) can be solved to global optimality

using the proposed power iteration method in Alg. 4.1. From an optimal solution of prob-

lem (4.50), e.g.,
{
ŭ
(n)
k , p̆

(n)
k , ∀k ∈ K

}
, an optimal solution of problem (4.45) can directly be

computed according to

a
(n)
k,l =

{
1, if ŭ

(n)
k = v̆l

0, otherwise
, ∀k ∈ K, ∀l ∈ L (4.51)

φ
(n)
k,l =





p̆k∥∥∥G(n−1)ŭ
(n)
k

∥∥∥
2

2

, if a
(n)
k,l = 1

0, otherwise

, ∀k ∈ K, ∀l ∈ L. (4.52)

We next consider optimizing the predistortion matrix and the transmission power allo-

cations under fixed precoding vector assignments. In the nth alternation stage, for fixed

precoding vector assignments, i.e., for the given integers {a(n)k,l , ∀k ∈ K, ∀l ∈ L}, we define

the auxiliary optimization vector gk ∈ CM×1 as

gk ,

L∑

l=1

a
(n)
k,lGvl, ∀k ∈ K (4.53)

which is linear in the channel predistortion matrix G. We further define the auxiliary opti-

mization variable dk > 0 as

dk , 1
/ L∑

l=1

φk,l, ∀k ∈ K. (4.54)
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Eqs. (4.8), (4.36), and (4.38) together suggest that one and only one of the variables in

the set {φk,l, ∀l ∈ L} is non-zero for the kth MS. As a result, with Eqs. (4.53) and (4.54), the

per-BS sum-power constraint in (4.35) and the SINR constraints in (4.38) can be rewritten,

respectively, as

K∑

k=1

L∑

l=1

φk,l‖Gvl‖22 =
K∑

k=1

‖gk‖22
dk

≤ P (MAX) (4.55)

( K∑

j=1,j 6=k

|hH
k gj|2
dj

+ σ2
k

)
γ̄k ≤

|hH
k gk|2
dk

, ∀k ∈ K. (4.56)

Since the quadratic-over-linear function |hH
k gj|2/dj is jointly convex in the variables dj

and gj , ∀j, k ∈ K [34], the SINR constraints in (4.56) represent DC constraints [54,60,127].

A common approach to deal with such DC constraints as that of (4.56) is to linearize the

right-hand-side (RHS) of Eq. (4.56), which results in strengthened SINR constraints [54,60,

127]. Define respectively the constant variable d̆
(n)
k and the constant vector ğ

(n)
k in the nth

alternation stage as

d̆
(n)
k , 1

/ L∑

l=1

φ
(n)
k,l , ∀k ∈ K (4.57)

ğ
(n)
k ,

L∑

l=1

a
(n)
k,lG

(n−1)vl, ∀k ∈ K. (4.58)

The first-order Taylor expansion of the function |hH
k gk|2/dk, i.e., the linearization of the

RHS of the SINR constraints in (4.56), at the given point
[
d̆
(n)
k ,
(
ğ
(n)
k

)T ]T
, which is denoted

by ξk

(
d̆
(n)
k , ğ

(n)
k

)
, is given by [128–130]:

ξk

(
d̆
(n)
k , ğ

(n)
k

)
,

2Re
{
gH
k Qkğ

(n)
k

}

d̆
(n)
k

−
∣∣hH

k ğ
(n)
k

∣∣2dk(
d̆
(n)
k

)2 , ∀k ∈ K (4.59)

where the matrix Qk ∈ CM×M is defined as

Qk , hkh
H
k , ∀k ∈ K. (4.60)

Replacing the RHS of Eq. (4.56) with the linear approximation ξk

(
d̆
(n)
k , ğ

(n)
k

)
given in (4.59),

we obtain the following strengthened SINR constraints under the given precoding vector as-
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signments
{
a
(n)
k,l , ∀k ∈ K, ∀l ∈ L

}
:

( K∑

j=1,j 6=k

|hH
k uj|2
dj

+ σ2
k

)
γ̄k ≤ ξk

(
d̆
(n)
k , ğ

(n)
k

)
, ∀k ∈ K. (4.61)

Since convex constraints involving the quadratic-over-linear functions can be imple-

mented as second-order cone (SOC) constraints [34, 105], with the given precoding vector

assignments
{
a
(n)
k,l , ∀k ∈ K, ∀l ∈ L

}
and the strengthened SINR constraints in (4.61), the

CBCP problem (4.39) can be approximated by the following convex SOCP:

{
G(n), d

(n)
k , g

(n)
k

}
, argmin

{G,dk,gk}

K∑

k=1

‖gk‖22
dk

(4.62a)

(4.32):
∥∥GH(τ)hk(τ)− hk(τ)

∥∥
2
≤ δk(τ), ∀k ∈ K

(4.53) gk ,

L∑

l=1

a
(n)
k,lGvl, ∀k ∈ K

(4.55):

K∑

k=1

L∑

l=1

φk,l‖Gvl‖22 =
K∑

k=1

‖gk‖22
dk

≤ P (MAX)

(4.59): ξk

(
d̆
(n)
k , ğ

(n)
k

)
,

2Re
{
gH
k Qkğ

(n)
k

}

d̆
(n)
k

−
∣∣hH

k ğ
(n)
k

∣∣2dk(
d̆
(n)
k

)2 , ∀k ∈ K

(4.61):
( K∑

j=1,j 6=k

|hH
k uj |2
dj

+ σ2
k

)
γ̄k ≤ ξk

(
d̆
(n)
k , ğ

(n)
k

)
, ∀k ∈ K

dk > 0, ∀k ∈ K (4.62b)

which can be efficiently solved using, e.g., the primal-dual interior-point method [34, 105].

Note that the transmission power allocations {φk,l, ∀k ∈ K, ∀l ∈ L} are further optimized

through the auxiliary variables {dk, ∀k ∈ K} in the SOCP approximation (4.62) in the nth

alternation stage of the ATOA.

Since the point
{
G(n−1), d̆

(n)
k , ğ

(n)
k , ∀k ∈ K

}
is a feasible solution of the SOCP approx-

imation (4.62), problem (4.62) is feasible as long as problem (4.45) is feasible. The pro-

posed ATOA iterates between solving problem (4.50), which is equivalent to problem (4.45),

and problem (4.62) until the reduction of the total transmitted BS power is less than the

predefined numerical accuracy ǫ > 0, or until the maximum number of allowable alterna-

tions N (MAX) is reached. Since the total transmitted BS power resulted from solving prob-

lems (4.50) and (4.62) does not increase in the alternations and it is positive, the total trans-
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mitted BS power computed in the alternating procedure converges and hence the proposed

ATOA converges (not necessarily to optimal solutions of the CBCP problem (4.39)). The

computational complexity of the proposed ATOA can easily be controlled by configuring the

parameters ǫ and/or N (MAX). The proposed ATOA is summarized in Alg. 4.2.

Init.: Specify ǫ and N (MAX), and set the alternation number n = 1.

Step 1: Set G(0) = I and solve problem (4.50) using Alg. 4.1 to obtain the total

transmitted BS power Φ(n) ,
∑K

k=1 p̆
(n)
k . If problem (4.50) is feasible with G(0) = I,

go to ”Step 4”.

Step 2: Compute G(0) with the AFSA in Alg. 4.3 presented in Section 4.4.3. If no

feasible G(0) is found by Alg. 4.3, terminate.

Step 3: Solve problem (4.50) with G(n−1) to obtain the total transmitted BS power

Φ̆(n) ,
∑K

k=1 p̆
(n)
k .

Step 4: Compute a
(n)
k,l and φ

(n)
k,l according to Eqs. (4.51) and (4.52), respectively,

∀k ∈ K, ∀l ∈ L.

Step 5: Solve problem (4.62) with
{
a
(n)
k,l , φ

(n)
k,l , ∀k ∈ K, ∀l ∈ L

}
to obtain the total

transmitted BS power Φ(n) ,
∑K

k=1 ‖g
(n)
k ‖22/d

(n)
k .

Step 6: If Φ̆(n) − Φ(n) < ǫ, or if n = N (MAX), stop and return
{
a
(n)
k,l , ∀k ∈ K, ∀l ∈ L

}
,{

d
(n)
k , ∀k ∈ K

}
, and G(n). Otherwise, update n← n + 1 and go back to ”Step 3” and

repeat.

Algorithm 4.2: The proposed alternating optimization algorithm (ATOA)

In the first alternation stage of the proposed ATOA in Alg. 4.2, i.e., ”Step 1” of Alg. 4.2,

the simple choice of the channel predistortion matrix G(0) = I may not be feasible for prob-

lem (4.45) even if the original CBCP problem (4.39) is feasible. We develop in the next

subsection an alternating feasibility search algorithm (AFSA) to compute feasible initializa-

tions of the channel predistortion matrix G(0).

4.4.3 The alternating feasibility search algorithm

As mentioned in the previous subsection, the simple choice of G(0) = I may result in an

infeasible problem (4.45) in the first alternation stage in Alg. 4.2, i.e., ”Step 1” of Alg. 4.2,

even if the original CBCP problem (4.39) is feasible. In this case, an alternating feasibil-

ity search algorithm (AFSA) can be applied to compute a feasible initialization G(0), i.e.,

”Step 2” of Alg. 4.2. The AFSA follows a similar procedure as the ATOA Alg. 4.2. How-
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ever, in the AFSA, instead of problem (4.45), the following MILP feasibility problem:

{
a
(n)
k,l , φ

(n)
k,l , s

(n)
k

}
, argmin

{ak,l,φk,l,sk}

K∑

k=1

sk (4.63a)

s.t. (4.8):

L∑

l=1

ak,l = 1, ∀k ∈ K

(4.39c): ak,l ∈ {0, 1}, ∀k ∈ K, ∀l ∈ L

(4.41):

K∑

k=1

L∑

l=1

φk,l‖G(n−1)vl‖22 ≤ P (MAX)

(4.42): 0 ≤ φk,l‖G(n−1)vl‖22 ≤ ak,lP
(MAX), ∀k ∈ K, ∀l ∈ L

( K∑

j=1,j 6=k

L∑

l=1

φj,l|hH
k G

(n−1)vl|2 + σ2
k

)
γ̄k ≤

L∑

m=1

φk,m|hH
k G

(n−1)vm|2 + sk, ∀k ∈ K

(4.63b)

sk ≥ 0, ∀k ∈ K (4.63c)

is solved using, e.g., the BnC method [67–69, 81, 82], with G(0) fixed to I. The aux-

iliary optimization variables {sk, ∀k ∈ K} are introduced into problem (4.63) to guar-

antee that problem (4.63) is always feasible. The optimal objective value
∑K

k=1 s
(n)
k ob-

tained from solving problem (4.63) represents the measure of total infeasibility [34]. If

the term
∑K

k=1 s
(n)
k is less than the predefined infeasibility tolerance β > 0, the point{

G(n−1), a
(n)
k,l , φ

(n)
k,l , ∀k ∈ K, ∀l ∈ L

}
is declared as a feasible solution of the original CBCP

problem (4.39).

Note that since the objective of problem (4.63) is not to minimize the total transmitted

BS power and problem (4.63) is always feasible due to the auxiliary optimization variables

{sk, ∀k ∈ K}, the proposed power iteration method in Alg. 4.1 cannot be applied to solve

problem (4.63). That is, we have to apply the BnC method [67–69, 81, 82] to solve prob-

lem (4.63).

Accordingly, in the AFSA, instead of problem (4.62), the following SOCP feasibility
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problem:

{
G(n), d

(n)
k , g

(n)
k , s̆

(n)
k

}
, argmin

{G,dk ,gk,s̆k}

K∑

k=1

s̆k (4.64a)

s.t. (4.32):
∥∥GH(τ)hk − hk

∥∥
2
≤ δk, ∀k ∈ K

(4.53): gk ,

L∑

l=1

a
(n)
k,lGvl, ∀k ∈ K

(4.55)

K∑

k=1

L∑

l=1

φk,l‖Gvl‖22 =
K∑

k=1

‖gk‖22
dk

≤ P (MAX)

( K∑

j=1,j 6=k

|hH
k gj |2
dj

+ σ2
k

)
γ̄k ≤ ξk

(
d̆
(n)
k , ğ

(n)
k

)
+ s̆k, ∀k ∈ K (4.64b)

s̆k ≥ 0, ∀k ∈ K (4.64c)

is solved using, e.g., the interior-point method [34, 105]. If the total infeasibility measure∑K

k=1 s̆
(n)
k is less than β, then the point

{
G(n), a

(n)
k,l , φ

(n)
k,l , ∀k ∈ K, ∀l ∈ L

}
is declared as a

feasible solution of the CBCP problem (4.39). The AFSA algorithm iterates between solving

problems (4.63) and (4.64) until a feasible (under the feasibility tolerance β) solution of the

CBCP problem (4.39) is found, or until the reduction in the total infeasibility measure, i.e.,
∑K

k=1 s
(n)
k −

∑K

k=1 s̆
(n)
k , is less than ǫ, or until the maximum number of allowable alternations

N̆ (MAX) is reached. The proposed AFSA algorithm is summarized in Alg. 4.3.

Init.: Specify ǫ, β, and N̆ (MAX). Set G(0) = I and the alternation number n = 1.

Step 1: Solve problem (4.63). If
∑K

k=1 s
(n)
k < β, stop and return G(n−1).

Step 2: Solve problem (4.64). If
∑K

k=1 s̆
(n)
k < β, stop and return G(n).

Step 3: If
∑K

k=1 s
(n)
k −

∑K

k=1 s̆
(n)
k < ǫ, or if n = N̆ (MAX), terminate. Otherwise,

update n← n+ 1 and go back to ”Step 1” and repeat.

Algorithm 4.3: The proposed alternating feasibility search algorithm (AFSA)

Similar to the proposed ATOA in Alg. 4.2, the developed AFSA in Alg. 4.3 converges.

However, the proposed AFSA is not guaranteed to yield a feasible solution of the original

CBCP problem (4.39) even if problem (4.39) is indeed feasible. In such cases, user admission

control mechanisms may be applied to select a subset of the MSs to be served.

We remark that the proposed alternating optimization approach represents a two-phase

(suboptimal) algorithmic solution for the CBCP problem (4.39). In the first phase, the AFSA

in Alg. 4.3 is applied to compute a feasible solution of problem (4.39), which is used to

initialize the ATOA in Alg. 4.2 in the second phase.
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4.5 Simulation results

We simulate a downlink system with K = 4 MSs, and M = 4 antennas and the maximum

transmission power P (MAX) = 15 dB at the BS. As in Chapters 2 and 3, we adopt the

following channel model [106]: (i) 3GPP LTE path-loss mode: PL = 148.1 + 37.6 log10(d)

(in dB), with d (in kilo-meter) denoting the BS-MS distance; (ii) log-norm shadowing with

zero mean, 8 dB variance; (iii) Rayleigh fading with zero mean and unit variance; and (iv)

transmit antenna power gain of 9 dB, and (v) the receiver noise power σ2
k = −143 dB,

∀k ∈ K. The distances between the BS and the MSs are randomly and uniformly generated

in the interval [0.05, 1] (in kilometer).

The precoding vector codebook with L = 16 precoding vectors defined in 3GPP LTE [7,

8, 20] is used, where the precoding vectors are normalized to have unit norm in our simula-

tions. We choose the numerical accuracy ǫ = 10−3, the infeasibility tolerance β = 10−5, and

the maximum number of allowable alternations N (MAX) = N̆ (MAX) = 5 in the simulations.

For the smoothness constraints in Eq. (4.32), we choose the constant δk(τ) according to

δk(τ) = δ‖hk(τ)‖2, ∀k ∈ K (4.65)

with δ ∈ {0, 0.1, 0.2, 0.3, 0.4}, ∀k ∈ K. Note that the special case of δ = 0, i.e., the special

case of G = I, in the CBCP problem (4.39) corresponds to the standard codebook-based

beamforming problem, i.e., the SCBF problem in (4.4). The SINR targets of the MSs are

chosen to be identical and are listed in the tables and figures. The MIP solver IBM ILOG

CPLEX [81] is applied on the MILPs in (4.15) and (4.63). The relative optimality tolerance

(cf. Section 2.5.1) in CPLEX is set as η = 0.1% [69,81]. The simulation results are averaged

over 5000 Monte Carlo runs (MCRs).

4.5.1 Performance of the power iteration method

We study in this subsection the performance of the proposed power iteration method in

Alg. 4.1 when applying to the SCBF problem in (4.4). Tab. 4.1 lists the total transmitted

BS power vs. the SINR target Γ
(MIN)
k , averaged over feasible MCRs. Tab. 4.1 clearly shows

that the proposed power iteration method in Alg. 4.1 achieves the same total transmitted BS

power as that of the optimal solutions computed by the BnC method in CPLEX, as has been

analytically proved in Section 4.3.3.
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Table 4.1: Total transmitted BS power [watts] vs. the SINR target Γ
(MIN)
k

Γ
(MIN)
k [dB] −6 −4 −2 0 2 4

BnC in CPLEX 0.3429 0.6636 1.4833 4.3163 7.8895 11.2708

Alg. 4.1 0.3429 0.6636 1.4833 4.3163 7.8895 11.2708

Tab. 4.2 lists the average number of proved infeasible MCRs vs. the SINR target Γ
(MIN)
k .

We see from Tab. 4.2 that the proposed Alg. 4.1 obtains the infeasibility certificates when

the SCBF problem (4.4) is infeasible, as concluded in Corollary 4.1.

Table 4.2: Average number of proved infeasible MCRs vs. the SINR target Γ
(MIN)
k

Γ
(MIN)
k [dB] −6 −4 −2 0 2 4

BnC in CPLEX 0 1 11 467 3815 4938

Alg. 4.1 0 1 11 467 3815 4938

Tab. 4.3 displays the algorithm runtime (i.e., CPU time) vs. the SINR target Γ
(MIN)
k ,

averaged over all MCRs. We observe from Tab. 4.3 that the proposed Alg. 4.1 takes much

less CPU time than that of the BnC method. This certifies that the proposed Alg. 4.1 admits

much less computational complexity than the BnC method in CPLEX.

Table 4.3: Average algorithm runtime [seconds] vs. the SINR target Γ
(MIN)
k

Γ
(MIN)
k [dB] −6 −4 −2 0 2 4

BnC in CPLEX 0.3586 0.3601 0.3620 0.3644 0.3725 0.3775

Alg. 4.1 0.0010 0.0012 0.0018 0.0045 0.0042 0.0012

Tab. 4.4 lists the average number of iterations of Alg. 4.1 vs. the SINR target Γ
(MIN)
k ,

averaged over all MCRs. We see from Tab. 4.4 that the proposed Alg. 4.1 takes only a small

number of iterations to compute the optimal solutions of the SCBF problem (4.4), or to reach

the infeasibility certificates. Recall that only simple algebraic operations are performed in

each iteration of the proposed customized power iteration method in Alg. 4.1.

Table 4.4: Average number of iterations of Alg. 4.1 vs. the SINR target Γ
(MIN)
k

Γ
(MIN)
k [dB] −6 −4 −2 0 2 4

No. of iterations 4.85 6.66 10.63 29.33 61.98 88.05
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Tab. 4.5 shows the percentage of MCRs that Alg. 4.1 and the BnC method in CPLEX

achieve the same optimal solutions of the SCBF problem (4.4) vs. the SINR target Γ
(MIN)
k ,

averaged over feasible MCRs. Tab. 4.5 shows that it is possible that the optimal solutions

of the SCBF problem (4.4) computed by Alg. 4.1 and the BnC method are different. This is

because the optimal solution of the SCBF problem (4.4) is generally not unique.

Table 4.5: Percentage of MCRs that Alg. 4.1 and the BnC method achieve the same optimal

solutions vs. the SINR target Γ
(MIN)
k

Γ
(MIN)
k [dB] −6 −4 −2 0 2 4

Percentage 95.22% 97.78% 99% 99.65% 100% 100%

4.5.2 Performance of the alternating optimization approach

We investigate in this subsection the performance of the proposed ATOA in Alg. 4.2 and

the AFSA in Alg. 4.3 when applying to the CBCP problem in (4.39). As references, the

performance of the SCBF problem (4.4), which corresponds to δ = 0 and G = I in the CBCP

problem (4.39)), and the performance of the conventional non-codebook-based downlink

beamforming [12, 13, 25–31] are also displayed.
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Figure 4.2: The total transmitted BS power vs. the SINR target Γ
(MIN)
k .

Fig. 4.2 displays the total transmitted BS power vs. the SINR target Γ
(MIN)
k . It can be

observed from Fig. 4.2 that the proposed channel predistortion design achieves significantly

reductions of the total transmitted BS power, as compared to the standard codebook-based
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downlink beamforming, e.g., a reduction of 7.4 dB with Γ
(MIN)
k = 2 dB and δ = 0.2. Fur-

thermore, the proposed design yields total transmitted BS powers that are very close to the

lower bounds set by the non-codebook-based downlink beamforming.

Fig. 4.3 depicts the percentage of feasible MCRs vs. the SINR target Γ
(MIN)
k . We observe

that the percentage of feasible cases is tremendously increased with the proposed channel

predistortion design, as compared to the standard codebook-based downlink beamforming,

e.g., an improvement from 23.7% to 86% with Γ
(MIN)
k = 2 dB and δ = 0.2.

−6 −4 −2 0 2 4
0

20%

40%

60%

80%

100%

 

 

Non-codebook-based
Codebook-based w/ δ = 0.4
Codebook-based w/ δ = 0.3
Codebook-based w/ δ = 0.2
Codebook-based w/ δ = 0.1
Codebook-based beam. w/ δ = 0P

er
ce

n
ta

g
e

o
f

ac
h

ie
v
ed

fe
as

ib
le

ca
se

s

The received SINR target Γ
(MIN)
k [dB]

Figure 4.3: The percentage of achieved feasible cases vs. the SINR target Γ
(MIN)
k .
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Figure 4.4: The average number of instances of the MILP (4.63) solved in the considered

schemes vs. the SINR target Γ
(MIN)
k .
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Figure 4.5: The average number of instances of the SOCP (4.64) solved in the considered

schemes vs. the SINR target Γ
(MIN)
k .

Fig. 4.4 and Fig. 4.5 display the average number of instances of the MILP in (4.63) and

the average number of instances of the SOCP in (4.64) that are solved in the considered

schemes, respectively. We observe from Figs. 4.4 and 4.5 that only a very small number of

instances of the MILP (4.63) and the SOCP (4.64) are required to be solved in the proposed

channel predistortion design. For instance, on average 1.7 instances of the MILP (4.63) and
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4.4 instances of the SOCP (4.64) are solved with Γ
(MIN)
k = 2 dB and δ = 0.2, while sig-

nificant performance improvement is achieved by the proposed channel predistortion mech-

anism (cf. Figs. 4.2 and 4.3). This shows that the proposed channel predistortion scheme

is very computationally efficient for improving the performance of the standard codebook-

based downlink beamforming.

4.6 Summary

In this chapter, we have considered codebook-based multiuser downlink beamforming prob-

lem. We have developed a customized power iteration method in Alg. 4.1 to solve the com-

binatorial standard codebook-based downlink beamforming problem in (4.4). The proposed

Alg. 4.1 is built on the uplink-downlink duality between the VUL problem (4.16) and the

SCBF problem (4.4) and the convenient property that the beamformer assignments in the

VUL problem are nicely decoupled. It has been analytically shown that Alg. 4.1 yields

either the optimal (within the desired numerical accuracy) solutions of the SCBF problem

(when it is feasible), or the infeasibility certificates (when it is infeasible). To improve the

performance of the standard codebook-based downlink beamforming, we have proposed an

adaptive linear channel predistortion procedure that is applied on the downlink channel vec-

tors {hk, ∀k ∈ K}. The proposed channel predistortion scheme does not incur additional

signaling overhead or modifications of the mobile receivers, and hence it can straightfor-

wardly be incorporated into current 3G and 4G cellular standards. We developed the ATOA

in Alg. 4.2 and the AFSA in Alg. 4.3 to approximately solve the joint codebook-based beam-

forming and channel predistortion problem in (4.39). The simulation results have shown that

the proposed customized power iteration method in Alg. 4.1 is very efficient for solving the

SCBF problem and have confirmed the analytic studies of Alg. 4.1. Our numerical results

have also demonstrated that the proposed channel predistortion mechanism achieves signif-

icant performance improvement over the standard codebook-based downlink beamforming

in terms of, e.g., significant reductions of the total transmitted BS power, and the channel

predistortion matrix can be efficiently computed.



Chapter 5

Robust codebook-based downlink

beamforming and admission control

5.1 Introduction

In Chapter 4, it is assumed that the instantaneous downlink channel vectors are perfectly

known at the BS for optimizing codebook-based multiuser downlink beamforming and chan-

nel predistortion. The design presented in Chapter 4 is mainly applicable in time-division

duplex (TDD) systems with slow-fading channels, in which the BS can track the down-

link channel vectors by exploiting the reciprocity of downlink and uplink channels [7]. In

this chapter, we consider codebook-based multiuser downlink beamforming in the scenarios,

e.g., in frequency-division duplex (FDD) systems and/or in TDD systems with fast-fading

channels, where only estimated (and hence erroneous) channel covariance matrix (CCM)

information is available at the BS. As in Chapters 2 and 4, we adopt here the standard SINR-

constrained approach (see, e.g., [12, 13, 18, 25–33]).

To achieve robustness against the CCM estimation errors in guaranteeing the SINR re-

quirements of the admitted mobile stations (MSs), the worst-case robust design is employed

(see, e.g., [12, 37–42, 131–135]). In this dissertation, robustness refers to the property of the

downlink beamformer design that the minimum SINR requirements of the admitted MSs are

guaranteed to be satisfied regardless of the quality of the channel state information (CSI) that

is known at the base station (BS). Hence, in our robust design, the SINR targets of the ad-

mitted MSs guaranteed even if only erroneous CSI is available at the BS. That is, robustness

against erroneous CSI.

Similar to the conventional and the worst-case robust multiuser downlink beamforming

problems [12,13,18,24–33,37–42,131–134], the robust codebook-based multiuser downlink

105
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beamforming problem can easily become infeasible when the number of admitted MSs is

large and/or the prescribed SINR targets of the admitted MSs are high. To ensure a feasible

design and to exploit multiuser diversity [19], we consider in this chapter robust codebook-

based downlink beamforming jointly with user admission control. Similar to the work on

joint non-codebook-based downlink beamforming and admission control [83, 109–112], in

the robust codebook-based downlink beamforming and admission control (RCBA) problem,

we intend to attain the maximum number of concurrently supported MSs with the minimum

total transmitted BS power under the prescribed SINR requirements of the admissible MSs

and the per-BS sum-power constraint. The work of this chapter can be seen as an extension of

the prior contributions presented in [12, 37, 38], i.e., extending the existing works of [12, 37,

38] to incorporate joint robust codebook-based downlink beamforming and user admission

control.

As we have seen in Chapter 4, precoding vector assignments and transmission power

allocations of multiple MSs are coupled in the downlink SINR constraints. In addition, the

worst-case SINR constraints involve (inner) optimization procedures. As a result, the RCBA

problem naturally leads to a non-convex bi-level mixed-integer program (BL-MIP) [60,136],

with the inner optimization problems appearing in the worst-case SINR constraints. The BL-

MIP formulation cannot be efficiently solved to global optimality due to the inner optimiza-

tion steps and the integer optimization variables [60, 136]. We first adopt the conservative

approach as presented in [12, 37] to cope with the inner optimization steps in the worst-case

SINR constraints. That is, we first propose conservative approximations of the worst-case

SINR constraints, which gives rise to the strengthened worst-case SINR constraints, and de-

velop a MILP approximation of the RCBA problem. While the MILP approximation can

be efficiently solved using, e.g., the BnC method, it results in unnecessarily increased total

transmitted BS power required to ensure the SINR targets of the admitted MSs due to the

conservative approximations (see, e.g., [12, 37, 38], and Section 5.7).

To achieve a more power-efficient design, we reformulate the RCBA problem into an

equivalent mixed-integer second-order cone program (MISOCP) [82], which can be solved

using, e.g. the BnC method [67–69]. Similar to the work of [38], the exact MISOCP re-

formulation of the RCBA problem is developed through transforming the inner optimization

problems in the worst-case SINR constraints into independent convex semidefinite programs

(SDPs) and applying the strong Lagrange duality theory [34] to the resulting inner SDPs. As

discussed in Chapters 2 and 3, to reduce the computational complexity of the BnC method

when applying it to the MILP approximation and the exact MISOCP reformulation of the

RCBA problem, we introduce several customizing techniques to adapt the solution process

of the standard BnC method implemented in the MIP solver IBM ILOG CPLEX [81]. The
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customizing strategies are derived from the properties of the RCBA problem and mainly

include adding problem-specific cuts and employing customized node selection rules and

branching priorities [81].

Since the computational complexity associated with the standard BnC method for solving

the exact MISOCP reformulation may not be practically affordable in large-scale networks,

we develop a low-complexity second-order cone programming (SOCP) based inflation pro-

cedure (i.e., a greedy algorithm) [83,84] to compute the near-optimal solutions of the RCBA

problem. Different from the inflation procedures presented in Chapters 2 and 3, we invoke

a sub-enumeration procedure (see Alg. 5.1) and solve a sequence of SOCPs to determine

which one of the non-admitted MSs is the best candidate to admit in each iteration of the

inflation procedure. The best candidate MS in each iteration is the one that results in the

largest increase in the system utility if it is admitted. The inflation procedure proposed in

this chapter represents a greedy algorithm.

The simulations results show that the MILP based approach, the MISOCP based ap-

proach, and the inflation procedure yield almost the same average number of admitted MSs.

However, the MILP based approach requires much more total transmitted BS power to guar-

antee the SINR targets of the admitted MSs than that of the MISOCP based approach and

the inflation procedure. The numerical results also demonstrate that the inflation procedure

has much less computational complexity than the MILP based approach and the MISOCP

based approach when the number of admissible MSs is large. While the MISOCP based ap-

proach achieves the largest system utility on average, it also admits the highest computational

complexity among the three methods.

This chapter is based on my original work that has been published in [124,125,137], and

the MILP based approach is added and new simulation results are presented in this chapter.

5.2 System model and problem statement

As in Chapters 3 and 4, in this chapter we focus on the downlink of a cellular network with

one BS equipped with M transmit antennas, and K single-antenna MSs. The K MSs are

admissible under the prescribed minimum received SINR targets (representing QoS require-

ments [23]). As in Chapter 4, we denote hH
k ∈ C1×M , uk ∈ CM×1, and pk > 0 as the

frequency-flat channel vector, the unit-norm precoding vector, and the allocated transmis-

sion power, respectively, of the kth MS, ∀k ∈ K , {1, 2, · · · , K}. The received signal
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yk ∈ C at the kth MS can then be written as (see, e.g., [12, 13, 18, 28])

yk = hH
k uk

√
pkxk +

K∑

j=1,j 6=k

hH
k uj

√
pjxj + zk, ∀k ∈ K (5.1)

where xk ∈ C denotes the normalized data symbol, i.e., E {|xk|2} = 1, intended to the kth

MS, and zk ∈ C stands for the additive circularly-symmetric white Gaussian noise [19] at

the kth MS, with zero mean and variance σ2
k, ∀k ∈ K. Note that the signal model in (5.1)

is identical to that given in Eq. (4.1) of Chapter 4. However, different from Chapter 4, it is

assumed in this chapter that the downlink channel vectors {hk, ∀k ∈ K} are not known at

the BS. That is, we assume in this chapter that the downlink channel vectors {hH
k , ∀k ∈ K}

are random vectors.

As in Chapter 4 (cf. Eq. (4.2)), we consider in this chapter the codebook-based multiuser

downlink beamforming. That is, the normalized precoding vector uk is assigned from the

predefined precoding vector codebook B consisting of L > 1 fixed precoding vectors, i.e.,

uk ∈ B , {v1,v2, · · · ,vL} , ∀k ∈ K (5.2)

where the precoding vector vl ∈ CM×1 and ‖vl‖2 = 1, ∀l ∈ L , {1, 2, · · · , L}. Assume

that the data symbols of the MSs are mutually independent and independent from the noise.

With single-user detection at the receivers, the average received SINR at the kth MS, denoted

by SINRk, can then be expressed as (see, e.g., [12, 37–42])

SINRk ,
pku

H
k Rkuk∑K

j=1,j 6=k pju
H
j Rkuj + σ2

k

, ∀k ∈ K (5.3)

where the matrix Rk , E
{
hkh

H
k

}
∈ CM×M represents the true CCM of the kth MS,

∀k ∈ K. Note that the term SINRk defined in (5.3) represents the average received SINR

at the kth MS, while the expression SINRk given in Eq. (4.3) of Chapter 4 refers to the

instantaneous received SINR at the kth MS [12].

Similar to Chapter 4, to model the precoding vector assignment procedure, we introduce

the binary integer variable ak,l ∈ {0, 1} to indicate with ak,l = 1 that the lth precoding vector

vl ∈ B is assigned to the kth MS, and ak,l = 0 otherwise. Accordingly, we introduce the

continuous variable φk,l ≥ 0 to model the transmission power allocated to the lth precoding

vector vl ∈ B for the kth MS, ∀k ∈ K, ∀l ∈ L. Since at most one precoding vector may

be assigned to a MS in codebook-based downlink beamforming (also known as single-layer-
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per-user precoding [7]), we impose the following constraints in the RCBA problem:

K∑

k=1

L∑

l=1

φk,l ≤ P (MAX) (5.4)

0 ≤ φk,l ≤ ak,lP
(MAX), ∀k ∈ K, ∀l ∈ L (5.5)

L∑

l=1

ak,l ≤ 1, ∀k ∈ K (5.6)

where Eq. (5.4) represents the per-BS sum-power constraint, with the constant P (MAX) > 0

denoting the maximum transmission power of the BS. Eq. (5.5) implements the so-called

big-M method [67,68] to ensure that φk,l = 0 when ak,l = 0. Furthermore, due to the per-BS

sum-power constraint in (5.4), Eq. (5.5) is automatically satisfied when ak,l = 1. Note that

for the precoding vector selection constraints, i.e., the multiple-choice constraints in (5.6),

if
∑

l=1 ak,l = 0, i.e., if no precoding vector is assigned to the kth MS, the kth MS is not

admitted in the current time-slot. Hence, with the multiple-choice constraints in (5.6), user

admission control is naturally embedded in the precoding vector assignment procedure.

As in Chapter 4 (cf. Eqs. (4.9) and (4.10)), under the constraints in Eqs. (5.5) and (5.6),

we can express the transmission power pk and the beamformer uk of the kth MS, respectively,

as

pk =

L∑

l=1

ak,lφk,l =

L∑

l=1

φk,l, ∀k ∈ K (5.7)

uk =
L∑

l=1

ak,lvl, ∀k ∈ K. (5.8)

Eqs. (5.7) and (5.8) together further imply that

(
√
pjuj)

HRk(
√
pjuj) =

L∑

l=1

φj,lv
H
l Rkvl =

L∑

l=1

φj,lTr
{
RkVl

}
, ∀j, k ∈ K (5.9)

where the constant matrix Vl ∈ CM×M is defined as

Vl , vlv
H
l � 0, ∀l ∈ L. (5.10)
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Making use of Eq. (5.9), the term SINRk defined in Eq. (5.3) can be rewritten as

SINRk =

∑L

m=1 φk,mTr
{
RkVm

}
∑K

j=1,j 6=k

∑L

l=1 φj,lTr
{
RkVl

}
+ σ2

k

, ∀k ∈ K. (5.11)

Due to limited channel training resources, channel variations, channel estimation errors,

and channel feedback errors and delay, the true CCM Rk is usually not available at the BS,

e.g., in FDD systems [7,19]. In this case, only the estimated CCM of the kth MS, denoted by

R̂k ∈ C
M×M , is known to the BS [12,37–40]. In practical systems, the estimated CCM R̂k is

generally different from the true CCM Rk. Following the approach presented in [12,37–40],

we model in this chapter the estimated (erroneous) CCM R̂k as

R̂k = Rk +∆k, ∀k ∈ K (5.12)

where the matrix ∆k ∈ CM×M denotes the estimation errors in the estimated CCM R̂k,

i.e., the matrix ∆k represents the mismatch matrix. We know from practical considerations

that the matrices Rk and R̂k are positive semidefinite, i.e., Rk � 0 and R̂k � 0, and the

mismatch matrix ∆k is Hermitian, i.e., ∆k = ∆H
k . Further, it is commonly assumed in the

literature that the Frobenius norm of the mismatch matrix ∆k is upper-bounded by a known

constant δk ≥ 0 (see, e.g., [12, 37, 38]), i.e.,

‖∆k‖F ≤ δk, ∀k ∈ K. (5.13)

In this chapter, we consider the problem of precoding vector assignment and power al-

location for the K MSs to maximize the system utility function f ({ak,l}, {φk,l}), which is

defined as

f ({ak,l}, {φk,l}) ,
K∑

k=1

L∑

l=1

ak,l − ρ
K∑

k=1

L∑

l=1

φk,l (5.14)

where the constant weighting factor ρ > 0 is adopted to guarantee that maximizing the

system utility function f ({ak,l}, {φk,l}) will result in the maximum number of admitted MSs

(i.e., the term
∑K

k=1

∑L

l=1 ak,l) with the minimum total transmitted BS power (i.e., the term
∑K

k=1

∑L

l=1 φk,l) [83, 110, 111]. As in Chapter 3, taking into account the per-BS sum-power

constraint in (5.4), we can simply choose the weighting factor ρ as ρ = 1/
(
1 + P (MAX)

)
[83,

110, 111].

Similarly as in the conventional QoS-constrained designs [12,13,18,24–33,37–42,131–

133], if the kth MS is admitted, i.e., if
∑L

l=1 ak,l = 1, then the average received SINR of the
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kth MS must exceed or equal to a prescribed threshold Γ
(MIN)
k to guarantee the QoS that the

kth MS is subscribed to. To achieve robustness against the CCM estimation errors {∆k, ∀k ∈
K}, we adopt here the worst-case robust design approach (see, e.g., [12, 37, 38, 131–134]).

Specifically, we define in this chapter the following worst-case SINR constraints for the K

admissible MSs:

min
∆k∈Ek

SINRk = min
∆k∈Ek

∑L

m=1 φk,mTr
{(

R̂k −∆k

)
Vm

}
∑K

j=1,j 6=k

∑L

l=1 φj,lTr
{(

R̂k −∆k

)
Vl

}
+ σ2

k

≥ Γ
(MIN)
k

L∑

l=1

ak,l, ∀k ∈ K (5.15)

where the estimation error set Ek is defined as

Ek ,
{
∆k|Rk = R̂k −∆k � 0, and ‖∆k‖2F ≤ δ2k

}
, ∀k ∈ K. (5.16)

Note that the CCM estimation error sets {Ek, ∀k ∈ K} defined in (5.16) are mutually

independent among the K admissible MSs.

With the system utility function f ({ak,l}, {φk,l}) defined in (5.14) and the worst-case

SINR constraints defined in Eqs. (5.15) and (5.16), the robust joint codebook-based downlink

beamforming and admission control (RCBA) problem can be stated as

Φ(RCBA) , max
{ak,l,φk,l}

f ({ak,l}, {φk,l}) (5.17a)

s.t. (5.4):

K∑

k=1

L∑

l=1

φk,l ≤ P (MAX)

(5.5): 0 ≤ φk,l ≤ ak,lP
(MAX), ∀k ∈ K, ∀l ∈ L

(5.6):

L∑

l=1

ak,l ≤ 1, ∀k ∈ K

(5.15) min
∆k∈Ek

∑L

m=1 φk,mTr
{(

R̂k −∆k

)
Vm

}
∑K

j=1,j 6=k

∑L

l=1 φj,lTr
{(

R̂k −∆k

)
Vl

}
+ σ2

k

≥ Γ
(MIN)
k

L∑

l=1

ak,l, ∀k ∈ K

(5.16): Ek ,
{
∆k|Rk = R̂k −∆k � 0, and ‖∆k‖2F ≤ δ2k

}
, ∀k ∈ K

ak,l ∈ {0, 1}, ∀k ∈ K, ∀l ∈ L. (5.17b)

The RCBA problem (5.17) contains the inner optimization problems in the worst-case

SINR constraints in (5.15) and the outer optimization problem (5.17). As a result, the

RCBA problem formulation in (5.17) represents a BL-MIP [60, 136], which is generally
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intractable due to the inner optimization step in Eq. (5.15) and the integer constraints in

Eq. (5.17b) [60,136]. To facilitate the development of efficient algorithmic solutions, we de-

rive a MILP approximation in next section and an exactly equivalent MISOCP reformulation

in Section 5.4 of the RCBA problem in (5.17), respectively.

5.3 The conservative MILP approximation

We develop in this section a MILP approximation of the RCBA problem in the BL-MIP form

of (5.17). We observe that for any arbitrary values of the variables ak,l ∈ {0, 1}, φk,l ≥ 0,

∀k ∈ K, ∀l ∈ L, it always holds that:

min
∆k∈Ek

∑L

m=1 φk,mTr
{(

R̂k −∆k

)
Vm

}
∑K

j=1,j 6=k

∑L

l=1 φj,lTr
{(

R̂k −∆k

)
Vl

}
+ σ2

k

≥ min∆k∈Ek
∑L

m=1 φk,mTr
{(

R̂k −∆k

)
Vm

}

max∆k∈Ek
∑K

j=1,j 6=k

∑L

l=1 φj,lTr
{(

R̂k −∆k

)
Vl

}
+ σ2

k

≥ min‖∆k‖F≤δk

∑L

m=1 φk,mTr
{(

R̂k −∆k

)
Vm

}

max‖∆k‖F≤δk

∑K

j=1,j 6=k

∑L

l=1 φj,lTr
{(

R̂k −∆k

)
Vl

}
+ σ2

k

, ∀k ∈ K (5.18)

where the CCM estimation error set Ek is defined in (5.16). Based on the properties stated

in Eq. (5.18), we follow a similar approach as that of [12, 37] and employ the following

conservative approximations of the worst-case SINR constraints defined in Eq. (5.15):

min‖∆k‖F≤δk

∑L

m=1 φk,mTr
{(

R̂k −∆k

)
Vm

}

max‖∆k‖F≤δk

∑K

j=1,j 6=k

∑L

l=1 φj,lTr
{(

R̂k −∆k

)
Vl

}
+ σ2

k

≥ Γ
(MIN)
k

L∑

l=1

ak,l, ∀k ∈ K.

(5.19)

Due to Eq. (5.18), the constraints in (5.19) represent the strengthened worst-case SINR con-

straints. That is, if the kth constraint defined in (5.19) is satisfied with
∑L

l=1 ak,l = 1, then

the corresponding kth constraint defined in (5.15) is also satisfied with
∑L

l=1 ak,l = 1.

Note that in order to obtain closed-form expressions for the conservative approximations

of the worst-case SINR constraints in (5.19), we have used the constraint that ‖∆k‖F ≤ δk,

instead of the constraint that ∆k ∈ Ek in (5.19). Specifically, considering the constraints in

Eqs. (5.5) and (5.6), i.e., taking into account the fact that at most one of the variables in the

set {φk,l, ∀l ∈ L} is non-zero, ∀k ∈ K, it holds in the numerator of the left-hand-side (LHS)
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of Eq. (5.19) that

min
‖∆k‖F≤δk

L∑

m=1

φk,mTr
{(

R̂k −∆k

)
Vm

}
=

L∑

m=1

φk,m

(
Tr
{
R̂kVm

}
− δk

)
, ∀k ∈ K (5.20)

where we have chosen the minimizer ∆̃k = δkI in the LHS of Eq. (5.20). Similarly, it holds

in the denominator of the LHS of Eq. (5.19) that

max
‖∆k‖F≤δk

K∑

j=1,j 6=k

L∑

l=1

φj,lTr
{(

R̂k −∆k

)
Vl

}
=

K∑

j=1,j 6=k

L∑

l=1

φj,l

(
Tr
{
R̂kVl

}
+ δk

)
, ∀k ∈ K

(5.21)

where we have chosen the maximizer ∆̃k = −δkI in the LHS of Eq. (5.21).

Substituting Eqs. (5.20) and (5.21) back into the strengthened worst-case SINR con-

straints in (5.19), we obtain the following closed-form expressions of the strengthened worst-

case SINR constraints in (5.19):

∑L

m=1 φk,m

(
Tr
{
R̂kVm

}
− δk

)

∑K

j=1,j 6=k

∑L

l=1 φj,l

(
Tr
{
R̂kVl

}
+ δk

)
+ σ2

k

≥ Γ
(MIN)
k

L∑

l=1

ak,l, ∀k ∈ K. (5.22)

We remark that the strengthened worst-case SINR constraints in (5.22) represent the

well-known diagonal-loading solution for robust downlink beamforming [12, 37, 38].

The strengthened worst-case SINR constraints in (5.22) can further be equivalently rewrit-

ten as

L∑

m=1

φk,m

(
Tr
{
R̂kVm

}
− δk

)

≥
(

K∑

j=1,j 6=k

L∑

l=1

φj,l

(
Tr
{
R̂kVl

}
+ δk

)
+ σ2

k

)
Γ
(MIN)
k

L∑

l=1

ak,l, ∀k ∈ K. (5.23)

Due to the bi-linear terms involving the variables {φk,l, ∀k ∈ K, ∀l ∈ L} and {ak,l, ∀k ∈
K, ∀l ∈ L} in Eq. (5.23), the strengthened worst-case SINR constraints in (5.23) remain

non-convex constraints even when the integer variables {ak,l, ∀k ∈ K, ∀l ∈ L} are re-

laxed to be continuous variables taking values in the closed interval [0, 1]. To derive more

tractable equivalent reformulations of the SINR constraints in (5.23), we adopt here the well-

known big-M method [67–69] to reformulate the strengthened worst-case SINR constraints
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in (5.23). We define the constants Uk > 0 and γ̄k > 0, respectively, as

Uk , P (MAX)

(
max
l∈L

Tr
{
R̂kVl

}
+ δk

)
+ σ2

k, ∀k ∈ K (5.24)

γ̄k = 1/Γ
(MIN)
k , ∀k ∈ K. (5.25)

Taking into account the per-BS sum-power constraint (5.4), the constant Uk satisfies that

Uk ≥
K∑

j=1,j 6=k

L∑

l=1

φj,l

(
Tr
{
R̂kVl

}
+ δk

)
+ σ2

k, ∀k ∈ K. (5.26)

With the constants Uk and γ̄k, the strengthened worst-case SINR constraints in (5.23) can

be equivalently rewritten as

γ̄k

L∑

m=1

φk,m

(
Tr
{
R̂kVm

}
− δk

)
+
(
1−

L∑

l=1

ak,l

)
Uk

≥
K∑

j=1,j 6=k

L∑

l=1

φj,l

(
Tr
{
R̂kVl

}
+ δk

)
+ σ2

k, ∀k ∈ K. (5.27)

The constraints in (5.27) are equivalent to that of (5.23). This follows because when∑L

l=1 ak,l = 1, the kth constraint in (5.27) is identical to that of the kth constraint in (5.23).

Moreover, when
∑L

l=1 ak,l = 0, the kth constraint in (5.27) is automatically satisfied due

to the big-M constant Uk and Eq. (5.26). The kth constraint in (5.23) is also automatically

satisfied when
∑L

l=1 ak,l = 0. As a result, the constraints in (5.27) are equivalent to the

strengthened worst-case SINR constraints in (5.23).

Replacing the worst-case SINR constraints in (5.15) with the derived closed-form conser-

vative approximations in (5.27), we obtain the following MILP approximation of the RCBA



5.4. The equivalent MISOCP reformulation 115

problem in (5.17):

Φ(MILP) , min
{ak,l,φk,l}

f ({ak,l}, {φk,l}) (5.28a)

s.t. (5.4):

K∑

k=1

L∑

l=1

φk,l ≤ P (MAX)

(5.5): 0 ≤ φk,l ≤ ak,lP
(MAX), ∀k ∈ K, ∀l ∈ L

(5.6):

L∑

l=1

ak,l ≤ 1, ∀k ∈ K

(5.17b): ak,l ∈ {0, 1}, ∀k ∈ K, ∀l ∈ L

(5.27): γ̄k

L∑

m=1

φk,m

(
Tr
{
R̂kVm

}
− δk

)
+
(
1−

L∑

l=1

ak,l

)
Uk

≥
K∑

j=1,j 6=k

L∑

l=1

φj,l

(
Tr
{
R̂kVl

}
+ δk

)
+ σ2

k, ∀k ∈ K

which can be efficiently solved using, e.g., the standard BnC method [67–69, 81, 82] that is

implemented in the MIP solver IBM ILOG CPLEX [81].

We remark that due to the conservative approximations employed in (5.22), the MILP

based approach (5.28) requires more total transmitted BS power to guarantee the SINR re-

quirements of the admitted MSs (see, e.g., Section 5.7), which has also been reported in the

robust non-codebook-based multiuser downlink beamforming problem [38].

5.4 The equivalent MISOCP reformulation

The main difficulties of the RCBA problem in the form of the BL-MIP in (5.17) stem from

the inner optimization problems in the worst-case SINR constraints in (5.15) and the integer

constraints in (5.17b). Different from the conservative approximations (5.22) proposed in

the previous section, we derive here more tractable equivalent reformulations of the worst-

case SINR constraints in (5.15) and develop an exact MISOCP reformulation of the RCBA

problem (5.17). We observe that the following SINR constraints:

SINRk ≥ Γ
(MIN)
k

L∑

l=1

ak,l, ∀k ∈ K (5.29)



116 Chapter 5. Robust codebook-based downlink beamforming and admission control

with the term SINR
(DL)
k given in Eq. (5.11), are equivalent to the following constraints:

γ̄k

L∑

m=1

φk,mTr
{(

R̂k −∆k

)
Vm

}
+
(
1−

L∑

l=1

ak,l

)
Uk

≥
K∑

j=1,j 6=k

L∑

l=1

φj,lTr
{(

R̂k −∆k

)
Vl

}
+ σ2

k, ∀k ∈ K. (5.30)

The constraints in Eq. (5.30) can further be rewritten as

Tr
{(

R̂k −∆k

)
Ak

}
≥ σ2

k +
( L∑

l=1

ak,l − 1
)
Uk, ∀k ∈ K. (5.31)

where the auxiliary optimization matrix Ak ∈ C
M×M is defined as

Ak , γ̄k

L∑

m=1

φk,mVm −
K∑

j=1,j 6=k

L∑

l=1

φj,lVl, ∀k ∈ K. (5.32)

Considering the equivalence of the constraints in Eqs. (5.29) and (5.31), the worst-case

SINR constraints defined in (5.15) can be equivalently rewritten as

(
min
∆k∈Ek

Tr
{(

R̂k −∆k

)
Ak

})
≥ σ2

k +
( L∑

l=1

ak,l − 1
)
Uk, ∀k ∈ K. (5.33)

Following a similar approach as that presented in [38], for the kth MS, we treat the

inner optimization problem in the LHS of the worst-case SINR constraints in (5.33) as an

independent convex SDP, which can be written as

Γ
(LHS)
k , min

∆k

Tr
{(

R̂k −∆k

)
Ak

}
(5.34a)

s.t. R̂k −∆k � 0 (5.34b)

‖∆k‖2F ≤ δ2k. (5.34c)

Note that the convex SDP in (5.34) is strictly feasible, e.g., the point ∆k = − δk
2
I is a

strictly feasible solution of problem (5.34). As a result, we can apply the strong Lagrange

duality theory [34] to the SDP in (5.34) and focus on the associated dual problem [34, 38].

The Lagrangian function Lk (∆k, λk,Zk) associated with the convex SDP in (5.34) can be
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written as [34, 38]

Lk (∆k, λk,Zk) , Tr
{(

R̂k −∆k

)
Ak

}
+ λk

(
‖∆k‖2F − ε2k

)
− Tr

{(
R̂k −∆k

)
Zk

}

(5.35)

where the matrix Zk � 0 and the variable λk ≥ 0 represent the Lagrange multipliers associ-

ated with the constraints in (5.34b) and (5.34c), respectively. The dual function Dk

(
λk,Zk

)

associated with the convex SDP in (5.34) can be expressed as [34]

Dk

(
λk,Zk

)
, min

∆k

Lk (∆k, λk,Zk) . (5.36)

Due to the constraints in (5.34c), the optimal objective function value of the convex

SDP in (5.34) is bounded. Further, the dual function Dk

(
λk,Zk

)
defined in Eq. (5.36) is

unbounded if λk = 0. As a result, according to the strong Lagrange duality theory [34],

it must hold that λk > 0 so that the dual function Dk

(
λk,Zk

)
is also bounded. To solve

the unconstrained minimization problem in the right-hand-side (RHS) of Eq. (5.36), we set

the partial derivative of the Lagrangian function Lk (∆k, λk,Zk) with respect to (w.r.t.) the

mismatch matrix ∆k to the all-zeros matrix, i.e., we set

∂Lk (∆k, λk,Zk)

∂∆k

= −Ak + 2λk∆k + Zk = 0. (5.37)

We then obtain from solving Eq. (5.37) the minimizer [34, 38]

∆̃k =
Ak − Zk

2λk

(5.38)

of the minimization problem in the RHS of Eq. (5.36). Substituting the minimizer ∆̃k given

in (5.38) back into the Lagrangian function Lk (∆k, λk,Zk) in (5.35), we obtain the closed-

form expression of the dual function Dk

(
λk,Zk

)
as [34, 38]

Dk

(
λk,Zk

)
= Tr

{
R̂k

(
Ak − Zk

)
− ‖Ak − Zk‖2F

4λk

− λkδ
2
k. (5.39)

The dual problem associated with the convex SDP in (5.34) can then be rewritten as [34,38]

Γ
(LHS)
k = max

λk>0,Zk�0
Dk

(
λk,Zk

)
= max

Zk�0
max
λk>0

Dk

(
λk,Zk

)
. (5.40)
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We know from fundamental algebra that [34, 116]

−‖Ak − Zk‖2F
4λk

− λkδ
2
k ≤ −δk‖Ak − Zk‖F (5.41)

where the equality in Eq. (5.41) is achieved if and only if λ̃k = ‖Ak−Zk‖F
2δk

. As a result,

maximizing the dual function Dk

(
λk,Zk

)
w.r.t. the Lagrange multiplier λk > 0 results in

the maximizer [34, 38]

λ̃k =
‖Ak − Zk‖F

2δk
. (5.42)

Substituting the maximizer λ̃k back into the dual function Dk

(
λk,Zk

)
given in (5.39), we

obtain the reduced dual problem as

Γ
(LHS)
k = max

Zk�0

(
Tr
{
R̂k

(
Ak − Zk

)}
− δk‖Ak − Zk‖F

)
. (5.43)

Making use of the equivalence between the dual problem in (5.43) and the convex SDP

in (5.34), we obtain the following equivalent reformulations of the worst-case SINR con-

straints in (5.33):

max
Zk�0

(
Tr
{
R̂k

(
Ak − Zk

)}
− δk‖Ak − Zk‖F

)
≥ σ2

k +
( L∑

l=1

ak,l − 1
)
Uk, ∀k ∈ K. (5.44)

We further observe that, for the kth MS, the worst-case SINR constraint in (5.44) is

satisfied if there exists a matrix Zk ≥ 0 for which the kth constraint defined in (5.44) is

satisfied. As a result, the formulated RCBA problem in (5.17) can be equivalently rewritten
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as the following mixed-integer semidefinite program (MISDP):

Φ(RCBA) = min
{ak,l,φk,l,Zk}

f ({ak,l}, {φk,l}) (5.45a)

s.t. (5.4):

K∑

k=1

L∑

l=1

φk,l ≤ P (MAX)

(5.5): 0 ≤ φk,l ≤ ak,lP
(MAX), ∀k ∈ K, ∀l ∈ L

(5.6):

L∑

l=1

ak,l ≤ 1, ∀k ∈ K

Zk � 0, ∀k ∈ K (5.45b)

Tr
{
R̂k

(
Ak − Zk

)}
− δk‖Ak − Zk‖F ≥ σ2

k +
( L∑

l=1

ak,l − 1
)
Uk, ∀k ∈ K (5.45c)

ak,l ∈ {0, 1}, ∀k ∈ K, ∀l ∈ L. (5.45d)

We can then follow the procedure presented in [38, Appendix A] with modifications

required for accommodating the integer variables to prove that, without loss of optimality of

the RCBA problem in the form of (5.45), we can choose Zk = 0, ∀k ∈ K, in problem (5.45).

As a result, the MISDP formulation in (5.45) of the RCBA problem can be equivalently

rewritten as the following MISOCP [38, Section IV.A]:

Φ(RCBA) = max
{ak,l,φk,l}

f ({ak,l}, {φk,l}) (5.46a)

s.t. (5.4):

K∑

k=1

L∑

l=1

φk,l ≤ P (MAX)

(5.5): 0 ≤ φk,l ≤ ak,lP
(MAX), ∀k ∈ K, ∀l ∈ L

(5.6):

L∑

l=1

ak,l ≤ 1, ∀k ∈ K

Tr
{
R̂kAk

}
− δk‖vec{Ak}‖2 ≥ σ2

k +
( L∑

l=1

ak,l − 1
)
Uk, ∀k ∈ K (5.46b)

ak,l ∈ {0, 1}, ∀k ∈ K, ∀l ∈ L (5.46c)

where we have used the equalities that [34]: Zk = 0 and ‖Ak‖F = ‖vec{Ak}‖2, ∀k ∈ K, to

obtain the worst-case SINR constraints in Eq. (5.46b).

We remark that the RCBA problem in the form of the BL-MIP (5.17) has been equiv-

alently converted into the MISOCP formulation in (5.46), which admits convex continuous
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relaxations (i.e., convex SOCPs) and can be more efficiently solved using, e.g., the convex

continuous relaxation based BnC method [67–69,81,82]. The BnC method relies on solving

the continuous relaxation (CRLX) of the RCBA problem (5.46), which is given by

Φ(CRLX) = min
{ak,l,φk,l}

f ({ak,l}, {φk,l}) (5.47a)

s.t. (5.4):

K∑

k=1

L∑

l=1

φk,l ≤ P (MAX)

(5.5): 0 ≤ φk,l ≤ ak,lP
(MAX), ∀k ∈ K, ∀l ∈ L

(5.6):

L∑

l=1

ak,l ≤ 1, ∀k ∈ K

(5.46b): Tr
{
R̂kAk

}
− δk‖vec{Ak}‖2 ≥ σ2

k +
( L∑

l=1

ak,l − 1
)
Uk, ∀k ∈ K

0 ≤ ak,l ≤ 1, ∀k ∈ K, ∀l ∈ L (5.47b)

where the variables {ak,l, ∀k ∈ K, ∀l ∈ L} originally constrained in the discrete set {0, 1} as

in (5.46c) are relaxed to be continuous variables that take values in the closed interval [0, 1]

as given in Eq. (5.47b).

Recall that the auxiliary matrix Ak defined in (5.32) is linear in the power allocation vari-

ables {φk,l, ∀k ∈ K, ∀l ∈ L}. Hence, when the term −δk‖vec{Ak}‖2 in (5.46b) is not pre-

sented, i.e., for non-robust designs, the RCBA problem in (5.46) reduces to a MILP [67–69],

which requires far fewer computational efforts to solve than that of the MISOCP formulation

in (5.46) [67–69, 81, 82]. Hence, for the RCBA problem in the form of (5.46), to achieve ro-

bustness against the CCM estimation errors, not only more transmitted BS power needs to be

invested (see, e.g., [12, 37–42, 131–135]), but also more computational efforts are required,

as compared to non-robust downlink beamforming designs.

5.5 Techniques for customizing the BnC method

Based on the structure of the RCBA problem in the form of the MISOCP in (5.46), we pro-

pose here efficient strategies to customize the parallel BnC method implemented in the MIP

solver CPLEX [81]. The customizing strategies are introduced to reduce the computational

efforts of the BnC method when applying CPLEX on the RCBA problem in (5.46).
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5.5.1 Customized optimality criterion

We denote Ψ(BIF) and Ψ(GUB) as the objective value of the incumbent solution (i.e., the best-

known integer-feasible solution) and the smallest global upper bound (GUB) of the optimal

objective value Φ(RCBA) of the RCBA problem (5.46), respectively, computed in the BnC

procedure. Since Ψ(BIF) and Ψ(GUB) are the best-known global lower bound (GLB) and the

GUB of the optimal objective value Φ(RCBA), respectively, it holds that

0 ≤ Ψ(BIF) ≤ Φ(RCBA) ≤ Ψ(GUB). (5.48)

As presented in Sections 2.5.1 and 5.5.1, an incumbent solution computed by the BnC

procedure is declared to be an optimal solution of the RCBA problem (5.46) if it satisfies

that [69, 81]:

Relative MIP gap ,
Ψ(GUB)

Ψ(BIF)
− 1 ≤ η (5.49)

where the constant η ≥ 0 denotes the predetermined relative optimality tolerance, which can

be customized according to the RCBA problem (5.46) in specific practical applications.

5.5.2 Customized node selection and branching rules

As in Chapters 2 and 3, we adopt the best-bound search rule [81] for node selection in the

BnC procedure when applying the solver CPLEX on the RCBA problem (5.46). The best-

bound search rule favors the computation of the optimality certificate defined in (5.49) [81].

As for the customized branching priorities, we propose here to relate the branching pri-

ority of the (relaxed) binary variable ak,l to the incentive measure Υk,l, defined as

Υk,l , P (MAX)Tr{R̂kVl}, ∀k ∈ K, ∀l ∈ L (5.50)

which represents the maximum signal power received at the kth MS when the lth precod-

ing vector vl ∈ B is assigned to the kth MS, ∀k ∈ K, ∀l ∈ L. That is, a larger term

P (MAX)Tr{R̂kVl} corresponds to a larger branching priority of the (relaxed) binary variable

ak,l. Similar to Chapter 2, we define here the branching priority, denoted by Υk,l, associated

with the (relaxed) binary variable ak,l as

Υk,l ,

K∑

j=1

L∑

m=1

I (Υj,m ≤ Υk,l) , ∀k ∈ K, ∀l ∈ L (5.51)
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where the indicator function I (Υj,m ≤ Υk,l) is defined as

I (Υj,m ≤ Υk,l) =

{
1, if Υj,m ≤ Υk,l

0, otherwise.
(5.52)

5.5.3 Preprocessing

We know from the worst-case SINR constraints in (5.15) that, to assign the lth precoding

vector vl ∈ B to the kth MS, it is required that:

P (MAX)

(
min

∆k∈Ek
Tr
{(

R̂k −∆k

)
Vl

})
≥ σ2

kΓ
(MIN)
k . (5.53)

Since the minimization problem in the LHS of Eq. (5.53) represents a convex SDP [34], the

necessary condition in (5.53) can easily be verified in the preprocessing step. In case that the

necessary condition in (5.53) is not satisfied, i.e., if it is infeasible to assign the lth precoding

vector vl ∈ B to the kth MS, we fix ak,l = 0 in the RCBA problem (5.46).

In addition, as presented in Chapters 2 and 3, we can also introduce problem-specific

cuts [67–69,81,82] to reduce the size of the feasible set of the continuous relaxation in (5.47).

For example, the following cuts can be added to the RCBA problem (5.46):

φk,lTr
{
R̂kVl

}
≥ ak,lσ

2
kΓ

(MIN)
k , ∀k ∈ K, ∀l ∈ L. (5.54)

The problem-specific cuts defined in (5.54) are derived from the SINR constraints in (5.46b)

by dropping the term −δk‖vec{Ak}‖2 and the co-channel interference in Eq. (5.46b).

Further, high-quality integer-feasible solutions can be utilized to initialize the BnC pro-

cedure to reduce the computational efforts. We develop in the subsequent section a low-

complexity inflation procedure (i.e., a heuristic greedy algorithm) [83, 84] to compute near-

optimal integer-feasible solutions of the RCBA problem in (5.46).

5.6 The SOCP based inflation procedure

The computational complexity of the BnC method when applying on the MISOCP formu-

lation of the RCBA problem in (5.46) may be prohibitive for practical applications in large-

scale networks. We propose here a low-complexity SOCP based inflation procedure [83,84]

to compute close-to-optimal solutions of the RCBA problem (5.46). The integer-feasible

solutions computed by the inflation procedure can be used to initialize the BnC algorithm to

reduce the computational efforts required for computing the optimal solutions and/or opti-
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mality certificates. The inflation procedure starts with
{
a
(0)
k,l = 0, ∀k ∈ K, ∀l ∈ L

}
. In the

nth iteration (1 ≤ n ≤ K), the best candidate among the zero-valued variables in the set

{a(n−1)
k,l , ∀k ∈ K, ∀l ∈ L} is chosen and fixed to one. To determine the best candidate in

the nth iteration, a sub-enumerating process is introduced. Define ã
(n)
k,l , a

(n−1)
k,l , ∀k ∈ K,

∀l ∈ L. In the (j,m)th (1 ≤ j ≤ K, 1 ≤ m ≤ L) sub-enumeration in the nth iteration of the

inflation procedure, if ã
(n)
j,m = 0, we set ã

(n)
j,m = 1, and the following convex SOCP:

P
(n)
j,m , min

{φk,l}

K∑

k=1

L∑

l=1

φk,l (5.55a)

s.t. (5.4):

K∑

k=1

L∑

l=1

φk,l ≤ P (MAX)

φk,l ≥ 0, ∀k ∈ K, ∀l ∈ L (5.55b)

Tr
{
R̂kAk

}
− δk‖vec{Ak}‖2 ≥ σ2

k, if max
l∈L

ã
(n)
k,l = 1, ∀k ∈ K (5.55c)

is solved using, e.g., the interior-point method [34, 105]. If the SOCP in (5.55) is infeasible,

we set a
(n−1)
j,m = ã

(n)
j,m = −1 to prevent infinite cycles, and set P

(n)
j,m = 2P (MAX). The best

candidate in the nth iteration of the inflation procedure is the zero-valued variable in the

set
{
a
(n−1)
k,l , ∀k ∈ K, ∀l ∈ L

}
that corresponds to the smallest entry in the set

{
P

(n)
j,m, ∀k ∈

K, ∀l ∈ L
}

. If minj∈K,m∈L P
(n)
j,m = 2P (MAX), i.e., if no feasible precoding vector assignment

is found in the nth iteration, the inflation procedure terminates. Note that in the first iteration,

since no precoding vector assignment is fixed yet, we can simply compute P
(1)
j,m according to

P
(1)
j,m =





σ2
jΓ

(MIN)
j

Tr
{
R̂jVm

}
−δj

, if Tr
{
R̂jVm

}
− δj > 0

2P (MAX), otherwise

, ∀j ∈ K, ∀m ∈ K. (5.56)

The proposed low-complexity inflation procedure is summarized in Alg. 5.1. The worst-

case computational complexity of the proposed inflation procedure in Alg. 5.1 mainly con-
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sists of solving
(K−1)KL

2
instances of the convex SOCP in (5.55).

Init.: Compute P
(1)
j,m according to Eq. (5.56). If minj∈K,m∈L P

(1)
j,m = 2P (MAX),

terminate. Otherwise, compute
(
k, l
)
= argmin

j∈K,m∈L
P

(1)
j,m. Set a

(1)
k,l = 0, ∀k ∈ K \

{
k
}

,

∀l ∈ L, and set a
(1)

k,l
= −1, ∀l ∈ L \

{
l
}

, and fix a
(1)

k,l
= 1.

for n = 2 to K do

If none of the variables in the set
{
a
(n−1)
k,l , ∀k ∈ K, ∀l ∈ L

}
equals to zero, stop

and go to Post-step. Otherwise, define ã
(n)
k,l = a

(n−1)
k,l , ∀k ∈ K, ∀l ∈ L.

for j = 1 to K, and m = 1 to L do

If ã
(n)
j,m = 0, set ã

(n)
j,m = 1, solve the SOCP in (5.55).

If the SOCP in (5.55) is infeasible, set a
(n−1)
j,m = ã

(n)
j,m = −1, and set

P
(n)
j,m = 2P (MAX). Otherwise, set P

(n)
j,m =

∑K

k=1

∑L

l=1 φ
(n)
k,l .

end

If minj∈K,m∈L P
(n)
j,m = 2P (MAX), stop and go to Post-step. Otherwise, compute(

k, l
)
= argmin

j∈K,m∈L
P

(n)
j,m. Set a

(n)
k,l = a

(n−1)
k,l , ∀k ∈ K \

{
k
}

, ∀l ∈ L, and set

a
(n)

k,l
= −1, ∀l ∈ L \

{
l
}

, and fix a
(n)

k,l
= 1.

end

Post-step: Set a
(n−1)
k,l = max

{
a
(n−1)
k,l , 0

}
, ∀k ∈ K, ∀l ∈ L, and return the point{

a
(n−1)
k,l , φ

(n−1)
k,l , ∀k ∈ K, ∀l ∈ L

}
as a feasible solution of the RCBA problem.

Algorithm 5.1: The proposed SOCP based inflation procedure

5.7 Simulation results

In the simulations, we consider a downlink system with one BS having M = 4 transmit

antennas and the maximum transmission power of P (MAX) = 15 dB. The parameter ρ in

Eq. (5.14) is chosen as ρ = 1/
(
1 + P (MAX)

)
. Following the prior works [12, 38, 121, 138],

the (m, l)th entry of the normalized (i.e., normalized by the noise power) true CCM Rk is

modeled according to

[Rk]m,l =exp
(
− (π(m− l)σθ cos θk)

2 /2
)
×

exp
(√
−1π(m− l) sin θk

)
, ∀m, l = 1, 2, · · ·M, ∀k ∈ K (5.57)

where σθ = π/90 denotes the spread angle, and θk represents the random angular direction

of the kth MS, ∀k ∈ K. The estimation error (mismatch) matrix ∆k is uniformly generated

in a sphere centered at the all-zeros matrix and with a radius of δk = 0.2 [12,38,121], i.e., the
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parameter δk in Eq. (5.13) is chosen as δk = 0.2, ∀k ∈ K. The noise power at the receivers

is normalized to one, i.e., we set σ2
k = 1 watt, ∀k ∈ K.

As in Chapter 4, the precoding vector codebook with L = 16 precoding vectors defined

in 3GPP LTE [7,8,20] is used in the simulations. The minimum SINR requirements of the K

admissible MSs are chosen to be identical. The values of Γ
(MIN)
k and K are listed in the tables

and the figures. The MIP solver CPLEX [81] is applied on the MILP approximation (5.28)

and the RCBA problem in (5.46). The relative optimality tolerance in the optimality certifi-

cate defined in (5.49) is set as η = 0.1%. The runtime limit of the solver CPLEX is set as

T = 150 seconds. All simulation results are averaged over 500 Monte Carlo runs (MCRs).

Recall that the MISOCP in (5.46) represents an equivalent reformulation of the original

RCBA problem in (5.17). In the figures and the tables, “w/ init.” indicates that the solver

CPLEX is initialized with the solutions found by the inflation procedure in Alg. 5.1. “w/

SU init.” refers to that the CPLEX is initialized with the solutions that only a single user is

admitted, which can directly be identified by inspecting the cuts in (5.54). The BnC method

in CPLEX is customized according to the customizing strategies presented in Section 5.5.2

for the cases labeled with ”w/ init.” and ”w/ SU init.”, but not for the cases labeled with ”w/o

custom.”. However, the solver CPLEX is initialized with the solutions that only a single user

is admitted for the cases labeled with ”w/o custom.”.

5.7.1 Performance with different SINR targets

We study in this subsection the performance of the MILP based approach (5.28), the MIS-

OCP based approach (5.46), and the inflation procedure in Alg. 5.1, with different values of

the SINR target Γ
(MIN)
k and the fixed number of admissible MSs K = 10.

Fig. 5.1 displays the system utility (cf. Eq. (5.14)) vs. the SINR target Γ
(MIN)
k . We

observe from Fig. 5.1 that the system utility achieved by the proposed inflation procedure

in Alg. 5.1 is remarkably close to that of the optimal (according to the optimality cer-

tificate (5.49)) solutions computed by the solver CPLEX, e.g., the largest relative gap at

Γ
(MIN)
k = 2 dB is less than 5.5%. The system utility obtained by the MILP based ap-

proach (5.28) is also considerably close to that of the optimal solutions, e.g., the largest

relative gap at Γ
(MIN)
k = −2 dB is less than 9%. Further, under the runtime limit of T = 150

seconds, the larger system utility is achieved when CPLEX is customized and is initialized

with the solutions of Alg. 5.1 (i.e., the dashed curve with circles), as compared to the case

that CPLEX is not customized (i.e., the solid curve with triangles). This demonstrates the

effectiveness of the customizing strategies presented in Section 5.5.2.
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Figure 5.1: The system utility vs. the SINR target Γ
(MIN)
k , with K = 10.

Table 5.1: The average number of admitted MSs (in boldface) and the total transmitted BS

power [watts] vs. Γ
(MIN)
k , with K = 10.

Γ
(MIN)
k CPLEX on (5.46) Inflation procedure CPLEX on (5.28)

[dB] w/ init. in Alg. 5.1 w/ SU init.

-2 (5.42, 6.80) (5.40, 7.59) (4.99, 8.00)

0 (3.84, 4.78) (3.75, 4.66) (3.75, 6.34)

2 (3.27, 6.45) (3.03, 4.14) (3.00, 4.19)

4 (2.86, 4.39) (2.86, 4.67) (2.84, 5.63)

6 (2.71, 7.29) (2.69, 7.30) (2.62, 9.88)

8 (2.20, 8.78) (2.20, 10.82) (2.00, 6.99)

Tab. 5.1 lists the average number of admitted MSs (in boldface) and the total trans-

mitted BS power [watts] vs. the SINR target Γ
(MIN)
k . Note that more total transmitted

BS power is required when a larger number of MSs are admitted for a given SINR target

Γ
(MIN)
k . We see from Tab. 5.1 that the MISOCP based approach (5.46) achieves a larger

number of admitted MSs with less total transmitted BS power, as compared to the MILP

based approach (5.28), e.g., at Γ
(MIN)
k = 6 dB. Moreover, due to employing the conservative

approximations in (5.19) for the worst-case SINR constraints in (5.15), the MILP based ap-

proach (5.28) requires more total transmitted BS power to guarantee the SINR requirements

of the admitted MSs, as compared to that of the inflation procedure, e.g., at Γ
(MIN)
k = 0 dB.



5.7. Simulation results 127

The algorithm runtime vs. the SINR target Γ
(MIN)
k is plotted in Fig. 5.2. It can be observed

from Fig. 5.2 that, with K = 10, the inflation procedure and the MILP based approach (5.28)

require much less runtime than that of the MISOCP based approach (5.46), while the system

utility achieved by the former two is very close to that obtained by the latter (cf. Fig. 5.1).

Furthermore, less runtime is required when CPLEX is customized according to the strategies

presented in 5.5.2. This proves the effectiveness of the proposed customizing strategies.
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Figure 5.2: The algorithm runtime vs. the SINR target Γ
(MIN)
k , with K = 10.

Fig. 5.3 depicts the percentage of optimal (according to the optimality certificate (5.49))

solutions achieved by the considered methods vs. the SINR target Γ
(MIN)
k . We observe from

Fig. 5.3 that the inflation procedure yields the optimal (under the optimality certificate (5.49))

solutions of the original RCBA problem (5.17) in most of the MCRs, e.g., more than 78.7%

at Γ
(MIN)
k = 4 dB. Further, due to the conservative approximations of the worst-case SINR

constraints as given in (5.19), the MILP based approach (5.28) cannot reach the optimal

solutions of the original RCBA problem (5.17) in any of the MCRs.
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Figure 5.3: The percentage of achieved optimal solutions vs. the SINR target Γ
(MIN)
k , with

K = 10.

5.7.2 Performance with different numbers of admissible MSs

We investigate in this subsection the performance of the considered approaches for the orig-

inal RCBA problem in (5.17), with different values of the number of admissible MSs K and

the fixed SINR target Γ
(MIN)
k = 4 dB. Since the effectiveness of the customizing strategies

presented in Section 5.5.2 has already been demonstrated in Section 5.7.1 when applying the

solver CPLEX on the MISOCP in (5.46), the proposed customizing strategies are not further

evaluated in this subsection.

Fig. 5.4 depicts the system utility (cf. Eq. (5.14)) vs. the number of admissible MSs K.

It can be seen from Fig. 5.4 that the system utility achieved by the inflation procedure in

Alg. 5.1 is very close to that of the optimal (according to the optimality certificate (5.49))

solutions computed by the solver CPLEX when applying CPLEX on the MISOCP formu-

lation (5.46), e.g., the largest relative gap at K = 14 is less than 2.8%. The system utility

obtained by the MILP based approach (5.28) is also very close to that of the optimal solu-

tions, e.g., the largest relative gap at K = 12 is less than 2.3%. Further, the system utility

achieved by Alg. 5.1 is almost the same as that yielded by the MILP based approach (5.28).
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Figure 5.4: The system utility vs. the parameter K, with Γ
(MIN)
k = 4 dB.

Table 5.2: The average number of admitted MSs (in boldface) and the total transmitted BS

power [watts] vs. K, with Γ
(MIN)
k = 4 dB.

K
CPLEX on (5.46) Inflation procedure CPLEX on (5.28)

w/ init. in Alg. 5.1 w/ SU init.

12 (2.89, 4.51) (2.85, 5.00) (2.88, 6.09)

14 (2.95, 4.17) (2.85, 3.75) (2.94, 5.55)

16 (2.97, 3.87) (2.92, 3.68) (2.97, 5.18)

18 (3.00, 3.91) (2.94, 3.75) (2.99, 5.08)

20 (3.00, 3.65) (2.99, 3.71) (3.00, 4.69)

22 (3.00, 3.71) (2.99, 3.67) (3.00, 4.91)

Tab. 5.2 lists the average number of admitted MSs (in boldface) and the total transmitted

BS power [watts] vs. the number of admissible MSs K. Note that more total transmitted

BS power is required when a larger number of MSs are admitted for the given SINR tar-

get Γ
(MIN)
k = 4 dB. We observe from Tab. 5.2 that while the MILP based approach (5.28)

achieves almost the same average number of admitted MSs as that of the MISOCP based ap-

proach (5.46) for each value of K, the former requires much more total transmitted BS power

to guarantee the SINR targets of the admitted MSs than the latter, e.g., the former requires

35% more transmitted BS power at K = 12 than the latter. This observation is consistent

with the results presented in [38] for the conventional robust non-codebook-based multiuser
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downlink beamforming. Furthermore, the inflation procedure in Alg. 5.1 does not admit as

many MSs as that of the MISOCP based approach (5.46) or the MILP based approach (5.28),

e.g., at K = 14.

Fig. 5.5 displays the algorithm runtime vs. the number of admissible MSs K. Similar to

Fig. 5.2, we see from Fig. 5.5 that the inflation procedure in Alg. 5.1 and the MILP based

approach (5.28) require much less runtime than that of the MISOCP based approach (5.46),

while the system utility achieved by the former two is very close to that of the latter (cf.

Fig. 5.4). Further, when the number of admissible MSs K is small, e.g., when K ≤ 20, the

MILP based approach (5.28) requires less runtime than that of the inflation procedure. How-

ever, when K = 22, the former requires more runtime than that of the latter. We will further

compare the performance (e.g., algorithm runtime) of the MILP based approach (5.28) and

that of the inflation procedure for 20 ≤ K ≤ 30 in Section 5.7.3.
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Figure 5.5: The algorithm runtime vs. the parameter K, with Γ
(MIN)
k = 4 dB.

Fig. 5.6 displays the percentage of optimal (according to the optimality certificate (5.49))

solutions achieved by the considered methods vs. the number of admissible MSs K. Similar

to Fig. 5.3, we see from Fig. 5.6 that the inflation procedure in Alg. 5.1 yields the optimal

(according to the optimality certificate (5.49)) solutions of the original RCBA problem (5.17)

in most of the MCRs, e.g., in more than 72% MCRs at K = 16. However, the MILP based

approach (5.28) cannot reach the optimal solutions of the original RCBA problem (5.17) in

any of the MCRs, which is due to the conservative approximations of the worst-case SINR

constraints employed in the MILP based approach (5.28).
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Figure 5.6: The percentage of optimal solutions achieved vs. the parameter K, with Γ
(MIN)
k =

4 dB.

5.7.3 Further comparison with large numbers of admissible MSs

We compare in this subsection the performance of the MILP based approach (5.28) and that

of the inflation procedure in Alg. 5.1 in scenarios with large numbers of admissible MSs,

i.e., for 20 ≤ K ≤ 30, and the fixed SINR target Γ
(MIN)
k = 4 dB.
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Figure 5.7: The system utility vs. the parameter K, with Γ
(MIN)
k = 4 dB.

Fig. 5.7 depicts the system utility (cf. Eq. (5.14)) vs. the number of admissible MSs
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K. Similar to Fig. 5.4, we see from Fig. 5.7 that the MILP based approach (5.28) and the

inflation procedure in Alg. 5.1 achieve almost the same amount of system utility.

Table 5.3: The average number of admitted MSs (in boldface) and the total transmitted BS

power [watts] vs. K, with Γ
(MIN)
k = 4 dB.

K Inflation procedure in Alg. 5.1 CPLEX on MILP (5.28)

20 (2.99, 3.71) (3.00, 4.69)

22 (2.99, 3.67) (3.00, 4.91)

24 (2.97, 3.82) (2.97, 4.53)

26 (2.99, 3.43) (3.00, 4.53)

28 (2.99, 3.53) (3.00, 4.42)

30 (3.00, 3.54) (3.00, 4.43)

Tab. 5.3 lists the average number of admitted MSs (in boldface) and the total transmitted

BS power [watts] vs. the number of admissible MSs K. We observe from Tab. 5.3 that

although the MILP based approach (5.28) achieves almost the same number of admitted

MSs as that of the proposed inflation procedure in Alg. 5.1 for each considered value of K,

the former requires much more total transmitted BS power to guarantee the SINR targets of

the admitted MSs than the latter, e.g., the former requires 25% more transmitted BS power

than the latter at K = 30.

The algorithm runtime vs. the number of admissible MSs K is plotted in Fig. 5.8. It can

be observed from Fig. 5.8 that the inflation procedure in Alg. 5.1 requires much less runtime

than that of the MILP based approach (5.28) for K ≥ 22, e.g., the former requires only 5%

the runtime of that of the latter at K = 30. This suggests that the inflation procedure is more

efficient than the MILP based approach (5.28) for K ≥ 22, in terms of both the yielded total

transmitted BS power (cf. Tab. 5.3) and the associated computational complexity.
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Figure 5.8: The algorithm runtime vs. the parameter K, with Γ
(MIN)
k = 4 dB.

5.8 Summary

In this chapter, we have considered the problem of robust codebook-based multiuser down-

link beamforming and admission control, with employing worst-case robust design against

CCM estimation errors. The problem is of great practical interest since perfect CSI is gen-

erally difficult to obtain at the BS, especially in FDD systems. We have firstly proposed the

MILP based approach (5.28), which is built on the conservative approximations of the worst-

case SINR constraints. We have then devised an exact MISOCP reformulation (5.46) of the

original RCBA problem 5.17. To provide a low-complexity approach for practical applica-

tions in large-scale systems, the low-complexity SOCP based inflation procedure in Alg. 5.1

has been developed. The simulation results have shown that the number of admitted MSs

achieved by the inflation procedure 5.1 and the MILP based approach (5.28) is very close

to that of the optimal solutions of the RCBA problem obtained through the MISOCP based

approach (5.46). However, the inflation procedure 5.1 and the MILP based approach (5.28)

requires much more total transmitted BS power to guarantee the SINR targets of the ad-

mitted MSs, as compared to the MISOCP based approach (5.46). Our numerical results

have also demonstrated that the inflation procedure in Alg. 5.1 is more efficient in terms of,

e.g., yielding significantly reduced total transmitted BS power with much less computational

complexity, than that of the MILP based approach (5.28) when the number of admissible

MSs K is large, e.g., when K ≥ 22.
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Chapter 6

Conclusions and outlook

Practical resource allocation problems in modern cellular networks inherently involve dis-

crete optimization variables when taking into account the implementation restrictions and

the specifications of the cellular standards. The mixed-integer programming (MIP) frame-

work [67–69,81,82], namely mixed-integer linear program/programming (MILP) and mixed-

integer second-order cone program/programming (MISOCP), is a necessary and powerful

tool to exactly formulate the discrete models that arise in practical network resource allo-

cation problems (see, e.g., [61–66]). Particularly, the MIP framework provides a realizable

approach to compute the optimal solutions (performance benchmarks) of the discrete re-

source allocation problems. The optimal solutions are necessary and important for system

performance predictions when performing network planning.

In this dissertation, we have considered five practically relevant examples regarding joint

multiuser downlink beamforming and discrete resource allocation in modern cellular net-

works. The problems are addressed within the developed systematic MIP framework.

The MISOCP framework has been firstly developed for the joint optimization of network

topology and multi-cell downlink beamforming (JNOB) in Chapter 2, where we proposed the

standard big-M MISOCP formulation and the extended MISOCP formulation of the JNOB

problem. Analytic studies have been carried out to compare the two formulations. The

standard branch-and-cut (BnC) method [67–69, 81, 82] implemented in the MIP solver IBM

ILOG CPLEX [81] was customized according to the proposed customizing techniques when

applying CPLEX on the JNOB problem. We have also designed the low-complexity infla-

tion and deflation procedures to compute near-optimal solutions of the JNOB problem for

scenarios that the optimal solutions cannot be computed or certified by the BnC method in

reasonable runtime. It has been observed that partial BSs cooperation schemes and sparse

network topologies are deployed in the proposed design to balance the gain and the cost

135
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of coordinated multi-point (CoMP) transmission and to minimize the total BSs power con-

sumption.

The MISOCP framework was then applied to the joint optimization of discrete rate adap-

tation and downlink beamforming (DRAB) in Chapter 2. As in the JNOB problem, the

standard big-M and the extended MISOCP formulations were developed for the DRAB prob-

lem, the analytic comparison was carried out, and customizing strategies for the BnC method

were adopted. We have also developed the low-complexity second-order cone programming

(SOCP) based inflation and deflation procedures. Our simulations results have demonstrated

that the sum-rates and the total transmitted BS power achieved by the proposed inflation and

deflation procedures are very close to that of the optimal solutions. It has also been shown

that the practical heuristic algorithms have much less computational complexity than that of

the BnC method.

We have developed the MILP formulation for the standard codebook-based downlink

beamforming (SCBF) problem in Chapter 4. We have also proposed the customized power

iteration method to more efficiently solve the SCBF problem. The analytic studies have

remarkably shown that the proposed fast power iteration method is optimal for solving or

detecting the infeasibility of the SCBF problem. The adaptive channel predistortion scheme

has further been proposed to enhance the performance of the standard codebook-based beam-

forming in Chapter 4. Interestingly, the proposed channel predistortion procedure does not

introduce any additional signaling overhead and can straightforwardly be incorporated into

current and future cellular standards. The codebook-based downlink beamforming and chan-

nel predistortion (CBCP) problem was approximately solved with the proposed alternating

optimization algorithm (ATOA) and alternating feasibility search algorithm (AFSA). The

numerical results have shown that the channel predistortion design achieves significant per-

formance improvement over the standard codebook-based beamforming in terms of, e.g.,

significant reductions of the total transmitted BS power and tremendous increases of per-

centages of feasible Monte Carlo runs (MCRs).

Three approaches have been proposed for the robust codebook-based downlink beam-

forming and admission control (RCBA) problem in Chapter 5. The MILP based approach is

built on the conservative approximations of the worst-case signal-to-interference-plus-noise

ratio (SINR) constraints. The MISOCP based approach represents an equivalent reformu-

lation of the RCBA problem. The inflation procedure (i.e., the greedy algorithm) is based

on the exact MISOCP reformulation. Our simulations results have shown that the three ap-

proaches achieve almost the same average number of admitted mobile stations (MSs). How-

ever, the total transmitted BS power required for guaranteeing the SINR requirements of the

admitted MSs in the MILP based approach is considerable larger than that of the other two
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methods. We have also observed that the greedy algorithm admits much less computational

complexity than the MILP based approach when the number of admissible MSs is large.

Plenty of follow-up research can be carried out by directly extending the studies and the

MIP framework presented in this dissertation. Several extensions are being conducted by the

author and the collaborators. For instance, the MISOCP framework and the JNOB problem

are being extended to deal with interference management and load balancing in heterogenous

and small cell networks (HetSNets) [6, 139]. The MIP framework and the CBCP problem

is being extended to incorporate user admission control. Further, more efficient algorithmic

solutions are being developed for the CBCP problem.

While this thesis has been focused on the (multi-cell) downlink systems, the correspond-

ing discrete resource allocation problems in the uplink systems can also be addressed within

the developed MIP framework. Although the uplink problems generally belong to the class of

non-convex MIPs, they can be converted into convex MIPs in the (virtual) downlink domain

by exploiting uplink-downlink duality [12, 13]. For example, the problem of joint discrete

rate adaptation and multiuser uplink beamforming can be closely related to (approximated

by) the DRAB problem considered in Chapter 3. In addition, while this dissertation has only

considered the scenarios with single-antenna MSs, it is also of practical interest to extend our

work to the scenarios with multiple-antenna MSs, like the problem of discrete rate adaption

combined with joint transmit-receive beamforming in both downlink and uplink systems,

where codebook-based beamforming (precoding) can readily be applied.

This dissertation has only covered a few exemplary problems regarding discrete resource

allocation in modern cellular networks. There are many practical discrete resource alloca-

tion problems in wireless networks that can be addressed using the MIP framework pre-

sented in this thesis, e.g., wireless link activation [65], delay-constrained routing in multi-

hop networks [66], cell cite planning [140], and resource block scheduling in 3GPP LTE

systems [6–8], to name but a few. Furthermore, the MIP framework developed in this disser-

tation can also be applied in the filed of signal processing, e.g., in sparse filter design [141]

and in sparse signal recovery [142]. As more advanced discrete and mixed-integer optimiza-

tion techniques and algorithms are emerging and the powerful commercial MIP solvers are

evolving, more and more practical discrete resource allocation problems in wireless commu-

nications and signal processing can be addressed within the developed MIP framework.
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Appendix A

Appendices of Chapters 2 and 3

A.1 Proof of Theorem 2.1

Recall that the point
{
w

(BMI)
k,l , a

(BMI)
k,l , b

(BMI)
l , ∀k ∈ K, ∀l ∈ L

}
represents an optimal solution

of the JNOB problem (2.12). The necessary conditions in Eqs. (2.16) can be proved by

contradicting argument.

Assuming that the necessary conditions in (2.16) do not hold, i.e., assuming that there

exist two MSs with indices ĵ, k̂ ∈ K and two BSs with indices m̂, l̂ ∈ L such that

a
(BMI)

ĵ,l̂
= a

(BMI)

k̂,l̂
= a

(BMI)

k̂,m̂
= 1. (A.1)

That is, it is assumed that the l̂th BS serves the ĵth and the k̂th MSs jointly, and the l̂th and

the mth BSs collaboratively serve the k̂th MS. Since
∥∥w(BMI)

ĵ,l̂

∥∥2
2
> 0 when a

(BMC)

ĵ,l̂
= 1, we

know from the per-BS power constraints in (2.12b) that:

∥∥w(BMI)

k̂,l̂

∥∥2
2
< P

(MAX)

l̂
= P

(MAX)

l̂

(
a
(BMI)

k̂,l̂

)2
. (A.2)

We can then define the new variable â
(BMI)

k̂,l̂
as: â

(BMI)

k̂,l̂
,

∥∥w(BMI)

k̂,l̂

∥∥
2√

P
(MAX)

l̂

, which satisfies the
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following properties:

0 < â
(BMI)

k̂,l̂
=

∥∥w(BMI)

k̂,l̂

∥∥
2√

P
(MAX)

l̂

< a
(BMI)

k̂,l̂
(A.3)

∥∥w(BMI)

k̂,l̂

∥∥2
2
= P

(MAX)

l̂

(
â
(BMI)

k̂,l̂

)2
(A.4)

∑

l∈L\{m̂,l̂}

a
(BMI)

k̂,l
+ â

(BMI)

k̂,l̂
+ a

(BMI)

k̂,m̂
> 1. (A.5)

We can replace the variable a
(BMI)

k̂,l̂
in the optimal solution

{
w

(BMI)
k,l , a

(BMI)
k,l , b

(BMI)
l , ∀k ∈

K, ∀l ∈ L
}

of the JNOB problem (2.12) with the variable â
(BMI)

k̂,l̂
to obtain a new feasible

solution of the SOCP in (2.13), which, due to Eq. (A.3), achieves a strictly smaller objective

value than Φ(BMI), i.e., Φ(BMC) < Φ(BMI). This, however, contradicts with the condition that

Φ(BMC) = Φ(BMI). As a result, the l̂th BS cannot serve the ĵth and the k̂th MSs jointly in

the case that Φ(BMC) = Φ(BMI). Following a similar contradicting argument, we can prove

that the m̂th BS must also serve exclusively the k̂th MS. Hence, cooperating BSs in CoMP

transmission must serve exclusively a single MS when Φ(BMC) = Φ(BMI), i.e., the necessary

condition (2.16) must hold, in the case that Φ(BMC) = Φ(BMI).

A.2 Proof of Theorem 2.2

We know from the constraints in (2.12d) and (2.12e), and Eqs. (2.31) and (2.32) that the

point
{
w

(EXC)
k,l , a

(EXC)
k,l , b

(EXC)
l , ∀k ∈ K, ∀l ∈ L

}
, which is obtained from the projection of

the point
{
w

(EXC)
k,l , a

(EXC)
k,l , b

(EXC)
l , t

(EXC)
k,l , ∀k ∈ K, ∀l ∈ L

}
, is a feasible solution of the

SOCP in (2.13). As a result, it holds that

Φ(BMC) ≤ f
({

a
(EXC)
k,l

}
,
{
b
(EXC)
l

}
,
{
w

(EXC)
k,l

})
. (A.6)

Eq. (2.26) suggests that f
({

a
(EXC)
k,l

}
,
{
b
(EXC)
l

}
,
{
w

(EXC)
k,l

})
≤ Φ(EXC). Hence, we have

Φ(BMC) ≤ Φ(EXC).

A.3 Proof of Theorem 2.3

Recall that the point
{
w

(EXC)
k,l , a

(EXC)
k,l , b

(EXC)
l , t

(EXC)
k,l , ∀k ∈ K, ∀l ∈ L

}
represents an optimal

solution of the SOCP in (2.23). We first prove Eq. (2.34). If Φ(BMC) = Φ(EXC), i.e., if
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∥∥w(EXC)
k,l

∥∥2
2
= t

(EXC)
k,l , ∀k ∈ K, ∀l ∈ L, we know from Eq. (2.26) that the relaxed binary

integer variables
{
a
(EXC)
k,l , ∀k ∈ K, ∀l ∈ L

}
take values in the discrete set {0, 1}. Due

to Eq. (2.12d), this is also true for the relaxed binary variables
{
b
(EXC)
l , ∀l ∈ L

}
. Hence,

Eq. (2.34) holds in the case that Φ(BMC) = Φ(EXC).

We next prove Eq. (2.35). We know from Eq. (2.34) that the point
{
w

(EXC)
k,l , a

(EXC)
k,l , b

(EXC)
l ,

t
(EXC)
k,l , ∀k ∈ K, ∀l ∈ L

}
is actually an optimal solution of the JNOB problem (2.21) [67–

69, 82] and therefore the projected point
{
w

(EXC)
k,l , a

(EXC)
k,l , b

(EXC)
l , ∀k ∈ K, ∀l ∈ L

}
is an

optimal solution of the JNOB problem (2.12). Hence, Eq. (2.35) holds.

Finally, we know from Eqs (2.34) and (2.35) that the projected point
{
w

(EXC)
k,l , a

(EXC)
k,l ,

b
(EXC)
l , ∀k ∈ K, ∀l ∈ L

}
is an optimal solution of problem (2.12) and Φ(BMC) = Φ(BMI)

in the case that Φ(BMC) = Φ(EXC) holds. As a result, we can directly apply the results of

Theorem 2.1 to obtain the necessary conditions in Eq. (2.36) for the special case of Φ(BMC) =

Φ(EXC).

A.4 Proof of Lemma 3.1

Recall that ak,l ∈ {0, 1}, ∀k ∈ K, ∀l ∈ L in the DRAB problem (3.26). When ak,l = 0, we

have vk,l = 0 due to Eq. (3.22), which is the equivalence of Eq. (3.19), and therefore the

(k, l)th constraint in Eq. (3.26c) is automatically satisfied.

When ak,l = 1, taking into account Eqs. (3.3), (3.18), and (3.19), and that the objective

function in (3.26a) is maximized, it can readily be shown by contradicting argument that the

SINR constraint of the kth MS defined in Eq. (3.24b) is equivalent to the following constraint

(see, e.g., [12, 13, 28, 135]):

∥∥[hH
k W, σk

]∥∥
2
= γlRe

{
hH
k vk,l

}
(A.7)

which, together with Eqs. (3.10) and (3.12), further imply that

γlRe
{
hH
k vk,l

}
≤ ak,lUk (A.8)

That is the (k, l)th constraint in (3.26c) is also satisfied when ak,l = 1. Hence, all the con-

straints in (3.26c) are automatically satisfied in problem (3.26), i.e. the constraints defined

in Eq. (3.26c) represents valid problem-specific cuts.
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A.5 Proof of Lemma 3.2

Recall that the point
{
a
(EXC)
k,l ,v

(EXC)
k,l , φ

(EXC)
k,l , b

(EXC)
k , ∀k ∈ K, ∀l ∈ L

}
denotes an optimal

solution of the SOCP in (3.27). We know from the cuts in (3.26c) that

(
1−

L∑

l=1

a
(EXC)
k,l

)
Uk +

L∑

l=1

γlRe
{
hH
k v

(EXC)
k,l

}

=
(
1− a

(EXC)
k,l

)
Uk + γlRe

{
hH
k v

(EXC)
k,l

}
+

L∑

m=1,m6=l

(
γmRe

{
hH
k w

(EXC)
k,m

}
− a

(EXC)
k,m Uk

)

≤
(
1− a

(EXC)
k,l

)
Uk + γlRe

{
hH
k v

(EXC)
k,l

}
. (A.9)

Eq. (A.9), together with Eq. (3.24b), imply Eq. (3.30) presented in Lemma 3.2.

A.6 Proof of Theorem 3.1

We know from Eqs. (3.24a), (3.26b), (3.28), and (3.30) that

Im
{
hH
k w

(EXC)
k

}
= 0, Re

{
hH
k w

(EXC)
k

}
≥ 0, ∀k ∈ K (A.10)

∥∥[hH
k W

(EXC), σk

]∥∥
2
≤
(
1− a

(EXC)
k,l

)
Uk + γlRe

{
hH
k w

(EXC)
k

}
, ∀k ∈ K, ∀l ∈ L (A.11)

σk

L∑

l=1

a
(EXC)
k,l

√
Γl ≤ Re

{
hH
k w

(EXC)
k

}
, ∀k ∈ K. (A.12)

Moreover, we know from Eqs. (3.27b), (3.28), (3.32), and the triangle-inequality [34,

116] that

∥∥∥w(EXC)
k

∥∥∥
2

2
≤

L∑

l=1

∥∥∥v(EXC)
k,l

∥∥∥
2

2
=

L∑

l=1

a
(EXC)
k,l φ

(EXC)
k,l ≤

L∑

l=1

φ
(EXC)
k,l , ∀k ∈ K (A.13)

which, together with Eq. (3.21), further imply that

K∑

k=1

∥∥∥w(EXC)
k

∥∥∥
2

2
≤

K∑

k=1

L∑

l=1

φ
(EXC)
k,l ≤ P (MAX). (A.14)

The constraints in (3.3) and (3.15b), together with Eqs. (A.10) – (A.12), and (A.14),

suggest that the point
{
a
(EXC)
k,l ,w

(EXC)
k , ∀k ∈ K, ∀l ∈ L

}
is a feasible solution of the SOCP

in (3.16). As a result, Eq. (A.14), together with Eqs. (3.6) and (3.25), imply Eq. (3.33).
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A.7 Sample branching priorities in the DRAB problem

We present here exemplary definitions of the branching priorities Ωk and Υk,l following the

principles (P1) – (P3) presented in Section 3.5.2. Denote the integer Θk as the order of the

channel gain ‖hk‖2 in the set {‖hk‖2, ∀k ∈ K}, i.e.,

Θk ,

K∑

j=1

I (‖hj‖2 ≤ ‖hk‖2) , ∀k ∈ K (A.15)

where the indicator function I (‖hj‖2 ≤ ‖hk‖2) is defined as

I (‖hj‖2 ≤ ‖hk‖2) =
{

1, if ‖hj‖2 ≤ ‖hk‖2
0, otherwise.

(A.16)

The set K of the K MSs with the K largest channel gains among {‖hk‖2, ∀k ∈ K} can then

be defined as

K ,
{
k
∣∣k ∈ K,Θk ≥ K −K + 1

}
. (A.17)

For the variables in G3 =
{
bk, ∀k ∈ K \ K

}
, we define according to the prioritizing

principle (P2) (cf. Section 3.5.2) the branching priorities
{
Ωk, ∀k ∈ K \ K

}
as

Ωk , Θk, ∀k ∈ K \ K. (A.18)

Then, for the variables in G2 = {ak,l, ∀k ∈ K, ∀l ∈ L}, we define according to the pri-

oritizing principles (P1), (P3), and the ordering in Eq. (3.42) the branching priority Υk,l as

Υk,l , max
k∈K\K

Ωk +Θk, ∀k ∈ K, and l = 1 (A.19a)

Υk,l , max
k∈K\K

Ωk +max
j∈K

Υj,l−1 +Θk, ∀k ∈ K, and l = 2, 3, · · · , L. (A.19b)

Finally, for the variables in G1 =
{
bk, ∀k ∈ K

}
, we define according to the proposed

prioritizing principles (P1) and (P2) the branching priorities
{
Ωk, ∀k ∈ K

}
as

Ωk , max
k∈K,∀l∈L

Υk,l +Θk, ∀k ∈ K. (A.20)
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