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Abstract 

The transcriptional response to hypoxia is critically dependent on the Hypoxia Inducible 

Factors HIF-1 and HIF-2, which have roles not only in development and cellular 

adaptation to low oxygen levels, but also in diseases such as cancer. Although many HIF 

target genes have been well-characterised, there is strong evidence that the complete set of 

HIF responsive genes have not been described. This thesis describes the characterisation 

of a novel hypoxia responsive gene, Rgs4, found by a previous microarray study. Rgs4 

encodes the Regulator of G-protein Signalling 4 (RGS4 protein), which directly inhibits 

signalling from various G-protein coupled receptors. Hypoxic regulation of Rgs4 mRNA 

is observed in neuroblastoma and pheochromocytoma cells derived from rat, mouse and 

human samples. This response is found to be mimicked by HIF pathway activating 

chemicals, and occurs in a manner consistent with direct HIF regulation of Rgs4 

transcription. However, hypoxic regulation of this gene is not observed in all cell types 

that Rgs4 is expressed in. Reporter gene assays testing 32.9kb of the locus encompassing 

the Rgs4 gene failed to detect a hypoxia responsive element, though bioinformatics 

analysis indicates that Rgs4 is under the control of distant enhancers outside of the region 

tested. Further characterisation of the Rgs4 hypoxic response could help to explain 

functions of HIF that are currently poorly characterised, such as its effect on 

catecholamine release and signalling, while the atypical nature of Rgs4 regulation by HIF 

may provide a model to discover other as-yet unknown HIF interacting proteins and cell 

type specific HIF target genes. 
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1.1. The Hypoxia Inducible Factors 

1.1.1. Hypoxia and the Hypoxia Inducible 

Factors 

Oxygen is critical for the survival of metazoan cells due to its central role in metabolism. 

The mitochondria of these cells use diatomic oxygen as the final electron acceptor of the 

electron transfer chain, where oxidative phosphorylation produces ATP from the proton 

gradient across the inner mitochondrial membrane which is generated by oxidation of 

NADH from the Krebs cycle. If cellular oxygen demand outweighs supply (hypoxia), the 

efficient conversion of carbon energy sources to ATP will be disrupted. In this situation 

cells are well-adapted to counter with a variety of hypoxic response pathways, which are 

utilised in both adaptation to hypoxia and organism development, as well as dysregulated 

in some disease states. 

Cells can respond to hypoxia by modulating metabolism, in order to conserve and make 

more efficient use of the oxygen that is available. Furthermore, the efficiency of oxygen 

delivery can be increased, such as through the activation of angiogenic and erythropoietic 

pathways. Hypoxia also serves as an important developmental signal, such that disruption 

of hypoxia signalling pathways causes severe developmental phenotypes (Iyer et al., 1998; 

Tian et al., 1998). In addition, acute and chronic hypoxia are sensed and responded to in 

differing ways. For instance, the carotid body acts as an acute hypoxia sensor through use 

of O2-regulated K
+
 channels (reviewed by Lopez-Barneo et al., 2009). These channels 

signal for a hyperventilatory response, which improves the delivery of oxygen to all 

tissues. However, almost all mammalian cells respond to chronic hypoxia through 

activation of the Hypoxia Inducible Factor (HIF) pathway. HIF is a heterodimeric 

transcription factor which binds at over 100 genomic sites to activate transcription of 

specific genes which allow cellular response and adaptation to hypoxia (Wenger et al., 

2005). This pathway has been the focus of much research due to its involvement in 

adaptation, development and pathogenesis, in particular oncogenesis. 

HIF is a heterodimer comprised of two basic-Helix-Loop-Helix/Per-Arnt-Sim domain 

(bHLH/PAS) proteins, known as HIF- and HIF- (Wang and Semenza, 1995), which 
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dimerise in the nucleus to activate transcription (Konietzny et al., 2009). The N-terminal 

bHLH domains of HIF- and - allow for DNA binding and primary dimerisation, while 

the PAS domains provide secondary dimerisation. HIF- also contains two transactivation 

domains, known as the N-terminal Transactivation Domain (N-TAD) and the C-Terminal 

Transactivation Domain (C-TAD), the latter of which binds coactivators CBP or p300 to 

promote target gene transcription (Arany et al., 1996; Ebert and Bunn, 1998). HIF-, 

alternatively known as the Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT), is 

constitutively expressed and unresponsive to hypoxia. HIF- also acts as a general partner 

factor for other dimeric bHLH/PAS transcription factors such as NPAS4 (Ooe et al., 

2004), SIM-1, SIM-2 and the Aryl Hydrocarbon Receptor (AhR) (Swanson et al., 1995). 

These heterodimers respond to different stimuli, such as membrane depolarisation for 

NPAS4, but bind very similar genomic DNA sequences, all with a core CGTG consensus. 

In this way, crosstalk between some members of the bHLH/PAS family at genomic 

binding sites has been demonstrated previously (Farrall and Whitelaw, 2009; Ooe et al., 

2004). The HIF- subunits are the only members of the bHLH/PAS family of proteins to 

be regulated at the level of stability and activity by oxygen concentration.  

There are three genes encoding HIF- subunits: Hif1a, which encodes HIF-1 protein; 

Epas1, which encodes HIF-2 protein, also known as HIF-Like Factor (HLF) or 

Endothelial Per-ARNT-Sim protein-1 (EPAS1); and Hif3a, which encodes various splice 

variants of HIF-3 protein. HIF-1 and -2 bind to HIF- in order to form active HIF 

transcription factors HIF-1 or HIF-2, respectively. When compared to HIF-1 and HIF-

2, HIF-3 variants lack transactivation domains, and therefore are thought to have only 

an inhibitory or dominant-negative role on the transcriptional role of HIF (Hara et al., 

2001; Makino et al., 2001; Makino et al., 2002). There are also two genes encoding HIF- 

subunits, Arnt1 and Arnt2, both of which encode proteins capable of partnering HIF-

1(Drutel et al., 2000; Stolze et al., 2002). Many of the features of HIF-1 and HIF-2 

regulation and function are similar, and therefore the term HIF- is used here to refer to 

these two subunits collectively. 

1.1.2. Post-Translational HIF Regulation 

Both HIF- proteins are sensitive to oxygen availability as a result of hydroxylation 

reactions in two of their domains. Normal oxygen levels, known as normoxia, enable 
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proline residues (P402 and P564 in human HIF-1) to be hydroxylated by the HIF Prolyl 

Hydroxylase Domain proteins (PHD1, PHD2 and PHD3) (Jaakkola et al., 2001). These 

hydroxylated prolines are located in a domain named the Oxygen Dependent Degradation 

domain (ODD), which overlaps with the N-TAD (Huang et al., 1998). Hydroxylation of 

these prolines leads to recognition by an E3 ubiquitin ligase (Von-Hippel Lindau protein, 

pVHL) (Jaakkola et al., 2001), ubiquitylation of HIF-, and subsequent rapid turnover of 

the protein via the ubiquitin-proteasome degradation pathway (Huang et al., 1998; Salceda 

and Caro, 1997). Generally, this results in no detectable HIF- protein in well-oxygenated 

mammalian cells. In addition, interaction between HIF- and transcriptional coactivators 

p300 or CBP is inhibited during normoxia by hydroxylation of an asparagine residue 

(N803 in human HIF-1) in the HIF- C-TAD by Factor Inhibiting HIF (FIH) (Hewitson 

et al., 2002; Lando et al., 2002a; Lando et al., 2002b). Consequently, hydroxylation at this 

residue prevents transcriptional activation from the HIF- C-TAD. In contrast, hypoxic 

conditions prevent hydroxylation and lead to HIF- stabilisation and subsequent 

dimerisation with HIF- to constitute the HIF transcription factor, which is then 

transcriptionally active (Figure 1.1).  

The hydroxylation activity of the PHD and FIH enzymes requires diatomic oxygen, 2-

oxoglutarate and an appropriate peptide substrate, producing a hydroxylation modification 

on the peptide substrate, and CO2 and succinate as byproducts. Fe-II is also required by 

these enzymes for catalysis (Aravind and Koonin, 2001; Epstein et al., 2001). The best 

characterised substrates of these enzymes are HIF-1 and HIF-2, but other substrates are 

known. For example, the Notch-1, -2 and -3 Intracellular Domains (ICD) can be 

hydroxylated by FIH (Coleman et al., 2007; Zheng et al., 2008). As this hydroxylation 

reaction directly requires O2, and hypoxia therefore inhibits hydroxylation of HIF, the 

PHD and FIH enzymes are thought to be the primary oxygen sensors of this the HIF 

pathway (Epstein et al., 2001). 

Post-translational modifications other than the hydroxylation pathway can also affect HIF 

activity. Increased levels of HIF-1 protein and activity have been observed following 

insulin, IGFI, IGFII, EGF (Feldser et al., 1999; Jiang et al., 2001), angiotensin-II, 

thrombin, FGF2 and PDGF (Richard et al., 1999), lipopolysaccharide (Blouin et al., 2004)  
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Figure 1.1. The domain structure of HIF- (either HIF-1 or HIF-2, shown at top) and canonical 

post-translational regulatory pathway. Hypoxic conditions (left) prevent HIF- degradation and 

allow interaction with coactivators to promote target gene transcription. Normoxic conditions 

(right) allow PHD and FIH hydroxylation of HIF-, promoting degradation and inhibiting 

interaction with transcriptional coactivators.  
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or TNF (Sandau et al., 2001) treatment of certain cell culture lines. Many of these 

signalling pathways result in phosphorylation of HIF-1 by kinases such as the p42 and 

p44 MAPKs (Richard et al., 2000) and PI3K (Jiang et al., 2001), resulting in increased 

HIF activity. However, it should be noted that some of these treatments also affect 

transcription of the HIF- encoding genes. There is also evidence that reactive oxygen 

species (ROS) (Chandel et al., 2000) and nitric oxide (Sandau et al., 2001) can signal to 

activate the HIF pathway. Furthermore, the activity of HIF-1 can be modified by post-

translational modifications other than those mentioned above, such as acetylation, 

sumoylation and S-nitrosation (reviewed by Brahimi-Horn et al., 2005). 

1.1.3. Targets of HIF Transactivation 

HIF binds directly to a DNA sequence known as the Hypoxia Response Element (HRE), 

with a consensus sequence of RCGTG (Pescador et al., 2005; Wang and Semenza, 1995; 

Wenger et al., 2005), where R can be an adenine or guanine. There is also some evidence 

for a secondary cis-acting element named the HIF Ancillary Sequence (HAS), which is 

separated from the HRE core sequence by 8bp and improves transactivation by HIF 

(Kimura et al., 2001). As mentioned previously, there are over 100 known genomic HIF 

binding sites (Wenger et al., 2005), with novel sites still being discovered. As DNA 

binding specificity is apparently indistinguishable between HIF-1 and HIF-2 at a 

consensus HRE, many genes under the control of a HRE are responsive to both forms of 

HIF. One example of a non-specific HRE is located upstream of Vegf (Vascular 

Endothelial Growth Factor) (Levy et al., 1995; Liu et al., 1995), a gene which was 

originally identified as a target of HIF-1 transactivation (Forsythe et al., 1996), but was 

later found to activatable by HIF-2 (Flamme et al., 1997; Flamme et al., 1998; Wiesener et 

al., 1998). This HRE is located about 975bp upstream of the human Vegf transcription 

start site. Similarly, hypoxic response of Dec1 in human neuroblastoma cells was found to 

be mediated through HIF-1 binding at a HRE 145bp upstream of its transcription start site 

(Miyazaki et al., 2002), yet further analysis using chromatin immunoprecipitation (ChIP) 

and siRNA techniques has shown that both HIF-1 and HIF-2 are capable of binding at this 

HRE and activating Dec1 transcription (Holmquist-Mengelbier et al., 2006). Phd3 

(encoding the HIF Proline Hydroxylase Domain protein 3) is another example of a gene 

which is sensitive to both HIF forms, although it is more sensitive to ectopic expression of 

HIF-2 than HIF-1 (Aprelikova et al., 2004; Lau et al., 2007). 
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There are also examples of target gene specificity between HIF-1 and HIF-2. Hypoxic 

response of genes such as Ca9 (encoding Carbonic Anhydrase IX, a pH regulator) and 

Slc2a1 (also known as Glut-1, encoding a glucose transporter) occurs only through HIF-1, 

as knockdown of HIF-1 alone in breast cancer cells results in loss of the response of these 

genes to hypoxia, despite the presence of HIF-2 (Sowter et al., 2003). Glycolytic enzyme 

genes such as Ldha (encoding Lactate Dehydrogenase) or Pgk1 (encoding 

Phosphoglycerate Kinase 1) respond to HIF-1 but not HIF-2 (Hu et al., 2003; Semenza et 

al., 1994). The predominance of HIF-1 target genes compared to HIF-2 was initially not 

surprising, given that most of the initial studies were specifically designed to identify HIF-

1 responsive genes, with relatively few studies aimed at identifying target genes of HIF-2. 

However, subsequent microarray experiments comparing hypoxic activation of genes in 

breast cancer cells to HIF- siRNA-treated cells have since shown that the majority of 

hypoxia responsive genes are dependent on the presence of HIF-1 alone (Aprelikova et al., 

2006; Elvidge et al., 2006). When compared with the essentially ubiquitous expression 

pattern of HIF-1, this implies that HIF-1 is the most important isoform for the general 

hypoxic response, as the response of few genes is affected by loss of HIF-2.  

As fewer genes which display specificity towards HIF-2 transactivation are known, HIF-2 

activity is thought to provide a more specific set of cellular responses. The Epo gene 

(which encodes Erythropoietin) is currently considered to be the best characterised in vivo 

HIF-2 specific target gene. Knockout or knockdown of HIF-1 in mouse astrocytes results 

in a significant reduction in the hypoxic response of Vegf and Ldha, while no change in 

Epo response is observed at all (Chavez et al., 2006). Conversely, the same authors 

observed significant decrease in Epo response after infection with lentivirus encoding 

HIF-2-directed siRNA, and that HIF-2 rather than HIF-1 was predominantly 

detectable bound at the Epo HRE by ChIP. Importantly, similar results have subsequently 

been observed for the hepatic Epo response to hypoxia or anaemia in mice (Rankin et al., 

2007). Similarly, Flk1, Cited2 (Aprelikova et al., 2006; Elvert et al., 2003) and Col10a1 

(Saito et al., 2010) are regulated by HIF-2 alone in specific environments. The exact 

mechanism for this specificity is unclear, but may relate to the profile of other 

transcription factors bound in the vicinity. 

Selection between HIF forms at enhancers regulating Flk1 and Cited2 appear to be related 

to specific interaction between HIF-2 and ETS family transcription factors. ELK1 (ETS-

LiKe protein 1) binds DNA proximal to the HRE at Cited2 and is required for its hypoxic 
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activation (Aprelikova et al., 2006), while ETS1 performs a similar role at the Flk1 HRE 

(Elvert et al., 2003). Although bioinformatic analysis suggests a role for ETS factor 

binding at other HIF-2 preferred sites, these have not been experimentally verified and so 

the extent to which ETS factors affect HIF binding specificity at other loci or in various 

cell types is not known.  

Experiments using HIF-1/HIF-2 over-expressed chimeric protein also imply that 

selection of target genes by either HIF-1 or HIF-2 is not dependent on the DNA-binding 

domain of the HIF- protein, using Ca9 as an example of a HIF-1 specific target gene, 

and Phd3 as an example of a gene which is more sensitive to HIF-2 than HIF-1 

overexpression. Hypoxic activation of Ca9 transcription requires the presence of HIF-1 

PAS, ODDD and N-TAD domains in a chimeric HIF- protein, but these can be ligated to 

the DNA binding domain of either HIF-1 or HIF-2 for equal effect. Meanwhile, strong 

activation of Phd3, achieved by over-expression of HIF-2, requires only the presence of 

the HIF-2 C-TAD ligated to other domains from either HIF- subunit (Lau et al., 2007). 

Extrapolated, these experiments suggest that a protein consisting of the HIF-1 bHLH, 

PAS, ODDD and N-TAD domains ligated to the HIF-2 C-TAD domain would be 

capable of activating all known HIF targets, unless target specificity at genes other than 

Ca9 and Phd3 is regulated in a different way. Another group has published similar data 

indicating that the N-TAD of HIF-1 or HIF-2 is required for target specificity, while 

the C-TAD confers activation of shared transcriptional targets (Hu et al., 2007). 

Furthermore, there are sites known where both HIF-1 and HIF-2 binding can be detected 

by ChIP, but one or the other HIF form cannot activate gene transcription (Mole et al., 

2009). This evidence taken together suggests that target genes specificity is due primarily 

to post-DNA-binding events and genomic context, rather than primary DNA sequence 

recognition alone.  

HIF-1 is also involved in activation of Notch-1 pathway gene targets. Hypoxia was first 

noted to decrease expression of differentiation markers in neuroblastoma cells, resulting in 

a more undifferentiated gene expression profile (Jogi et al., 2002). Notably, the expression 

of Notch-1 was increased upon hypoxic exposure. Further experiments show that hypoxia 

increases Notch-1 activation of its target genes, and that HIF-1 binds directly to the 

Notch-1 Intracellular Domain (ICD), rather than the DNA, to produce this effect 

(Gustafsson et al., 2005). Therefore, alternative arrangements of HIF-1 at responsive 

genes are possible, and HIF-responsive genes may not require a RCGTG motif for HIF 
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recruitment. The Notch-1 ICD is also hydroxylated at two asparagines by FIH (Coleman 

et al., 2007; Zheng et al., 2008), and although functional effects of this modification are 

yet to be found, this does further connect the HIF and Notch transcriptional regulation 

pathways. 

1.1.4. Complex Patterns of HIF Hypoxic 

Regulation 

The differing physiological functions of HIF-1 and HIF-2 are due to more than simple 

differences in target gene selection. Although the response of the HIFs to hypoxia is 

broadly similar due to regulation of both by the oxygen sensing HIF hydroxylases outlined 

previously (Chapter 1.1.2), there is additional modulation using this pathway and others 

for each HIF-1 and HIF-2. These intricacies indicate that the response to hypoxia is not 

equivalent between different cell types, in terms of both regulation of the HIF pathway 

and the downstream effects. Research has shown that exposure to different concentrations 

of oxygen and different periods of hypoxia can invoke different levels and types of HIF 

activation between cell types. One example is observed during cycles of hypoxia and 

normoxia, known as intermittent hypoxia. Rat pheochromocytoma PC12 cells show no 

change in HIF signalling after 10 cycles of 30 seconds hypoxia followed by 4 minutes of 

normoxia, but HIF-1 protein levels are increased after 30 cycles and HIF-dependent 

transcription is observed after 60 cycles (Yuan et al., 2005). This demonstrates that the 

response of a cell to hypoxia is not only affected by its current conditions, but also the 

preconditioning of the cell. Intermittent hypoxia is commonly a result of sleep apnea, 

therefore HIF signalling in response to this stimulus is likely to be medically relevant. 

The atmospheric oxygen concentration which results in stabilisation and activation of 

HIF- differs between cell types, and in some cell types one subunit can be activated 

while the other is not. Figure 1.2a describes the difference in HIF-1 stabilisation in 

moderate hypoxia between CACO2 and 293T cells, where an oxygen concentration of 

between 2% and 5% gives different levels of detectable HIF-1 protein between the two 

cell lines (Bracken et al., 2006). Another example has been described in the human 

neuroblastoma SK-N-BE(2)C cell line, which stabilise only HIF-2 at moderate hypoxia 

(5% O2), while both HIF-1 and HIF-2 are stable and active after exposure of these cells 

to 1% oxygen (Holmquist-Mengelbier et al., 2006). 
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Figure 1.2. Examples of differences in HIF- regulation between cell types. (a) HIF-1 protein is 

stabilised at higher oxygen concentrations in 293T cells than CACO2 cells (adapted from Bracken 

et al., 2006). PHD activity compared to FIH activity (measured by HIF-1 protein level and C-

TAD activity respectively, see Figure 1.1) is affected by oxygen concentration differently between 

HepG2 (b) and HeLa (c) cells (adapted from Bracken et al., 2006). (d) SK-N-BE(2)C cells 

demonstrate an alternative HIF-1 and HIF-2 stabilisation pattern over extended hypoxia 

(adapted from Holmquist-Mengelbier et al., 2006).  
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Differences in PHD (as indicated by HIF-1 protein level) and FIH (by HIF-1 C-TAD 

transactivation) activity in graded hypoxia are observed between hepatocellular carcinoma 

HepG2 and cervical adenocarcinoma HeLa cells, as an example (Figure 1.2b,c). This 

shows that in moderate hypoxia some cell lines have stable yet C-TAD-inactive HIF- at 

moderate hypoxia (Bracken et al., 2006), suggesting that some HIF protein may be able to 

activate transcription of genes using only its N-TAD. This form of HIF may only be able 

to activate a subset of HIF targets compared to HIF with both active TADs. This idea is 

further supported by the work of Dayan et al. (2006), who show that some HIF target 

genes can be classified as FIH sensitive or insensitive. As cell types are adapted to survive 

in different oxygen concentrations depending on the quality of their vascularisation and 

required metabolic rate, it is sensible that there are differences in the conditions required 

for HIF activation between tissues. 

However, despite these differences, in most cell types studied induction of both HIF- 

subunits is consistent over time. HIF-1 and HIF-2 protein are detectable after 30-60 

minutes of hypoxia in HeLa cells, reaching a maximum induction after 2 hours. After this 

point, both HIF- proteins are present and continue to be readily detectable after 48 hours 

of hypoxia (Wiesener et al., 1998). This is consistent with observations from other cell 

types such as the CACO2, monkey kidney fibroblast COS-1 and human kidney 293T lines 

(Bracken et al., 2006). In contrast, some cell types also display differential stabilisation of 

HIF-1 compared to HIF-2 in prolonged hypoxia (Figure 1.2d). Early transient stabilisation 

of HIF-1 followed by HIF-2 stabilisation in prolonged hypoxia has been described for 

the PC12, SK-N-BE(2)C and A549 cell lines (Bracken et al., 2006; Holmquist-Mengelbier 

et al., 2006; Li et al., 2006; Uchida et al., 2004). Therefore, this represents an alternative 

stabilisation pattern in a subset of cell types for HIF- under extended hypoxia. 

Regulation of Hif1a or Epas1 mRNA transcription is likely to play a role, as Holmquist-

Mengelbier and colleagues (2006) describe increased Epas1 message in prolonged 

neuroblastoma hypoxia. Alternatively, message stability or efficiency of translation may 

play some role, as described in the next section, or other unknown post-translational 

modifications on HIF-stability.  

Transcriptional activity of HIF-1 and HIF-2 may also be regulated in extended hypoxia by 

products of the Hif3a gene. Hif3a produces many alternatively spliced isoforms, one of 

which is termed Inhibitory PAS domain protein (IPAS, also known as HIF-32) (Makino 

et al., 2002; Maynard et al., 2003). IPAS acts in a dominant-negative fashion, binding to 
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HIF- in place of HIF- and preventing DNA binding, which affects vascularisation of 

the cornea in mice (Makino et al., 2001). Another HIF-3 isoform, HIF-34, has been 

observed to work in a similar way (Maynard et al., 2005). Some HIF-3 variants contain 

an ODD domain, and are therefore responsive to hypoxia through proline hydroxylation 

and VHL-mediated degradation by the same pathway as the other HIF- proteins 

(Maynard et al., 2005). The Hif3a gene is also under the direct transcriptional control of 

HIF through a HRE enhancer (Makino et al., 2007; Tanaka et al., 2009). Therefore, this 

pathway provides a mechanism for negative feedback in the HIF pathway. 

1.1.5. Regulation of HIF- mRNA Transcription 

by Hypoxia 

Considering that the post-translational regulation of HIF- by hydroxylation has been 

well-characterised, there has been relatively little research into the regulation of Hif1a or 

Epas1 transcription. Indeed, the cellular response to hypoxia is primarily driven by HIF in 

coordination with the oxygen sensing activity of the PHD and FIH hydroxylases (Elvidge 

et al., 2006). Wenger and colleagues reported no change in levels of Hif1a transcript in 

mouse tissues upon treatment with carbon monoxide (Wenger et al., 1996), nor in mouse 

hepatoma Hepa1 or human astroglioma LN229 cell lines after 4 hours hypoxic treatment, 

although results were inconclusive in HeLa cells (Wenger et al., 1997a). Anoxic treatment 

of cultured rat cardiomyocytes for 2 or 4 hours also fails to alter Hif1a mRNA expression 

(Ladoux and Frelin, 1997). Similarly, no change has been observed for Epas1 mRNA 

levels in human colorectal adenocarcinoma HT-29, human kidney 293, human 

hepatocellular carcinoma Hep3B or HeLa cell lines (Wiesener et al., 1998). 

However, there have been reports of altered expression of HIF transcripts in hypoxia 

treated cells. Wang and colleagues observed hypoxic induction of Hif1a and Arnt mRNA 

in Hep3B cells (Wang et al., 1995), while increased Hif1a message has been detected in 

rat and mouse organs such as the brain and lungs upon systemic hypoxic treatment 

(Wiener et al., 1996). Although the primary mouse and human Hif1a promoters are 

insensitive to hypoxia (Luo et al., 1997; Wenger et al., 1997b; Wenger et al., 1998), there 

is some evidence to suggest that there is an alternate Hif1a promoter for the mouse gene 

which is constitutive in mouse fibroblast L929 cells, but hypoxia-responsive in the Hepa1 

mouse hepatoma cell line (Wenger et al., 1997b; Wenger et al., 1998).  
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1.1.6. Post-transcriptional Control of HIF- 

Message by Hypoxia 

More recently, experiments with different cell types have shown a negative regulation of 

Hif1a message in response to hypoxia treatment. First noted in immortalised human 

lymphocytes, Hif1a message is also reduced in the A549, PC12, rat neuroblastoma NB104 

and mouse colon adenocarcinoma CT-26 cell lines upon exposure to 4 hours or longer of 

continuous hypoxia (Li et al., 2006; Rossignol et al., 2004; Thrash-Bingham and Tartof, 

1999; Uchida et al., 2004). This response is dependent on protein synthesis and the HIF 

pathway, and appears to act through antisense Hif1a transcription (aHIF), resulting in an 

antisense transcript which overlaps the 3’UTR of the Hif1a message (Rossignol et al., 

2002; Thrash-Bingham and Tartof, 1999; Uchida et al., 2004). Transcription of aHIF is 

controlled by HIF-1 itself at HREs downstream of the Hif1a gene (Uchida et al., 2004). 

The aHIF RNA is thought to bind the Hif1a mRNA 3’UTR and disrupt a hairpin structure, 

revealing an AU rich element which promotes degradation of the message (Rossignol et 

al., 2002). This is supported by evidence the Hif1a message has a considerably shorter 

half-life in hypoxia-mimetic (cobalt chloride) treated A549 cells compared to controls 

(Uchida et al., 2004). aHIF is expressed in many human, mouse and rat tissues, but is not 

hypoxia responsive in all cell types (Rossignol et al., 2004; Rossignol et al., 2002). This 

mechanism of destabilising Hif1a mRNA is likely to be connected to the lowered 

expression of HIF-1 protein described previously (Chapter 1.1.4) during extended 

hypoxia in PC12, SK-N-BE(2)C and A549 cells. However, this does not account for the 

increase in HIF-2 protein levels observed in these cell types after similar periods of 

hypoxic treatment, the cause of which is currently unknown. 

The HIF pathway can also be affected by conditions other than hypoxia. In addition to 

regulation by antisense HIF RNA, the HIF pathway is responsive to many microRNA 

(miRNA) transcripts, which are short RNA duplexes that promote degradation and inhibit 

translation of target mRNAs. The first example of this was described for the miR-17-92 

cluster, expression of which results in lowered HIF-1 and HIF-2 protein levels in 

immortalised lung epithelial cells (Taguchi et al., 2008).  In addition, mouse Hif1a is 

regulated by miR-199a in cardiac myocytes (Rane et al., 2009), while miR-20b can inhibit 

its translation (Cascio et al., 2010; Lei et al., 2009). Both of these miRNAs act using a site 

in the Hif1a 3’UTR. Other messages encoding proteins of the HIF pathway are also under 
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the control of miRNAs, as VHL is targeted by miR-92-1 (Ghosh et al., 2009), while FIH-1 

levels are affected by miR-31 (Liu et al., 2010). However, the effects of these miRNAs on 

the HIF pathway appear to be restricted to a fine-tuning role, as expression of any one of 

the Hif1a targeted miRNAs reduces hypoxic HIF-1 protein detection, but does not 

completely repress it.  

Epas1 mRNA has been shown to be under the control of the RNA-binding Iron 

Regulatory Proteins IRP1 and IRP2 (Sanchez et al., 2007). In low cellular iron conditions, 

the IRPs bind to hairpin structures in target mRNA sequences known as Iron Responsive 

Elements (IRE), and in the case of Epas1, inhibit translation of the message into protein. 

As iron levels are crucial in erythropoiesis, which in turn has an effect on oxygen delivery 

and occurs in response to hypoxia, regulation of HIF-2 translation directly adds another 

level of control to this system. 

Hypoxia has been shown to downregulate translation of most mRNAs, as the cell 

apparently attempts to conserve ATP by avoiding translation of unnecessary proteins (Liu 

and Simon, 2004), through regulation of the mTOR pathway (Brugarolas et al., 2004; 

Connolly et al., 2006; Liu et al., 2006) in a HIF-independent fashion (Arsham et al., 

2003). However, HIF- escapes this regulation, along with some but not all HIF-

responsive genes (Thomas and Johannes, 2007). This may be related to the RNA-binding 

proteins HuR and PTB, which bind and promote translation of Hif1a message in response 

to the hypoxia mimetic cobalt chloride (Galban et al., 2008). 

Between the effect of RNA-binding proteins, miRNAs, antisense HIF transcripts and 

transcriptional regulation, it is clear that there are several levels of regulation of HIF- 

message working to fine tune the response to cellular hypoxia (see Figure 1.3), in addition 

to hydroxylation-dependent regulation of HIF- described earlier (Chapter 1.1.2). The 

stabilisation and activation of HIF- through activity of the PHD and FIH hydroxylases is 

the most powerful activator of the HIF pathway, yet different cell types in various 

situations could feasibly call on additional regulators to produce more subtle changes, in 

order to effect a more cell-appropriate response. Although not discussed in detail here, 

there are also some mechanisms where HIF can be activated by non-hypoxic means. As an 

example, signalling from growth factors such as IGF-1 has been shown to promote 

translation of Hif1a transcript in normoxia through MAPK and AKT kinase pathways 

(reviewed by Bilton and Booker, 2003).  
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Figure 1.3. Examples of various mechanisms of regulation imposed on the HIF- subunits, with 

processes affected shown in blue and the molecular effector of regulation shown in red. A 

selection of processes affecting either HIF-1 or HIF-2 (or both) are all shown on one diagram 

for simplicity, and not all regulatory mechanisms may be active at the same time or in the same 

type of cell. See text for details.  
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1.1.7. HIF- Physiological Roles in Mice and 

Humans 

The extent of redundancy between the two HIF- subunits has been examined through 

generation of knockout mice. Arnt1
-/-

 embryos do not survive past 10.5 days after 

fertilisation, due to several defects in angiogenesis which appear to be related to impaired 

HIF pathway function, rather than the other bHLH/PAS transcription factors which 

dimerise with ARNT (Kozak et al., 1997; Maltepe et al., 1997). Arnt1
-/-

, Hif1a
-/-

 and 

Epas1
-/-

 embryos all display impaired placenta vascularisation and development (Cowden 

Dahl et al., 2005), which would also be expected to impact negatively on the overall 

health of the embryo. In order to elucidate the functions of each HIF- not compensated 

for by the other, mice with homozygous deletions of Hif1a and Epas1 have been studied 

in further detail. 

In wild-type animals Hif1a mRNA is detectable in all organs and is thought to be 

essentially ubiquitous (Wiener et al., 1996). As the majority of currently known HIF target 

genes are activated by HIF-1 in preference to HIF-2 in cell culture models, it is thought 

that HIF-1 is responsible for the general cellular response to hypoxia, while HIF-2 

performs more specific roles. Hif1a
-/-

 stem cells exhibit poor induction of glycolytic 

pathway encoding genes such as Glut1, lower expression of Vegf and less growth under 

hypoxic conditions (Iyer et al., 1998; Ryan et al., 1998). Generation of mice from these 

stem cells showed that Hif1a
-/-

 embryos were morphologically abnormal after 8.5-9.5 days 

of development, and no longer viable after 10.5 days due to failed neural tube closure and 

impaired vascularisation, causing reduced oxygenation of tissues (Iyer et al., 1998; Ryan 

et al., 1998). In order to investigate roles of HIF-1 other than embryonic development, 

conditional Hif1a knockout mice have been generated, implicating HIF-1 function in brain 

development (Milosevic et al., 2007; Tomita et al., 2003), normal heart function (Huang 

et al., 2004), active skeletal muscle (Mason et al., 2004), inflammation, efficiency of 

bacteria killing by macrophages (Cramer et al., 2003; Peyssonnaux et al., 2005), 

chondrogenesis in joints (Provot et al., 2007), skin (Boutin et al., 2008) and 

haematopoietic stem cell maintenance (Takubo et al., 2010). Therefore, while HIF-1 

regulates the general response of cells to hypoxia, it also has functions in many specific 

contexts, in roles not limited to systemic or cellular hypoxic response. 
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Epas1, which encodes for HIF-2, has been the subject of repeated study through use of 

knockout mouse technology. Tian and colleagues (1998) generated Epas1
-/-

 embryos and 

observed homozygous mutant death from 12.5 days post fertilisation, with a more subtle 

morphological disruption than had been observed for Hif1a
-/-

 mice. The cause of death 

was attributed to bradycardia arising from insufficient catecholamine synthesis and 

release, as supplementing water with catecholamine precursor DOPS rescued some of the 

embryos to birth (Tian et al., 1998). Curiously, heterozygous transgenic mice originating 

from this stock were able to survive to adulthood after backcrossing heterozygotes with 

another strain of mouse (Scortegagna et al., 2003a; Scortegagna et al., 2003b), allowing 

some study of more subtle adult phenotypes. Of particular note were hematopoietic 

deficiencies (Scortegagna et al., 2003b), reactive oxygen species stress, low body weight, 

hypocellular bone marrow and testes, hypertrophic heart and steatotic liver (Scortegagna 

et al., 2003a), reduced hypoxic erythropoietin production (Scortegagna et al., 2005) and 

retinopathy resulting in blindness (Ding et al., 2005). A second set of Epas1
-/-

 mice have 

been independently generated by Peng and colleagues (2000), who observed some embryo 

death from 13.5 days post fertilisation, yet survival of some embryos to birth without 

DOPS supplements. The homozygous mutants in these experiments appeared to die from 

vascular remodelling defects, with reduced catecholamine release playing only a small 

role. Generation of a third Epas1
-/-

 mouse line resulted in embryos which again mostly 

died 13.5 days post fertilisation, while in this case those which survived to birth displayed 

respiratory distress due to lowered lung surfactant production (Compernolle et al., 2002).  

Epas1 mRNA was first detected in vascular endothelial and highly vascularised tissues, 

has a more restricted expression profile compared to HIF-1, and is often only expressed 

within subsets of cells in a tissue (Wiesener et al., 2003). Epas1 is expressed at a high 

level in the developing heart, placenta, organ of Zuckerkandl, adrenal glands, carotid 

body, regions of the brain and neonatal lungs (Ema et al., 1997; Tian et al., 1998; Tian et 

al., 1997; Trollmann et al., 2008). As the organ of Zuckerkandl, adrenal glands and carotid 

body all produce catecholamines, expression of Epas1 in these areas may relate to the 

originally discovered catecholamine-deficiency phenotype of Epas1
-/-

 mice, while the 

expression of Epas1 in the heart, placenta and lungs is matched by developmental 

phenotypes in these organs in the subsequent knockout mouse studies as described above. 

The differences between the survival and phenotypes of Epas1
-/-

 mice between different 

experiments are confounding, but appears to be related to differences in genetic 

backgrounds of the mice. Nonetheless, the presence of HIF-2 clearly has several 
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functions during development which align with its normal expression pattern, and HIF-2 

is at least partially non-redundant with respect to the more ubiquitous HIF-1. 

As with Hif1a, Conditional Epas1 knockout mice have been generated to examine roles 

for HIF-2 later in development. Deletion of Epas1 only in VE-Cadherin-expressing 

endothelial cells results in blood vessels with increased permeability (Skuli et al., 2009), 

which may be related to the vascular remodelling defects observed previously in Epas1
-/-

 

mice (Peng et al., 2000). Gruber and colleagues generated mice with Epas1 deletion in all 

cells after birth by tamoxifen-inducible Cre recombinase, which caused anaemia and loss 

of stress-induced erythropoiesis in the immature and adult mice (Gruber et al., 2007). 

Interestingly, the previously mentioned HIF target gene Epo was found to be unresponsive 

to erythropoietic signals resulting from haemolysis in the Epas1
-/-

 mice, whereas Epo 

response was not adversely affected by loss of Hif1a. This, along with further studies with 

Epas1 deletion in either mouse hepatocytes (Rankin et al., 2007) or astrocytes 

(Weidemann et al., 2009), indicates that adaptive erythropoiesis due to induction of the 

Epo gene is predominantly regulated by HIF-2 in vivo, despite responding to either HIF 

homolog in vitro. In addition, deletion of Epas1 in the duodenum indicates that HIF-2 but 

not HIF-1 is involved in regulation of iron absorption through activation of genes such as 

DMT1-1A (Mastrogiannaki et al., 2009). In support, cases of familial erythrocytosis in 

humans have been genetically linked to dysfunction of the HIF pathway, and in particular 

HIF-2. Two separate loss-of-function mutations at the gene encoding HIF--regulator 

PHD2 have been detected which are linked to this disease (Al-Sheikh et al., 2008; Percy et 

al., 2006), while in other families with the disease at least five different polymorphisms 

have been found within the Epas1 gene (Percy, 2008; Percy et al., 2008a; Percy et al., 

2008b; van Wijk et al., 2010). These mutations have either been shown to or are expected 

to give rise to gain-of-function HIF-2protein by disrupting interaction with negative 

regulators such as PHD2. This provides supporting evidence to the controlled transgenic 

mouse experiments in describing the central role of HIF-2 in regulating erythropoiesis, 

as well as the supply of nutrients involved in erythropoiesis. 

Transgenic mouse models have recently connected aberrant HIF-2 function to the onset of 

osteoarthritis. Mice which overexpress Epas1 in specifically in chondrocytes exhibit  

spontaneous cartilage destruction, while Epas1
+/-

 mice were resistant to cartilage insult 

from collagenase treatment or destabilisation of the medial meniscus (Yang et al., 2010). 
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In support, proinflammatory cytokines potently upregulate HIF-2 at both the protein and 

message level in mouse articular chondrocytes (Yang et al., 2010). 

Finally, transgenic mice have been generated in order to address the issue of redundancy 

between HIF-1 and HIF-2. Since HIF-1 is expressed nearly ubiquitously while HIF-

2 has a more restricted expression pattern, it is likely that the phenotypes observed in 

Hif1a
-/-

 mice are not compensated for by HIF-2 due in part to the lack of expression of 

Epas1 in some cell types. An allele of Hif1a was constructed with the Epas1 gene inserted 

in place of the Hif1a coding sequence (Hif1a
Epas1KI

) (Covello et al., 2006). A mouse 

heterozygous for this allele expresses HIF-2 in place of HIF-1, in an effective Hif1a
-/-

 

background. This means that any compensation for the loss of HIF-1 by HIF-2 will 

result in a Hif1a
Epas1KI/Epas1KI

 mouse phenotype which is less severe than the Hif1a
-/-

 

phenotype. However, Hif1a
Epas1KI/Epas1KI

 embryos were detected in a significantly smaller 

numbers than expected 7 days post-fertilisation (Covello et al., 2006), compared to Hif1a
-/-

 

embryos which show normal percentages of homozygotes until  9 days post-fertilisation 

(Iyer et al., 1998). Further experiments on this knock-in line show that ectopic HIF-2 

expression has a dominant effect which results in a more severe phenotype than the   

Hif1a
-/-

 background alone would be expected to produce. Therefore, HIF-2 must have 

functions which are not shared by HIF-1. The converse experiment of a Hif1a knock-in 

at the Epas1 locus has not been published, as HIF-1 is ubiquitous. This means that 

phenotypes observed in Epas1
-/-

 mice already indicate functions of HIF-2 which are not 

compensated for by HIF-1. 

1.1.8. Effects of the HIF Pathway on Cancer 

As potent regulators of angiogenic, metabolic and apoptotic pathways, HIF-1 and HIF-2 

are increasingly being studied with relation to their oncogenic properties. Dysregulation of 

the HIF pathway can drive cancer progression as a result of accumulated inherited or 

somatic mutations, or from the environmental hypoxia found within a solid tumour. 

The von Hippel-Lindau (VHL) disease is a well characterised familial cancer caused by 

various mutations of the Vhl gene, which encodes the E3 ubiquitin ligase pVHL. Increased 

susceptibility to kidney and other forms of cancer are dominantly transmitted in families 

with Vhl loss of function mutations, resulting in highly vascularised solid tumours (Kaelin 

and Maher, 1998). The previously described model of HIF- normoxic degradation 
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through the pVHL mediated ubiquitin-proteasome pathway was originally discovered 

when Vhl
-/-

 renal carcinoma cells were observed to have constitutive HIF activity 

(Cockman et al., 2000; Krieg et al., 2000; Maxwell et al., 1999). VHL patients are 

heterozygous for functional Vhl and are therefore susceptible to somatic genetic loss of 

VHL protein. This results in constitutive activation of the HIF pathway and rapid 

development of tumours such as renal cell carcinoma (Kondo et al., 2002; Maranchie et 

al., 2002). Interestingly, it appears that HIF-2 is a more potent oncogene than HIF-1 

when constitutively activated in cultured cells of this type (Kondo et al., 2002; Maranchie 

et al., 2002). However, it is interesting that patients heterozygous for Vhl are only 

susceptible to specific forms of cancer, rather than all types of cancer. 

The oncogenic properties of the HIF pathway have been tested in other broader contexts, 

and show that these effects of aberrant HIF activity are not confined to the VHL disease 

state. Maxwell and colleagues employed a technique using xenografts of hepatoma cells, 

including experiments where the cells contained mutant HIF-1. Using this model, tumour 

angiogenesis and overall growth of solid tumours were observed to be dependent on HIF 

in vivo (Maxwell et al., 1997). In support of this role for HIF in cancer, increased presence 

of nuclear HIF-1 and HIF-2 has been detected by immunohistochemistry of primary 

and metastatic tumour sections of widely varying origins, relative to normal tissue (Talks 

et al., 2000; Zhong et al., 1999).  

Further insights into the specific functions of HIF-1 and HIF-2 in tumour development 

can be gained from transgenic embryonic stem (ES) cell models, which form solid 

teratocarcinoma tumours when injected into nude mice. Hif1a
-/-

 ES cells form significantly 

smaller teratocarcinomas with fewer blood vessels compared to wildtype ES tumours 

(Ryan et al., 1998). Similarly, injecting Hif1a
-/-

 mouse embryonic fibroblast (mEF) cells 

results in the formation of smaller fibrosarcomas than wildtype mEFs (Ryan et al., 2000). 

The fibrosarcoma Hif1a
-/-

 model exhibits lowered expression of Vegf, yet unlike the 

teratocarcinoma model no difference in blood vessel density was observed. In another set 

of experiments designed to study breast cancer development and metastasis, Liao and 

colleagues generated mice with a mammary epithelial conditional knockout Hif1a locus in 

a breast-cancer susceptible genetic background (Liao et al., 2007). In accordance with the 

other models, tumour growth was slowed by the lack of HIF-1, and HIF target genes were 

expressed at lower levels than for the control. In this case, however, metastatic growths in 

the lungs were also quantified, showing significantly fewer resulting from the Hif1a
-/-
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tumours, demonstrating that HIF-1 can also promote metastasis. These experiments imply 

that HIF-1 dependent progression of cancer occurs through multiple downstream 

pathways, and the effect of each is context dependent. 

However, HIF-2 is increasingly thought to provide an even more potent stimulus than 

HIF-1 for advancement of cancer. Teratocarcinomas formed from mouse ES cells with 

replacement of the Hif1a gene with Epas1 (Hif1a
Epas1KI/Epas1KI

) form faster growing, more 

vascularised tumours with higher expression of target genes such as Vegf, when compared 

to teratocarcinomas formed from wildtype ES cells (Covello et al., 2005). High expression 

of HIF-2 in clinical neuroblastoma cases correlates with a poor prognosis (Holmquist-

Mengelbier et al., 2006), while aberrant expression of HIF-2 results in high expression 

of progenitor markers and low expression of markers of differentiation (Pietras et al., 

2008; Pietras et al., 2009). As HIF-2 has separately been found to bind and activate 

transcription of Pou5f1, which encodes the pluripotency marker Oct-4 (Covello et al., 

2006), it seems that activity of HIF-2 is linked to increased pluripotency, a trait which 

allows for increased tumour adaptivity. Curiously, in the context of neuroblastomas, HIF-

1 expression is correlated with a positive outcome (Noguera et al., 2009). In addition, 

forced expression of stabilised HIF-2 in a mouse strain susceptible to lung tumours 

results in larger, more invasive tumours than in control mice (Kim et al., 2009). 

Furthermore, conditional endothelial Epas1 knockout mice display reduced 

vascularisation of lung carcinoma xenografts compared to wildtype mice (Skuli et al., 

2009), highlighting an important HIF-2 function in not only the tumour itself, but also the 

supporting endothelial cells. 

1.1.9. Summary and Preliminary Approach 

Clearly, the HIF pathway is more than a simple hypoxia response pathway, as it is under 

the control of a complex regulation system which allows for differential activation of 

different HIF- subunits or even different domains within each HIF- protein, depending 

on the type of activating stimulus and cellular context. In particular, many facets of the 

regulation of HIF are highly dependent on the experimental cell type used, as described in 

Chapters 1.1.4, 1.1.5 and 1.1.6. Therefore, we reasoned that selection of an appropriate set 

of cell lines and conditions was critical for continuing research in the HIF field, given that 

the contrasting functions of this pathway are most pronounced when comparing different 

cell types. 
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There are aspects of the HIF transactivational pathway which are not explained by its 

currently known components, in particular when comparing HIF-1 function to HIF-2. In 

transgenic mouse models HIF-1 and HIF-2 are non-redundant, and while the two 

proteins are regulated in a similar way, differences in regulation and target gene specificity 

have been observed. Most of the research published in the field to date has focussed on 

HIF-1, while the specifics of HIF-2 function are still poorly understood. Therefore, in 

order to further study the differences between the two HIF- subunits, two approaches are 

possible. On one hand, different regulation and activation conditions can be studied, with 

the aim of elucidating differences in pathways upstream of HIF activation. Alternatively, 

the different downstream effects of HIF-1 and HIF-2 activity can be examined directly by 

testing for changes in target genes. We decided to use the second approach, as at the time 

this project commenced HIF-2 had been poorly studied and consequently relatively few 

target genes were known for HIF-2, and none of these displayed preference for HIF-2 over 

HIF-1. Therefore, we postulated that there were more HIF-2 responsive genes which had 

not yet been discovered, which may be preferred or even specific for HIF-2 activity with 

respect to HIF-1. The identification and characterisation of unknown HIF-2 target genes 

would help to explain with more clarity the physiological function of HIF-2, with 

particular reference to the multiple phenotypes of Epas1
-/-

 mice. Novel target genes may 

also help to shed light on the mechanisms of HIF binding site selection, or be used as a 

readout when studying regulation of the two HIF forms. As such, the long term aim of this 

research was to identify novel HIF-2 target genes, and this Ph.D project was a 

continuation of that research. 

1.2. Preliminary Experiments 

1.2.1. Novel HIF Target Genes 

For the reasons outlined in the previous chapter, a microarray experiment was designed 

and performed by Anthony Fedele as part of his Ph.D project to search for novel HIF 

target genes (Fedele, 2004). At the time, few microarray experiments had been published 

concerning the HIF pathway, but since this time a number of microarray experiments have 

been used to search for HIF responsive genes. These published microarrays used 

conditions of hypoxia alone (Aravindan et al., 2005; Burke et al., 2003; Elvidge et al., 

2006; Greijer et al., 2005; Jin et al., 2002; Jogi et al., 2004; Leonard et al., 2003; Mense et 
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al., 2006; Robins et al., 2005; Warabi et al., 2004; Zhang and Hill, 2004), overexpression 

of HIF-1 or HIF-2 (Takeda et al., 2004; Wang et al., 2005), and knock-down of HIF-

1 or HIF-2 (Aprelikova et al., 2006; Hu et al., 2003), and used cell types derived from 

the kidney, endothelium, breast and cervical cancers. However, the function of the HIF 

pathway can be altered by cellular context, therefore these multiple microarray 

experiments are not redundant, and alternative target genes of HIF may still be found 

which are silenced in certain cell types. Given the known defects of the Epas1
-/-

 mouse 

models in catecholamine synthesis (Tian et al., 1998), we decided to use a cell line which 

can synthesise and release catecholamines. This was hoped to make the microarray data 

relate to possible HIF-2 functions, such that HIF targets could be found which may not be 

hypoxia-regulated in other cell types. At this time, erythropoiesis was thought to be 

regulated by either HIF form, rather than HIF-2 preferentially (as discussed in Chapter 

1.1.7), so erythrocyte-related cell lines were not considered. Our group used the PC-12 rat 

pheochromocytoma cell line, as it has a well characterised ability to produce 

catecholamines in response to hypoxia and expresses relatively high, inducible levels of 

HIF-2 (Kumar et al., 1998; Taylor and Peers, 1998). 

1.2.2. The PC12/TetON System 

To identify the genes regulated by HIF-1 or HIF-2 individually, a Tet-ON doxycycline-

inducible expression system was incorporated into the PC12 cells by sequential stable 

transfections. The Tet-ON system consists of one expression cassette which provides 

constitutive expression of the Reverse Tetracycline Transactivator (rtTA), while a second 

provides the coding sequence for protein to be overexpressed downstream of a 

Tetracycline Responsive Element (TRE). In the presence of tetracycline, or its derivative 

doxycycline, rtTA is able to bind at the TRE and activate transcription. Three monoclonal 

cell lines were generated using this system, differing only in the coding sequence under 

the control of the TRE: one encoding mouse HIF-2; one encoding human HIF-1 with 

an activating N803A mutation; and one control PC12 TetON cell line with an empty 

expression cassette. Transcription of the HIF- cDNA leads to stabilised protein at 

normoxia by overloading the regulatory hydroxylases, while the N803A mutation was 

required to achieve robust HIF-1 activity by preventing FIH-mediated asparagine 

hydroxylation of the HIF-1, leading to activation in normoxia. The differences in species 

and incorporated mutations of HIF-1 and HIF-2 in the Tet-ON cell lines are a result of 
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optimisation for maximum doxycycline-responsive HIF activity. Microarrays were then 

performed comparing cDNA from doxycycline-treated TetON-HIF-2 and TetON-HIF-

1
N803A

 cells (Fedele, 2004). Cell lines were treated with doxycycline for 16 hours before 

lysis in order to match previous data indicating that PC-12 cells express both endogenous 

HIF-1 and HIF-2 this timepoint (Bracken et al., 2006). The data from the first 

microarray were not reproducible by replicate semi-quantitative PCR experiments.  

1.2.3. Verification of Microarray Data 

After the inconsistent results of the first experiment, a subsequent microarray was 

performed to identify HIF-2 targets alone, comparing cDNA from doxycycline-treated 

TetON-HIF-2 cells to the TetON-Control cell line. Verification of the results of this 

second microarray was performed as part of my research towards my Honours thesis. The 

twelve genes most consistently upregulated by HIF-2 overexpression were selected for 

further analysis (Table 1.1). Two of these genes were previously characterised HIF targets: 

Vegf and Bnip3. These twelve genes were retested by northern blot for response to HIF- 

in the TetON overexpression PC12 cell lines, and also for response to hypoxia in 

unmodified PC12 cells. Vegf and Bnip3 were consistently upregulated by HIF-1, HIF-2 

and hypoxia, although the effect of HIF-1 was greater than that of HIF-2. Other genes 

such as INrf2, Spr, Scn3b and Cacna2d1 were not reproducibly regulated by either HIF-1 

or HIF-2 overexpression, and were therefore likely false positives. However, two genes 

not previously known as HIF targets were consistently detected by northern blot as a 

higher level in both hypoxic and HIF- overexpressing PC12 cells: Slc16a1 and Rgs4 

(Olechnowicz, 2005). 
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Table 1.1. The twelve most consistently upregulated genes in the doxycycline treated PC12-

TetON-HIF2 cell line, compared to the TetON control line (Fedele, 2004). Genes are ranked by 

B value, which depends on both the fold change and P value. Note the presence of HIF-2a is an 

artefact of the cDNA-mediated HIF-2 overexpression used in this cell line, and Bnip3 and Vegf 

are previously characterised HIF target genes. The response of these genes to doxycycline and 

hypoxia was verified by northern blot (Adapted from Olechnowicz, 2005).  

Gene ID Gene Name P.Value B

AF304364 INrf2; cytosolic inhibitor of Nrf2 4.30 Up 6.98E-05 8.42

AJ277828 HIF-2a; Hypoxia Inducible Factor 2a, Rattus norvegicus 8.04 Up 8.33E-04 6.74

U44845 Vitronectin; S-protein; epibolin; adhesion protein. 3.23 Up 8.33E-04 6.64

NM_017214 Rgs4; Regulator of G-protein Signaling 4 2.12 Up 2.60E-03 5.36

M36410 Sepiapterin Reductase 1.80 Up 6.01E-03 4.61

L03556 Hox1.3 protein 3' end (clone RAHB2 8/10) 4.04 Up 1.09E-02 3.72

AF243515 Bnip3; BCL2/adenovirus E1B 19 kDa-interacting protein 3 1.69 Up 1.10E-02 3.64

M31178 Calbindin D28 1.51 Up 1.80E-02 3.04

AF215726
VEGF; vascular endothelial growth factor-A120 (alternatively 

spliced)
1.97 Up 2.07E-02 2.77

NM_012716 Slc16a1; Solute carrier 16 member 1; MCT1 1.61 Up 2.51E-02 2.42

U04933 NACA7; Sprague-Dawley (CD-1) Na-Ca exchanger isoform NACA7 1.59 Up 2.55E-02 2.21

AJ243395 Na+b3; Voltage-gated sodium channel b3 subunit 1.62 Up 4.08E-02 1.18

AF286488 Ca+a2d1; Voltage-gated calcium channel a2/d-1 subunit 1.55 Up 4.08E-02 1.15

Fold 

Change
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Slc16a1 encodes a solute carrier which transports monocarboxylic acids across the plasma 

membrane. Over three independent northern blot experiments, Slc16a1 mRNA was 

detected at 3.1 ±0.7 fold higher levels in 16-hour hypoxia treated PC12 cells than in 

normoxia (Standard Error of the Mean given for n=2). The response to doxycycline 

treatment of the TetON-HIF-1, TetON-HIF-2 and TetON-Control cell lines was 

consistent with HIF dependent regulation, but less dramatic changes of 2.5 ±1.7, 1.6 ±0.4 

and 0.7 ±0.5 respectively (with Standard Deviation for n=3) were observed. Therefore, 

while Slc16a1 may represent a novel hypoxia regulated gene, the response to 

overexpression was only subtle, and stronger for HIF-1 than HIF-2. Many HIF-1 

target genes are already well characterised, while novel HIF-2 target genes are more rare, 

so this gene was deemed to be a low priority for further testing. 

Rgs4 encodes Regulator of G-Protein Signalling 4 (RGS4), one of a family of proteins 

which contain an RGS domain. Rgs4 was upregulated by hypoxia (2.8 ±1.3 fold, SEM for 

n=2) and HIF-2 overexpression (2.8 ±1.3 fold, SD for n=3), but was unresponsive to 

HIF-1 overexpression (1.2 ±0.1, SD for n=3) or the TetON control (1.2 ±0.2, SD for 

n=3) (Figure 1.4). Although the regulation of Rgs4 observed was moderate, the apparent 

preference for HIF-2 over HIF-1 in regulation made this putative target gene worthy of 

further investigation. Furthermore, the known role of the Rgs4 gene product in modulating 

G-protein function provided a putative link of considerable interest between hypoxic 

signalling and G-Protein coupled receptor signalling. Therefore, this research for this 

thesis focuses on the hypothesis that transcription of Rgs4 is regulated by hypoxia through 

the HIF pathway. 

1.3. Regulator of G-Protein Signalling 4 

1.3.1. G-Protein Coupled Receptors and the 

RGS Family of Proteins 

G-Protein Coupled Receptors (GPCRs) are seven transmembrane domain proteins which 

are found at the plasma membrane in eukaryotes, with an extracellular ligand receptor 

domain and a cytosolic G-protein interaction domain. In its inactive state, a GDP-bound 

G (G-protein) trimer binds at the cytosolic domains of the GPCR. Once activated by  
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Figure 1.4. Representative northern blots of unmodified PC12 cells with or without 16 hours of 

hypoxic treatment, and the TetON-Control, TetON-HIF1 and TetON-HIF-2 PC12 cell lines 

with or without 16 hours of doxycycline treatment (adapted from Olechnowicz, 2005). Total RNA 

was extracted and separated by 1% agarose/formamide/MOPS gel electrophoresis, northern 

blotted, then probed with 
32

P-labelled Rgs4, Vegf (positive control) or actin (loading control) 

coding sequence clones. Blots are representative of either three (Rgs4 with doxycycline 

treatments), two (Rgs4 with hypoxia, Vegf with doxycycline) or one (Vegf with hypoxia) 

independent experiments (Adapted from Olechnowicz, 2005).  

Rgs4

-Actin

-Actin

Vegf

Hypoxia
PC12 Control HIF-1 HIF-2

Dox_ + _ + _ + _ +

PC12 TetON cell lines
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ligand binding, the G subunit exchanges GDP for GTP, and the G-protein trimer 

dissociates to a GTP-bound G monomer and a G dimer. These subunits then move away 

from the receptor to signal to secondary effectors. G has intrinsic GTPase activity, and 

will eventually hydrolyse its bound GTP to GDP. At this point, the G subunit will 

recondense with the G dimer at the GPCR to await reactivation by the receptor. RGS 

family proteins contain a RGS domain, which binds to GTP-bound G and increases the 

rate of GTP hydrolysis, resulting in reduced signal transduction (Berman et al., 1996b; 

Watson et al., 1996). This interaction occurs at the switch regions of G, rather than the 

GTPase catalysis site (Tesmer et al., 1997). A bound RGS domain therefore lowers the 

transition state energy of GTP hydrolysis allosterically, rather than contributing directly to 

the reaction. This role of the RGS domain can itself be allosterically inhibited by 

phosphatidylinositol 3,4,5-trisphosphate (PIP3), an effect which is relieved by Ca
2+

-bound-

Calmodulin binding (reviewed by Ishii and Kurachi, 2003). RGS4 is also subject to N-

terminal palmitoylation, which inhibits its effect as a GTPase activator (Tu et al., 1999). 

The family of proteins which contain Regulator of G-Protein Signalling (RGS) domains 

includes the products from at least 37 different genes (Siderovski and Willard, 2005). 

These proteins are classed by homology of RGS domains and presence of other domains 

into 8 subfamilies: RZ, R4, R7, R12, RA, GRK, GEF and SNX. While many of these 

families include proteins which also contain other recognisable domains, the R4 sub-

family comprises relatively short proteins with no known domains other than the RGS 

domain (reviewed by Willars, 2006). Rgs4 encodes RGS4, which was amongst the first of 

the RGS proteins to be discovered (Druey et al., 1996) and encodes the prototypical 

member of the R4 subfamily. There are numerous forms of RGS4 (see Chapter 1.3.2), but 

the most prominent form of RGS4 has 205 amino acids, of which 120 form the RGS 

domain (Popov et al., 1997). Other R4 subfamily members such as RGS5 and RGS16 are 

of a similar size and composition. 

1.3.2. Expression Pattern of RGS4 

Rgs4 mRNA is detected at high levels in adult brain and heart in rats and mice, with lower 

expression detectable in lung, liver and skeletal muscle (Nomoto et al., 1997; Zhang et al., 

1998). However, the specific regions of Rgs4 expression within the brain are less clear, as 

in-situ hybridisation and qPCR studies of the developing or adult brain often give 

conflicting results (Erdely et al., 2004; Gold et al., 1997; Grillet et al., 2003; Grillet et al., 
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2005; Ingi and Aoki, 2002; Larminie et al., 2004). The cause of these differences is 

unclear, but nonetheless it appears that Rgs4 expression within the brain is very specific 

between regions and possibly dynamic. Notably, expression of Rgs4 overlaps to some 

extent with expression of other R4 subfamily members. Rgs5 is strongly expressed in the 

heart, vasculature and skeletal muscle (Seki et al., 1998), but is restricted in the brain to 

regions such as the amygdala and hypothalamus (Gold et al., 1997). Rgs16 also has a 

specific expression pattern within the brain, highest in the thalamus (Grafstein-Dunn et al., 

2001).  

Human Rgs4 produces at least 5 different transcripts through either alternative splicing or 

alternative promoters, of which two encode the previously mentioned 205 amino acid (aa) 

protein, one encodes a 302aa protein (extended at the N-terminus) and two produce 

truncated RGS4 forms (187aa and 93aa) (Ding et al., 2007). The relative expression of 

each of these variants in vivo is not clear, although the transcript designated as Rgs4-1 by 

Ding et al. (2007) is identical to the originally discovered 205aa form. Different variants 

of mouse Rgs4 transcript all give rise to the same open reading frame, which is equivalent 

to the coding sequence of human splice variant Rgs4-1 (Ding et al., 2007), implying that 

this is the prototypical Rgs4 form. 

1.3.3. Regulation of RGS Genes and Proteins by 

Hypoxia 

Regulation of Rgs4 and its protein product by hypoxia is not unprecedented in the 

literature. Rgs4 has appeared in the results of one published hypoxia-related microarray. 

Treatment of SK-N-BE(2)C human neuroblastoma cells with hypoxia for 72 hours led to 

increased hybridisation to a transcript listed as FLJ38885 by between 5 and 8.2 fold (Jogi 

et al., 2004). Upon further investigation, this sequence aligns as a partially-processed form 

of Rgs4 mRNA, which is likely to also detect fully processed Rgs4 transcript. Rgs5 was 

also consistently detected at 2.2 to 2.6 fold increased levels. However, the authors did not 

verify these positive responses with further experiments (Jogi et al., 2004). The other 

published microarray experiments described earlier (Chapter 1.2.1) used either arrays 

which did not feature an Rgs4 probe, or reported no significant change in Rgs4 levels to 

either hypoxia or change in HIF- expression. As these studies used cell types which are 

not known to express Rgs4, it is likely that the hypoxic response of Rgs4 is restricted to 
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cell types which express basal Rgs4 before treatment, such as neuroblastoma or 

pheochromocytoma cells. It is interesting to note that other bHLH/PAS family members 

have also been linked to regulation of Rgs4 expression levels. Rgs4 transcript levels are 

decreased by 3 fold in the anterior hypothalamus of Sim1
-/-

 embryonic mice (Caqueret et 

al., 2006), and also decreased in cultured mouse hippocampal neurons after RNAi-

mediated knockdown of Npas4 (Lin et al., 2008). As the DNA binding specificities of 

HIF, SIM-1 and NPAS4 are similar, it is possible that these is some crosstalk between 

these factors at an enhancer which regulates Rgs4 expression. 

It has been reported that exposing Human Umbilical Vein Endothelial Cells (HUVECs) to 

hypoxia causes a rapid yet modest induction of Rgs5 message, which encodes an R4 

subfamily member closely related to Rgs4 (Jin et al., 2009). Levels remain increased for at 

least 12 hours of treatment before returning to control levels by 24 hours. Curiously, while 

this report showed western blot data indicating similarly increased levels of RGS5 protein, 

no change in RGS4 protein level was detected (Jin et al., 2009). Although no experimental 

test for Rgs4 message levels was presented, this indicates that the response of Rgs4 to 

hypoxia may be replaced in some contexts by other RGS family members. It is interesting 

to note that Rgs4 and Rgs5 are adjacent in the human genome, separated by about 50kb of 

intervening sequence, and as such may feasibly share some transcriptional enhancers. 

At the posttranslational level of control, protein stability of RGS4, RGS5 and RGS16 is 

regulated by the N-end rule pathway (Davydov and Varshavsky, 2000; Lee et al., 2005), 

where the N-terminal residue of a protein affects its degradation. N-terminal residues other 

than Met, Gly, Val, Ile or Pro signal for protein degradation through the ubiquitin-

proteasome pathway (Gonda et al., 1989). These residues can be exposed by proteolysis or 

activity of methionine aminopeptidases (MetAPs), which remove the N-terminal 

methionine of a target protein (Davydov and Varshavsky, 2000). MetAP acts on RGS4 to 

reveal its second amino acid, Cys. This residue is oxidised, leading to recognition by 

ATE1, an enzyme which ligates an arginine to the N-terminus of RGS4 (Lee et al., 2005). 

This arginine is then recognised directly by E3 ubiquitin ligases UBR1 and UBR2 

resulting in ubiquitylation of RGS4 and subsequent proteasomal degradation (Lee et al., 

2005). Curiously, the cysteine oxidation step is sensitive to hypoxia, such that RGS4 (Hu 

et al., 2005) and RGS5 (Lee et al., 2005) exhibit hypoxic protein stabilisation and 

accumulation. It is unknown whether there is a hypoxia-sensitive enzyme responsible for 

this oxidation step, in a role similar to that of FIH and the PHD enzymes in the HIF 
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pathway, or if cysteine oxidation occurs spontaneously in the presence of oxygen. The 

phenotypes of mice defective for ATE1, UBR1 and UBR2 imply that the N-end rule 

pathway has physiological roles in neural development (An et al., 2006), cardiovascular 

development and remodelling (An et al., 2006; Kwon et al., 2002), pancreas function 

(Zenker et al., 2005) and meiosis in spermatocytes (Kwon et al., 2003). It is unclear 

whether the pathway is in effect throughout the body or only in a subset of tissues as there 

are other poorly characterised components (Tasaki et al., 2005). However, while the effect 

of hypoxia on RGS4 has been characterised in terms of the N-end rule pathway, no 

experiments were presented in these papers addressing Rgs4 mRNA levels. Altered Rgs4 

mRNA may augment the effect of N-end rule mediated protein stability, or may produce a 

similar hypoxia-responsive outcome in cell types which lack the N-end rule pathway 

components. Furthermore, as we theorise that the N-end rule pathway and the now the HIF 

pathway are both involved in a hypoxic increase of RGS4, it is interesting to note that the 

impaired vascular remodelling phenotype of Ate1
-/-

 (Kwon et al., 2002) and Ubr1
-/-

Ubr2
-/-

 

(An et al., 2006) mice overlaps with the phenotype of Epas1
-/-

 mice (Peng et al., 2000). 

1.3.4. G-selectivity of RGS4 Function 

There are at least sixteen known genes which encode G subunits, which can be divided 

into four subfamilies by sequence and function: s; 12; i; and q (reviewed by 

Hildebrandt, 1997; Neves et al., 2002; and Simon et al., 1991). There are also multiple 

different G and G subunits, and alternative splicing occurs on some subunits, so defining 

roles for a specific G is complicated. RGS4 exhibits some specificity in G selection, 

determined by both biochemical interaction and functional assays. Signalling through i 

subfamily members i1, i2, i3, o and z (Berman et al., 1996b), as well as t and q 

(Berman et al., 1996a; Hepler et al., 1997) is dampened by RGS4 presence, while RGS4 

can be immunoprecipitated with members of the i subfamily (Watson et al., 1996). 

However, RGS4 exerts no effect on s (Berman et al., 1996b) or 12 (Berman et al., 

1996a). Other RGS proteins also display similar selectivity between subfamilies of G 

(reviewed by De Vries et al., 2000). The secondary effectors for members of different G 

subfamilies are diverse: s subunits activate adenylyl cyclase, while i subunits generally 

inhibit adenylyl cyclase. Signalling by q triggers production of inositol triphosphate by 

Phospholipase C, while effectors for the 12 are still unclear. Also, some specific ion 

channels can be regulated through the effect of the partner G dimer (reviewed by Neves 
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et al., 2002). Novel secondary effectors are still being discovered for each of these G 

proteins, and each subfamily of G-proteins can be used by a variety of different GPCRs, 

so the scope for effects of RGS4 function is wide. In this way, the molecular basis for 

RGS4-regulated physiological roles is poorly understood. 

1.3.5. RGS4 Function in the Brain 

In keeping with its observed expression pattern, many proposed functions of RGS4 relate 

to the brain, as described on the right-hand side of Figure 1.5. In particular, alterations at 

the Rgs4 gene locus are thought to be a contributing factor for schizophrenia, a psychosis 

which has a heritability component of up to 80% (Merikangas and Risch, 2003). This link 

was first established by microarray analysis of matched schizophrenic and control 

postmortem prefrontal cortices (Mirnics et al., 2001), an area which becomes 

dysfunctional in affected individuals (Goldman-Rakic and Selemon, 1997). Mirnics and 

colleagues (2001) report that out of 6 matched microarray studies, expression of only one 

gene was found to be significantly altered in all experiments: Rgs4, which exhibited 

increased expression in affected individuals. In support, the human Rgs4 locus (at 1q23) is 

located near to a previously discovered genomic region with strong linkage to familial 

schizophrenia at 1q21-22 (Brzustowicz et al., 2000). Since then, multiple studies have 

included Rgs4-linked single nucleotide polymorphisms to determine whether this locus is 

associated with schizophrenia susceptibility. The Schizophrenia Research Forum collate 

these results, showing that of 31 studies, 15 present data supporting a link between the 

Rgs4 locus and schizophrenia, while 18 present negative results (Heimer, 2010). This 

indicates that while polymorphisms of the Rgs4 locus may be related to heritable 

schizophrenia in some cases, the disease is also likely to involve other loci as well as 

environmental factors, such that Rgs4 represents one of many possible susceptibility loci. 

Indeed, there are other susceptibility genes known, such as Nrg1, Comt and Notch4 

(reviewed by Schmidt-Kastner et al., 2006). 

One of the several theories for the molecular cause of schizophrenia is the dopamine 

hypothesis, which states that excess dopamine signalling in the central nervous system is a 

major factor in the disease (reviewed by Murray et al., 2008). This theory originates from 

the eventual discovery that antipsychotic drugs such as haloperidol used in the treatment 

of schizophrenia target the D2 dopamine receptor (D2R), one of a family of dopamine 

receptors which either signal for activation (D1-like) or inhibition (D2-like) of adenylyl  
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Figure 1.5. Flowchart of possible functions of RGS4 in the cardiovascular (left) and nervous 

(right) systems. Also pictured are the influences of hypoxia on these systems, and on the regulation 

of RGS4, in many cases through the HIF transcriptional pathway. The connector labelled “HIF?” 

question mark denotes the novel mechanism of RGS4 regulation by the HIF pathway under 

investigation in this thesis, which may describe the molecular mechanism behind some of the 

effects of hypoxia shown.  
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cyclase (reviewed by Seeman, 2006). Interestingly, as the D2R is a Gi-linked GPCR, 

RGS4 can inhibit its downstream signalling. RGS4 has been shown to directly promote 

the GTPase activity of Gi after activation by the D2R, causing a decrease in not only Gi 

but also G signalling (Ho et al., 2007; Yan et al., 1997). In this way, RGS4 regulates a 

signalling system thought to be central to the molecular pathogenesis of schizophrenia. 

Furthermore, there is some suggestion of a link between obstetric complications involving 

hypoxia and schizophrenic risk later in life (Cannon et al., 2000).  

RGS4 can negatively regulate Gi-mediated signalling from the m-opioid (morphine) 

and/or d-opioid receptors depending on context (Garnier et al., 2003; Leontiadis et al., 

2009; Wang et al., 2009). As opiates such as morphine are used widely in the treatment of 

pain, it is intriguing that Rgs4 mRNA is upregulated in rat spinal cord following 

neuropathic pain (Garnier et al., 2003), possibly to act in a negative feedback loop on the 

opioid receptors. Rgs4 message also increases in the locus coeruleus during morphine 

withdrawal (Gold et al., 2003). Rgs4
-/-

 mice have been generated which display only 

subtle phenotypes, as they develop without gross morphological abnormalities, possibly 

due to compensation by other RGS family members. Knockout mice are smaller than 

wildtype, fall from a rotating rod more quickly, and are more resistant to some pain 

treatments (Grillet et al., 2005), while later studies indicate these mice have some 

disruption to metabolic homeostasis pathways (Iankova et al., 2008). They display mostly 

normal responses to morphine withdrawal, the sole difference being the lack of a 

characteristic sniffing response (Grillet et al., 2005). However, Grillet and colleagues note 

that this relates to the phenotype of D2R
-/-

 mice, where withdrawal symptoms are also 

identical to wildtype save for an enhanced sniffing response (Maldonado et al., 1997). 

Furthermore, more detailed studies using conditional and total Rgs4 knockout and knock-

in mice indicate significant roles of Rgs4 in different regions of the brain in dampening the 

effect of opiate signalling (Han et al., 2010). 

1.3.6. RGS4 Function in the Cardiovascular and 

Other Systems 

Although expressed at a relatively lower level than in the brain, Rgs4 is thought to also 

have roles in the heart and vascular system, as described on the left-hand side of Figure 

1.5. Both in vitro and in vivo models of heart hypertrophy result in increased levels of 
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Rgs4 mRNA (Zhang et al., 1998), while conversely, overexpression of Rgs4 inhibits the 

hypertrophic response in cell culture models (Tamirisa et al., 1999) and in vivo (Rogers et 

al., 1999). Therefore, regulation of Rgs4 transcription appears to give rise to a negative 

feedback loop. In support, increased expression of Rgs4 has been shown to inhibit GPCR 

signalling from ligands such as endothelin and phenylephrine, which normally invoke 

hypertrophy in cultured cardiomyocytes (Schaub et al., 1997; Snabaitis et al., 2005; 

Tamirisa et al., 1999). Additionally, endothelin signalling has also been shown to activate 

HIF through downregulation of Phd2 expression in melanoma, so HIF may be included in 

this negative feedback loop (Spinella et al., 2010). Heart hypertrophy has been described 

in Epas1
-/-

 mice (Scortegagna et al., 2003a), which may therefore be related to the 

proposed transcriptional activation of Rgs4 by HIF, as lack of HIF-2 may allow 

hypertrophy to occur in an unregulated manner. 

While no heart disorders were originally noted in Rgs4
-/-

 mice (Grillet et al., 2005), more 

detailed studies have since noted that knockout mice display an increased sensitivity to the 

muscarinic M2 acetylcholine receptor (M2R) agonist carbachol (Cifelli et al., 2008). 

Activation of M2R signalling in cardiomyocytes results in bradycardia, while RGS4 

modulates M2R signalling in vitro by inhibiting G-mediated activation of G-Protein-

regulated Inward Rectifying K
+
 channels (GIRK) (Doupnik et al., 1997; Fujita et al., 

2000; Inanobe et al., 2001). Once again, this may relate to the bradycardic phenotype 

observed in Epas1
-/-

 mice (Tian et al., 1998), as lack of HIF-2 may prevent upregulation of 

RGS4 resulting in excess bradycardic signalling. 

There may also be a role for Rgs4 in the development of tubules in the vascular and 

respiratory system. In vitro assays show increased Rgs4 in MB114 endothelial and Mv1Lu 

lung epithelial cells during tubulogenesis, yet viral expression of Rgs4 in the same cells 

inhibits tubulogenesis (Albig and Schiemann, 2005). This implies another regulatory role 

for RGS4 in a negative feedback loop. However, similar effects are observed for Rgs5, 

indicating that there may be some degree of redundancy between these RGS proteins in 

the regulation of vascular development (Albig and Schiemann, 2005; Manzur and Ganss, 

2009). This would explain the lack of major cardiovascular developmental defects in 

Rgs4
-/-

 mice (Grillet et al., 2005). Overexpression of Rgs4 inhibits signalling by VEGF in 

endothelial cells, despite this signal occurring through a receptor tyrosine kinase (Albig 

and Schiemann, 2005), while the HIF pathway is well characterised in its activation of 

Vegf transcription, so a connection between these pathways would be of interest. 
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Rgs4 may also have a role in cancer progression, as it is a negative regulator of tumour 

size, lamellipodia formation and subsequent cell motility in breast cancer (Xie et al., 

2009). This may be a cell type specific effect, as previous work has instead correlated 

Rgs4 overexpression with a decrease in glioma cell motility (Tatenhorst et al., 2004). As 

described previously (Chapter 1.1.8), the HIF pathway is also known to be highly 

involved in oncogenesis. 

1.4. Summary and Approach 

1.4.1. Summary 

Mammalian cellular hypoxia sensing and response is a vital function for survival and 

adaptation of cells individually, as well as for development and adaptation of the entire 

organism, as the HIF pathway is strongly conserved through mammalian evolution, while 

disruption of this pathway causes severe deleterious phenotypes. Although previous 

research has identified numerous hypoxia responsive genes, it appears that the hypoxic 

response is not uniform between different cell types and contexts. Furthermore, current 

knowledge of HIF-responsive genes does not fully explain the range of phenotypes 

observed in HIF knockout mice. As such, we reasoned that there were more hypoxia 

responsive genes yet to be found, and that the careful selection of cell types used may be 

critical in their identification. In this way, novel genes may be found which are responsive 

to hypoxia in a subset of cell types, but do not respond in others and have therefore been 

overlooked in previous studies. Preliminary studies in our lab using microarray technology 

indicated that Rgs4, encoding RGS4 protein, may in fact be a novel HIF-responsive gene 

in the PC12 rat pheochromocytoma cell line. 

Curiously, RGS4 has proposed roles in development and regulation of signalling in both 

the nervous and cardiovascular systems, as well as pathophysiological roles in 

psychological disorders, heart disease and cancer. Several of these processes have links to 

hypoxia, but molecular mechanisms have not yet been found. The hypothesis 

investigated in this thesis is that hypoxic regulation of Rgs4 is mediated by HIF. My 

aim is to elucidate the molecular mechanism of transcriptional regulation of Rgs4 in 

response to hypoxia, and to define the contexts in which it occurs. This interaction 

may then provide explanations for some of the uncharacterised effects of HIF pathway 
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disruption, and provide a more complete understanding of the physiological mammalian 

response to hypoxia. 

1.4.2. Approach 

To address this aim, I designed experiments around two related approaches. The first of 

these aimed to clarify the types of cells in which Rgs4 is responsive to hypoxia, by testing 

for increased relative Rgs4 mRNA levels in neural and endothelial related cell lines using 

qRT-PCR and northern blotting. In these experiments, hypoxia, hypoxia mimetics and 

siRNA knockdown were all used to implicate the HIF transcription factors in this 

regulation. 

Secondly, I aimed to test whether Rgs4 is regulated in a similar fashion to other known 

HIF-responsive genes. If this is the case, it would be expected that the HIF transcription 

factors bind at a genomic site proximal to the Rgs4 transcription start site, known as a 

HRE. To eliminate other possibilities, the effect of transcription-independent regulation, 

3’UTR mRNA elements and the hypoxia-response time were tested. Finally, enhancer 

reporter assays were used alongside bioinformatics to search for a putative direct HIF 

binding site at the human and rat genomic Rgs4 loci.  
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2. Methods 
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2.1. Reagents 

2.1.1. Commercially Sourced Reagents 

Standard solutions supplied by Technical 

Services Unit (TSU) unless otherwise 

described, and used at 1x concentration 

unless otherwise specified. 

All water used is Milli-Q purified 

(Millipore).  

All chemicals from Sigma-Aldrich, 

unless otherwise stated. 

All restriction enzymes, related buffers 

and BSA from New England 

Biosciences. 

1kb+ DNA marker: Invitrogen 

32
P-dATP: Perkin Elmer 

AnaeroGen sachets: Oxoid 

Betaine: Sigma 

Big Dye Terminator Ver.3: Amersham 

DMEM, MEM and RPMI1640: Gibco 

dNTPs: Finnzymes 

Dual Luciferase Reporter Assay Kit: 

Promega 

FCS: JRH 

Gel Purification Kit: Qiagen 

Horse Serum: Sigma 

Klenow fragment: NEB 

Lipofectamine2000: Invitrogen 

Nytran Membrane: Schleicher and 

Schuell 

Oligo(15)-dTs: Geneworks 

pGEM-T Easy Kit: Promega 

PfuTurbo: Stratagene 

ProbeQuant G-50 Microcolumns: 

Amersham 

Proteinase K: Roche 

qPCR Fast SYBR Green Mastermix: 

Applied Biosystems 

Random dNTP hexamer: Geneworks 

RNaseIN: Ambion 

Superscript III: Invitrogen 

Taq Polymerase: NEB 

TRI Reagent: Sigma 

X-gal: Biovectra
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2.1.2. PCR Primer Sequences 

Oligonucleotides for use as PCR primers were designed with the aid of UCSC Genome 

Browser (Kent et al., 2002) and Primer3 (Rozen and Skaletsky, 2000), and synthesised by 

Geneworks (Thebarton, South Australia) at 40nmole synthesis scale and sequencing/PCR 

purity grade. Primers were resuspended in H2O to 100mM, diluted to a 10mM working 

stock in H2O, and stored at -20ºC. 

The following primers were used to clone probes for use in northern blot probing: 

rat Rgs4 - 618 bp PCR product  

Rgs4 upper (110)  ATG TGC AAA GGA CTC GCT GGT  

Rgs4 lower (727)  TTA GGC ACA CTG AGG GAC TAG 

rat Vegf - 477 bp PCR product  

hVEGF upper (37)  GCC TTG CTG CTC TAC CTC CAC  

hVEGF lower (513)  CAA ATG CTT TCT CCG CTC TGA 

 

The following primers were used to sequence plasmids as indicated: 

pGEM-T Easy 

BS M13-20   GTA AAA CGA CGG CCA GT  

BS Reverse  AAC AGC TAT GAC CAT G 

pGL3basic, pGL3promoter 

RVPrimer3  CTA GCA AAA TAG GCT GTC CC 

GLPrimer2  CTT TAT GTT TTT GGC GTC TTC CA 

 RVPrimer4  GAC GAT AGT CAT GCC CCG CGC 
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The following primers were used for amplification of target gene cDNA in qRT-PCR. 

Primers were designed using Primer3 (Rozen and Skaletsky, 2000), set to anneal at a 

predicted temperature of 60ºC and amplify a target sequence of 75-150bp in length, 

crossing at least one intron boundary to minimise amplification from genomic DNA 

contamination. 

human Rgs4 – 106bp PCR product from cDNA 

hRgs4_qPCR_F TTGCGAATTCCAAGCTGTTA 

hRgs4_qPCR_R AGCAGGAAACCTAGCCGATG 

human Vegf – 119bp PCR product from cDNA 

VEGF_qPCR_F CCTTGCTGCTCTACCTCCAC 

VEGF_qPCR1_R GCAGTAGCTGCGCTGATAGA 

human Polr2a – 67bp PCR product from cDNA 

Polr2a_qPCR1_F ACCCTCCGTCACAGACATTC 

Polr2a_qPCR1_R CCATCAAGAGAGTCCAGTTCG 

human Actb – 75bp PCR product from cDNA 

hActb_qPCR_F ACAGAGCCTCGCCTTTGC 

hActb_qPCR_R GCGGCGATATCATCATCC 

mouse/rat Polr2a – 85bp PCR product from cDNA 

mrPolr2a_qPCR1_F  GCA CCA TCA AGA GAG TGC AG 

mrPolr2a_qPCR1_R GGG TAT TTG ATA CCA CCC TCT G 

mouse Rgs4 – 100bp PCR product from cDNA 

mRgs4_qPCR1_F TCC TCG CTA AGA ATC CCT CAG 

mRgs4_qPCR1_R  CCA GCC GAT GTT TGA TGT C 
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mouse Vegf – 101bp PCR product from cDNA 

mVegfa_qPCR1_F  CTG CTG TAC CTC CAC CAT GC 

mVegfa_qPCR1_R  CGC TGG TAG ACA TCC ATG AAC 

rat Rgs4 – 74bp PCR product from cDNA 

rRgs4_qPCR1_F  CAA GAT GTG CAA AGG ACT CG 

rRgs4_qPCR1_R  CCA GCC GAT GTT TCA TAT CC 

rat Vegf – 116bp PCR product from cDNA 

rVegfa_qPCR1_F  GGC TTT ACT GCT GTA CCT CCA C 

rVegfa_qPCR1_R  AAT AGC TGC GCT GGT AGA CG 

human Hif1a – 89bp PCR product from cDNA 

hHIF1A_qPCR2_F  CATGTGACCATGAGGAAATGAG 

hHIF1A_qPCR2_R AAAGCTTCGCTGTGTGTTTTG 

human Epas1 – 98bp PCR product from cDNA 

hEPAS_qPCR2_F  CTGCGACCATGAGGAGATTC 

hEPAS_qPCR2_R  TGAAGAAGTCCCGCTCTGTG 

mouse/rat Hif1a – 125bp PCR product from cDNA 

mrHif1a_qPCR_F  CGG CGA GAA CGA GA GA 

mrHif1a_qPCR_R GAA GTG GCA ACT GAT GAG CA 

mouse/rat Epas1 – 104bp PCR product from cDNA 

mrHif2a_qPCR_F GGT TAA GGA ACC CAG GTG  

mrHif2a_qPCR_R  GGG ATT TCT CCT TCC TCA GC 

human Dec1 – 97bp PCR product from cDNA 
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hDec1_qPCR1_F GAC CGG ATT AAC GAG TGC AT  

hDec1_qPCR1_R  CAA GAA CCA CTG CTT TTT CCA 

human/mouse/rat Rgs5 – 181bp PCR product from cDNA 

hmrRgs5_qPCR1_F TCAGTGAGGAAAACCTTGAGTTC 

hmrRgs5_qPCR1_R AGGTTCCACCAGGTTCTTCAT 

human Mlh1 – 88bp PCR product from cDNA 

hMLH1_qPCR1_F  AGC CTA TTT GCC CAA AAA CA 

hMLH1_qPCR2_R  TGT GGG GTG CAC ATT AAC AT 

The following primers were used to amplify parts of the human Rgs4 genomic locus as 

described in Figure 4.6a for ligation to pGEM-T Easy and subcloning to pGL3 or 

pCI_FL. Note that some primers incorporate 5’ restriction enzyme sites, and therefore may 

not align perfectly to genomic sequence. Some primer sequences are duplicated. 

Sequence A 

hRgs4_-15kb_F  ACCTGGAAAATCCTGCCTCT  

hRgs4_-11.3kb_R_XhoI CTCGAGCTCCATCCTTCACTGCCCTA  

Sequence B 

hRgs4_-11.5kb_F  GGAATGGAAAACTCCCCTTG  

hRgs4_-8.4kb_R_XhoI CTCGAGTGGTGCTCTAAAATGTTCTATCCA  

Sequence C 

hRgs4_-8.6kb_F_MluI- AAGAAAACGCGTAAGCCAGAAGTGATGGAGGA 

hRgs4_-6.7kb_R_XhoI- GCTAATCTCGAGAATCAAGGGGCATTCTACCC  

Sequence D 

hRgs4_-2.2kb_R_XhoI CTCGAGTAACAGAGCTGGGTCCAGATACA  
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hRgs4_5'FS_-6.5kb_F  GGCACAGAACAGGGGAAATA  

Sequence E 

hRgs4_5'FS_-6.5kb_F  GGCACAGAACAGGGGAAATA  

hRgs4_TSSsv_R   TCCAAGATCTGATCCTCACGA  

Sequence F 

hRgs4_5'FS_-2.2kb_F  GATGGGATAGCATGGTGGAC  

hRgs4_TSSsv_R  TCCAAGATCTGATCCTCACGA  

Sequence G 

hRgs4_5'FS_-2.2kb_F   GATGGGATAGCATGGTGGAC  

hRgs4_5'FS_0.05kb_R CTTCGGCTTTGAGCGTACTT  

Sequence H 

hRgs4_5'FS_-2.2kb_F  GATGGGATAGCATGGTGGAC  

2kbRgs4_NheI  GCTAGCGAAAGCAGTAGCGGCAAAAG  

Sequence I 

hRgs4_qPCR_F  TTGCGAATTCCAAGCTGTTA  

2kbRgs4_NheI  GCTAGCGAAAGCAGTAGCGGCAAAAG  

Sequence J 

hRgs4_3.3kb_F_KpnI  GGTACCCGAGGTGCTTCTACAGTT 

hRgs4_6kb_R_XhoI   CTCGAGTATTTGGCCTCAGGTTTTCC 

Sequence K    

hRgs43UTRpA_XbaI_F TCTAGATTCTCACCTGAAGGCAGAGG  

hRgs43UTRpA_XhoXba_R CTCGAGTCTAGACACTGGCACAGGAGGGATTA  
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Sequence L 

hRgs4_8.2kb_F_MluI  ACGCGTAAACATCAGGGTGTAGGGTGA  

hRgs4_12.9kb_R_XhoI CTCGAGTTCCTTCCTTGTGTCATATTTCC  

Sequence M 

hRgs4_8.2kb_F_MluI   ACGCGTAAACATCAGGGTGTAGGGTGA  

hRgs4_17.9kb_R_XhoI CTCGAGTTGCCAGTGGGGAAACTAAC  

Sequence N 

hRgs4_12.8kb_F_MluI ACGCGTCTGCTTAGGCCATTAAACCA  

hRgs4_17.9kb_R_XhoI CTCGAGTTGCCAGTGGGGAAACTAAC   

  

2.1.3. siRNA Duplexes 

siHIF1A_1541 Sense   r(CUG AUG ACC AGC AAC UUG A) dTdT 

Antisense r(UCA AGU UGC UGG UCA UCA G) dTdT 

siHIF2A_1599 Sense  r(CAG CAU CUU UGA UAG CAG U) dTdT 

   Antisense r(ACU GCU AUC AAA GAU GCU G) dTdT 

siHIF1A_1530 Sense  r(CGA CAC AGA AAC UGA UGA C) dTdT 

   Antisense r(GUC AUC AGU UUC UGU GUC G) dTdT 

siHIF2A_668  Sense  r(UCA GCU UCC UGC GAA CAC A) dTdT 

   Antisense r(UGU GUU CGC AGG AAG CUG A) dTdT 

siRNA sequences target the sites of Hif1a and Epas1 mRNA as described originally by 

Sowter et al. (2003), and were synthesised by Qiagen. RNA/DNA oligonucleotides were 

resuspended in siRNA Suspension Buffer at 20mM concentration, heated at 90ºC for 1 

minute then 37ºC for 60 minutes to anneal duplexes, then stored at -20ºC. 
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2.1.4. Plasmids 

pGEM-T Easy: Promega  

pGL3basic:   Promega  

pGL3promoter:  Promega  

pHRE4 (pHRE
4
GL3, containing 4 repeats of the Epo HRE in pGL3promoter):   

   Ema et al. (1997) 

pCI_FL:  Peter McCarthy (Adelaide University) 

pRLTK:   Promega 

phRLCMV:  Promega 

2.2. Experimental Procedures 

2.2.1. Tissue Culture 

PC12 rat pheochromocytoma cells were grown in Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented with 10% Horse Serum and 5% Fetal Calf Serum (FCS). Neuro-

2A mouse neuroblastoma and SK-N-SH human neuroblastoma cells were grown in 

Minimal Essential Medium (MEM) supplemented with 10% FCS. SK-N-BE(2)C human 

neuroblastoma cells were grown in RPMI-1640 supplemented with 10% FCS. Mouse 

embryonic fibroblasts (mEFs) were grown in DMEM supplemented with 10% FCS. 

Human Umbilical Vein Endothelial Cells (HUVECs) were a kind gift from Dr Claudine 

Bonder (Institute of Medical and Veterinary Science, South Australia), while mouse 

embryonic stem cell maintenance and differentiation in N2B27 medium was performed by 

Tom Klarić (Adelaide University), following previously established protocols for neural 

differentiation (Ying et al., 2003). All media contained both L-glutamine and phenol red, 

and cells were grown on standard tissue culture plasticware. 

Cells were maintained at 37ºC and 5% CO2, and passaged with trypsinisation when near-

confluent. Stocks of each cell-line were frozen in cryotubes in FCS supplemented with 

10% DMSO, using a “Mr. Frosty” (Nalgene) container to provide slow cooling to -80ºC. 
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Cryotubes were then stored at -80ºC for a period of 6-12 months, or archived in liquid 

nitrogen storage.  

Hypoxic conditions were achieved by sealing the culture vessel inside an airtight container 

along with an AnaeroGen sachet (Oxoid). Testing of this procedure with an oxygen meter 

indicated that oxygen levels are depleted over the course of the first hour to less than 0.1% 

oxygen. Treatment times are given as the time from sealing the container. 

Dimethyloxalylglycine (DMOG) stocks were prepared at 1M in DMSO, while 2,2’-

Dipyridyl (DP) stocks were prepared at 100mM in DMSO, such that both chemicals were 

used at a dilution factor of 1000x in tissue culture medium. An equivalent amount of 

DMSO (0.1%) was used as a negative (vehicle) control. 

2.2.2. Total RNA Extraction and Northern 

Transfer 

Subconfluent PC12 and Neuro-2A cells were treated with normoxia, hypoxia, DMSO, 

DMOG or DP for 16 hours as described above. Total RNA for this and other methods was 

harvested by lysing cells in 1mL TriReagent (Sigma) as per the Sigma protocol 

(substituting 200mL chloroform for 100mL BCP at the biphase formation step), or by lysis 

in RLT/-mercaptoethanol (Qiagen) buffer and extraction using the Qiagen RNeasy Mini 

column kit. All manipulation of RNA or preparation of materials which come into contact 

with RNA was performed with either designated RNase-free reagents or cleaned with a 

solution consisting of 200 mM NaOH and 1% SDS. Extracted total RNA was dissolved in 

30-50mL H2O, 1ml of which was diluted in 99ml H2O for concentration quantification by 

spectrophotometry at 260nm using an Eppendorf BioPhotometer. RNA was also tested for 

purity by the measured A260/A280 ratio, and integrity of RNA was assessed by running 

1mL on a 1% agarose/TBE gel and visualising rRNA bands by ethidium bromide staining. 

10x MOPS buffer was prepared in H2O: 200 mM MOPS, 50 mM NH4Ac, 10 mM EDTA, 

to pH 7 with NaOH. To set a formamide/MOPS/1% agarose gel, 1.5 g of agarose was 

dissolved by boiling in 108 mL H2O, then cooled to around 65
º
C. At this point, 15 mL of 

10x MOPS buffer and 27 mL of formaldehyde was added and mixed in. The gel was then 

poured into a moulding apparatus and allowed to cool in a fumehood. 20 μg of each total 

RNA sample was diluted to a final concentration of 10 μL in H2O. 3μL MOPS buffer 
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(10x), 10 μL formamide and 3.5 μL formaldehyde was added to each sample, mixed and 

heated at 65
o
C for 10 minutes to denature RNA. The samples were then transferred to ice, 

and 0.5 μL ethidium bromide and 7 μL loading buffer added to each sample. The samples 

were loaded to the gel immediately after mixing, then the gel was run at 70V for 2 hours 

in 1x MOPS buffer, or until the loading dye had migrated to ¾ the length of the gel. After 

running, the gel was soaked twice for 15 minutes in H2O, then photographed under 70% 

UV-light. 

A transfer stack was constructed as follows, in order from the base to the top: dish 

containing 20x SSC buffer; gel support (upturned moulding apparatus); long piece of 

Whatmann paper as a wick, covering the support and extending into the 20x SSC; the gel 

containing the electrophoresed RNA (face down); slices of parafilm around the edge of the 

gel to prevent contact between the above paper and the wick; the Nytran membrane; three 

wet pieces of Whatmann paper, cut to membrane size; a 5-10 cm stack of paper towel, cut 

to the size of the membrane; a weight. Transfer occurred for around 24 hours at room 

temperature, after which the stack was disassembled and the membrane rinsed briefly in 

H2O. The RNA was then auto-UV-crosslinked (Stratagene Stratalinker) to the membrane 

and sealed in plastic for storage at 4
º
C until use. 

2.2.3. Generation of Radiolabelled Probes 

Due to high homology between sequences, cDNA probes for rat target sequences were 

used for probing both mouse and rat cell line extracts. Probes were excised from their 

corresponding pGEM-T Easy plasmid by digestion with EcoRI, then separated by 1% 

agarose gel electrophoresis. Bands of expected length were recovered by gel purification 

(Qiagen), and recovered DNA concentration was estimated by running a small amount on 

a second 1% agarose gel in comparison to the 1kb+ DNA ladder standard. 

200ng of DNA probe was used per 20mL of pre-hybridisation buffer in hybridisation 

flask. This DNA was added to 1μL of random dNTP hexamer (100 μM), and made up to 

14 μL with H2O. The DNA was denatured at 95ºC for 5 minutes, then cooled on ice. Next, 

2.5 μL of dNTPs(-dATP) (5 mM) and 2.5 μL of TM buffer (10x), then 5 μL of 
32

P-dATP 

(10 μCi/μL) and 1μL of Klenow fragment (10U/μL) were added, mixed and incubated at 

37ºC for 1 hour. 25 μL of TE was added, and the labelled DNA fragments retrieved using 

ProbeQuant G-50 microcolumns. The reaction product was applied to the top of a 

prepared G-50 column, and centrifuged for 2 minutes at 3 kRPM into a fresh 
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microcentrifuge tube. The eluant was diluted by addition of 150-350 μL 1xTE and stored 

at -20ºC until use. 

2.2.4. Hybridisation of Northern Transfer 

Membrane 

The membranes were blocked in 20mL of prehybridisation buffer, or 40mL if multiple 

membranes were being prehybridised simultaneously, overnight at 42ºC with slow 

rotation. Prehybridisation buffer: 50% formamide, 5x SSC, 50 mM NaPO4 (pH 6.5), 5x 

Denhardt’s solution, 0.1% SDS, 0.3 mg/mL sheared salmon sperm DNA in H2O. Labelled 

probes were heated at 95ºC for 5 minutes to denature the DNA, then cooled on ice for 5 

minutes before application to the membranes. All 400 μL of the labelled probe was 

transferred to the membrane in prehybridisation buffer, and was allowed to hybridise 

overnight at 42ºC with slow rotation.  

After hybridisation, the hybridisation buffer was replaced with 2x SSPE/0.1% SDS and 

washed for 15 minutes at 42ºC with rotation. This was repeated once with 2x SSPE/0.1% 

SDS at the same conditions, then finally the wash buffer was replaced with 0.1x 

SSPE/0.1% SDS and washed for 45 minutes at 65ºC. The membranes were then removed 

from the hybridisation flasks and sealed in plastic, then exposed to a phosphorimager 

screen for 48-72 hours. The phosphorimager screen was scanned to computer using a 

Typhoon Trio (Amersham Biosciences), and images were manipulated using QuantityOne 

(Bio-Rad) and Adobe Photoshop software.  

Probes were stripped from membranes with stripping buffer (10 mM Tris pH 7.5/0.1% 

SDS) and boiled in a microwave for at least 5 minutes. The membrane was then rinsed 

three times in RO water and sealed in plastic for storage at 4ºC until needed. 

2.2.5. Reverse Transcription of mRNA 

2mg of total RNA (generated as described in Chapter 2.2.2) was mixed with 1mL of 

300ng/mL random oligonucleotide hexamer and 1mL of 500ng/mL oligo(15)dT in a 

volume made up to 19mL with H2O, and annealed by heating to 70ºC for 10 minutes in a 

theromocycler, followed by 5 minutes on ice. These tubes were set up in duplicate for 
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each RNA sample. Mastermixes are then prepared, resulting in each tube receiving 6mL 5x 

First Strand Buffer (Invitrogen), 2mL 0.1M DTT, 1mL 10mM dNTPs and 1mL SUPERase-

In RNase inhibitor (Ambion). To one tube (“cDNA”) 1mL Superscript III Reverse 

Transcriptase (RT) (Invitrogen) was added, while the other received 1mL H2O (“noRT”). 

Reactions progressed in a thermocycler set at 50ºC for 150 minutes, then 70ºC for 15 

minutes to inactivate the reverse transcriptase. cDNA was stored at -20ºC until use. 

2.2.6. Quantitative PCR 

Quantitative PCR was performed in triplicate on cDNA samples (qRT-PCR), while one 

reaction per no RT sample was also set up as a negative control. Reactions were set up on 

ice using 2x Fast SYBR Green Mastermix (Applied Biosystems) according to the 

manufacturer’s protocol: per reaction, 10mL 2x Fast SYBR Green Mastermix, 1.0mL 

cDNA or noRT sample (template), 0.4mL of left primer and 0.4mL of right primer (each at 

10mM), and 8.2mL H2O. Mastermixes of SYBR Green Mastermix and template were set 

up, mixed and added to wells of a 96well (BIOPlastics Cat#AB19809) tray first, followed 

by a mastermix of primer pairs and water. Trays were sealed with an Opti-Seal 

(BIOPlastics), then vortexed at low power to mix contents gently. Thermal cycling and 

detection was performed using the StepOne Plus (Applied Biosystems), using the 

following cycling parameters: 95ºC for 10 minutes, 95ºC for 15 seconds, 60ºC for 1 

minute and read tray, cycle to step two 39 additional times, then for melting curve analysis 

95ºC for 15 seconds, 60ºC for 1 minute, then ramping temperature by 0.3ºC increments, 

reading tray at each temperature. Primary amplification curves were analysed using the 

StepOne v2.1 (Applied Biosystems) software. Briefly, thresholds were set at the same 

point for an entire tray, at a level which aligned to the most reproducible detection of 

amplification yet below the end of the logarithmic amplification period. Resulting target 

Cycle(threshold) values (C(t)) were converted to arbitrary relative quantities with Polr2a 

or Actb as a reference gene using either StepOne or Q-Gene software (Muller et al., 2002), 

both of which use modified versions of the 2
-C(t)

 method (Livak and Schmittgen, 2001). 

These arbitrary values were then normalised to a control sample set at 1, to allow for 

comparison of fold change as a mean with standard deviation across n independent 

experiments and statistical analysis. For a new primer set, qRT-PCR products were run on 

a 3% agarose/TBE gel to confirm product size compared to expected size, then melt curve 

analysis was used in subsequent experiments to ensure specificity of amplification. 
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To determine statistical significance of target gene fold change in expression, the mean 

and standard deviation of the independent normalised relative expression values were 

transferred to Excel (Microsoft). As the control to which comparison was being made is 

set at 1 (with no resulting standard deviation between independent experiments), Student’s 

t-test cannot be used, as this calculation can only compare two values each with error 

values. Therefore, 99% confidence intervals (p=0.01) for the experimental value were 

calculated using standard deviation and n. Significance was assigned (indicated by an 

asterisk) when the value 1 (control value) was outside of the 99% confidence interval of 

the experimental value. 

PCR efficiency of each primer pair was calculated by performing qPCR in triplicate on a 

set of serial dilutions of species-appropriate cDNA. This data was plotted to a log10/linear 

graph, and a line of best fit was calculated by Excel. The slope of this line was converted 

to an efficiency value (where 1 equals perfect amplification) using the equations below, 

with the aid of Q-Gene software. Primer pairs were accepted if E was greater than 0.9 and 

less than 1.1. 

       (   ) 
  

Equation 2.1. Amplification of target DNA by PCR. Nc: Template amount after cycle C; No: 

Original template amount; E: PCR efficiency, between 0 and 1 (Adapted from Rutledge and Cote, 

2003). 

     (     )
  
   

Equation 2.2. PCR efficiency calculation from log10[cDNA] vs C(t) standard curve, as depicted in 

Figure 6.1 (Adapted from Rutledge and Cote, 2003). 

2.2.7. Transfection of siRNA Duplexes 

SK-N-BE(2)C cells were plated at a confluency of around 40% in 6 well trays, in normal 

growth media. siRNA duplex sequences targeted towards Hif1a or Epas1 mRNA were 

ordered, as described by Sowter et al. (2003) and Chapter 2.1.3. For Figure 3.5a, cells 

were transfected the day after plating with 50nM of each siRNA and 5mL 

Lipofectamine2000 (Invitrogen), diluted in RPMI 1640 without serum as directed by the 

Invitrogen protocol. 12-24 hours later, media was replaced with normal growth media, 

before a repeat transfection using the same method. 12-24 hours later, media was once 
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again replaced with normal growth media, supplemented with either 100mM DP or 0.1% 

DMSO (vehicle). After 8 hours treatment, media was removed and cells were lysed for 

total RNA extraction or western blot as described in other chapters. Cells for Figure 3.5b 

were treated in the same way, but volumes were scaled up to 6cm
2
 dish scale. 

For Figure 3.6, a similar protocol was followed, with the following exceptions. Cells were 

transfected with 50nM siRNA and 5mL siLentFect (Bio-Rad) per well instead of 

Lipofectamine2000. Growth media was replaced 24 hours after the second transfection, 

and cells were grown for an additional 12-24 hours before treatment. Cells were treated 

with normoxia or hypoxia for 8 hours as described in Chapter 2.2.1, followed by lysis for 

total RNA extraction or western blot. 

2.2.8. Western Transfer 

Growth media was aspirated from cells, then cells were rinsed with cold 1x PBS and lysed 

in 80mL 1x Laemmli buffer with Protease Inhibitor Cocktail (2mg/mL aprotinin, 4mg/mL 

bestatin, 5mg/mL leupeptin and 1mg/mL pepstatin at final concentration) and 40mM DTT. 

2x Laemmli buffer consists of: 125mM tris-HCl pH 6.8, 20% Glycerol, and 5% SDS in 

H2O. 40mL of this whole cell extract mixed with was loaded with 13.3mL 4x SDS Gel 

Running Buffer: 50% glycerol, 0.05% bromophenol blue, 0.1mM EDTA pH 8 in H2O. 

This mixture was heated for 5 minutes at 95ºC, briefly centrifuged, then loaded to a 7.5% 

SDS/polyacrylamide gel. 5-10mL of Precision Plus Protein Dual Color Standard (Bio-

Rad) was also loaded in a separate lane. 7.5% Separating (lower) gel: 2.5mL Lower 

buffer, 1.875mL 40% 29:1 Bis-Acrylamide, 5.625mL H2O, 8mL TEMED and 80mL 10% 

ammonium persulphate; 4.5% Stacking (upper) gel: 2.5mL 4x Upper buffer, 1.13mL 40% 

29:1 Bis-Acrylamide, 6.37mL H2O, 8mL TEMED and 80mL 10% ammonium persulphate. 

Lower buffer: 181.1g tris and 40mL 10% SDS, made up to 1L with H2O, with pH adjusted 

to 8.8 with HCl. Upper buffer: 60.5g tris and 40mL 10%SDS, made up to 1L with H2O, 

with pH adjusted to 6.8 with HCl. The gel was run at 140V in 1x GTS until adequate 

separation between high molecular weight bands could be observed. 10x GTS solution: 

30.3g Tris base, 144g Glycine, 10g SDS, made up to 1L with H2O. 

Protein was transferred to nitrocellulose membrane (Pall) by wet transfer. Transfer 

apparatus was set up in transfer buffer from negative to positive as follows: mesh sponge, 

Whatmann paper, polyacrylamide gel (facing the negative side), nitrocellulose membrane, 
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Whatmann paper, mesh sponge. 1x Transfer buffer: 10mL 10% SDS, 100mL methanol, 3g 

tris and 14.4g glycine, made up to 1L with H2O. Western transfer then progressed at 

250mA for 1½ hours in transfer buffer at 4ºC. After transfer, nitrocellulose membrane was 

stained briefly with 0.1% Ponceau in 5% acetic acid for visualisation of transfer 

effectiveness, and to facilitate cutting the membrane between the 75 and 50kDa size 

markers. Membranes were then blocked in 7.5% skim milk in 1x PBS for at least 1 hour. 

The high molecular weight portion of the membrane was probed for HIF-2 with anti-

HIF-2 rabbit antibody Cat# NB100-122 (Novus) diluted at 1:1000 in 1x PBS with 1% 

skim milk. Following detection, membrane was rinsed in 1x PBS and HIF-1 was 

detected with anti-HIF-1 mouse antibody Cat# 610959 (BD Biosciences) at 1:500 

dilution in 1x PBS with 1% skim milk. The low molecular weight portion of the 

membrane was probed for -Tubulin with anti--Tubulin rat antibody (Novus), diluted at 

1:10000 in 1x PBS with 1% skim milk. Primary antibody binding occurred overnight with 

rocking at 4ºC. Antibody solutions were poured off and stored at 4ºC with 0.02% sodium 

azide, while membranes were washed 3 times with rocking for 5 minutes in 1x PBS at 

room temperature. Horseradish Peroxidase (HRP)-conjugated secondary antibodies 

against rabbit, mouse or rat primary antibodies were then applied at 1:10000 dilution in 1x 

PBS for 1 hour at room temperature with rocking. Following this, antibody solutions were 

aspirated and membranes were washed 3 times in 1x PBS as previously. Membranes were 

then dried by blotting, and enhanced chemiluminescence reagents (Pierce and Millipore) 

were used to detect HRP by 1-10 minute exposure of X-ray film to membranes. 

2.2.9. Actinomycin D Treatment and mRNA 

Decay Calculation 

SK-N-SH or SK-N-BE(2)C cells were grown subconfluency in 8x 10cm
2
 dishes 

containing 10mL growth media. Cells were treated by adding either 20mL of 2mg/mL 

actinomycin D (in DMSO, resulting in 4mg/mL final concentration), or an equivalent 

amount of DMSO as a negative control. Media was gently mixed in the dish by swirling, 

left for 10 minutes, then cells were treated with normoxia or hypoxia as described in 

Chapter 2.2.1 for 4, 8 or 12 hours, while a negative control sample was lysed immediately 

to determine starting relative expression levels. After treatment, cells were lysed and total 

RNA was extracted and expression levels quantified with qRT-PCR as described above. 
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qRT-PCR results were analysed as described above to give Rgs4 mRNA levels relative to 

Polr2a for each time point, presented as a representative experiment in Figure 4.1a and d. 

As cDNA samples are normalised for total RNA amounts used in reverse transcription 

reaction, C(t) values without normalisation to reference gene levels were used to compute 

target gene mRNA half-life, to remove the effect of reference gene degradation. C(t) 

values were converted to values relative to basal expression levels using Equation 2.1 by 

setting N0 = 1 for normoxic control expression, giving an arbitrary common threshold 

value Nc. Values from two independent experiments were entered into Prism (GraphPad) 

and graphed as an x,y scatter plot with one phase decay line fitted, constraining the plateau 

to 0 as mRNA was assumed to become eventually undetectable as time approaches ∞. 

Calculated half-life ranges at 99% confidence were then computed by Prism software. 

2.2.10. Mammalian Luciferase Reporter Assays 

PC12 or SK-N-BE(2)C cells were plated in 24 well trays at 20-30% confluency in 2mL 

normal growth media per well. Cells were transfected twice (at 24 and 48 hours), each 

time by adding 1mL Lipofectamine2000 (Invitrogen), 100ng of pGL3 or 25ng of pHRE4 

firefly luciferase reporter and 25ng of phRLCMV renilla luciferase reporter in 0.5mL 

serum-free media per well. Reporter plasmids are described in Chapter 2.1.3. 100ng of 

pGFP was transfected in separate wells to assess transfection efficiency. Growth media 

was replaced before the second transfection, and before treatment. On the third day, cells 

were treated with 16 hours of normoxia or hypoxia as described in Chapter 2.2.1, 

following which media was aspirated and cells were lysed  in 100mL 1x Passive Lysis 

Buffer (Promega) per well, shaking for at least 20 minutes at room temperature. 10mL of 

lysate from each well was then measured using the Dual Luciferase System (Promega) 

reagents and Glomax luminometer (Promega). Luminometer plate read settings: Injection 

1 (Luciferase Assay Reagent II) 75mL, wait 3 seconds, integrate 10 seconds, injection 2 

(Stop and Glo reagent) 75mL, wait 3 seconds, integrate 10 seconds. Data was then 

processed with Excel (Microsoft) and Prism (GraphPad), and presented as a representative 

of three independent experiments. 
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2.2.11. Published ChIP-seq Data Alignment and 

Analysis 

Chromatin immunoprecipitation with deep sequencing DNA detection (ChIP-seq) data for 

NPAS4, CBP, and PolII in mouse cortical neurons treated with either 2 hours KCl-induced 

membrane depolarisation or control culture conditions was retrieved from bigWig files 

provided in the supplementary figures of reference (Kim et al., 2010). These files were 

applied to the mm9 mouse genome assembly using the Genomes tab of the UCSC Genome 

Browser (Kent et al., 2002), and regions covering genes Drebrin (Chromosome 13, bases 

55450000-55700000) and Rgs4 (Chromosome 1, bases 171580000-171830000) were 

viewed (Figure 4.7). HRE-like sequences were searched for using the MBCS plug-in for 

Microsoft Word (Muller et al., 2001), and located in the UCSC Genome Browser using 

the each site’s flanking 20 bases.  
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3. Rgs4 is Responsive to Hypoxia 

and the HIF Pathway 
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3.1. Results 

3.1.1. Preamble 

The preliminary data described in Chapter 1.2 and background literature described in 

Chapter 1.3 suggest that the Rgs4 gene and its product are under the control of hypoxia-

sensitive pathways. In particular, the data described in Figure 1.4 show that exogenous 

expression of HIF-2 or hypoxic treatment of the rat pheochromocytoma PC12 cell line 

both result in increased expression of Rgs4 mRNA. However, it is not clear whether these 

responses are conserved in other species or even different cell types. It is also unclear 

whether this hypoxic response is dependent on the endogenous HIF pathway, as ectopic 

expression of HIF- factors could feasibly lead to activation of genes not normally 

affected by HIF. Finally, if the hypoxic response of Rgs4 is controlled by HIF, it is unclear 

whether this response is solely due to activity of HIF-2 or whether both HIF forms are 

involved, as overexpression of these proteins may distort their natural specificity between 

DNA binding target sequences.  

Therefore, the work described in this chapter aims to further explore the conditions in 

which Rgs4 mRNA is regulated by hypoxia, and to investigate whether the regulation of 

Rgs4 levels by hypoxia utilises the HIF pathway. 

3.1.2. Northern Blot Analysis of Rgs4 Response 

to Hypoxia and Mimetics 

The preliminary experiments of Figure 1.4 were initially extended by testing for a 

response of Rgs4 message to hypoxia in other cell lines, taken from different species and 

cell type origins. In the first instance, this selection included human embryonal kidney 

293T cells, mouse neuroblastoma Neuro-2A cells, and mouse P19 embryonal carcinoma 

cells in either undifferentiated, neural or muscle differentiation states. These were tested 

alongside the PC12 cell line that was originally used, as a positive control. These cells 

were treated with or without hypoxia for 16 hours before total RNA harvest and analysis 

by northern blotting. Rgs4 mRNA was not detectable in normoxic or hypoxic 293T cells, 

nor in any of the P19 cell treatments (data not shown). Rgs4 transcript was readily 
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detectable at a higher level in hypoxic PC12 cells than in normoxic control cells as 

observed previously, but was also weakly detected in hypoxic but not normoxic Neuro-2A 

cells (Figure 3.1). Housekeeping gene -Actin was probed for as a loading and transfer 

control. Average fold change for Rgs4 in PC12 cells relative to -Actin was similar to the 

measurements in the preliminary data (Figure 1.4), while in the Neuro-2A cells fold 

change in message was not able to be calculated due to the lack of detection at normoxia. 

Vegf and Ldha were also probed for as a positive control for hypoxic gene activation in 

each cell line tested, as they are well characterised target genes of HIF, and were detected 

in all cases at elevated levels in response to hypoxia regardless of the detection of Rgs4. 

Weaker secondary bands were commonly seen after probing, most notably with -Actin 

and Ldha probes, and may relate to lowly expressed splice variants or non-specific 

hybridisation. In the case of the loading control, alignment of the coding sequences of 

actin family members -actin and -actin in rat result in over 80% identity, so multiple 

similar members from the actin family may be detected with one probe.  

The experiment was also extended to include treatment with dimethyloxalylglycine 

(DMOG) and 2,2’-dipyridyl (DP) for 16 hours, compared to vehicle (DMSO) controls. 

DMOG is an analogue of 2-oxoglutarate (2-OG), while DP chelates Fe-II. As the PHD 

and FIH regulatory enzymes require 2-OG and Fe-II to hydroxylate HIF-, treatment with 

these chemicals is known to stabilise and activate both HIF- subunits (Jaakkola et al., 

2001). Therefore, these hypoxia mimetic chemicals may be expected to provide a stimulus 

for activating the HIF pathway without activation of other hypoxia-responsive pathways. 

PC12 cells increased Rgs4 message in response to 16 hour treatment with either DMOG or 

DP relative to vehicle treatment, while Rgs4 was responsive to DMOG but not DP in 

Neuro-2A cells (Figure 3.1). Positive control Vegf and Ldha were upregulated in this cell 

line by both treatments, as expected. In all cases the fold change of Rgs4 mRNA in 

hypoxia-mimetic treated cells was slightly greater than that observed for hypoxia 

treatment, with the curious exception of DP treatment of Neuro-2A cells. 

In order to link these findings to human disease and other genetic information, and given 

the consistent hypoxic induction of Rgs4 in the neuroblastoma cell line, human 

neuroblastoma cell lines were selected for use in subsequent experiments. Initial 

experiments were performed using northern blotting (data not shown), but quantitative 

RT-PCR (qRT-PCR) used for subsequent analyses presented in the next chapter. 
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Figure 3.1. Cultured rat pheochromocytoma PC-12 and mouse neuroblastoma Neuro-2A 

cells were treated for 16 hours with normoxia, hypoxia or hypoxia mimetics. 1mM 

dimethyloxalylglycine (DMOG) or 100mM 2,2’-dipyridyl (DP) was added to normal 

growth medium, while vehicle (0.1% DMSO) was used as a negative control. Following 

treatment, total RNA was analysed by northern transfer and detection of the indicated 

target mRNAs by 
32

P-labelled cDNA probes and exposure to a phosphorimaging screen. 

Representative scans of at least two independent experiments are shown. 
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3.1.3. Response of Rgs4 in Human 

Neuroblastoma to Hypoxia and Mimetics 

The response of Rgs4 to hypoxia was next examined in human neuroblastoma cell lines. 

Quantitative RT-PCR was optimised in order to enable accurate quantification of changes 

in expression levels, increased sensitivity and a higher throughput of experiments. The 

results of optimisation and verification of this technique are presented in the appendix 

(Chapter 6.1.1). The SK-N-SH and SK-N-BE(2)C  are independent human cell lines 

derived from neuroblastoma biopsies, and therefore were expected to display a similar 

response to that observed in the mouse neuroblastoma cell line (Chapter 3.1.2). 

Neuroblastoma and pheochromocytoma are both cancers of the sympathetic nervous 

system, with pheochromocytoma arising from the chromaffin cells of the adrenal medulla, 

and neuroblastoma from primitive neuroblast cells of the developing sympathetic nervous 

system (reviewed by Fung et al., 2008). These human neuroblastoma lines were tested for 

Rgs4 response to a 16 hour treatment with hypoxia, DMOG or DP by qRT-PCR (Figure 

3.2). Neuro-2A (data not shown) and PC12 samples were retested by this method to 

compare the qRT-PCR detection method with the previously presented northern blots 

(Figure 1.4 and Figure 3.1). For PC12 cells, quantification by qRT-PCR gave a 4-fold 

response of Rgs4 to hypoxia, and a 3-fold response to either DMOG or DP treatment, 

which is consistent with the data obtained by northern blot. 

Three independent experiments were performed with the SK-N-SH cell line, with relative 

Rgs4 levels showing a statistically significant mean change of 4.8 fold in hypoxia, 4.3 fold 

in DMOG and 3.3 fold in DP, when comparing each treatment to appropriate negative 

controls (Figure 3.2a). Statistical analyses across the three independent experiments were 

performed using 99% confidence intervals for the treated samples compared to untreated 

samples as described in Chapter 2.2.6. Known HIF target gene also displayed significant 

responses to the treatments, albeit at a higher fold change than observed for Rgs4. Similar 

results were observed for the SK-N-BE(2)C (Figure 3.2b) and previously tested PC12 

(Figure 3.2c) cell lines, which are presented as representative qRT-PCR experiments of 

n=2 relative to Polr2a prior to normalisation to calibrator (negative control) sample. 

Therefore, the two human neuroblastoma lines are good models for investigating the 

hypoxic response of Rgs4, and show that this response is conserved over evolution 

between rat, mouse and human cells. 
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Figure 3.2. (a) SK-N-SH cells were treated with normoxia, hypoxia, 0.1% DMSO (vehicle), 1mM 

DMOG or 100mM DP for 16 hours before target gene analysis by qRT-PCR. Mean fold change 

with standard deviation between three independent experiments is shown, with asterisks indicating 

that normoxic control lies outside of the 99% confidence interval of relative target gene 

expression. (b) SK-N-BE(2)C and (c) PC12 cell lines were tested in two independent experiments 

in the same manner, representative experiments are shown with standard deviation between three 

qRT-PCR replicate reactions.  
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Using the qRT-PCR technique, we also tested other cell lines for Rgs4 expression. cDNA 

samples of mouse embryonic stem cells undergoing neural differentiation generated by 

Tom Klarić were tested, (Figure 3.3a) and although Rgs4 could not be detected by qRT-

PCR in cultured undifferentiated mouse embryonic stem cells, after 3 days of neural 

differentiation triggered by growth in N2B27 medium Rgs4 was readily detectable. Rgs4 

was then further upregulated in continued neural differentiation until a maximum 

expression relative to Polr2a after 10 days of treatment. However, as only one set of 

differentiated cells were tested, and reference gene Polr2a expression was not stable 

across these samples, these results can be taken as preliminary only. Differentiated stem 

cells may therefore provide a non-cancerous model for testing the hypoxic regulation of 

Rgs4, however this was not attempted due to time constraints. Mouse embryonic 

fibroblasts (mEFs) were also tested by 16 hour normoxic or hypoxic treatment, showing 

strong upregulation of Vegf, while Rgs4 was detectable but not positively regulated by 

hypoxia (Figure 3.3b).  

3.1.4. Hypoxic Response is Specific for Rgs4 in 

Neural-like Cells 

As outlined in Chapter 1.3.3, it has previously been suggested that Rgs5 but not Rgs4 

message levels are responsive to hypoxia in Human Umbilical Vein Endothelial Cells 

(HUVECs) (Jin et al., 2009). Rgs4 and Rgs5 both encode members of the R4 subfamily of 

RGS domain proteins, and are both located in the human genome on Chromosome 1 

q23.3, separated by 50kb of intervening sequence. Experiments were designed to test for 

Rgs4 and Rgs5 hypoxic response in the SK-N-BE(2)C cell line in comparison to primary 

HUVECs. As Jin and colleagues report a maximum increase in Rgs5 after 3 hours hypoxic 

treatment, but a return to control levels after 24 hours of treatment, we treated cells for 0, 3 

or 16 hours with hypoxia. We then tested by qRT-PCR for Rgs4, Rgs5 and positive control 

Vegf expression relative to Polr2a (Figure 3.4). Across three independent experiments, 

Rgs4 and Vegf were significantly upregulated in SK-N-BE(2)C cells after hypoxic 

treatment, yet Rgs5 was not significantly responsive. Interestingly, no increase in Rgs4 or 

Rgs5 levels could be detected in hypoxic HUVECs, despite significant upregulation of 

positive control Vegf. Furthermore, small yet significant decreases in Rgs4 and Rgs5 (0.51 

and 0.69 fold change respectively) could be detected after the longer treatment with 

hypoxia. These results oppose the findings of Jin et al. (2009), as no hypoxic Rgs5  
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Figure 3.3. (a) cDNA samples from undifferentiated (day 0) and neural differentiated (N2B27 

medium treated) mouse embryonic stem cells were analysed for Rgs4 relative to Polr2a. (b) 

Mouse embryonic fibroblasts (mEF) were exposed to normoxia or hypoxia for 16 hours before 

cDNA preparation. In both figures, target genes were quantified relative to Polr2a in three 

replicate qRT-PCR reactions, on one set of experimental cDNA.  
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Figure 3.4. SK-N-BE(2)C and HUVEC cell cultures were treated with 0 (normoxia), 3 and 16 

hours of hypoxia before lysis and RNA extraction. Quantification of Rgs4, Rgs5 and Vegf mRNA 

levels relative to Polr2a was performed using qRT-PCR, then normalised to normoxic levels to 

give fold change. Mean fold change with standard deviation between three independent 

experiments is shown, with asterisks indicating that normoxic control lies outside of the 99% 

confidence interval of relative target gene expression.   
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response is detected, and further indicate that the hypoxic responses of Rgs4 in 

neuroblastoma and pheochromocytoma cells are observed in neural-like cell types only. 

3.1.5. Loss of HIF-1 or HIF-2 Impairs the 

Response of Rgs4 to 2,2’Dipyridyl 

The response of Rgs4 to hypoxia, the hypoxia-mimetic chemicals DMOG and DP, and to 

overexpressed HIF-2 in the PC-12 cell line strongly suggests that the HIF pathway is 

responsible for regulation of Rgs4. However, in order to directly test the involvement of 

HIF in this regulation, and the contribution of endogenous HIF-1 compared to HIF-2, 

experiments involving knockdown of Hif1a (encoding HIF-1) or Epas1 (encoding HIF-

2) were designed. RNA interference (RNAi) has been successfully used previously to 

knockdown Hif1a and Epas1 by transfection of small interfering RNA (siRNA) molecules 

to human cell lines (Sowter et al., 2003), so we applied the same technique with 

optimisation to the SK-N-BE(2)C cell line. A standard negative control siRNA tagged 

with AlexaFluor-546 was also used to control for non-specific RNAi and transfection 

effects, as well as allowing optimisation of transfection efficiency by microscopy (data not 

shown). 

After optimisation, siRNA-mediated knockdown of HIF-1 and HIF-2 in SK-N-BE(2)C 

cells was found to be most efficient after two rounds of transfection, and 8 hours of 

hypoxia or DP treatment. Both HIF-1 and HIF-2 are induced after 8 hours of treatment 

in these cells (Holmquist-Mengelbier et al., 2006), so it would be expected that at this 

timepoint both are functional and knockdown would cause a negative effect on target gene 

response. As a larger target gene response was observed in SK-N-BE(2)C cells following 

DP treatment compared to hypoxia (Figure 3.2c), we reasoned that this diminished 

response of HIF target genes due to siRNA-mediated knockdown would be most 

detectable following DP treatment. 

Sub-confluent SK-N-BE(2)C were plated, then transfected twice with 50nM of negative 

non-specific control siRNA, siHIF1A_1541 (targeted to Hif1a), siHIF2A_1599 (targeted 

to Epas1) or a combination of siHIF1A_1541 and siHIF2A_1599 (siHIF1 + siHIF2) 

before treatment with 100mM DP (or 0.1% DMSO vehicle control). Three independently 

transfected and treated cell cultures were tested by western blot for HIF-1, HIF-2 and  
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Figure 3.5. (a) SK-N-BE(2)C cells were transfected twice with 50nM siRNA using 

Lipofectamine2000 reagent, before 8 hours 0.1% DMSO vehicle (V) or 100mM DP treatment. 

Western blot was then performed for HIF-1, HIF-2 and Tubulin as indicated, with asterisks to 

indicate non-specific bands. (b) Following identical treatment, SK-N-BE(2)C cells were analysed 

for Rgs4, Vegf, Dec1, Hif1a and Epas1 expression levels relative to Polr2a by qRT-PCR. Mean 

fold change with standard deviation between three independent experiments, each normalised to 

the DP-treated level of expression of each gene after negative control siRNA transfection, is 

shown with asterisks indicating that normoxic control lies outside of the 99% confidence interval 

of relative target gene expression. (c) Representative experiment set up identically to (b), but using 

the different siRNA sequences.  
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Tubulin protein levels (Figure 3.5a), and by qRT-PCR for Rgs4, Vegf, Dec1, Hif1a and 

Epas1 transcript expression relative to Polr2a (Figure 3.5b). Expression was normalised 

to the DP-treated Control siRNA sample for each replicate, then mean and standard 

deviation was calculated across the three independent experiments for statistical analysis. 

Western blot analysis of identically-treated SK-N-BE(2)C cell cultures detected HIF-1 

and HIF-2 at decreased levels in the relevant siRNA transfected cultures, although 

reliable detection of HIF-2 was problematic despite repeated optimisation (Figure 3.5a). 

Similarly, partial knockdown of the HIF- subunits was observed by qRT-PCR, as Hif1a 

and Epas1 mRNA levels are decreased but still detectable upon relevant siRNA 

transfection. Unexpectedly, levels of both HIF encoding mRNAs were also found to 

change upon DP treatment alone, with Hif1a decreasing while Epas1 levels increased. 

Regulation of HIF- encoding mRNAs by hypoxia or hypoxia mimetics is not commonly 

observed in other cell types, therefore this result was investigated further in later 

experiments (Chapter 4.1.5). 

Induction by DP compared to vehicle was observed for known HIF target genes Vegf and 

Dec1, as well as Rgs4, in accordance with previous results (Figure 3.2b). Knockdown of 

HIF-1 but not HIF-2 significantly repressed induction of Vegf and Dec1 by DP 

treatment, yet knockdown of HIF-2a gave no significant effect on these target genes. Rgs4 

induction was significantly repressed by knockdown of either HIF-1 or HIF-2, but 

maximum repression of response required a combination of both HIF-1 and HIF-2 

knockdown.  

Unfortunately, the effectiveness of siRNA-mediated knockdown of HIF-1 and HIF-2 

was not consistent with repeated experiments. An identical protocol was used to transfect 

SK-N-BE(2)C cells with a secondary set of siRNA sequences targeted to the HIF- 

encoding transcripts: siHIF1A_1530 and siHIF2A_668. However, as shown by a 

representative experiment (Figure 3.5c), knockdown efficiency of HIF-1 was poor, as 

indicated by both Hif1a transcript knockdown and knock target gene (Vegf, Dec1) 

knockdown. Nonetheless, a small reduction in Rgs4 response can be observed with siRNA 

treatment against HIF-2. 
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3.1.6. HIF- Knockdown has a Small Effect on 

Rgs4 Hypoxic Response 

To further test the requirement of the HIF pathway in Rgs4 regulation, siRNA-treated SK-

N-BE(2)C cells were also tested under hypoxic conditions, rather than with a hypoxia 

mimetic. SK-N-BE(2)C cells were transfected with the secondary set of duplex siRNAs in 

a similar fashion to the experiments of Chapter 3.1.5, following which cells were exposed 

to hypoxia for 8 hours before lysis for analysis by qRT-PCR (Figure 3.6). Due to ongoing 

optimisation, siLentFect transfection reagent was used, which resulted in more effective 

knockdown than previous experiments which used Lipofectamine2000. 

Hif1a and Epas1 message levels were significantly decreased in the appropriate siRNA-

transfected cells, and Hif1a and Epas1 responses to hypoxia were similar to the trends 

observed following DP treatment (Figure 3.5), as treatment results in a relative decrease in 

Hif1a levels and an increase in Epas1. Knockdown of either HIF- subunit caused 

significant decreases in the hypoxic response of known HIF target genes Vegf and Dec1, 

although knockdown of both HIF- subunits did not improve repression of the hypoxic 

responses of either target gene. Notably, knockdown of HIF-2 alone inhibited Vegf and 

Dec1 hypoxic response, where HIF-2 knockdown previously had little effect on the 

response of either of these genes to DP (Figure 3.5). 

In this experiment, knockdown of the HIF- subunits had a subtle negative effect on Rgs4 

upregulation. However, this effect was not consistent between the four independent 

experiments, resulting in a large standard deviation when taken together as displayed in 

Figure 3.6. As a result the effects of these siRNAs on Rgs4 hypoxic regulation were not 

statistically significant. This implies that the DP-induced activation of Rgs4 is somewhat 

different to hypoxia, and that Rgs4 is different in its response to both stimuli than Vegf and 

Dec1. 
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Figure 3.6. SK-N-BE(2)C cells were transfected twice sequentially with 50nM siRNA using 

siLentFect reagent, before 8 hours normoxic (N) or hypoxic treatment. Total RNA was then 

prepared for analysis of Rgs4, Vegf, Dec1, Hif1a and Epas1 levels relative to Polr2a by qRT-PCR. 

Mean fold change with standard deviation between four independent experiments, normalised to 

the hypoxia-treated level of expression of each gene after negative control siRNA transfection, is 

shown with asterisks indicating that normoxic control lies outside of the 99% confidence interval 

of relative target gene expression. 
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3.2. Discussion 

3.2.1. Hypoxic Response of Rgs4 is Conserved, 

but Cell Type Specific 

The work presented in the previous chapters shows that Rgs4 is regulated by hypoxia in a 

cell type specific manner, and that the HIF pathway plays a role in this regulation. Rgs4 

mRNA is detected at increased levels after 16 hour hypoxic treatment of rat 

pheochromocytoma PC-12 and mouse neuroblastoma Neuro-2A cells by northern blot 

(Chapter 3.1.2), and subsequently in these cell lines along with human neuroblastoma SK-

N-SH and SK-N-BE(2)C cells by qRT-PCR (Chapter 3.1.3). The PC-12 samples also 

demonstrate the accuracy of the qRT-PCR method in comparison to northern blot, as a 

similar fold induction was obtained for quantification from both detection methods. The 

detection of a hypoxic response of Rgs4 between cells of rat, mouse and human species 

indicates that this response predates the divergence of humans and rodents in the 

Euarchontoglires clade of mammals. Conservation of such a response implies that 

upregulation of Rgs4 mRNA by hypoxia has an important physiological role. 

Rgs4, like other HIF targets such as Vegf, is upregulated by hypoxia-mimetic chemicals 

DMOG and DP, which are potent inducers of the HIF pathway. These chemicals inhibit 

the activity of 2-OG dependent hydroxylases, which includes the enzymes which 

hydroxylate key residues of HIF- in normoxia to inhibit HIF function (Chapter 1.1.2). 

Some off-target cellular effects would be expected from treatment with each of these 

chemicals or hypoxic treatment, yet the response of Rgs4 to both of these chemicals and 

hypoxia strongly implicates HIF in the regulation of this gene. One exception was 

observed, in which Rgs4 is responsive to hypoxia and DMOG treatment, but not DP in the 

mouse Neuro-2A cell line (Figure 3.1). This result is perplexing, as other HIF responsive 

genes Ldha and Vegf are upregulated by DP treatment in the same samples tested, 

therefore the treatment is activating the HIF pathway as expected. This observation was 

confirmed by qRT-PCR detection on the same RNA samples (n=3, data not shown). 

Therefore, the regulation of Rgs4 or the HIF pathway may be more complex in the Neuro-

2A cell line than in the PC12, SK-N-SH or SK-N-BE(2)C cell lines, so for simplicity 

Neuro-2A cells were not used for further analysis (Chapter 4). 
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Rgs4 is known to be expressed in the cardiovascular system (Chapter 1.3.6), and Jin et al. 

(2009) describe detection of both RGS4 and RGS5 protein in Human Umbilical Vein 

Endothelial Cells (HUVECs). Furthermore, experiments presented in that publication 

show increased Rgs5 mRNA and protein levels in hypoxia-treated HUVECs, yet RGS4 

protein levels did not change and Rgs4 mRNA levels were not tested. In the experiments 

presented in this thesis, HUVECs were compared to a neuroblastoma cell line, using both 

3 and 16 hour hypoxia treatments, as the published Rgs5 response in HUVECs was 

observed to be maximal at the 3 hour timepoint (Jin et al., 2009). The results in this thesis 

disagree with the published data for Rgs5, as Figure 3.4 shows a hypoxic response at both 

timepoints for Vegf in HUVECs, but no positive change in either Rgs4 or Rgs5 mRNA, 

and actually a modest but statistically significant decrease in levels of both after 16 hours 

of treatment relative to Pol2a. However, the lack of hypoxic regulation of RGS4 in 

HUVECs presented by Jin et al. (2009) is supported by these results. Additionally, Rgs4 

and Vegf respond to hypoxia in SK-N-BE(2)C neuroblastoma cells, but Rgs5 levels are not 

significantly responsive at either treatment timepoint. This shows that the response of 

Rgs4 to hypoxia is not a general property of RGS encoding genes, and also that Rgs4 

responds to hypoxia only in a subset of cell types in which it is expressed. 

The differences between the results presented in this thesis and those published by Jin et 

al. (2009) are difficult to reconcile, but the published results show only a modest 2-fold 

change in Rgs5 mRNA, normalised to 28S RNA levels detected before northern transfer, 

which do not account for slight errors in transfer or probing. Jin et al. (2009) also present 

Rgs5 promoter reporter studies showing a maximum 2 fold change in relative luciferase 

activity, so even if this transcriptional response is real it may be difficult to reproducibly 

detect. The published experiments use an oxygen-regulated chamber to achieve 1% 

atmospheric oxygen, whereas the experiments presented in this thesis use AnaeroGen 

sachets in sealed containers, which achieve a final oxygen concentration of below 0.1%, 

so different hypoxic treatment conditions may also explain the differences in results. 

Furthermore, Jin et al. (2009) do not present positive controls for hypoxic gene response, 

so the efficiency of hypoxic treatment and HIF pathway induction in these published 

experiments is not clear. Nonetheless, our experiments show that the hypoxic response of 

Rgs4 in neuroblastoma is of a greater magnitude than that of Rgs5, which is not 

upregulated in either cell type at 0.1% oxygen.  
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Rgs4 was not detected in many of the other cell types tested in either normoxia or hypoxia, 

suggesting that the Rgs4 gene is silenced in these cell types. However, as Rgs4 transcript 

is readily detectable in both neuroblastoma and HUVEC samples, but responsive to 

hypoxia in neuroblastoma and not the endothelial cells, HIF activity on the Rgs4 gene 

does not appear to be the only requirement for hypoxic induction for the gene. Vegf is 

responsive to HIF in both cell types, so Rgs4 may have a more complex mechanism of 

regulation than other HIF target genes. As Rgs4 is not silenced in HUVECs, there may be 

factors which prevent HIF activity on Rgs4 transcription in a HUVEC context, or 

alternatively factors which allow HIF activity on Rgs4 in neuroblastoma cells. 

These experiments suggest that the hypoxic response of Rgs4 is limited to certain cell 

types. Although a thorough set of Rgs4-expressing cells has not yet been tested, the only 

cell types discovered with a positive Rgs4 hypoxic response have been derived from 

neuroblastoma or pheochromocytoma. These are both cancers of the sympathetic nervous 

system (SNS), and these derived cells are both able to be differentiated to neural cells with 

Nerve Growth Factor (NGF) treatment, so Rgs4 hypoxic response may be limited to 

neural-like cells or even restricted to only cells of the SNS. Alternatively, there may be 

other types of cells which respond to hypoxia with upregulation of Rgs4 transcript that 

have not yet been tested. To test these alternatives, a more comprehensive approach would 

involve in situ hybridisation for Rgs4 using mice treated with systemic hypoxia, to test for 

tissues which exhibit Rgs4 hypoxic response. In situ hybridisation could also be used to 

compare Epas1
-/-

 and wildtype mice, as Epas1
-/-

 mice can develop to birth in certain 

genetic backgrounds (Scortegagna et al., 2003a). In this case, impaired HIF signalling may 

affect normal Rgs4 expression in some tissues.  

To test whether the Rgs4 response is specific to cancerous cells, the sympathetic nervous 

system or a general phenomenon for neural-like cells, mouse embryonic stem (mES) cells 

in different states of differentiation can also be tested. Figure 3.3a shows that Rgs4 is 

readily detectable in mES cells after 3 days of neural differentiation in N2B27 medium, so 

cells at representative stages of this process could be treated with normoxia or hypoxia and 

tested for Rgs4 expression. Finally, elucidation of the molecular mechanisms behind HIF 

activation of Rgs4 in neuroblastoma may determine whether additional factors are 

required for this response, which may in turn aid in prediction of cell types express 

increased levels of Rgs4 in hypoxia. Experiments on this approach are described in 

Chapter 4.  
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3.2.2. Rgs4 is Regulated by Both HIF Forms  

To directly test the role of endogenous HIF in the regulation of Rgs4, siRNA duplexes 

antisense to HIF-1 or HIF-2 were transfected to human neuroblastoma cells. Two 

siRNA sequences against Hif1a and Epas1 were used to control for off-target effects, but 

as these sequences have been used before in several publications (Chen et al., 2009; Lau et 

al., 2007; Raval et al., 2005; originally by Sowter et al., 2003), specificity to the 

respective HIF- transcripts was not expected to be problematic. Despite problems 

visualising HIF-2 knockdown by western blot due to poor antibody specificity, 

knockdown of both proteins after DP treatment was detected and transcripts of both HIF- 

encoding genes were observed to be significantly lower when targeted with either primary 

siRNA sequences (Figure 3.5a,b). Only partial knockdown of Hif1a or Epas1 transcripts 

were observed by qRT-PCR, although some additional knockdown effect may be expected 

through inhibition of message translation, as protein knockdown of HIF-1 appears to be 

greater than that observed at the message level.  

Known HIF target genes Vegf and Dec1 both exhibit a smaller response to hypoxia when 

siRNA against both HIF- subunits is employed, showing that the HIF- knockdown is 

functional but still incomplete. However, considerable variation between experiments 

occurred in terms of knockdown efficiency, despite repeated attempts at optimisation. In 

the case of experiments using the secondary siRNA sequences and DP treatment (Figure 

3.5c), inconsistent knockdown was observed which could possibly be attributed to varying 

transfection efficiencies resulting from differences between frozen stocks of the same cell 

lines. The same sequences acted at a greater efficiency on cells treated with hypoxia in a 

later experiment, although a modified protocol using a different transfection reagent was 

used. These problems may be remedied by viral transfer of short hairpin-encoding genes, 

or possibly use of conditional Hif1a or Epas1 mouse ES cells differentiated to neural 

precursor cells, if such cells behave in a similar fashion to these neuroblastoma cell lines 

in terms of hypoxic Rgs4 regulation 

Cells transfected with siRNA were exposed to 8 hours of treatment with either DP (Figure 

3.5) or hypoxia (Figure 3.6), a treatment period at which protein levels of both HIF-1 

and HIF-2 are expected to be strong (Holmquist-Mengelbier et al., 2006). At this 

timepoint, knockdown of either HIF-1 or HIF-2 during DP treatment resulted in a 

modest yet significant reduction in the response to either treatment of Rgs4, while 
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knockdown of both HIF- subunits resulted in a larger reduction. Positive controls Vegf 

and Dec1 were affected only by siRNA directed against HIF-1. Therefore, in terms of 

DP response, Rgs4 is regulated by both HIF-1 and HIF-2, such that only loss of both 

forms effectively prevents hypoxic gene induction, while Vegf and Dec1 act as HIF-1 

targets alone.  

This result is somewhat contrary to the preliminary results observed in the inducible HIF-

 TetON PC-12 cell lines, where overexpression of HIF-2 resulted in increased Rgs4 

mRNA, while overexpressed HIF-1 did not (Figure 1.4). However, knockdown of 

endogenous proteins is a more biologically relevant experiment to determine the effect of 

each subunit than overexpression of a cDNA, as overexpressed proteins can overload 

other endogenous regulatory pathways or bind DNA with lowered specificity and 

therefore act in a non-physiological manner. Therefore, the most logical conclusion is that 

both HIF forms are capable of transactivating Rgs4 expression in neuroblastoma. There is, 

however, a possibility that there are differences in HIF selection between cell types or 

even species, as these siRNA experiments have only been performed in human 

neuroblastoma and not the rat pheochromocytoma cells. 

However, inconsistent results were observed when the HIF- subunits are targeted by 

siRNA in hypoxic rather than DP treatment. Knockdown of either HIF- subunit 

successfully inhibited the hypoxic regulation of Vegf and Dec1, yet only a small and 

inconsistent decrease in Rgs4 regulation was observed. The reason for this difference 

between hypoxic and DP treatments is not clear. Different HIF target genes may not have 

the same sensitivity to a partial loss of HIF- protein by siRNA, such that a more efficient 

knockdown of HIF is required to significantly inhibit the response of Rgs4. This would be 

supported by the variability observed, as in some independent experiments good inhibition 

of Rgs4 hypoxic response was observed, while in other cases no change could be detected 

at all. Alternatively, there may be other hypoxia-responsive but not DP-responsive 

pathways that can compensate for the loss of HIF in regulation of Rgs4 in hypoxia only. 

One of the few transcription factors to have been shown to directly upregulate Rgs4 is NF-

. Treatment of rabbit smooth muscle cells with interleukin-1 (IL-1) causes 

phosphorylation of IKK2 and degradation of I, two events which form part of the 

canonical NF- activation pathway, resulting in modestly increased Rgs4 mRNA and 

protein levels (Hu et al., 2008). An NF- binding site was discovered in the rabbit Rgs4 
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5’ proximal promoter 179bp upstream of the transcription start site, where NF- subunit 

p65 binding could be detected by chromatin immunoprecipitation (Li et al., 2010b). 

Although this site is not completely conserved between rabbit and human sequences, 

luciferase reporter assays indicate that IL-1 treatment is able to activate transcription 

from both the rabbit and human Rgs4 promoters (Li et al., 2010b). NF- signalling is 

also known to be activated by hypoxic treatment in some cellular contexts, apparently 

through a tyrosine kinase pathway (Koong et al., 1994a; Koong et al., 1994b). However, 

the reporter assays described in Chapter 4.1.6 do not detect any hypoxic response in an 

area of the Rgs4 promoter which would cover the equivalent NF- binding site from the 

rabbit genome (Li et al., 2010b). Therefore, hypoxic response compensation by NF- in 

this context is unlikely. 

HIF-1 and HIF-2 are known to be stabilised differentially in these neuroblastoma cell 

lines. HIF-1 is the predominant form in acute hypoxia, rapidly reaching maximal protein 

levels within 2 hours of exposure to hypoxia, then gradually decreasing after 8 hours, 

while HIF-2 accumulates to a maximum after 24 or more hours of hypoxic treatment 

(Holmquist-Mengelbier et al., 2006). Therefore, genes under preferential control of either 

HIF form may be expected to show a related pattern of induction across a hypoxia 

timecourse. Experiments performed in the next chapter give results which imply that Rgs4, 

Vegf and Dec1 are all target genes of both HIF-1 and HIF-2, as these target genes are 

upregulated in both acute (1-4 hours) and chronic (8-16 hours) hypoxic treatments (Figure 

4.3). 

The hypoxic regulation of HIF- encoding mRNAs Hif1a and Epas1 is an interesting 

result, as it may shed some light on the mechanisms behind the aforementioned 

differences in HIF-1 and HIF-2 protein levels over hypoxic treatment time. Hif1a 

message was detected at a decreased level after 8 hours treatment with hypoxia (Figure 

3.6) or DP (Figure 3.5), while Epas1 message was increased in the same treatments. As 

inhibition of the HIF-regulatory PHD and FIH enzymes is the intended cellular effect of 

DP treatment, the response of Hif1a and Epas1 mRNA to DP implies that this regulation 

may be downstream of post-translational HIF activation by the PHD and FIH enzymes. In 

this way, a negative (Hif1a) or positive (Epas1) feedback loop may be affecting the 

changes in HIF-a protein observed in chronic hypoxia. Such regulation of the HIF- 

encoding genes is not commonly reported for most cell lines, however Holmquist-

Mengelbier et al. (2006) report similar positive changes for Epas1 mRNA in SK-N-
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BE(2)C cells at 5% and 1% hypoxia, yet more modest negative changes in Hif1a. The 

exact nature of this regulation is expanded upon in Figure 4.4a and discussed in greater 

detail in Chapter 4.2.3. 

Chromatin immunoprecipitation could help to further define the role of HIF-1 and HIF-2 

in Rgs4 regulation, however it has been difficult to determine a HIF binding site at the 

Rgs4 locus (see Chapter 4.2.2), and more importantly, presence of HIF at a locus is not 

sufficient for activation of transcription, as target gene selection appears to act after DNA 

binding (Hu et al., 2007; Lau et al., 2007; Mole et al., 2009). As previously described, 

mouse knockout models could be used to further pursue the in vivo specificity between 

HIF-1 and HIF-2 in transactivation of Rgs4. 

Taken together, the data presented within this Chapter implicate both HIF-1 and HIF-2 

in the regulation of Rgs4 by hypoxia. Furthermore, the hypoxic regulation of Rgs4 is cell 

type specific, unlike other known HIF target genes such as Vegf. HIF is likely to play a 

major role in hypoxic regulation of Rgs4, however the contribution of other unknown 

hypoxia-responsive pathways cannot be determined without a more complete 

experimental protein knockdown system.  
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4. The Molecular Mechanism of 

Rgs4 Response to Hypoxia 
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4.1. Results 

4.1.1. Preamble 

As Rgs4 is regulated in some cell types by hypoxia and the HIF pathway, and the HIF 

transcription factors can directly bind and activate transcription of promoters, the simplest 

hypothesis is that HIF directly activates transcription of Rgs4 in hypoxia. However, HIF is 

also known to activate transcription of other transcription factors such as DEC1, and 

specific micro RNA (miRNAs) transcripts, and could feasibly activate expression of RNA 

stabilising proteins, all of which could in turn regulate Rgs4 mRNA levels as secondary 

effectors. There are also examples of RNA-binding proteins which can alter stability or 

translation of target mRNAs in response to hypoxia independent of the HIFs, such as HuR 

(reviewed by Masuda et al., 2009).Therefore, in order to implicate direct activity of HIF or 

other transcription factors on Rgs4 transcription, experiments were designed to test 

whether Rgs4 is regulated in hypoxia by transcriptional or post-transcriptional 

mechanisms, whether the response of Rgs4 occurs in a similar timeframe to other direct 

HIF targets, and whether a hypoxia responsive enhancer element could be found at the 

Rgs4 locus. 

4.1.2. Rgs4 Hypoxic Response is Dependent on 

Transcription 

To test whether hypoxic Rgs4 mRNA accumulation was dependent on transcription, RNA 

degradation assays were performed in both SK-N-BE(2)C and SK-N-SH cells. Cells were 

plated and treated with 4mg/ml of actinomycin D to block transcription, then subjected to a 

timecourse of hypoxic or normoxic treatment. Rgs4 mRNA was quantified by qRT-PCR 

relative to an untreated normoxic control. Untreated cells were also included in the 8 hour 

hypoxia treatment as a positive control for normal Rgs4 regulation. No difference in Rgs4 

levels was observed between the actinomycin D treated or untreated cells at any of the 

normoxic or hypoxic timepoints in SK-N-BE(2)C (n=2) or SK-N-SH (n=2) cells (Figure 

4.1a,b). 
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Figure 4.1. (a) SK-N-BE(2)C cells were treated with 4mg/ml actinomycin D prior to treatment for  

4, 8 or 12 hours with normoxia or hypoxia. Actinomycin D-untreated cells were also used to 

determine control normoxic (0 hours) and hypoxic (8
#
 hours) Rgs4 levels. Rgs4 mRNA levels 

were quantified using qRT-PCR relative to Polr2a, then normalised to normoxic levels. One 

representative of n=2 is shown. (b) Experiments from (a) were replicated using SK-N-SH cells, a 

representative of n=2 is shown. For SK-N-BE(2)C data from (a), Rgs4 (c) and Polr2a (d) mRNA 

levels relative to total RNA were also calculated from C(t) values without normalisation to 

reference gene relative to normoxia. The mean detection with standard error (n=2) is plotted to 

give a one-phase decay using GraphPad Prism 5. Estimated mRNA half-lives are described in the 

text. 
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The mean detected levels of Rgs4 and Polr2a without normalisation to reference gene for 

SK-N-BE(2)C cells were also plotted against time for normoxic and hypoxic treatments, 

in order to calculate the rate of mRNA degradation by fitting the these points to a one 

phase exponential decay curve (Figure 4.1c,d). For this graph, raw C(t) values for Rgs4 

and Polr2a were converted to relative amounts by setting the normoxic level of transcript 

in each experiment to 1 (such that for normoxic samples, N0 = 1 giving an aribitrary 

threshold value Nc, see Equation 2.1, Chapter 2.2.6). Given that the same amount of total 

RNA was used in cDNA generation, and the same amount of cDNA was used in each 

qRT-PCR reaction, the half-life of Rgs4 and Polr2a mRNA can be estimated for each 

curve. Polr2a is unresponsive to hypoxia, so no difference is expected in its degradation in 

either condition, while any differences in Rgs4 half-life would be due to transcription-

independent regulation of Rgs4 message stability. The one-phase decay curve for Rgs4 

(Figure 4.1c) gave 99% confidence intervals for message half-life of 3.53 - 4.03 hours in 

normoxia, and 3.96 – 4.55 hours in hypoxia. For comparison, the calculated half-lives for 

Polr2a message were 6.57 – 10.72 in normoxia, and 8.22 – 15.39 hours in hypoxia 

(Figure 4.1d). Similar half-lives were determined by applying the same calculations to the 

SK-N-SH cell line data (not shown).  

These data demonstrate that there is no substantial change in Rgs4 mRNA stability in 

response to hypoxia, and the small change that is observed is similar to that observed with 

Polr2a. Given the previously demonstrated robust induction of Rgs4 (Figure 3.2), it is 

clear from the results presented here that the hypoxic accumulation of Rgs4 mRNA 

requires active transcription. 

4.1.3. The Rgs4 3’UTR does not Confer Hypoxic 

Regulation 

The 3’ Untranslated Region (3’UTR) of Rgs4 has regions of high conservation through 

mammalian evolution according to the UCSC genome alignment browser (Kent et al., 

2002). This indicates that there may be functional elements within the 3’UTR which could 

regulate the stability of Rgs4 mRNA. Although the previous experiments show 

transcription is required for hypoxic induction, there is a possibility that hypoxia activates 

transcription of a miRNA or RNA-binding protein. 
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In order to test for hypoxia-responsive RNA elements in the human Rgs4 3’UTR, the 

entire 3’UTR  was cloned to the XbaI site downstream of the firefly luciferase (luc
+
) 

coding sequence in the pCI_FL plasmid, upstream of the SV40 late polyadenylation 

signal. This plasmid has a CMV promoter driving expression of luciferase, as well as a 

chimeric intron in the 5’UTR of luc
+
 in order to ensure processing by post-transcriptional 

machinery. The pCI_FL(hRgs4-3’UTR) construct was transfected to SK-N-BE(2)C cells 

and tested for hypoxic luciferase response in comparison to pCI_FL which contains no 

3’UTR, relative to a constitutive renilla luciferase expressing plasmid using the Dual 

Luciferase system (Figure 4.2). Over three independent experiments a small change in 

relative luciferase levels was observed between normoxia and hypoxia treatments, but this 

was observed with or without the presence of the Rgs4 3’UTR. Furthermore, the change 

observed is too small to account for the level of Rgs4 mRNA induction observed in SK-N-

BE(2)C cells by qRT-PCR (Figure 3.2), indicating that the Rgs4 3’UTR is unlikely to 

make a substantial contribution to the hypoxic induction of Rgs4 mRNA or RGS4 protein. 

Notably, presence of the Rgs4 3’UTR did lower relative luciferase readings by around 2-

fold in both conditions compared to the control plasmid, which suggests the presence of an 

inhibitory element within this 3’UTR.  

4.1.4. Rgs4 is Co-regulated with Other Known 

HIF Targets 

The above experiments show that hypoxic regulation of Rgs4 mRNA is dependent on 

transcription (Chapter 4.1.2) and not dependent on the Rgs4 3’UTR (Chapter 4.1.3), and 

that Rgs4 is not only responsive to hypoxia but also hypoxia mimetics that activate the 

HIF pathway (Chapter 3.2.2). Therefore, the simplest and most likely hypothesis is that 

Rgs4 is regulated at the transcriptional level as either a direct HIF target, or as a secondary 

response through other transcription factors under the direct transcriptional control of HIF. 

To ascertain which of these mechanisms is more likely to be occurring, a series of 

timecourse experiments were performed.  
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Figure 4.2. SK-N-BE(2)C cells were plated in triplicate in 24-well trays and transfected twice 

sequentially with 100ng of pCI_FL or pCI_FL incorporating the 3’UTR of human Rgs4 between 

the luc
+
 coding sequence and polyadenylation sequence (pCI_FL(hRgs4_3’UTR)), along with 

25ng of phRLCMV as control for transfection efficiency and survival. Separate wells were also 

transfected with pHRE4 as a positive control for hypoxia treatment (see Figure 4.6d, as both 

experiments were performed concurrently). Cells were treated with hypoxia for 16 hours, then 

lysed in Passive Lysis Buffer for analysis using the Dual Luciferase System (Promega). Mean 

Relative Luficerase Units with standard deviation from 3 replicate wells of one experiment are 

shown as a representative of n=3. 
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Other direct HIF target genes such as Vegf and Dec1 are well characterised in terms of 

their response to HIF, as both have defined HREs in their promoters which have been 

verified by chromatin immunoprecipitation (Gray et al., 2005; Holmquist-Mengelbier et 

al., 2006), reporter assays and electrophoretic mobility shift assays (Liu et al., 1995; 

Miyazaki et al., 2002). Dec1 encodes DEC1 (also known as BHLHB2), a direct negative 

regulator of Mlh1 transcription (Nakamura et al., 2008), making Mlh1 repression an 

example of a secondary HIF responsive gene. Therefore, if Rgs4 is a direct HIF target 

gene, the time between hypoxic treatment and response should be similar to that of Vegf 

and Dec1, whereas if Rgs4 is regulated by a secondary HIF-responsive transcription 

factor, it will respond in a similar time to Mlh1.  

Three independent timecourse experiments were performed, where SK-N-BE(2)C cells 

were exposed to increasing periods of DP treatment before RNA harvest and qRT-PCR 

(Figure 4.3). Rgs4 mRNA was detected at significantly increased levels after only 1 hour 

of DP treatment, as were Vegf and Dec1. The levels of these transcripts continued to 

increase until a maximum at 4 hours, after which they remained effectively constant. 

However, levels of secondary response gene Mlh1 (indirectly repressed by HIF) were not 

significantly altered until 4 hours of hypoxic treatment, when levels were significantly 

lowered, reaching a minimum after 8 hours. Therefore, Rgs4 response time to DP is 

consistent with it being a direct HIF target gene.  

4.1.5. Hif1a and Epas1 are Co-regulated with 

Secondary HIF Targets 

SK-N-BE(2)C cells are known to display an alternative pattern of HIF- stabilisation to 

most cell types during prolonged hypoxia. As described previously (Chapter 1.1.4, Figure 

1.2d), in short-term hypoxia these cells stabilise HIF-1 rapidly, yet HIF-2 protein 

stabilisation is delayed. After 8 hours of continuous hypoxia, HIF-1 protein levels 

gradually decrease, while HIF-2 becomes more prominent (Holmquist-Mengelbier et al., 

2006). Altered Epas1 mRNA levels in hypoxia have previously been described for this 

cell line, although no change in Hif1a levels has been reported (Holmquist-Mengelbier et 

al., 2006). To test whether this effect may be related to altered mRNA levels, we subjected 

the three independent SK-N-BE(2)C samples generated for Figure 4.3 to qRT-PCR for 

Hif1a and Epas1 transcripts (Figure 4.4a). Epas1 message was significantly upregulated  
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Figure 4.3. SK-N-BE(2)C cells were treated with 100mM DP for 1, 2, 4, 8 or 16 hours in 

comparison to an untreated (0 hours) control. Rgs4, Vegf, Dec1 and Mlh1 message levels were 

quantified by qRT-PCR relative to reference gene Polr2a, then normalised to normoxic levels. 

Data is presented as the mean and standard deviation from three independent experiments. 

Asterisks indicate 99% confidence in difference from normoxic levels.  
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Figure 4.4. (a) SK-N-BE(2)C cDNA samples tested in Figure 4.3 were also analysed for Hif1a 

and Epas1 message levels, relative to Polr2a and negative control levels. Asterisks indicate 99% 

confidence in difference from control levels, n=3. (b) Data from (a) and Figure 4.3 plotted 

together on a proportional x-axis and log2 y-axis. 
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only after 4 hours of hypoxic treatment, to a maximum induction of approximately 6.5 

fold at or after 16 hours. Similarly, Hif1a message did not change until 4 hours of hypoxic 

treatment, where upon levels were significantly decreased to a minimum 3-fold reduction 

at and after 8 hours. Figure 4.4b depicts this data on a proportional x-axis, with a log2 y-

axis to emphasise similarities between message level increases and decreases. Both Hif1a 

and Epas1 mRNA levels respond to hypoxia at a similar time to Mlh1, a gene regulated 

indirectly by HIF, indicating that this regulation is likely to be a secondary response to 

hypoxia. 

4.1.6. Reporter Assays do not Detect an Rgs4 

Proximal Hypoxia Responsive Enhancer 

The evidence presented in Chapters 4.1.2, 4.1.3 and 4.1.4 strongly suggests that Rgs4 

mRNA hypoxic regulation is mediated by direct binding of HIF and activation of 

transcription at the Rgs4 locus, rather than through secondary effectors. As this response is 

conserved between rat, mouse and human cell lines (Chapter 3.1.2 and 3.1.3), a 

bioinformatics search was performed for HIF binding sites (HREs) at the Rgs4 locus in 

both the rat and human genome. HIF is able to bind and induce transcription from cloned 

HREs in transient transfection reporter gene assays, and there are numerous experiments 

in the literature which use this method to determine HRE positions (for examples, see 

Firth et al., 1995; Liu et al., 1995; Miyazaki et al., 2002), many of which have been later 

verified by ChIP experiments. Therefore, we cloned overlapping regions of the rat and 

human Rgs4 loci and tested them for hypoxic response in luciferase reporter assays, in an 

attempt to keep the search as unbiased as possible.  

The minimal HRE consensus sequence has been previously determined from known 

genomic HIF binding sites as RCGTG (Wenger et al., 2005), which can occur in either 

forwards or reverse orientation relative to a Transcription Start Site (TSS). However, due 

to their short length RCGTG sequences occur frequently in the genome, and most of these 

sites do not act as functional HREs. The other factors determining the whether a RCGTG 

sequence can bind HIF functionally are mostly unknown, although other nearby sequences 

and binding factors do have some role (see Chapter 1.1.3). The majority of HREs are 

found within 2kb of the TSS of a regulated gene (Mole et al., 2009), but there are 
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examples of more distant functional HREs, such as that of the Phd3 gene which is found 

over 10kb from its TSS (Pescador et al., 2005). 

Various fragments of the rat Rgs4 proximal promoter were amplified and cloned from PC-

12 genomic DNA by PCR of sequences 5kb upstream of the TSS (Figure 4.5a). Ten 

RCGTG sequences of either orientation were identified in the 5kb rat Rgs4 promoter 

region. Amplified fragments were cloned to pGem-T Easy for sequencing and comparison 

to expected sequences from the UCSC Genome Browser, then subcloned to the pGL3-

basic luciferase reporter construct. Fragments were cloned into pGL3-basic such that the 

TSS of Rgs4 and a small sequence of the 5’UTR were ligated to the NcoI site at the start 

of the luc
+
 (firefly luciferase) coding sequence, in order to replace the entire pGL3 5’ gene 

flanking sequence and provide the most native promoter context possible. 

These pGL3-Rgs4 plasmids were transfected into PC-12 cells in tandem with a renilla 

luciferase constitutive expression vector (pRLTK) and tested for response to 16 hours of 

hypoxic treatment by the Dual Luciferase system (Figure 4.5b). No region of the 5kb 

sequence tested was detectably responsive to hypoxia in two independent experiments, yet 

the shortest A fragment was clearly a stronger promoter for luc
+
 than the longer variants. 

A previously constructed plasmid containing 4 tandem copies of the Epo HRE upstream of 

luc
+
 was used as a positive control for hypoxic treatment and endogenous HIF activity, 

and displayed strong hypoxic response, while unmodified pGL3-basic served as a negative 

control. 

Considering that no functional hypoxia responsive element could be detected in the 5kb 

promoter of the rat Rgs4 locus, it was decided to widen the search when testing the human 

Rgs4 locus. PCR was used to amplify overlapping genomic fragments from SK-N-BE(2)C 

derived genomic DNA covering 32.9kb of the locus, starting from 15.3kb upstream of the 

Rgs4-1 TSS through to 9.7kb downstream of the transcript poly-adenylation site (Figure 

4.6a). This region was scanned for the minimal HIF-binding RCGTG sequence in either 

orientation, resulting in 27 hits (4 of which relate to 2 palindromic CACGTG sequences). 

Conservation between mammalian species was also analysed using the UCSC genome 

browser, showing some short conserved sequences in the B, D and E regions. However, as 

known HREs for other HIF responsive genes were not necessarily depicted by the 

Genome Browser as being conserved, we decided not to discriminate between genomic 

sequences based on predicted features.  
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Figure 4.5. (a) Diagram of the rat Rgs4 locus, with promoter regions selected for analysis shown. 

Regions corresponding to A-D were amplified by genomic PCR and cloned into pGL3basic. (b) 

Reporter gene assay of pGL3-Rgs4 constructs. PC-12 cells were plated in triplicate in 24-well 

trays and transfected with 100ng of pGL3basic, or pGL3basic incorporating the sequences A-D 

depicted in (a), while pHRE4 was transfected separately as a positive control for hypoxic 

induction. 100ng of pRLTK was included in all transfections as control for transfection efficiency 

and survival. Cells were treated with hypoxia for 16 hours, then analysed using the Dual 

Luciferase System (Promega). Mean Relative Luciferase Units for a representative of two 

independent experiments with standard deviation between replicate wells is depicted.  
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Sequences E, F and G contain TSSs, and were therefore subcloned to the NcoI site of 

pGL3-basic, directly upstream of the luc
+
 coding sequence, to test for promoter and 

enhancer activity. Sequence G contains three TSS according to the UCSC genome 

browser, which give rise to three different transcripts, one of which results in an extended 

coding sequence. Therefore, transcription from this most distal TSS would result in a 

spurious coding sequence before the luciferase gene coding sequence, while transcription 

for either of the other two TSSs would result in normal luciferase coding sequences. To 

control for this, constructs E and F were generated to include only the most distal TSS, 

and therefore test for transcription at that promoter only. All other fragments do not 

include a TSS, and were therefore subcloned upstream of the SV40 promoter of the pGL3-

promoter plasmid to determine whether they contained enhancers. Sequence H also 

includes the three TSSs described for sequences E, F and G, but places them in the 

enhancer context. As there is a TAA stop codon in frame at the start of the first shared 

intron, the effect of transcription on luc
+
 expression from the TSS within sequence H 

should be minimal, leaving only enhancer effects on transcription from the SV40 

promoter.  

Unfortunately, one region between sequences C and D could not be cloned or tested. 

Despite repeated attempts to clone this region, either in isolation or together with 

sequences B or C, ligation of this sequence produced plasmids which inhibited bacterial 

growth, making subcloning and preparation of the plasmid impossible. The 1.16kb 

unclonable sequence between sequences C and D (Figure 4.6a) contains no RCGTG sites, 

and displays no notable sequence homology between mammalian species according to the 

UCSC genome browser. Therefore, it seems unlikely that a HRE or other hypoxia 

responsive enhancer is located within this region. 42% of this sequence is comprised of 

repeats, in particular a TcMar-Tigger element as detected by RepeatMasker software 

(Smit, 1996). These elements may have contributed to the problems in subcloning this 

sequence of DNA. 
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Figure 4.6. (a) Diagram of the human Rgs4 locus, with regions selected for analysis shown. 

Regions corresponding to fragments A-N were amplified by genomic PCR and cloned into 

pGL3basic or pGL3promoter upstream of the luc
+
 coding sequence, as described in the text. hRgs4 

splice variants and regions of high conservation within mammals as shown as generated by UCSC 

Genome Browser. HRE-like motifs (RCGTG) locations are also depicted, as detected by MBCS 

software (Muller et al., 2001). (b) SK-N-BE(2)C cells were plated in triplicate in 24-well trays and 

transfected twice sequentially with 100ng of pGL3promoter or pGL3-based reporter plasmids 

incorporating the sequences depicted in (a), while 25ng pHRE4 was transfected separately as a 

positive control for hypoxia treatment. Each transfection included 25ng of phRLCMV as control 

for transfection efficiency and survival. Cells were treated with hypoxia for 16 hours, then 

analysed using the Dual Luciferase System (Promega). Mean Relative Luficerase Units for a 

representative of three independent experiments with standard deviation between replicate wells is 

depicted.  
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Constructs were transfected into SK-N-BE(2)C cells together with the constitutive Renilla 

Luciferase expressing contructs, and treated for 16 hours with hypoxia before analysis by 

the Dual Luciferase system. Results are presented as one representative of three 

independent experiments, and display no change in relative luciferase upon hypoxic 

treatment compared to normoxia (Figure 4.6b, 4.6c and 4.6d). As the constructs were not 

all tested at the same time, positive (pHRE4) and negative (pGL3-promoter) controls were 

performed alongside each set of tested constructs to ensure HIF activation and test for 

non-specific regulation, respectively. As the pHRE4 plasmid contains 4 copies of the Epo 

HRE, a second positive control with only one copy of the Vegf HRE in pGL3 was used to 

confirm that the assay was sensitive enough to detect a single HRE. This reporter was 

activated by hypoxia to a similar extent to the pHRE4 plasmid (data not shown). 

4.1.7. Further Bioinformatic Analyses 

Recently, technological advances have allowed a combination of chromatin 

immunoprecipitation (ChIP) and deep sequencing detection of resulting DNA fragments, 

termed ChIP-seq. This technique is currently being applied to the HIF transcription factors 

in SK-N-BE(2)C cells by a collaborating group, but data is not yet available. There is, 

however, a published set of genomic DNA binding data for RNA PolII, coactivator CBP 

and the transcription factor NPAS4 in cultured mouse cortical neurons after membrane 

depolarisation, an activating condition for NPAS4 (Kim et al., 2010). NPAS4 is a member 

of the bHLH/PAS transcription factor family, heterodimerises with ARNT and binds a 

NCGTG core DNA sequence (Ooe et al., 2004), all of which are traits shared by HIF. 

Nonetheless, NPAS4 is not known to be activated or regulated by hypoxia, and is 

expected to have distinct target genes. However, it is possible that NPAS4 and HIF 

heterodimers bind some of the same genomic sites, given the similarity between their 

consensus DNA binding sequences.  

Rgs4 has previously been detected at decreased levels following Npas4 RNAi-mediated 

knockdown in mouse hippocampal neurons, and as such it is considered to be a candidate 

target gene for NPAS4 (Lin et al., 2008). The ChIP-seq was used to detect not only 

NPAS4, but also coactivator CBP, as it is often found bound at enhancer regions. This 

coactivator also interacts with the C-TAD of HIF- in hypoxia, so the enhancer sites of 

NPAS4 and CBP binding in the Rgs4 locus may also provide some hints as to the 

locations of hypoxia-regulated enhancers. 
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The ChIP-seq data from the experiments described above are available in a bigWig format 

in the supplementary section of the Kim et al. (2010) publication, which can be applied to 

the “NCBI37/mm9” assembly of the mouse genome using the UCSC genome browser 

(Kent et al., 2002). Figure 4.7a depicts 250kb of the genomic region surrounding Rgs4 

with this ChIP-seq data aligned, while Figure 4.7b shows the 250kb locus surrounding a 

previously characterised direct NPAS4 target gene, Drebrin (Ooe et al., 2004). While 

Drebrin is located within a relatively gene-rich region, Rgs4 has fewer neighbouring 

genes, the closest of which (Rgs5) is 50kb away. Increased NPAS4, CBP and PolII levels 

were detected in stimulated cells at the promoter and transcription end site for both Rgs4 

and Drebrin. The Drebrin 250kb locus contains several sites which display stimulus-

enhanced binding of these factors, yet these sites localise almost exclusively to the 

promoters or transcription end sites of other known genes. Therefore, there appear to be 

few enhancers present in intervening sequences between genes at the Drebrin locus. The 

250kb Rgs4 locus is quite different however, and displays multiple NPAS4, CBP and PolII 

binding sites in regions where no gene is annotated and no ESTs have been recorded.  

We retrieved the genomic sequences of multiple inducible transcription factor binding 

sites in the 250kb Rgs4 locus (Figure 4.7a, indicated by black bars “1a”–“14”) and 

searched for HRE-like sequences (RCGTG) in either orientation. Of these seventeen 

sequences, eight contained HRE-like motifs, two of which contained multiple motifs. 

These enhancer regions for regulation of Rgs4 by NPAS4 may provide some clues to 

finding enhancers for the regulation by HIF. 
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Figure 4.7. Alignment of NPAS4, CBP and PolII Chromatin IP Deep Sequencing (ChIP-Seq) data 

(Kim et al., 2010) to the UCSC Genome Browser for 250kb-spanning regions centred on the 

mouse Rgs4 gene (a) and mouse Drebrin gene (b). “Un” refers to untreated cells, whereas “KCl” 

are KCl-depolarised cells, a stimulus which activates NPAS4-mediated transcription. “Pol2_4H8” 

antibody detects PolII with either phosphorylated or unphosphorylated C-Terminal Domains 

(CTDs), while “Pol2_8WG16” detects the unphosphorylated form preferentially. Black bars in (a) 

labelled “1a” to “14” indicate regions of interest which appear to act as enhancers. UCSC curated 

genes are depicted in the lower portion of each figure, with arrows indicating direction of 

transcription (and introns), while wide bars indicate exons. Mammalian conservation according to 

UCSC Genome Browser alignment is also depicted at the bottom of each image.  



108  

4.2. Discussion 

4.2.1. The Rgs4 Locus is Likely to be a Direct HIF 

Binding Target 

The data presented in Chapter 3 provides evidence for the regulation of Rgs4 levels by the 

HIF transcription factor pathway in mouse, rat and human pheochromocytoma and 

neuroblastoma cells. In this chapter, the possibility of RNA-binding protein involvement 

in Rgs4 hypoxic response was addressed by RNA degradation assays using SK-N-BE(2)C 

and SK-N-SH cells (Figure 4.1). Rgs4 mRNA was shown to not be differentially 

stabilised by normoxic or hypoxic conditions in the absence of transcription, relative to 

Polr2a or relative to total RNA levels. This is evidence against regulation of Rgs4 at the 

level of mRNA stability, and shows Rgs4 mRNA accumulation involves a transcriptional 

response. However, this result in isolation does not exclude the possibility that there is 

hypoxia responsive transcription of RNA-binding proteins or antisense RNAs, which in 

turn affect Rgs4 at the post-transcriptional level.  

Calculations for the half-life of Rgs4 or Polr2a mRNA in these cells were made difficult 

by their high stability, as it becomes difficult to take long timepoints of cells treated with 

actinomycin D as cells become decreasingly viable, introducing variability in detection. 

Also, as total RNA amounts were normalised before cDNA generation, Rgs4 and Polr2a 

detection may be influenced by the stability of ribosomal RNA, which forms the bulk of 

total RNA samples. This variability was observed when testing Rgs4 or Polr2a 

degradation without normalisation to a reference gene (Figure 4.1c,d), but was much less 

notable when Rgs4 was normalised to Polr2a levels (Figure 4.1a,b), reinforcing the 

importance of internal qRT-PCR reference gene normalisation. However, in the 

calculation of the half-life of Rgs4 mRNA, this normalisation step would skew the 

calculations. Nonetheless, it was clear that any differences in the half-life of Rgs4 mRNA 

between normoxia and hypoxia were minimal, and not responsible for the large induction 

of mRNA observed in response to hypoxia in these cells in the absence of actinomycin D. 
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Much post-translational regulation occurs through the 3’UTR of target mRNAs, and the 

Rgs4 3’UTR contains several sites of strong conservation between species. To test for 

hypoxic response conferred through this sequence, we ligated the human Rgs4 3’UTR 

between the firefly luciferase encoding gene (luc
+
) and polyadenylation sequence of 

pCI_FL, and tested it in normoxia and hypoxia by luciferase reporter assay (Figure 4.2). A 

small increase in relative luciferase levels was observed in hypoxia, but this was not 

dependent on or increased by the presence of the Rgs4 3’UTR, indicating that this RNA 

sequences is not involved in this regulation.  

However, inclusion of the Rgs4 3’UTR did generally decrease relative luciferase detection 

compared to the control without additional 3’UTR. This indicates that there may be some 

destabilising elements in the human Rgs4 3’UTR which are not regulated by hypoxia. This 

observation is likely to be conferred through one or more of the highly-conserved 3’UTR 

elements as depicted in Figure 4.6a. For example, the largest of the conserved regions 

appears to contain an AU-rich element, as it contains 42.5% uridine and 29.5% adenine 

bases, and two AUUUA core motifs within 200bp, of which only 24 are mismatched or 

inserted bases compared to the mouse sequence. AU-rich elements similar to this cause 

destabilisation of mRNA (reviewed by Chen and Shyu, 1995). Alternatively, the 

conserved elements of the hRgs4 3’UTR may control mRNA translation, or sub-cellular 

localisation of transcript. These sequences could provide Rgs4 response to presently 

unknown signals other than hypoxia, or may simply increase the overall rate of Rgs4 

mRNA turnover to promote a return to normal levels after removal of stimuli, for example 

reoxygenation. In support of this result, AU-rich elements have recently been found within 

the rabbit Rgs4 3’UTR, which negatively regulate Rgs4 expression through association 

with RNA-binding protein HuR (Li et al., 2010a). 

A significant response of Rgs4 was detectable within 1 hour of DP treatment, in a similar 

pattern to that observed for other direct HIF targets Vegf and Dec1 (Figure 4.3). Dec1 

encodes a transcription factor, DEC1, which is known to negatively regulate transcription 

of the Mlh1 gene. Levels of the Mlh1 transcript were not significantly altered until 4 hours 

or more of treatment. Therefore, the timing of Rgs4 response to DP is consistent with the 

hypothesis that it is a direct target of HIF, and the role of intermediary transcription events 

in its regulation is unlikely. 
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4.2.2. Rgs4 Transcription May be Regulated by 

a Distant Enhancer 

It seems likely from the discussion above that the HIF pathway directly binds and 

activates transcription of Rgs4. Therefore, a search was undertaken for DNA sequences at 

the rat and human Rgs4 loci which could mediate this response. Functional HIF-1 or HIF-

2 binding sites (HREs) are commonly detected by cloning and testing in mammalian 

reporter assays, although selection between the two HIF forms can become distorted in a 

plasmid context (Lau et al., 2007). However, no functional HRE was detectable in either 

the 5kb upstream sequence of rat Rgs4, nor in any sequence of the 32.9kb human Rgs4 

locus. Fragment H displays a small change upon hypoxic treatment, yet as this fragment is 

overlapped by Fragments E, F, G and I, all of which do not display a similar response, this 

is not likely to represent a real hypoxia-responsive sequence. This is a surprising result, as 

most HIF binding sites in the genome are found by chromatin-IP within 2kb of a TSS 

(Mole et al., 2009).  

Different human Rgs4 promoters were also tested, as this gene has multiple TSSs. The 

originally discovered human Rgs4 promoter (Fragment G) resulted in stronger luciferase 

expression than the alternative promoter (Fragment F), indicating that the former is more 

likely to be the predominant start site of transcription in the SK-N-BE(2)C cell line. The 

different mRNA forms resulting from the alternative transcription start sites are not 

discriminated by the qRT-PCR primers used, nor the northern blot probe used, so previous 

quantification would not indicate the relative presence of these subtly different transcript 

forms.  

Given the unlikelihood of post-transcriptional regulation as discussed in the previous 

chapter, there are two possible explanations for these results: that there is a hypoxia 

responsive element within the regions cloned, but it is not detectable by the conditions 

used in our luciferase reporter assay; or that there is a hypoxia-responsive element outside 

of the regions tested in our assay. In relation to the first alternative, it is possible that the 

Rgs4 HRE is only functional when it is located in the context of native chromatin (as 

distinct from a transfected plasmid), due to interaction between transcription factors, other 

chromatin-bound factors or histone marks. There may also be long-range interaction 

between transcription factors across the locus, all of which are required to allow hypoxia-
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responsive transcription, which would not be recapitulated by testing each fragment 

individually. However, minimal HIF target sequences discovered to date have all been 

found to be responsive in reporter assays such as those performed for this thesis (for 

examples, see Firth et al., 1995; Liu et al., 1995; Miyazaki et al., 2002), so there is no 

precedence for this explanation. 

The alternative explanation is that there is a HRE located outside of the regions of the 

human Rgs4 locus tested here, either more than 15.3kb upstream of the Rgs4 TSS, or more 

than 9.7kb downstream of its poly-adenylation site. This would make the Rgs4 HRE 

atypical, but as mentioned, not without precedence. Although most HREs are found 

proximal to a TSS, there are exceptions to this observation, such as the HRE for Phd3 

which is found 12.59kb downstream of the TSS (Pescador et al., 2005). In the absence of 

HIF ChIP-seq data, to determine whether Rgs4 transcription could be under the control of 

distant enhancers we analysed ChIP-Seq data for NPAS4 binding, which is a related 

bHLH-PAS family member, as well as for coactivator CBP and RNA PolII (Figure 4.7). 

Both Drebrin and Rgs4 mRNA levels are responsive to NPAS4 (Lin et al., 2008; Ooe et 

al., 2004), and NPAS4, coactivator CBP and RNA PolII are found at the Drebrin locus 

bound to only gene proximal sites. However, at the Rgs4 locus these transcription factors 

are found at several specific loci in distant non-coding regions. Aside from the sites found 

at the Rgs4 proximal promoter and coding sequence, seventeen regions were determined 

where at least two of either NPAS4, CBP and RNA PolII were detected binding in 

response to depolarisation stimulus, in the 250kb flanking the Rgs4 locus (Figure 4.7). 

These binding sites do not coincide with characterised genes, nor do any known expressed 

sequenced tags (ESTs) align to these regions. Ten such sites could be found within the 

same span of the Drebrin locus, all of which are localised to the TSSs of Drebrin or other 

previously characterised genes.  

Therefore, Drebrin appears to be regulated by NPAS4 through enhancers found proximal 

to its promoter, while Rgs4 is appears to be under the control of several enhancers located 

up to 150kb away from its TSS, one or more of which bind NPAS4. These may access the 

Rgs4 promoter through DNA looping, as indicated by the detection of RNA PolII at these 

distal sites. This also indicates that the detection of NPAS4 and CBP at some of these 

distal sites may be due to indirect interactions, such as crosslinking of factors which are in 

proximity to but not bound directly to the DNA at that location. Futhermore, as NPAS4 is 

a bHLH-PAS transcription factor like HIF-1 and HIF-2, and also heterodimerises with 
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ARNT (HIF-), there may be crosstalk between NPAS4 and HIF pathways in Rgs4 

regulation. Crosstalk between NPAS4 and another bHLH/PAS member (SIM-2) has 

already been described (Ooe et al., 2004). The consensus binding sequence for NPAS4 is 

NCGTG, which is similar to that of the HIFs (Ooe et al., 2004), so binding sites for 

NPAS4 could also be binding sites for HIF. Alternatively, at the very least this NPAS4 

enhancer information could be taken as an analogy for the regulation of Rgs4 by HIF, 

which would indicate that Rgs4 is under the control of several distant enhancers, one of 

which may be hypoxia-responsive.  

The sequences of these seventeen Rgs4 locus peaks bound by NPAS4, CBP and/or RNA 

PolII were retrieved and RCGTG motifs (which could theoretically bind both HIF and 

NPAS4) were found in eight of these regions. HRE-like motifs in sequences 3, 5 and 7b 

correlated to peaks of NPAS4 binding from the ChIP-Seq data, while motifs in 6 and 9a 

correlated to CBP binding only (Figure 4.7a). Some of these sites were also found in 

regions of high overall mammalian sequence conservation, yet few of these central 

RCGTG elements were conserved in the corresponding human or rat sequences. If NPAS4 

interacts directly with one of these sites, it may be that the site has moved over 

mammalian evolution. Evolutionary movement of enhancers, either through translocation 

of a locus or generation of a novel superceding enhancer while maintaining the regulation 

of a gene, has been noted as being common for other transcription factors by use of ChIP 

combined with custom microarrays (Odom et al., 2007) and ChIP-Seq technology 

(Schmidt et al., 2010). Hence, the lack of conservation at a candidate binding site should 

not preclude it from analysis as a likely enhancer element.  

Since we do not know whether NPAS4 and HIF commonly bind at the same genomic 

sites, a definitive experiment would need to include ChIP-Seq against HIF-1 and HIF-2 

in normoxic and hypoxic cells. This experiment is currently being performed by 

collaborators using SK-N-BE(2)C cells, and although this data would then align to a 

different species genome than this NPAS4 data, general comparison would still be 

possible. Alternatively, as HIF has been shown to in some cases bind to DNA indirectly 

through the Notch intracellular domain (Gustafsson et al., 2005), consensus HIF binding 

sites may not be found at HIF controlled Rgs4 enhancers. Both direct and indirect HIF 

binding sites may be confirmed by reporter gene assay. 

If the regulation of Rgs4 transcription by hypoxia occurs though distal enhancers 

interacting by DNA looping, it is feasible that this more complex mode of transactivation 
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explains the previous observation that Rgs4 hypoxic response is limited to a narrow range 

of cell types. Considering that active Rgs4 transcription and HIF activity is not necessarily 

sufficient for its hypoxic regulation, whereas Vegf appears to be regulated by HIF in all 

cell types tested, the alternative enhancer set-up at the Rgs4 locus may allow this 

restriction. In this case, there may be additional neural or neural-precursor specific 

transcription factors which HIF must interact with at this locus in order to promote Rgs4 

transcription. 

4.2.3. Regulation of Hif1a and Epas1 Message 

in Prolonged Hypoxia  

One of the unexpected results of the siRNA knockdown experiment control (Figure 3.5) 

was that Hif1a and Epas1 mRNA levels are regulated during prolonged DP treatment of 

SK-N-BE(2)C cells. This effect is also present during hypoxic treatment, as shown by 

analysis of the timecourse hypoxia samples (Figure 4.4), which were primarily intended to 

quantify the time delay in Rgs4 response to hypoxia (Figure 4.3). Therefore, Hif1a and 

Epas1 message levels are responsive to both hypoxia and a HIF-activating hypoxia 

mimetic chemical, and are likely to be regulated through HIF. Interestingly, while Rgs4 

responds in a similar time to known HIF target genes, Hif1a and Epas1 are only detected 

at altered levels after 4 hours of hypoxia, akin to Mlh1, a secondary responder to the HIF 

pathway. By the 16 hour timepoint, Hif1a mRNA has decreased to close to one-third of its 

normoxic levels (relative to Polr2a), while Epas1 levels have increased by almost 7 fold. 

It is unclear whether these changes are maintained in longer hypoxia treatments, in part 

due to the decreasing health of the cell culture in prolonged hypoxia. However, these 

results do relate to previous observations of HIF- protein levels in SK-N-BE(2)C cells, 

amongst others, during prolonged hypoxic treatment in certain cell types (see Chapter 

1.1.4). 

Holmquist-Mengelbier et al. (2006) present data demonstrating increased HIF-2 and 

decreased HIF-1 protein levels in prolonged severe hypoxia, using the SK-N-BE(2)C 

and KCN-69n human neuroblastoma cell lines, and similar results have also described for 

A549 lung epithelial cells (Uchida et al., 2004). Interestingly, published qRT-PCR 

experiments in neuroblastoma indicate an increase in SK-N-BE(2)C Epas1 mRNA levels 

within 2 hours of hypoxia, yet the maximum induction was smaller than the data presented 
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here in Figure 4.4 (Holmquist-Mengelbier et al., 2006). Furthermore, no reduction in 

Hif1a message was described for this cell line at any timepoint, disagreeing with the 

results presented in this thesis. Previously published data for the KCN-69n cell line, 

however, fit more closely with the results presented in this thesis, as Epas1 is increased 

while Hif1a levels are decreased by severe hypoxia, after a brief delay of around 4 hours 

(Holmquist-Mengelbier et al., 2006). Subtle changes in reference gene levels are unlikely 

to cause the differences observed in our data, since significant regulation is observed in 

both the positive and negative directions.  

Therefore, the differences between these experiments are likely to result from different 

cell culturing conditions, or different hypoxic conditions. In particular, Holmquist-

Mengelbier and colleagues use an oxygen-regulated chamber to achieve a specific 

environmental oxygen percentage of 1%, whereas our experiments use a less controlled 

system, employing AnaeroGen sachets to absorb oxygen in a sealed container. Although 

the specific oxygen level was not tested concurrently with the experiments in Figure 4.3 

and Figure 4.4, later use of an oxygen meter in the same sealed containers with 

AnaeroGen sachets produces a final oxygen concentration at or below 0.1%. Therefore, it 

is likely that the hypoxia employed in the experiments here is more severe than those 

described by Holmquist-Mengelbier et al. (2006), such that the regulation of Hif1a and 

Epas1 message levels is more pronounced in prolonged conditions of extreme hypoxia, or 

anoxia. HIF-1 and HIF-2 have also been previously shown to be differentially 

regulated by moderate hypoxia (Holmquist-Mengelbier et al., 2006), so it would appear 

that the hypoxic response is significantly affected by the specific oxygen concentration 

available. However, this has not been directly tested here, so future experiments on this 

path would require comparison of hypoxic treatments at 1% and 0.1% oxygen. 

Due to the timing of these responses, regulation of these transcripts by hypoxia is unlikely 

to be due to direct activity of HIF itself on Hif1a or Epas1 transcription, but is likely to 

use an indirect mechanism involving regulation of an intermediate gene. For example, 

negative regulation of Hif1a levels can occur following transcription of aHIF, which is 

under the control of HIF. RNA from aHIF then causes Hif1a mRNA destabilisation (see 

Chapter 1.1.6), so the time taken to transcribe and accumulate aHIF RNA as an 

intermediate may result in the 4 hour delay before response observed here. Alternatively, 

there may be other as-yet unknown miRNA genes which could act in a similar fashion to 

aHIF. Another explanation involves activation by HIF of genes encoding transcription 
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factors such as Dec1, which in turn may bind at the Hif1a gene and repress its 

transcription. For example, the negative response of Hif1a mRNA occurs in a similar 

timeframe to that of another DEC1 target gene, Mlh1. The effect of either of these 

pathways could be tested by Hif1a 3’UTR reporter assays, promoter reporter assays, or 

ChIP assays to determine whether altered Hif1a levels in this case are due to 

transcriptional or post-transcriptional regulation. This could then be extended to test 

whether this pathway is active at 0.1% oxygen, but not 1% oxygen. 

Similar explanations are possible for the positive regulation of Epas1 message levels. 

There may be an as-yet unknown post-transcriptional pathway regulating Epas1 levels, or 

Epas1 may be regulated by a secondary HIF-responsive transcription factor. Notably, the 

increase in Epas1 to hypoxia was detected in previous studies during prolonged 1% 

oxygen exposure (Holmquist-Mengelbier et al., 2006), whereas the Hif1a response was 

only detected in this thesis which utilised more severe hypoxic conditions, indicating that 

dissimilar oxygen sensing pathways may be in effect for each of these responses. 

This modulation of the two HIF isoforms may enable cell survival and adaptation during 

extended severe hypoxia or anoxia. Increased HIF-2 protein levels have been correlated 

to increased dedifferentiation of clinical neuroblastoma samples and poor prognosis 

(Holmquist-Mengelbier et al., 2006; Pietras et al., 2008), while Epas1 RNAi knockdown 

promotes neuroblastoma differentiation (Pietras et al., 2009). Therefore, the Epas1-

mediated dedifferentiation in non-cancerous cells may enable survival, an effect which 

manifests as an aggressive phenotype in the context of neuroblastoma. It is then likely that 

in some cell types, HIF-1 provides adaptation during short hypoxic insults, but is not 

beneficial during long-term anoxia, while later HIF-2 activates a distinct set of genes to 

adapt the cell for survival in prolonged hypoxia. 
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5. Final Discussion 



117  

5.1.1. Cell Type Specific Transactivation of Rgs4 

by HIF 

The experiments presented in this thesis indicate that Rgs4 is responsive to hypoxia 

through the HIF pathway, but only in a subset of all Rgs4 expressing cells. Although the 

specific genomic site from which HIF activates transcription of Rgs4 is not clear, it is 

likely that long-range interactions are involved in the transcriptional activation of this 

gene, through DNA-looping. This is in contrast to many, but not all of the known HRE-

containing enhancers that are found proximal to transcription start sites of other HIF target 

genes such as Vegf. Therefore, Rgs4 may have a more complex hypoxia-responsive 

enhancer than most other characterised HIF target genes, raising the question as to why 

the Rgs4 gene would need to be regulated in this fashion. 

One possibility involves the specificity of the Rgs4 hypoxia response to neural-related 

cells. Expression of Rgs4 is not silenced in endothelial cells, as Rgs4 transcript is readily 

detectable, however its expression is not altered by hypoxic treatment, in contrast to 

results using neuroblastoma cells. As a general observation, transcription of other HIF 

target genes such as Vegf is responsive to hypoxia in all cell types, excepting cell types in 

which the gene is silenced. In these cases, presumably the silencing elements outweigh the 

activating properties of HIF, or HIF is not permitted access to the HRE. However, as the 

Rgs4 locus is not silenced in endothelial cells, there must be other elements which 

specifically prevent HIF transactivation of Rgs4 in these cells, or specifically permit HIF 

activation of Rgs4 in neural-like cells, while still allowing the usual HIF transactivation of 

other target genes such as Vegf. This unknown mechanism may be related to the long-

range and complex style of NPAS4-bound enhancer observed at the Rgs4 locus, such that 

if HIF acts in a similar fashion at the Rgs4 locus, other cell-type specific factors or 

conditions may also be required for transactivation. Notably, if HIF transactivates Rgs4 

expression from a distant enhancer, the results presented here show this enhancer interacts 

specifically with the Rgs4 gene and does not act on the nearby Rgs5 gene.  

The idea of a complex enhancer at Rgs4 is supported in part by previous publications 

showing that differential transactivation of target genes by HIF-1 and HIF-2 is controlled 

by post-DNA-binding events, rather than differences in DNA binding (Hu et al., 2007; 

Lau et al., 2007; Mole et al., 2009), indicating generally that the process of transactivation 
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by the HIFs involves regulatory mechanisms that are not yet fully understood. In other 

contexts, HIF is known to functionally interact with transcription factors such as ETS1 

(Elvert et al., 2003), ELK1 (Aprelikova et al., 2006) and Notch-1 (Gustafsson et al., 

2005). Therefore, HIF regulation of Rgs4 may require interaction with these or other as-

yet unknown transcription factors, resulting in the cell-type specific hypoxic response 

observed in this thesis. There are many examples of other transcription factors which have 

distinct roles in different cell types, such as the RE1-Silencing Transcription factor 

(REST), which binds at distinct genomic sites in embryonic and neural stem cells 

(Johnson et al., 2008), and the T-cell Acute Leukaemia protein-1 (TAL1), which binds 

DNA directly using its bHLH domain during erythrocyte maturation, but binds distinct 

genomic sites during specification of haematopoietic stem cells (Kassouf et al., 2008; 

Kassouf et al., 2010). 

The Rgs4 transcriptional response to hypoxia is affected by loss of either HIF-1 or HIF-

2, but is more sensitive to loss of HIF-2 than some other classical HIF-1 target genes 

(Figure 3.5 and Figure 3.6), indicating that while Rgs4 does not appear to be a target gene 

of HIF-2 alone, regulation of Rgs4 is not identical to these other HIF target genes. A 

recent study using the ChIP-Seq method (Schodel et al., 2011) indicates that long-range 

HIF interactions are more likely to be preferred by HIF-2, while HIF-1 often acts from a 

site proximal to the regulated gene. However, it is unclear whether HIF-2 regulates 

transcription from these enhancers using a different mechanism to HIF-1, and whether the 

difference in enhancer distance from the regulated gene has a functional effect on 

regulation. The use of deep sequencing with ChIP for other transcription factors such as 

p53 has revealed transcription factor binding sites up to 100kb from a regulated gene, and 

other binding site with no detectable direct effect on nearby gene transcription (Wei et al., 

2006). Nonetheless, this finding correlates well with the theory of distant enhancers 

controlling Rgs4 transcription, as results presented here show that HIF-2 has more 

influence on Rgs4 transactivation than it does on target genes such as Vegf or Dec-1, at 

least in the neuroblastoma cell line tested. 

The transcriptional regulation of Rgs4 expression described in this thesis is also interesting 

in the context of previously discovered regulation of RGS4 and RGS5 protein degradation 

by hypoxia through the N-end rule degradation pathway (Chapter 1.3.3). However, while 

HIF transactivation of Rgs4 appears to be restricted to neural-like cells, the N-end rule 

pathway is most likely to be active in cardiovascular cell types (Kwon et al., 2002). 
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Furthermore, hypoxia regulates Rgs4 transcription but not that of Rgs5, while the N-end 

rule pathway affects both RGS4 and RGS5 proteins. Therefore, the two hypoxia response 

pathways may result in different modes of RGS4 response in vascular and non-vascular 

cell types, in terms of response time or other characteristics. Alternatively, the two 

hypoxia responsive pathways may provide a means of allowing RGS4 response in both 

vascular and neural cell types, while RGS5 is only regulated by hypoxia in vascular cells.  

It is worth making note of the lack of obvious phenotype observed for Rgs4
-/-

 mice, which 

is curious given the two distinct, conserved levels of hypoxic regulation of RGS4 levels. 

Presumably, the function of RGS4 is favourable in some response to hypoxia, as two 

distinct hypoxia response pathways have been conserved in regulation of RGS4. However, 

although both the HIF and N-end rule pathways are known to have influential roles in 

development, Rgs4
-/-

 mice have no gross morphological defects (Grillet et al., 2005), 

therefore RGS4 either has little effect in development, or is made redundant by the other 

RGS family proteins. In terms of the HIF-based hypoxic response, Rgs5 does not 

compensate for Rgs4 in neural-like cells, but other members of the family which have not 

yet been tested may be HIF responsive, and therefore compensate for loss of Rgs4, 

considering that many of the RGS family proteins appear to have overlapping specificities 

for G target proteins. Taken together, this might suggest that the physiological role of 

RGS4 hypoxic response is not developmental, but rather used in adaptation to hypoxia. 

Such a role may be too subtle to be observed in Hif1a or Epas1 deficient mice, which have 

severe developmental problems due to disruption of transactivation of other HIF target 

genes. Therefore, it would be of interest to treat Rgs4
-/-

 mice with systemic hypoxia and 

determine whether these mice have impaired survival or adaptation. Given that the 

experiments in this thesis show specific hypoxic regulation of Rgs4 in cells which express 

catecholamines, and the original aims to find new HIF target genes using catecholamine 

expressing cell types due to the catecholamine-deficient phenotype of Epas1
-/-

 mice, it 

would be of particular interest to test hypoxic and control Rgs4
-/-

 mice for perturbations in 

circulating catecholamine levels, or catecholamine signalling within neural cell types. In 

this way, novel physiological roles of Rgs4 may be elucidated using hypoxic conditions 

which could not be found under normal oxygen conditions. 

The observations presented in this thesis can be further related to the putative 

physiological functions of RGS4 protein discussed in Chapter 1.3.5 and 1.3.6. In 

particular, as the HIF transcription factors regulate expression of Rgs4 in neural-like cell 
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types, hypoxia and HIF may influence the regulation of opiate and/or dopamine signalling 

through Gi proteins, by RGS4 protein activation of Gi-GTP hydrolysis. As mentioned 

previously, foetal hypoxia has been previously linked to risk of schizophrenia (Cannon et 

al., 2000), a mechanism that could possibly involve HIF regulation of Rgs4. Therefore, the 

results of this thesis provide a possible link between several conditions correlated with 

schizophrenia susceptibility. Further experiments would involve testing schizophrenia-

linked Rgs4 SNPs in terms of disruption of gene transcription, which would then act as 

guide to locating novel enhancers of Rgs4. Alternatively, Rgs4, Hif1a or Epas1 mutant 

alleles could be crossed into existing mouse models of schizophrenia to test for 

amplification or reduction of phenotypes. A mouse model for this disease has been 

developed (Hikida et al., 2007), while excessive Rgs4 expression (Mirnics et al., 2001) 

and hypoxia (Cannon et al., 2000) have been linked to the disease state, such that null 

alleles of Rgs4, Hif1a or Epas1 might be expected to weaken the schizophrenic phenotype, 

while overexpression of these genes may cause an increase in deleterious phenotypes.  

As the Rgs4 gene is found to be unresponsive to hypoxia in endothelial cells (Chapter 

3.1.4), it seems less likely that the regulation of Rgs4 by HIF impacts on processes such as 

tubulogenesis, heart hypertrophy or bradycardia. However, the possibility of a role for 

Rgs4 in these processes should not be entirely discounted as Rgs4 may be regulated by 

hypoxia in cardiovascular cell types other than the umbilical endothelial cell type tested 

here. Furthermore, RGS4 protein is regulated by hypoxia in the cardiovascular system, so 

RGS4 may have roles in these processes independent of the HIF pathway. Experiments to 

further test for an Rgs4 hypoxic response would include transcript expression analysis of a 

wider range of primary mouse cell types, and in situ hybridisation towards Rgs4 and other 

relevant genes, using normoxic and hypoxic heart, brain and other tissue samples. In this 

way, the extent to which the transcriptional response of Rgs4 to hypoxia is restricted in 

cardiovascular cell types can be determined.  

Despite numerous published microarray experiments examining the transcriptional 

response to hypoxia (Chapter 1.3.3), Rgs4 has only appeared in one other set of results 

other than those presented in this project. This is clearly due to the restriction of Rgs4 

hypoxic regulation to specific cell types that are not commonly used as models. However, 

these results now imply that there may be other hypoxia and HIF responsive genes which 

have gone hitherto undetected due to experimental cell type selection. While use of cell 

types such as breast cancer has been useful in determining the majority of general HIF 
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target genes, and in turn the binding profile of HIF throughout the genome (Schodel et al., 

2011), there are likely to be other functional HIF binding sites and responsive genes in cell 

types that have not yet been tested, whether in neural-like cells as tested in this thesis, or 

other unrelated cell types.  

Performing microarrays or ChIP-seq experiments across an exhaustive set of cell types 

would be impractical, so more directed approaches would be required to find these elusive 

target genes. These atypical target genes of HIF would only be expected to represent a 

small subset of total hypoxia and HIF responsive genes, the majority of which have 

already been discovered and have less restricted responsiveness than Rgs4. To discover 

other such novel target genes, physiological functions of HIF which have not yet been 

described by known target genes could direct researchers to use of a specific model cell 

type in microarray or ChIP-seq studies, as the catecholamine-deficient phenotype of 

Epas1
-/-

 mice did for the experiments presented in this project. However, due to the critical 

role of both HIF-1 and HIF-2 in development, carefully designed conditional knockout 

mouse models would be required to expose the more subtle physiological roles of HIF. 

Various conditional Hif1a
-/-

 and Epas1
-/-

 mice have been generated and tested, as 

described in Chapter 1.1.7. Alternatively, atypical HIF target genes such as Rgs4 could be 

used as a model for discovery of other HIF-associated transcription factors, and the 

domains responsible for interaction within HIF-. This would then aid in predicting cell 

types where a restricted hypoxic response might be found, and also would provide a 

method for screening for the genes regulated in this way, either through knockdown of the 

associated transcription factors alongside microarray technology, or through sequential 

ChIP (ReChIP) experiments. Considering that these putative novel protein interactions 

mediate a subset of HIF transactivation targets, some of which like Rgs4 may be involved 

in pathogenesis, an attractive direction of research would be involve small molecule 

inhibitors. Such molecules could be designed to inhibit the formation of transactivation 

complexes involving HIF at specific atypical target genes, while allowing normal HIF-

mediated regulation of classical target genes such as Epo and Vegf, thus minimising 

deleterious side effects.  

In conclusion, the novel discovery presented here that the Rgs4 gene is transcriptionally 

responsive to hypoxia and the HIF pathway in neural-like but not endothelial cells poses 

new questions about the complexity of regulation of HIF activity towards genes such as 

Rgs4, as well as elucidating a novel link between the HIF and G-protein signalling 
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pathways which could lead to a better understanding of diseases such as schizophrenia. 

These questions can be addressed by further research into Rgs4 transactivation using 

techniques such as ChIP-Seq and model systems such as transgenic mice. The direct 

binding site of HIF at the Rgs4 locus remains elusive, yet its mechanism of HIF action at 

this locus is distinct from that previously discovered at other target genes, and may even 

describe a new subset of as-yet undiscovered HIF target genes. 
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6. Appendix 
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6.1.1. Quantitative PCR Optimisation 

Initial experiments were designed to establish the quantitative PCR (qPCR) technique 

prior to the experiments of Chapter 3.1.3, as this had not been performed previously in our 

laboratory. Primers were designed across intron boundaries for human, mouse and rat 

target gene cDNA sequences retrieved from the UCSC Genome Browser (Kent et al., 

2002) using Primer3 software (Rozen and Skaletsky, 2000). Primer sets were designed for 

Rgs4, positive (HIF-regulated) controls Vegf and Dec1, reference (negative) controls 

Polr2a and Actb, as well as Hif1a, Epas1 and Mlh1 in later experiments. cDNA was 

generated from identical amounts of template total RNA, and as total RNA is 

predominantly composed of ribosomal RNA (rRNA), qRT-PCR reactions are already 

normalised to some extent relative to rRNA levels. Although some variability in mRNA 

detection is expected despite this step, Actb (-Actin) was consistently detected in hypoxic 

samples about one PCR cycle later than the normoxic control. Therefore, Actb levels 

appear to be slightly responsive to hypoxia and not suitable for use as a reference. Another 

popular reference gene, Gapdh, is under the direct transcriptional control of HIF, making 

it also unsuitable (Graven et al., 2003). Polr2a (encoding the major subunit of RNA 

Polymerase II), has appeared in several experiments as a more stable reference gene than 

Actb or Gapdh (Brattelid et al., 2010; Radonic et al., 2004; Saviozzi et al., 2006), and was 

also less variable between normoxia and hypoxia that Actb in cDNA samples tested here 

(data not shown). Thus, Polr2a was selected as the most appropriate reference control. 

The quality of each primer set was verified by qRT-PCR using serial dilutions of cDNA 

from an appropriate species. The equation for the progression of PCR is expressed in 

Equation 2.1 (see Chapter 2.2.6), giving E as the efficiency of PCR, or in other words the 

average number of new product molecules produced per cycle per template molecule. E 

can be calculated from the slope of a log10[template] vs C(t) plot (Figure 6.1, Equation 

2.2), where C(t) is the cycle of PCR where the product reaches a threshold amount 

(Rutledge and Cote, 2003). In the case of Figure 6.1, the template concentration used is 

relative to neat cDNA, which is set at 1. This PCR efficiency analysis was performed on 

all primer sets and was determined to be above 90% (0.9) and below 110% (1.1) for C(t) 

less than 30, after which PCR efficiency was less reliable due to the low amount of 

template being detected, impacting on efficiency. Examples for human Rgs4, Vegf and 

Polr2a are provided in Figure 6.1a, with calculations resulting in EhRgs4 = 0.945, EhVegf = 

0.941 and EhPolr2a = 1.035. PCR efficiency over 100% can result from formation of  
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Figure 6.1. (a) Representative quantitative PCR efficiency test for hRgs4, hVegf and hPolr2a 

primer sets on serial dilutions of human (SK-N-SH) cDNA. Mean C(t) detection between three 

replicate qPCR reactions is plotted, for  log10 concentrations of cDNA that result in detection of 

target at C(t) < 30. Standard deviations of points are too small to accurately plot, and line slope is 

used to calculate PCR efficiency calculation using Equation 2.2, giving E (hRgs4) = 0.945, E 

(hVegf) = 0.941, and E (hPolr2a) = 2.035. (b) Entire qRT-PCR products from Figure 3.5c were 

run on a 3% agarose/TBE gel, with the DNA size ladder (central lane, from top: 300, 200 and 

100bp markers) to estimate PCR specificity. RT refers to Reverse Transcriptase.  
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non-specific DNA duplexes such as primer-dimers, or from the presence of PCR 

inhibitors. For the purposes of the following experiments, detection of amplified target 

sequences later than 30 cycles was considered to represent levels of target gene expression 

which are at the limit of reliable detection, while C(t) > 35 or no detectable amplification 

within 40 cycles was considered to be effectively ‘undetectable’ target message levels. 

Using more cDNA template per reaction could result in improved detection sensitivity, but 

this was not required for the experiments presented in this thesis. 

Relative amount of target gene mRNA was determined using StepOne (Applied 

Biosystems) and Q-Gene software (Muller et al., 2002), both of which use modified 

versions of the 2
-C(t)

 method (Livak and Schmittgen, 2001). This method uses the cycle 

number (C(t)) at which the amount of PCR product detection reaches a threshold for both 

target and reference genes, and gives a target expression value in arbitrary units relative to 

the reference gene. To perform statistical analysis, expression was further normalised to 

the calibrator (negative control) cDNA, then the mean and standard deviation across at 

least three independent experiments was taken. After verifying PCR primer set efficiencies 

to be 90% < E < 110%, the programs were set to assume PCR efficiency of 1, as even a 

10% difference in calculated efficiency produces only a small effect. For example, when 

comparing a hypothetical qPCR result of a 2 cycle difference in C(t) of target between two 

samples, which equates to a 4-fold relative difference in target amount, altering the 

theoretical PCR efficiency E from 0.9 to 1.1 gives a 10% range around the expected result, 

4. The effects of imperfect PCR efficiency are more pronounced with higher differences in 

C(t) between samples, and effectively non-existent between samples which give the same 

C(t), so small errors in calculated efficiency are not likely to give false positive results, but 

may slightly affect the fold change observed. In addition, the specific PCR efficiency of 

each subsequent reaction is likely to be slightly variable, so attempting to correct for this 

using a predetermined efficiency value may introduce more error into the calculation than 

it removes. Chapter 3.1.3 describes qRT-PCR experiments using the same samples tested 

previously by northern blot (Figure 3.1), which further demonstrate the comparability of 

the qRT-PCR technique to northern blots. 

In all experiments, qRT-PCR runs were subjected to melting curve analysis to provide 

data on the specificity of amplification (data not shown). This was compared to the 

apparent size of amplified DNA product by electrophoresis in a 3% agarose/TBE gel, with 

reference to the expected size of amplicon (see Chapter 2.1.2). In all cases, single 
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amplicons were detected, and strong amplification was dependent on reverse transcriptase 

(RT) presence in cDNA generation (Figure 6.1b). 

Replicate cDNA generation using a combination of poly-d(T) and random hexamer 

primers with Superscript III reverse transcriptase was performed to determine the variation 

inherent in reverse transcription (RT), resulting in slightly greater but acceptable standard 

deviation in relative Rgs4 detection between cDNA from triplicate independent RT 

reactions (Figure 6.2b) when compared to triplicate qPCR experiments on the same cDNA 

template (Figure 6.2a). This indicates that bias is not likely to incorporated by generation 

of only one cDNA sample from each RNA sample, followed by triplicate qPCR reactions, 

provided that biological replicates are also performed. Other qRT-PCR parameters such as 

amount of template, PCR reagents, cycling conditions, trays and thermocyclers were also 

optimised to provide the most sensitive and reproducible data possible. 
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Figure 6.2. Quantitative PCR analysis of cDNA generated from three Reverse Transcriptase (RT) 

reactions, using the same RNA templates. SK-N-SH cells were treated with 16 hours of normoxia 

or hypoxia, after which total RNA was extracted. Three identical RT reactions were set up using 

this RNA as template, and qPCR was performed in triplicate on each resulting cDNA sample using 

Rgs4 and Actb primers. (a) Rgs4 levels normalised to Actb for each independent cDNA triplicate, 

where each column represents the relative mean of three qPCR reactions on the same cDNA 

template. Error bars indicate standard error of the mean as determined by qGene. (b) Rgs4 levels 

normalised to Actb, where each column represents the relative mean of three qPCR reactions, each 

using a different cDNA template. Error bars indicate standard error of the mean as determined by 

qGene.  

a) 

b) 

cDNA template: 

cDNA template: 
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1.1. Addendum 

The following corrections and additions are made in response to the thesis examiners’ 

comments. 

Page 14: The following paragraph should be inserted at the end of Chapter 1.1.2: 

“Acetylation in particular has been shown to modify the activity and stabilisation of HIF-

1 and HIF-2. In mouse cells, acetylation of HIF-1 between the PAS A and PAS B 

domains by a splice variant of ARD1 promotes association with pVHL and proteasomal 

degradation (Jeong et al., 2002), however the relevance of this effect is questionable as 

similar effects are not observed in human cells (Bilton et al., 2005; Fisher et al., 2005; 

Kim et al., 2006). In human cells, acetylation by PCAF activates HIF-1 (Xenaki et al., 

2008), while deacetylation of HIF-1 by Sirtuin1 or HDAC4 prevents HIF-1 

transactivation of many target genes (Geng et al., 2011; Lim et al., 2010). Conversely, 

deacetylation of HIF-2 by Sirtuin1 in human cells can activate transcription of target 

genes (Dioum et al., 2009), so acetylation modifications provide a possible mechanism 

for the differing functions of HIF-1 and HIF-2.” 

Page 15: In contrast to the first paragraph, HIF-2 has also recently been implicated in 

regulation of Glut-1 in colorectal carcinoma cells (Li et al., 2011). The second sentence of 

the second paragraph should read: 

“The Epo gene (which encodes Erythropoietin) is currently considered to be the best 

characterised in vivo HIF-2 specific target gene, as its expression is disrupted in HIF-2 

knockout kidneys (Scortegagna et al., 2005).” 

Page 19: The following sentence and reference should be added to the end of the first 

paragraph: 

“Stabilisation of the HIF- subunits by hypoxia can also be caused by signalling by 

reactive oxygen species produced by the functioning mitochondria, although the effect of 

hydroxylase inhibition is more pronounced at severe hypoxic or anoxic conditions 

(Schroedl et al., 2002).” 

Page 25: On the seventh line, the word “heterozygous” should be replaced with 

“homozygous”. 

Page 26: The following references should be added to the twelfth line: (Gruber et al., 

2007; Scortegagna et al., 2005; Scortegagna et al., 2003). 

Page 28: On the first line of the second paragraph, the word “oncogenic” should be 

replaced with “tumour supportive”. 

 



Page 73: The following sentences should be inserted at the end of the first paragraph: 

“After transfection, tagged control siRNA was observed to be colocalised with cells, 

although some fluorescence was detected on unpopulated regions of the growing surface. 

Cellular fluorescence was concentrated in speckles which appeared in all cells observed, 

so optimisation was undertaken to further decrease levels of fluorescence detected on 

unpopulated growth surfaces, in order to increase cell transfection specificity.” 

Page 76: The following sentences should be inserted after the second sentence of the 

second paragraph: 

“Incomplete knockdown of HIF- protein was observed by western blot, while visual 

detection of fluorescently-labelled control siRNA localised to all cells. As these siRNA 

sequences have been used to silence HIF- messages in other cell types previously 

(Sowter et al., 2003), high knockdown efficiency should be possible if transfection 

efficiency is high. Therefore, despite colocalisation of siRNA complexes to cells, it seems 

likely that some siRNA complexes bind to but do not enter SK-N-BE(2)C cells 

effectively, or are being sequestered within cells.” 

Page 80: The following paragraph should be inserted after the third sentence of the 

second paragraph: 

“It has been noted previously that between in moderate hypoxia the HIF- subunits can 

be differently stabilised and activated (Bracken et al., 2006), by not only the PHD and 

FIH hydroxylase enzymes but also mitochondrial activity (Schroedl et al., 2002). To 

ensure complete activation of both HIF-1 and HIF-2, severe hypoxia of less than 1% 

environmental oxygen was used in treatment.” 

Page 80: The first paragraph should be replaced by the following paragraph: 

“Rgs4 is known to be expressed in the cardiovascular system (Chapter 1.3.6), and both 

RGS4 and RGS5 protein are detectable in Human Umbilical Vein Endothelial Cells 

(HUVECs). Jin et al. (2009) describe experiments showing hypoxic induction of RGS5, 

but not RGS4 protein in HUVECs, so I decided to test the hypoxic response of the Rgs4 

and Rgs5 genes in the same cell type by qRT-PCR (Figure 3.4). Both 3 and 16 hour 

hypoxic treatments were tested to allow direct comparison to the previously published 

data (Jin et al., 2009), and also to the other experiments described earlier in this thesis. 

My results disagree with the data of Jin et al. (2009) for Rgs5, as Figure 3.4 shows no 

positive change in either Rgs4 or Rgs5 mRNA, and actually a modest but statistically 

significant decrease in levels of both after 16 hours of treatment relative to Pol2a, in 

contrast to positive control Vegf. However, the lack of hypoxic induction of RGS4 

described previously by Jin et al. (2009) is supported by my experiments on Rgs4 

message levels in HUVECs. This shows that the response of Rgs4 to hypoxia is not a 

general property of RGS encoding genes, and also that Rgs4 responds to hypoxia only in 

a subset of those cell types which express it at a basal level.” 
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