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Abstract

Current efforts in the field of plasmonics towards device integration and miniaturization
require detailed knowledge about the coupling between surface plasmons and emitters.
In this work coupling between surface plasmon polaritons and different emitter systems
has been investigated by the technique of back focal plane imaging. To develop a deeper
understanding of the interaction phenomena the studies focused on single emitters in
elementary plasmonic configurations that allow for an analytical description.

The first part of the thesis reports on the successful demonstration of surface plasmon
polaritons launched by a single dipolar carbon nanotube emitter on a metal thin film
after local optical excitation. Leakage radiation microscopy images, recorded in the back
focal plane of a microscope objective, could be modeled successfully and contained the
propagation length and direction of surface plasmon polaritons. Corresponding real-space
images revealed plasmon propagation away from the single dipolar plasmon source. The
polarization behavior of surface plasmon polaritons launched by single carbon nanotubes
was found to be radial as predicted by theoretical calculations.

Remote excitation of single walled carbon nanotube excitons via propagating surface plas-
mons is demonstrated in the second part. A scanning aperture probe was used as source for
propagating surface plasmons with fine controllability over excitation position and prop-
agation direction. It was raster scanned in close proximity over a single carbon nanotube
located on a metal film while recording the emission response from the nanotube. The
carbon nanotube showed an emission response while the aperture plasmon source was still
far away from the nanotube position. Theoretical modeling of the excited surface plasmon
fields confirmed that the nanotube maps the surface plasmons locally with sub-diffraction
resolution.

In the last part, radiation channels in the vicinity of a plasmonic nanowire were inves-
tigated. Radiation patterns of a coupled system of rare earth nanocrystals and silver
nanowires in the back focal plane revealed that the emission in the vicinity of a nanowire
can be approximately described by two emission channels that can be calculated analyti-
cally: Dipolar emission, also observed in the absence of the nanowire, and leakage radiation
from the nanowire. The latter can be calculated using an antenna-resonator model that
considers the air-dielectric interface on which the nanowire is deposited and the position
of excitation along the nanowire. Fitting of the experimentally observed patterns provides
estimates for the branching ratio between the two emission channels and further enable
the determination of the plasmon wave-vector supported by the nanowires.
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1 Introduction

Since the seminal publication from Ritchie 1 in 1957, the field of plasmonics has attracted
increasing interest. The study of these surface bound electromagnetic waves, existing due
to charge fluctuations on a metal surface, is especially appealing due to their confined
nature, which enables the concentration of energy in a small sub-diffraction volume2,3.
At the same time the propagation of surface plasmons (SPs) along the surface allows for
the transport of this energy, in an optimized case, along a distance of several hundred
micrometers4. The properties of SPs are determined by the dielectric functions of the
metal, supporting the SPs and the surrounding dielectric materials. Recent advances in
both, top-down and bottom-up fabrication methods, drastically increased the range of
different materials supporting SPs, enabling new device configurations and expand ac-
cessible frequency ranges5. In the current effort driving the field of plasmonics towards
device miniaturization and realization of plasmonic based interconnects6 detailed knowl-
edge about the interaction between SPs and emitter systems is crucial for the design and
optimization of such plasmonic applications. Additionally, new plasmonic building blocks
such as noble metal nanowires become more important and enable new possibilities for
applications in plasmon based logic gates7 and quantum plasmonics8,9.

A strong focus in the field of plasmonics is on the coupling between light and SPs. If
SPs are coupling to photons the combined state is typically referred to as surface plasmon
polariton (SPP). The first experimental techniques to excite and detect SPPs with light
were implemented by Otto 10 and Kretschmann 11 , who managed to overcome the momen-
tum mismatch between photons and SPPs by the use of evanescent fields created in a
total internal reflection geometry. Propagating SPPs can be observed via the detection
of leakage radiation12 if the supporting metal structure is thin enough so that the field
component perpendicular to the surface has not completely decayed within the material.
Leakage radiation from SPPs can be detected with standard optical microscopes using
index-matched immersion objectives, enabling the detection of wave-vectors k

k0
> 1.

The technique of back focal plane (BFP) imaging, which was also used to determine the
orientation of single molecules13, provides a useful method to detect SPP leakage radi-
ation angularly or wave-vector resolved in Fourier space12,14–17. In general, all emitting
systems exhibit a unique distribution of emission in the BFP, which represents an angu-
larly resolved intensity map. Theoretical routines for calculating the radiation pattern
of single dipolar emitters, optical antennas and nanowires have been presented in the
literature13,18–20, which allow the analysis and distinction of different radiation channels
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1. Introduction

by comparison with experimentally obtained BFP patterns. Additionally, BFP imaging
has been used in the past to identify SPP propagation due to the specific distribution of
leakage radiation in the BFP given by the SPP wave-vector spectrum12,21,22.

For this thesis the technique of BFP imaging, and other optical methods, were applied
to study the coupling between SPPs and different emitter systems. During these inves-
tigations a key focus was on the observation of single emitters in simple configurations
that are accessible by analytical descriptions. The excitation of propagating SPPs by a
single dipolar source placed on a metal thin film could be shown directly by the emission
features in the BFP. The angular emission characteristics of a single single-walled carbon
nanotube (SWCNT) emitter located on a thin metal film were considerably reshaped in
comparison to a SWCNT emitting on a glass substrate. SPP-emitter coupling could also
be achieved successfully in the reversed situation shown by the remote excitation of a sin-
gle dipolar SWCNT emitter on a metal film via SPPs launched from a scanning aperture
probe. In an approach to apply the previously achieved results in a basic plasmonic guid-
ing element the coupling between nanocrystal emitters and silver nanowires as confined
plasmonic waveguides was investigated. Recorded characteristic BFP patterns from this
coupled emitter-nanowire geometry were modeled and thus enabled access to important
parameters of the plasmonic system such as the branching ratio, the SPP wave-vector or
the plasmonic active length of the nanowire waveguide.

The thesis is structured as follows. After this introduction, chapter 2 discusses the fun-
damental properties of SPPs. Commencing from an interface between two infinite half-
spaces defined by a metal and a dielectric the conditions for the existence, fundamental
wave properties and the dispersion relation of SPPs are introduced. Proceeding with an
investigation of SPPs in more complex thin film and metal nanowire geometries, the im-
plications of the geometry on the dispersion relation together with connected parameters
such as the SPP propagation length, are reviewed. The second part of this chapter is
concerned with experimental schemes able to excite and detect SPPs on metal films and
structures.

Chapter 3 gives an introduction to the specifics and applications of BFP imaging, a method
to obtain an angularly resolved emission pattern. Beginning with the image formation in
the BFP of a microscope objective, it continues with a theoretical description of radiation
patterns from point dipole emitters in the BFP. The second part of the chapter gives two
examples for the application of BFP imaging in the context of SPPs. Firstly, BFP imaging
can be used to investigate SPPs on a metal film in a reflection geometry. Secondly a model
is introduced, based on the theoretical model for single dipole radiation, to describe the
signature in the BFP originating from SPPs propagating along a noble metal nanowire.

The different emitter systems used in this work to investigate the emitter-SPP coupling
are introduced in chapter 4. First the structural and optical properties of semiconducting
SWCNTs are discussed. Following the conceptual formation of SWCNTs, starting from
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a single graphene sheet, a short overview of the electronic energy landscape and the re-
sulting possible optical transitions is given. The second part deals with rare earth doped
nanocrystals. After a description of different host materials lanthanide doping of a NaYF4
matrix is discussed from a structural point of view. It concludes with a description of the
optical processes in such rare earth doped nanocrystals with a specific focus on the photon
upconversion.

Chapter 5 begins with a description of the microscope setup utilized in the experiments
presented in this thesis. The optical systems including details of excitation and detection
pathways in the applied microscope as well as a description of the aperture scanning
near-field optical microscopy (SNOM) configuration are introduced. The second part
gives insight into the specific properties and preparation of the carbon nanotube, silver
nanowire and rare earth doped nanocrystal samples used in the experiments.

All experimental results are presented and discussed starting from chapter 6. In this
chapter the directional excitation of propagating SPPs on a thin metal film by individual
SWCNTs is investigated. Photoluminescent SWCNTs were shown to launch SPPs in the
near infrared (NIR) propagating for several micrometers predominately in the direction
of the nanotube axis after laser excitation in the visible. SPP excitation and propagation
are investigated by leakage radiation microscopy in real-space and in the BFP. Compared
to the angular emission of SWCNTs on glass, polarization resolved radiation patterns
recorded for single SWCNTs on gold films reveal an almost complete redistribution of the
emission with a high directivity. The claim that SPP excitation results from a radiating
point dipole source could be confirmed by rigorous model calculations of spatial intensity
distributions and BFP patterns.

The opposite scheme, wherein transitions in a dipolar emitter are excited via propagating
SPPs is investigated in chapter 7. Light coupled into a metal coated aperture probe was
chosen as a nanoscale SPPs source, which enables the fine control of the excitation position
and the SPP propagation direction. First, the SPP excitation behavior of the aperture
probe on a thin gold film is characterized by analysis of real space and BFP images. This
analysis is followed by a scan with the aperture probe over a deposited SWCNT while
simultaneously detecting the emission signal from the SWCNT, characterized as leakage
radiation. The image formation is reconstructed by theoretical calculations of SPP fields
created by the aperture probe in the metal film, using an established model.

Chapter 8 is concerned with the coupling between SPPs and an emitter system using
noble metal nanowires (NWs) as confined SPP waveguides. Rare earth doped nanocrys-
tals, which show upconverted photoluminescence (PL) on the anti-Stokes side of the laser
excitation energy were deposited in the vicinity of plasmonic silver nanowires. With a
quantitative analysis of recorded BFP patterns of this coupled system contributions of
two different radiation channels could be separated: The direct dipolar emission from
nanocrystals in the absence of silver nanowires and leakage radiation from excited SPPs

3



1. Introduction

propagating along the nanowires. Fitting of the recorded BFP patterns with the devel-
oped two channel model gives access to important system parameters such as the channel
branching ratio, the SPP wave-vector and the plasmonic active length of the nanowires.
All results obtained by optical measurements were supported by a thorough transmission
electron microscopy (TEM) investigation.

Finally, a summary of the most important results achieved in this thesis will be given. An
included outlook will provide interesting aspects of possible future experiments regarding
coupling between emitter systems and SPPs and the use of BFP imaging in different
applications.
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2 Surface plasmon polaritons (SPPs)

The first appearance of electromagnetic waves at surfaces in the scientific literature was in
the work of Zenneck 23 and Sommerfeld 24 . They derived theoretically that these surface
waves exist only at the boundary between a dielectric or a metal and a loss free dielectric.
In general, electrons at a metal-dielectric interface can perform coherent fluctuations which
were named surface plasma oscillations by Ritchie 1 . The first experimental observation
of these surface plasmons was demonstrated by Powell and Swan 25 through fast electron
loss spectroscopy of metal thin films. Soon from the fundamental ideas of concentrating
light energy on length scales smaller than the wavelength together with a high sensitivity
of plasmon properties for the dielectric functions of the involved media, the field of plas-
monics emerged3,26. Surface plasmons have found their way into many applications in the
fields of solar cells27, sensors28,29, amplification and lasers30.
The following chapter gives an introduction to the fundamental SPP properties and con-
tinues with a closer investigation of plasmon dispersion relations in different geometries.
In the end an introduction into commonly used excitation and detection schemes is given.

2.1 Fundamental SPP properties

Surface plasmons, as a wave of fluctuating surface charges, are referred to as SPP if
the surface wave is coupled with propagating light31. Although the nomenclature is not
uniform across the literature this terminology is used in the following and for the rest of
the thesis, if not stated otherwise. Additionally, the term SPP is used for propagating
SPPs in contrast to non propagating localized surface plasmon polaritons (LSPPs) as e.g.
in metallic nanoparticles.

Propagating SPP charge fluctuations can be described by a mixed transverse and longitu-
dinal electromagnetic field which disappears at |z| → ∞ and has a maximum directly at
the interface z = 0 (fig. 2.1)32. Given a propagation direction along the X-axis, the field
is expressed by

ESPP = E±
0 ei(kxx±kzz−ωt) (2.1)

where + is used for the field reaching into the dielectric (z ≥ 0) and − for the field
reaching into the metal (z ≤ 0). Both wave-vector components kx and kz are assumed to
be complex valued.
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2. Surface plasmon polaritons (SPPs)
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Figure 2.1: (a) Schematic of the charges and electromagnetic field lines of a SPP prop-
agating on a metal/dielectric (εm/εd) interface along x. Additionally indicated are the
magnetic field vector H⃗y perpendicular to the propagation direction x and the SPP wave-
length λSPP. (b) shows the exponential dependence of the field amplitude |Ez| in the
direction of z into the two different media according to eq. 2.5. Adapted from2.

After solving the Maxwell’s equation for the system of a metal half-space with the complex
dielectric function εm = ε′

m + iε′′
m adjacent to a dielectric medium with a real εd the SPP

dispersion relation can be written as

kx = ω

c

√
εmεd

εm + εd
. (2.2)

The wave-vector components normal to the propagation direction are also obtained33:

kj,z = ω

c

√
ε2

j

εm + εd
, j = d, m. (2.3)

In order to represent a propagating and surface bound wave, two conditions arise: kz has
to be purely imaginary to ensure the evanescent, surface bound character of the wave and
kx needs to contain a real part, which allows propagation. A still possible imaginary part
of kx describes the damping of the wave, due to ohmic losses in the metal32. Considering
eq. 2.2 and eq. 2.3, these conditions are fulfilled if the sum and the product of the dielectric
functions are either both positive or negative:

εm(ω) · εd(ω) < 0,

εm(ω) + εd(ω) < 0.
(2.4)

The conclusion from eq. 2.4 is, that one of the dielectric functions has to be negative with
an absolute value larger than that of the other. In the case of many noble metals, having
a large negative real part of the dielectric function together with a small imaginary part,
adjacent to a dielectric such as glass or air, bound surface modes can exist.

Since the wave-vector components of the SPP wave perpendicular to the surface are purely
imaginary the field amplitude of ESPP decreases normal to the surface exponentially with
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2.1. Fundamental SPP properties

− |kj,z| |z|. Thus the skin depth δ after which length the field is reduced to 1
e is expressed

by32:
δj = 1

|kj,z|
, j = d, m. (2.5)

This can also be examined for the two different involved media in the system:

δm = λ

2π

√
ε′

m + εd
ε2

m

δd = λ

2π

√
ε′

m + εd
ε2

d
.

(2.6)

Given the dielectric function for a noble metal and a typical dielectric it is evident, that
the field reaches further into the dielectric than the metal (see also fig. 2.1 (b)). Typical
penetration depths into the metal δm at λ = 600 nm are 24 nm for silver and 31 nm for
gold, further decreasing with increasing wavelength32. The penetration depth of the field
into the dielectric δd is on the order of half the wavelength of the incident light2 and was
experimentally observed by scanning tunneling optical microscopy (STOM)34 (section 2.4).

Fig. 2.2 shows a typical SPP dispersion relation for a silver/air interface calculated accord-
ing to eq. 2.2 using the complex dielectric function of silver from Johnson and Christy 35 .
If ω values are taken to be real kx becomes complex and the dispersion relation exhibits
a back bending in the vicinity of the asymptote of the lower branch18 before it continues
in the high energy branch. The back bending has been also investigated experimentally
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Figure 2.2: Real part of the SPP dispersion relation for a silver/air interface calculated
according to eq. 2.2 (black solid line). The dashed red line represents the light line
k0 = ck′

x

by Arakawa et al. 36 and occurs due to strong localization of the SPP mode in the metal
which is the reason for the large losses33. According to eq. 2.3 the high energy branch is
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2. Surface plasmon polaritons (SPPs)

not considered as a surface wave since the z component of the wave-vector in the metal
is no longer purely imaginary anymore. Also plotted in fig. 2.2 as red dashed line is the
air dispersion, known as the light line k0 = ck′

x which asymptotically approaches the SPP
dispersion relation at lower frequencies but never intersects with it. This shows that it is
not possible to directly excite SPPs with free propagating light or to couple SPPs directly
out as propagating radiation due to the momentum mismatch.

2.2 SPP dispersion relation in different geometries

2.2.1 Dispersion relation in a multilayer structure

For the application of plasmonics in real devices and for the sake of device miniaturization
it is often desirable to reduce the thickness of the metal and place the metal on different
substrates. Since SPPs as surface waves are very sensitive towards the properties of their
immediate environment the effect of a finite metal layer or different dielectric surrounding
media upon the dispersion relations needs to be considered. Pockrand 37 theoretically
described in 1978 a multilayer system which can be applied with high concordance to
a lot of device geometries involving thin metal films. The Schematic in fig. 2.3 shows
the multilayer system configuration used in the theoretical description. The dielectric

ε
1

ε
2

ε
3

ε
0

d
2

d
1

Figure 2.3: Schematic of a metal/dielectric multilayer system considered for the calcu-
lation of the SPP dispersion relation in eq. 2.7. The dielectric constants of the material
are εi and di the thicknesses of the metal and the dielectric layer. The light interaction
is determined to progress in the direction from material 0 to material 3

constants of the materials are εj and dj the thicknesses of the metal and the dielectric
layer. The light interaction is determined to progress in the direction from material 0 to
material 3. This configuration is suitable for the description of the sample geometry used
in the chapters 6 where a thin metal film (d1 and a complex ε1) is placed on a microscope
cover glass (real ε0) and covered with a protective layer of SiOx (d2 and real ε2) surrounded
by air (ε3).
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2.2. SPP dispersion relation in different geometries

If Maxwell’s equations are applied to this geometry restricted to p-polarized transvere
magnetic (TM) fields, the dispersion relation of the eigenmodes are obtained from the
eigenvalue equation D0123 = 0 with D0123 given as:

D0123 = k3z

ε3
+ k1z

ε1
− i tan (k2zd2)

(
k3zk1z

k2z

ε2
ε1ε3

+ k2z

ε2

)
+ r01e2ik1zd1

[
k1z

ε1
− k3z

ε3
− i tan (k2zd2)

(
k3zk1z

k2z

ε2
ε1ε3

− k2z

ε2

)] (2.7)

with

kjz =

√
εj

(
ω

c

)2
− k2

SPP , r01 =
(

k1z

ε1
− k0z

ε0

)(
k1z

ε1
+ k0z

ε0

)−1
(2.8)

where kjz is the wave vector component perpendicular and kSPP parallel to the surface in
the respective medium j. If real frequencies ω are considered the eigenvalue equation leads
again to complex solutions for kSPP where the real part of kSPP describes the propagation
and the imaginary part the damping of the eigenmodes. The first term of eq. 2.7 stands
for the dispersion of SPPs propagating along the interface between two half-spaces ε1 and
ε3 equivalent to eq. 2.2. The second term reflects the influence of the dielectric coating ε2

and the third term considers the finite thickness d1 of the metal film ε1.

In the case of a transparent dielectric coating with a purely real dielectric function (ε2 ≡ ε′)
eq. 2.7 can be approximated by

kSPP = k
(0)
SPP + k

(1)C
SPP + k

(1)R
SPP + k

(2)C
SPP + k

(2)R
SPP + k

(2)CR
SPP (2.9)

with
k

(0)
SPP = ω

c

√
ε1ε3

ε1 + ε3
, (2.10)

already implemented as the dispersion of SPPs at the interface between to half-spaces
(eq. 2.2). Additionally used are the correction terms

k
(1)C
SPP = ω

c

(
ε′

2 − ε3
ε′

2

)(
ε′

1ε3
ε′ + ε3

)2 (ε′
2 − ε′

1
ε3 − ε′

1

) (
−ε′

1ε3
)− 1

2

(2πd2
λ

)
, (2.11)

and

k
(2)C
SPP = k

(1)C
SPP

1
2

k
(1)C
SPP

Re
(
k

(0)
SPP

) (2 2ε2
3 − ε′2

2
ε3 (ε3 − ε′

2)
+ ε′

1 + ε3
−ε3

)
− i1

2
ε′′

1
ε′

1

 , (2.12)

which are considering the influence of the dielectric coating on the metal layer. The
first order term (eq. 2.11) is real and therefore causes a shift of the SPP wave-vector
proportional to d2

λ
11. Meanwhile, the complex second order term (eq. 2.12) describes an

increase in the inner damping in the case of ε2 > ε3. With growing thickness of the coating
layer the power flow in the lossy metal increases which results in an increase of damping
by a larger imaginary part of kSPP

37. The influence of the finite metal thickness d1 is
considered by

k
(1)R
SPP = ω

c
r01

( 2
ε3 − ε′

1

) ε′
1ε3

ε′
1 + ε3

3
2

 e
−2 2πd1

λ

−ε′
1√

−ε′
1−ε3 , (2.13)
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and

k
(2)R
SPP = k

(1)R
SPP

1
2

k
(1)R
SPP

Re
(
k

(0)
SPP

) (2ε′
1 + ε3
−ε3

)
− i ε′′
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with the correction term

k
(2)CR
SPP = k
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SPP k

(2)C
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Re
(
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(0)
SPP

) (−ε′
1

ε3
+ 2ε3

ε3 − ε′
2

+ ε′
2

2ε3

)
. (2.15)

A small thickness of the metal film d1 is mainly causing radiation damping of the SPP due
to coupling to propagating waves in the half-space ε0 also know as leakage radiation further
described in section 2.4.1. Fig. 2.4 (a) compares the dispersion for the gold/air half-space
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Figure 2.4: (a) SPP dispersion relations comparing the solution for a gold/air interface
(according to eq. 2.2, black solid line) with the multilayer solutions for different glass
coating thicknesses d2, calculated according to eq. 2.7. (b) Correlation of the real part
of the plasmon wave-vector k′

SPP with the thicknesses of a gold film d1 and the glass
coating d2 at a wavelength of 1000 nm.

system (eq. 2.2, black solid line), with the dispersions calculated for a multilayer system
(eq. 2.9, red dashed to dark green dashed double dotted line) consisting of glass as bottom
half-space (ε0 = 2.25), a 20 nm gold film (ε1 according to Johnson and Christy 35), glass
with varying thicknesses as dielectric coating (ε2 = 2.25) and air as top half-space (ε3 = 1).
The shift to higher wave vectors with increasing thickness of the glass coating d2 reflects
directly the influence of the term in eq. 2.11. Fig. 2.4 (b) depicts the correlation of the real
part of the wave-vector with varying thickness of the glass coating d2 and the gold film
thickness d1 at a wavelength of 1000 nm. The influence of the metal thickness on the real
part of the wave-vector is small compared to the influence of the coating thickness. Only
for small metal thicknesses (≈ 1–25 nm in the illustrated case of gold) eq. 2.13 and 2.14
produce a significant change in the real part of the wave-vector.
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2.2. SPP dispersion relation in different geometries

2.2.2 SPP propagation length

Another important quantity for the description of SPPs which can be extracted from the
dispersion relation is the propagation length LD which is connected to the plasmon wave
vector by

LD =
(
k′′

SPP
)−1

. (2.16)

This defines the propagation length LD as length after which the initial amplitude of the
SPP field has decayed to 1

e . This damping is caused by ohmic losses of the electrons
involved in the SPP oscillation and results finally in heating of the metal. If intensities
are observed the propagation length is used as follows33:

LD =
(
2k′′

SPP
)−1

. (2.17)

The propagation length is of special interest in the design of plasmonic devices in order
to consider an appropriate length scale of the involved structures. Fig. 2.5 (a) shows
calculated propagation lengths LD in the wavelength range from 400 to 1600 nm for the
three metals silver, gold and copper according to eq. 2.16. The values for k′′

SPP were
calculated with the formula for a metal and dielectric half-space (eq. 2.2) using the values
for the dielectric function of the three metals measured by Johnson and Christy 35 . A
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Figure 2.5: (a) Calculated propagation length LD over a range of wave-
lengths/frequencies for silver (black solid line), gold (red dashed line) and copper (blue
dotted line) according to eq. 2.16 using the k′′

SPP values from eq. 2.2. (b) Dependency of
the propagation length LD at 1000 nm on the thickness of a gold film d1 and the thickness
of a glass cover layer (ε2 = 2.25) d2.

first general observation from fig. 2.5 (a) is an increase of the propagation length in all
three metals with increasing wavelength. This is due to the fact, that the real part of the
dielectric function of the metals decreases for higher wavelengths. Due to the decreasing
penetration depth of the SPP into the metal with increasing wavelength, as described in
section 2.1, the ohmic losses in the metal are reduced, which increases the propagation
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2. Surface plasmon polaritons (SPPs)

length. The different propagation lengths for the different metals can be understood by the
differences in the complex part of the metal dielectric function, which describes the losses
upon interaction of the wave with the metal. Thus the imaginary part of the dielectric
function increases from silver, to gold and to copper in the examined wavelength range of
fig. 2.5.

Fig. 2.5 (b) shows the correlation between the propagation length LD and the thicknesses
of the metal film d1 and the dielectric coating d2. The results are obtained with the
multilayer system (eq. 2.9) at a wavelength of 1000 nm for a gold film and a glass coating
(ε2 = 2.25) with glass as underlying half-space (ε2 = 2.25) and air as covering half-space
(ε3 = 1). As the metal thickness exceeds the skin depth δ1 of the SPP into the metal,
radiation damping through coupling to propagating modes in the dielectric ε0 ceases to
play a role. This can be seen in the fast increase of the propagation length moving along the
x coordinate in fig. 2.5 (b) from lower to higher d1 values. The decrease of the propagation
length with increasing thickness of the dielectric coating illustrates the behavior mentioned
in section 2.2.1 (eq. 2.12). A larger amount of dielectric subjects more of the SPP to the
inner damping in the metal for the case ε2 > ε3.

2.2.3 Dispersion relation in metal cylinders

Since the first characterization of propagating modes along a surface of a metal wire38,
noble metal nanowires caught increased attention in the literature because of their po-
tential application as plasmonic building blocks7. Contrary to the case in a thin metal
film, the SPP field in a wire is not only strongly confined in one dimension (z-axis) but
in two dimensions, namely the z-axis and the axis perpendicular to the wire axis. This
additional localization has a strong effect on the dispersion relation of SPPs in such wires,
as shown in experiments with metal antennas, which resonances were shifted from the
external wavelength, depending on the material properties39 to λeff . Given the wire ge-

ε
d

ε
m 2 R

wire

L

x
||

z

Figure 2.6: Schematic of the metal wire used for the calculation of the dispersion relation
in eq. 2.19 denoting the wire length L, the radius Rwire, the dielectric function of the
wire εm and the dielectric function of the surrounding medium εd .

ometry depicted in fig. 2.6 with the wire of a length L, the radius Rwire, consisting of the
material εm and surrounded by the medium εd, the effective wavelength can be derived
by40:

λeff = λexc
k0

kSPP
− 4Rwire

m
, m ∈ N. (2.18)
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2.2. SPP dispersion relation in different geometries

Subtraction of the relation between the wire radius Rwire and the order of the resonance
m pose a justified approximation due to the virtual increase of the wire length through
the influence of the wire ends40.

To investigate SPP propagation along a metal nanowire an analysis of the full vector wave
equation41 is necessary. Using waveguide theory the TM0 modes of a cylindrical waveguide
can be derived by solving the following equation40:

εm (λ)
κ1Rwire

J1 (κ1Rwire)
J0 (κ1Rwire)

− εd
κ2Rwire

H
(1)
1 (κ1Rwire)

H
(1)
0 (κ1Rwire)

= 0 (2.19)

with

κ1 = k0

[
εm −

(
k′

SPP
k0

)2] 1
2

κ2 = k0

[
εd −

(
k′

SPP
k0

)2] 1
2

(2.20)

Exemplary results from eq. 2.19 for a silver wire with the radius Rwire = 5 nm (black
solid line) and Rwire = 10 nm (dark blue dotted line) are shown in fig. 2.7. In contrast to
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Figure 2.7: Comparison of SPP dispersion relations calculated according to the formula
for metal cylinders eq. 2.19 with a wire radius Rwire of 5 (black solid line) and 10 nm (dark
blue dotted line), calculated for a multilayer geometry (eq. 2.9) with a metal thickness
d1 of 10 (red dashed line) and 20 nm (green dash dotted line) and the half-space formula
eq. 2.2 (light blue dash double dotted line).

that, dispersion relations for the corresponding film thicknesses in a multilayer geometry
(d1 = 10 and 20 nm, red dashed and green dash dotted line) according to eq. 2.9 and the
half-space dispersion (eq. 2.2, bright blue dash double dotted line) are also shown. The
surrounding medium for all calculations in fig. 2.7 was assumed as air (εd = 1, ε0/ε2 = 1)
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2. Surface plasmon polaritons (SPPs)

For the dispersion relations of wires a clear trend is seen towards higher wave-vectors
as compared to extended metal films that can be seen as the result of the additional
confinement.

2.3 Excitation of SPPs

In order to excite SPPs energy and momentum conservation have to be fulfilled. As
mentioned before in section 2.1 the plasmon wave-vector kSPP exceeds always the wave-
vector for light in free space and it is therefore not possible to excite a SPP directly by light
propagating in free space. This is illustrated in fig. 2.8 with the dispersion of a silver/air
interface (black solid line) and the light line k0 (red dashed line). An indirect method for
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Figure 2.8: Illustration of the SPP dispersion for a silver/air interface (black solid line),
the light line k0 (red dashed line), the dispersion for light in glass kglass (blue dotted line)
and the maximum dispersion accessible with a high NA oil immersion objective kmax, NA

(NA = 1.4, green dashed dotted line). The orange shaded area indicates the range of
possible resonance between light propagating in a glass prism/objective and a SPP by
adjusting the angle θ (see fig. 2.9 (a), (b) and (c)).

launching SPPs using freely propagating waves employs the Otto configuration, where an
evanescent wave, formed at a glass/air interface in a total internal reflection geometry,
excites SPPs at a metal/air interface between a prism and a metal film (see schematic
fig. 2.9 (a))10. By adjusting the angle of incidence of the totally reflected beam inside the
prism the resonance can be tuned over a range of energies:

kSPP = kglass = ω

c
nglass/obj sin θ. (2.21)
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2.3. Excitation of SPPs

The tuning behavior is indicated in fig. 2.8 by the orange shaded area from the maximum
dispersion kglass (θ = 90◦, green dashed dotted line) towards the light line k0 (θ = 0◦).
SPPs with a dispersion within this region are also called leaky modes since coupling to
free propagating wave is possible, whereas modes with a dispersion shifted to higher kSPP

values are referred to as bound modes42.
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Figure 2.9: Different SPP excitation schemes. (a) Otto configuration. (b) Kretschmann
configuration. (c) Kretschmann like excitation with a high NA microscope oil immersion
objective. (d) excitation with an aperture SNOM probe. (e) excitation with a surface
defect. (f) excitation with a grating. Adapted from43

Fine control of the small gap of air between the prism and the metal film proposes an
experimental challenge, using the Otto configuration. This problem was solved by the
Kretschmann configuration where the metal film is deposited directly onto the prism
(fig. 2.9 (b))11. Excitation of SPPs can be monitored for both, the Otto and the
Kretschmann configuration, by measuring the amount of reflected light while tuning the
angle of incidence into the prism (see fig. 2.10). The SPP resonance condition according
to eq. 2.21 appears as a minimum in the reflection. These reflection measurements are
often called in the literature attenuated total reflection (ATR) method. Fig. 2.10 shows
the results of typical reflection measurements for the (a) Otto and (b) Kretschmann con-
figuration. The origin of the minimum in the ATR reflectivity curves can be interpreted
in two ways: First it can be seen as destructive interference between directly reflected
light at the interface and light emitted by the SPP after its excitation due to radiation
damping through coupling back to propagating waves. This can be seen in the reduction
of the reflectivity contrast for increasing metal film thicknesses in fig. 2.10 (b). Secondly,
to excite SPPs the incident propagating light at the specific angles θ is converted into the
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Figure 2.10: (a) ATR measurement in the Otto configuration for a gold film. The
reflection is plotted against the incident angle into the prism θ showing reflection curves
for different gap sizes dgap between the prism and the metal film ranging from 200 to
1000 nm. (b) ATR measurement in the Kretschmann configuration plotted as reflection
R against the incident angle into the prism θ for a gold film with thicknesses dm of 20
to 80 nm. Indicated is also the critical angle θcrit. for the prism glass/air interface (gray
dashed vertical line). Adapted from33.

surface bound wave which is not accessible for the detector and appears as a reduction in
the reflection signal.

An adaption of the Kretschmann configuration is the use of a high numerical oil immersion
objective as a substitute for the prism (fig. 2.9 (c))31,44–46. This method provides a further
step forward in flexibility regarding the choice of investigated samples, since any sample
fabricated on a microscope cover glass can be measured. One drawback of this method
compared to the initial use of a prism is the smaller range of accessible angles due to the
limited NA. of the objective (see kmax, NA in fig. 2.8).

Another method to overcome the mismatch of the free-space wave-vector k0 and the SPP
wave-vector kSPP is the use of diffraction gratings32,47. The diffraction grating is able
to overcome the momentum mismatch by adding an additional wave-vector component
connected to the grating constant g as follows:

kSPP = k0
√

εd sin(θ) + m
2π

g
, m ∈ N (2.22)

Suitable values for the angle of incidence θ, the lattice constant g and order of refraction
m for each excitation wavelength need to be chosen48 in order to achieve the resonance
condition with the SPP and the grating coupler fig. 2.9 (d). Such grating couplers have
been used to launch SPPs on metallic tips for the application in apertureless SNOM
techniques49 or on plasmonic waveguides16. Not only linear gratings, but any regular
sub-wavelength patterned structure such as nanohole or slit arrays can be used to couple
to SPPs50. From optical gratings the concept of adding a wave-vector component can be
expanded to scattering at surface defects such as nanoparticle arrays51, rough surfaces32,
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2.4. Detection of SPPs

few metal ridges52 down to single metal particles12,53, single holes54 and single slits55

(fig. 2.9 (e)). These single particles or holes behave like a dipolar SPP source when excited
with linearly polarized light. This situation can be also achieved by coupling excitons in
molecular films56–61 and single quantum dots62–64, excited by laser irradiation, to SPPs.
These excitons can also be electrically generated in an inorganic semiconductor based light
emitting diode (LED)65,66, organic light emitting diode (OLED)67 or a SWCNT field effect
transistor (FET)68 configuration .

A further approach to excite SPPs in a more localized manner is the use of sub-wavelength
light sources such as aperture probes53,69–71 or nanodiamonds at the end of a near field
probe72. In addition to the aforementioned optical approaches, SPPs can be also excited
by high73 and low energy electrons in the method of electron energy loss spectroscopy
(EELS)74. But also a scanning tunneling microscopy (STM) tip21,22,75 can be used as a
localized, electron based SPP source.

2.4 Detection of SPPs

All schemes presented before to excite SPPs enable in reverse also their detection. This
is for example seen by the minimum in ATR measurements or in EELS (sec. 2.3). But a
few concepts are worth mentioning, regardless, since they enable to detect SPPs without
the detection method being involved in the SPP excitation.

2.4.1 Leakage radiation

One frequently used concept is the detection of leakage radiation which was first experi-
mentally observed for SPPs excited on rough metal films73,76. For a sufficiently thin metal
film the SPP can couple propagating radiation into the underlying glass substrate since
for gold and silver the SPP wave-vector k′

SPP lies within the accessible wave-vector range
for a glass substrate (see orange shaded are in fig. 2.8):

k0 < k′
SPP < k0

√
ε0 (2.23)

As depicted in fig. 2.11 the leakage radiation is emitted at the plasmon resonance angle
θSPP which is the same angle at which in an ATR measurement the minimum of reflection
appears. This range of angles is connected to the k-space by:

k′
x = 2π

√
ε0
λ

sin(θ). (2.24)

In k-space the intensity of leakage radiation can be described by the following Lorentzian
distribution12:

I (kx) ∝ 1
(kx − k′

SPP)2 + (k′′
SPP)2 (2.25)
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Figure 2.11: Schematic of leakage radiation emission from a propagating SPP on a
metal film (ε1) into the underlying glass substrate ε0. The angle of emission is θSPP,
which is equal to the angle of the minimum reflection in the ATR measurements.

Thus, by measuring the full width at half maximum (FWHM) of the detected angular
distribution of leakage radiation intensity, the propagation length LD of the SPP can be
determined according to eq. 2.17. The direct imaging via leakage radiation microscopy
e.g. of structured metal films77, metal stripes and wires78 was reported in the literature.
Detection of leakage radiation was also applied in the realization of a SPP beam profiler79

and a SPP beam splitter based on metal particles80. A useful technique to detect the
angular distribution of leakage radiation emission is the method of Fourier plane imaging
described in more detail in chapter 3.

2.4.2 Near-field Microscopy

The technique to detect propagating SPPs with sub-wavelength resolution with a near-
field optical microscope is often called photon scanning tunneling microscopy (PSTM)
or STOM34,81. Tunneling refers here to the similarity to STM, that the evanescent SPP
collected by the aperture are converted to propagating modes guiding along the fiber to the
detector (fig. 2.12). Usually pulled or etched glass fibers are used for this technique which
are additionally coated at the tip end with a metal film in order to prevent radiation losses
out of the fiber82. The lateral resolution is determined by the actual shape and size of
the tip apex and can go down to 50 nm31. A feedback mechanism acting on either a STM
signal83 or the frequency of a piezoelectric tuning folk84 controls the tip sample distance
and enables the approach up to several nm. Thus the core of the fiber tip is in direct contact
with the evanescent tail of the SPP wave. In varying the distance in the z direction Adam
et al. 85 were able to confirm the spatial extent of the SPP fields into the surrounding air
above a silver film (eq. 2.6, sec. 2.1). Lateral maps of the SPP field amplitude can be also
measured and at the same time the feedback mechanism gives access to the topographic
information on the sample. This has been used to study the SPP propagation on structured
metal films81,86, silver nanowires87,88, chains of metal nanoparticles89, nanoantennas90

and metal waveguides16,83. It is also possible to investigate the interference pattern of
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Figure 2.12: Schematic of SPP detection via PSTM/STOM. The aperture tip is able to
collect the evanescent SPP waves and guide them as propagating waves along the fiber
to the detector.

several SPPs since a complete map of the fields is obtained, which has been shown for
SPP scattering and self interference at nanoparticles on metal films53, plasmonic Bragg
gratings91 and the standing wave pattern of two counter-propagating SPP waves92.

2.4.3 Fluorescence detection

SPP as oscillating charges on a metal surfaces are also known to be able to excite emitters
such as quantum dots or fluorescent molecules situated in the vicinity of the evanescent
fields. One condition for this excitation is the spectral overlap of the SPP and the absorp-
tion spectrum of the emitter. The intensity of emission is proportional to the intensity
of the local SPP field at the emitter position93. This concept was used by Ditlbacher
et al. 94 to image the SPP fields excited by surface defects and ridges in metal films52.
Successful imaging of SPP fields is possible if the direct non-radiative quenching of fluo-
rescence by close presence of the metal95 is prevented through introducing a transparent
dielectric spacer layer between the metal and the emitters. Under the influence of the high
electrical field strengths of the SPP the irreversible alteration in the molecular structure
of the emitters needs to be considered which in consequence results in bleaching of the
fluorescence94. This bleaching was deliberately used to image SPPs propagating along a
gold nanowire96.
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3 Back focal plane (BFP) imaging

Optical microscopy is a long established powerful tool to investigate objects with sizes that
cannot be seen by the human eye. In the case of confocal microscopy the optical resolution
can be as small as the diffraction limit97. The optical resolution determines the minimum
distance between two objects at which their signatures still can be distinguished. This
limit was pushed even further with new high resolution methods such as tip-enhanced
microscopy98–100 or super-resolution techniques97,101,102.

In all these techniques a microscope objective is involved in the imaging process. Through
the objective it is possible, not only to determine the information on the position, size
and wavelength of the investigated object, but also to extract the information in which
angles the light from the object is emitted or scattered. This can be achieved by observing
the Fourier plane of the imaging lens with a method called BFP imaging17 or recording
of radiation patterns103,104. BFP imaging enables access to additional information of
the observed emitter such as identification of different radiation channels105, changes in
the emission characteristics due to coupling effects106 or material properties107. The
distribution of radiation in the BFP can also be used in the context of ellipsometry108 and
to determine SPP propagation properties19.
In the following chapter an overview of the image formation in the BFP is given followed
by a theoretical description of the Fourier pattern from single and random dipoles on an
interface. The chapter concludes with an introduction to BFP imaging applied in the
context of SPPs.

3.1 Theoretical description of radiation patterns in the BFP

An emitter in a uniform medium exhibits a radiation behavior only determined by the in-
herent emitter properties while the surrounding medium does not favor or hinder emission
into certain angles. For example a point dipole in a uniform medium with the refrac-
tive index n1 emits according to the model of a Hertzian dipole, radially symmetric with
respect to the axis parallel to the dipole moment, with the highest intensity into angles
perpendicular to the dipole axis. Placing this emitter on an dielectric medium with n2

surrounded by a dielectric with n1 < n2 changes the fractions of radiation emitting into
different angles and angular regions defined in fig. 3.1 (a). The total radiated power can
be divided into emission into the upper half-space Pu, the forbidden zone of the lower
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3. Back focal plane (BFP) imaging

half-space Pf for angles larger than the critical angle θcrit., the allowed zone Pa for angles
smaller than θcrit. and power dissipated into the surface Pn

109:

P = Pu + Pf + Pa + Pn (3.1)

This geometry can be applied to a typical microscopy situation: An emitter, situated on
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Figure 3.1: (a) Schematic of radiated power by an emitter on an interface, in the center
of the circle, into different angular zones: Into the upper half-space Pu, the forbidden
zone of the lower half-space Pf for angles larger than the critical angle θcrit. and the
allowed zone Pa for angles smaller than θcrit.. Also indicated is the power dissipated
into the surface Pn. Adapted from110. (b) Shows a schematic of the projection of the
angular emission in the allowed zone by an imaging lens onto the BFP. The emitter is
situated in the center of the emission sphere. Also indicated are the critical angle θcrit.

and maximum collected angle by the lens θmax. Adapted from111.

a microscope cover glass, is placed into the focus of a high NA oil immersion objective.
Thus the light emitted into the lower half-space medium in the allowed light Pa and parts
of the forbidden light Pf can be collected. In order to calculate the intensity distribution
in the BFP of an objective as a function of the emission angle θ (fig. 3.1 (b)) the Weyl
representation can be applied. It uses the decomposition of the spherical wave started
by the emitter into planar waves and evanescent waves112. This approximation is well
suited for modern plan microscope objectives13 which are corrected for the curvature of
field on the Petzval surface113. With this the intensity distribution in the Fourier plane of
an objective lens can in general be expressed by the fields generated by the emitter Eemit:

IBFP ∝ 1
cos θ

|Eemit|2 . (3.2)

This includes the factor 1
cos θ , considering the conservation of energy for the projection

onto the BFP13 illustrated in fig. 3.1 (b). The same amount of power radiating from
the emitter along each equally sized angular section dθ is captured on ds. However, for
increasing angles θ this equal amount of power is projected onto a decreasing section
dr. This can be corrected by introducing the factor 1

cos θ originating from the relation
dr = cos θds (fig. 3.1 (b)). For the experimental application of BFP imaging it has to be
noted that most objectives are subdue to attenuation of the marginal rays which results
in an apparent reduction of the NA114,115.

22



3.1. Theoretical description of radiation patterns in the BFP

3.1.1 Dipolar emission characteristics in the BFP

Calculation of intensity distribution in the BFP

If a point dipole is placed on a dielectric interface and brought into the focus of a high NA
objective the fraction of power emitted into the different zones is altered compared to the
free space Hertzian model. The geometry of this system and all necessary parameters for
the theoretical calculation are shown in fig. 3.2 as published by Lieb et al. 13 . Φ and Θ are
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Figure 3.2: Schematic of the geometry used for the calculation of Fourier patterns from
dipoles on an interface. A dipole p⃗ with the orientation angles Φ and Θ is situated on an
interface with the refractive indices n1 and n2. The emission of the dipole into different
angles θ is mapped onto the BFP in dependence of kx and ky. Adapted from111.

the orientation angles for the dipole p⃗, and θS denotes the incident angle complementary
to the emission angle θ according to Snell’s law:

θS = arcsin
(

n2 sin θ

n1

)
. (3.3)

This allows for complex valued incident angles θS. The relation between the emission angle
θ and the k-vector coordinate system in the BFP can be expressed as the following:

∣∣k′∣∣ = 2π
n2
λ

sin(θ) = k0n2 sin(θ),(
k′

x

k′
y

)
=
(

cos φ

− sin φ

)
·
∣∣k′∣∣ . (3.4)

For the calculation of the intensity distribution of a single dipole in the BFP according to
eq. 3.2:

Idipole (θ, φ) ∝ 1
cos θ

(
EpE∗

p + EsE∗
s

)
, (3.5)
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3. Back focal plane (BFP) imaging

the parallel and perpendicular field components Ep and Es can be written as:

Ep = c1 (θ) cos Θ sin θ + c2 (θ) sin Θ cos θ cos (φ − Φ),

Es = c3 (θ) cos Θ sin (φ − Φ).
(3.6)

The c coefficients are

c1 (θ) = n2 cos θ

cos θS
tp (θS) Π (θS) ,

c2 (θ) = ntp (θS) Π (θS) ,

c3 (θ) = −n
cos θ

cos θS
ts (θS) Π (θS) ,

(3.7)

with
Π (θ) = e−ik0n1 cos (θS)δ. (3.8)

using the relative refractive index n = n2
n1

. In this case the Fresnel transmission coefficients
for p- and s-polarized light are expressed by48,113:

tp = 2n1 cos θS

n1 cos θ + n2 cos θS
,

ts = 2n1 cos θS

n1 cos θS + n2 cos θ
.

(3.9)

Π in eq. 3.8 denotes a propagation factor for the light traveling through the upper half-
space if the emitter is placed at a distance δ from the interface. Fig. 3.3 (a)-(d) shows
the results of this calculation for dipoles with different orientations (a)-(c), as well as
for several dipoles with random orientation (d), verified for the first time experimentally
by Fattinger and Lukosz 116 . For the calculation dipoles were placed on a glass cover-slide
(n2 = 1.5) in the focus of an oil immersion objective with NA = 1.4 surrounded by air
(n1 = 1). The pattern for a vertical dipole (fig. 3.3 (a)) shows a rotationally symmetric
intensity distribution with a maximum situated in the area of angles slightly larger than
the critical angle θcrit.. This is also indicated in the figure by the black dashed circle
to mark the radius for |k′|

k0
= NA = 1. No light is emitted in the central region of the

pattern. The two BFP patterns for the in-plane dipoles (fig: 3.3 (b) and (c)) exhibit axial
symmetry with the symmetry axis oriented parallel to the dipole axis. Again the main
fraction of the radiation is concentrated in two lobes in the ring between the critical angle
θcrit. and the maximum angle collected by the objective θmax. Due to the symmetry of
the field functions in eq. 3.6 the BFP intensity for dipoles with random orientation can
be calculated by the sum of the patterns from three individual dipoles oriented along
the major axes x, y and z (fig. 3.3 (a)-(c)). The radiation pattern for randomly oriented
dipoles (fig. 3.3 (d)) is again rotationally symmetric with a high similarity to the pattern
of a vertical dipole (fig. 3.3 (a)). Although, the main differences are the increased intensity
in the central region as well as a broader intensity distribution in the ring of the forbidden
zone due to the contribution of the two in-plane dipole components.

From the patterns in fig. 3.3 it can be also seen, that for all dipole orientations the majority
of the intensity is emitted in the forbidden region Pf . This indicates that for the detection

24



3.1. Theoretical description of radiation patterns in the BFP
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Figure 3.3: Calculated BFP patterns for dipoles on a glass/air interface with different
orientations according to fig. 3.2. In (a) Φ = 0◦ and Θ = 0◦, in (b) Φ = 0◦ and Θ = 90◦,
in (c) Φ = 90◦ and Θ = 90◦ and in (d) the pattern for dipoles with random orientation.
In all images the k values corresponding to the critical angle θcrit. are indicated by a
black dashed circle. Adapted from110.

of single dipole emitters with a microscope it is favorable to use an objective with a NA
larger than 1 for increased detection efficiency.

Detection efficiency of dipoles

As shown in the previous section the fraction of emission radiation into the different
angular zones changes with the dipole orientation. This makes the distinction between
contributions from differently oriented dipoles possible. By comparing the BFP patterns
for a vertical (fig. 3.3 (a)) and an in-plane dipole (fig. 3.3 (b), (c)) it is already evident,
that the central part of the pattern without intensity for the vertical dipole enables the
quantitative analysis of the two contributions105. Also the collection angle is an impor-
tant factor to determine how much radiation can be detected with the given microscope
objective. This can be summarized by introducing a measure for the detection efficiency
γ which puts the detected power Pdet in the allowed zone and a part of the forbidden zone
in relation with the total radiated power by the emitter P :

γ = Pdet
P

(3.10)
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3. Back focal plane (BFP) imaging

with the detected power Pdet given by:

Pdet =
∫ θmax

0
Pa dθ, for NA ≤ 1

Pdet = Pa +
∫ θmax

θcrit.

Pf dθ, for NA > 1.

(3.11)

Fig. 3.4 shows a plot of the detection efficiencies of a vertical (γ⊥, black solid line) and an
in-plane dipole (γ||, red dashed line), as well as for randomly oriented dipoles (γrandom, blue
dotted line) radiating at 670 nm as a function of the maximum detected angle θmax. The
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Figure 3.4: Plot of the detection efficiency γ for a vertical (γ⊥, black solid line) and
an in-plane dipole (γ||, red dashed line), as well as randomly oriented dipoles (γrandom,
blue dotted line) on a glass substrate (n2 = 1.51) detected with an index matched oil
immersion microscope objective as a function of the maximum detected angle θmax. The
green vertical dash dotted line indicates the maximum collected angle for an objective
with a NA = 1.4.

green, vertical dash dotted line indicates the detection efficiencies γ⊥ = 0.82, γ|| = 0.65 and
γrandom = 0.71 for an objective with NA = 1.4, θmax = 68.96◦ as in all optical setups used
for this work (see section 5.1). Again, from fig. 3.4 it is evident, that for single molecule
detection an objective with NA > 1 is favorable. In comparison, the detection efficiencies
for the investigated dipoles for a common air objective (NA = 0.95, θmax = 39.30◦) are
much lower: γ⊥ = 0.14, γ|| = 0.30 and γrandom = 0.24.
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3.2. SPP BFP imaging

3.2 SPP BFP imaging

3.2.1 SPP signatures in the BFP

As described in the previous chapter in section 2.3, SPPs exhibit a distinct reflection
minimum in a specific angular range when excited in the Kretschmann configuration.
This concept can be transferred to the Kretschmann-like configuration if the prism is
replaced by a high NA microscope objective. By detecting the reflected light in the BFP
all accessible angles can be observed at the same time15,117–120. Fig. 3.5 (a) shows a
representative experimental pattern for a reflected, linearly polarized (white double arrow)
beam at 900 nm, from a 20 nm gold film coated with 20 nm SiOx (n2 = 1.5) in the BFP.
The used objective had a NA of 1.4 defining the limiting radius of the pattern. Clearly
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Figure 3.5: (a) Reflection BFP pattern from a 20 nm gold film coated with 20 nm SiOx
(n2 = 1.5) and excited at 900 nm with a linearly polarized laser source. The polarization
direction is indicated by the white double arrow. (b) Shows a magnified cross section of
the reflection pattern along the blue dashed arrow revealing the ATR minimum.

the two dark arcs15,118–120 can be seen at the angle with the highest contrast in direction
of the incident polarization of the laser source. A magnified part of the cross section along
the blue indicated arrow is shown in fig. 3.5 (b). The angle with the smallest reflection is
at 44.6◦, which corresponds to a kSPP according to eq. 2.24 of 7.44 · 106 m−1. A theoretical
value of kSPP = 7.38 · 106 m−1 calculated with the multilayer formula (eq. 2.9) for the given
geometry shows good agreement. For slightly larger angles a weak increased signal occurs.
This is due to the constructive interference of directly reflected light with the leakage
radiation emitted by the launched SPPs. The exact position of this increased contribution
differs in the literature from angles smaller than the ATR minimum118,121 and larger14.

Again, the same concepts for excitation of SPPs can be applied to the detection of launched
plasmons as shown in section 2.4. Detection of angular resolved leakage radiation in
the BFP has been applied to SPPs propagating along waveguides122, nanowires123 and
launched by aperture53 and STM tips21,22. Also SPPs launched by a thin film of randomly
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3. Back focal plane (BFP) imaging

oriented dye molecules on a metal film, mentioned in the literature as surface plasmon
coupled emission (SPCE)57,124–127 were investigated by BFP imaging.

3.2.2 Calculation of BFP patterns for propagating plasmons on a noble metal
nanowire

Shegai et al. 19 expanded the calculation of Lieb et al. 13 from a single dipole to a chain
of dipoles connected by a phase in order to describe SPP propagation along a plasmonic
NW. The resulting BFP pattern shows the SPP signature through leakage radiation.
This theoretical description can be achieved by multiplying a single dipole pattern with
a structure factor S, which contains the phase correlation between the different dipoles
(fig. 3.6 (a)):

INW (θ, φ) = Idipole |S (θ, φ)| , (3.12)

with

S (θ, φ) =
N∑

m=1
ei(kSPP−n2k0 sin θ cos φ)xm . (3.13)

The refractive index of the cover glass/objective is n2, kSPP the plasmon wave-vector, k0

the vacuum wave-vector, N the number of dipoles and xm is the spatial coordinate of
each dipole along the wire length L . Fig. 3.6 shows calculated BFP patterns for silver
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Figure 3.6: (a) Schematic of a single dipole chain connected with a phase (blue indicated
wave) for the simulation of SPP propagation along a plasmonic nanowire (kSPP), following
the discussion in19. (b) Calculated BFP pattern for a 2µm long silver NW on glass
(n2 = 1.5) with a diameter of D = 50 nm and (c) D = 100 nm. The red dashed circle
indicates the maximum collectable angle for a NA = 1.4 objective and the yellow dotted
circle the critical angle.

NWs with a length of 2µm on glass (n2 = 1.5) with a diameter of (b) D = 50 nm and (c)
D = 100 nm. kSPP was calculated according to the diameters with the equation for metal
cylinders (eq. 2.19) with air as surrounding medium, using the experimental values for the
dielectric function of silver from Johnson and Christy 35 . The main apparent feature of
the BFP images is the fringe pattern which results from the dependence of S on the wire
length L through the dipole component coordinates xm and the fact that the NW is a finite
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3.2. SPP BFP imaging

emitter. Since kSPP for thinner wires is larger the maximum of the fringes in fig. 3.6 (b) lies
beyond the detectable k-vector range and only higher order fringes are visible. Due to the
confinement of the wave-vector into one direction the fringes show no dependency on the
coordinate ky perpendicular to the propagation direction. For the calculation the distance
from the interface δ due to the NW diameter D was also considered. The described model
was used by Shegai et al. 19 to approximate the SPPs launched by a focused laser on one
end of the NW, propagating along to the other end and the experimentally obtained BFP
pattern.
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4 Emitter Systems

This chapter gives insight into the emitter systems used for emitter-plasmon coupling
studied in this thesis. It starts with a description of the structural properties of SWCNTs
as rolled up cylinders from a single layer of sp2 hybridized carbon atoms. Followed up by an
introduction of the most important optical properties, resulting from the unique structure
of carbon nanotubes, which play a role in the conducted experiments. The second part is
dedicated to the structural and optical properties of rare earth doped nanocrystals. Their
multitude of accessible electronic states enable particular excitation pathways, such as
photon upconversion.

4.1 Single-walled carbon nanotubes (SWCNTs)

SWCNTs are hollow cylinders built up exclusively from sp2 hybridized carbon atoms. They
have a small diameter of down to 0.5 nm, but can be as long as centimeters. Due to the ex-
treme aspect ratio they are often regarded as a quasi one-dimensional (1D) model system.
Unique optical and electronic properties resulting from this 1D confinement made appli-
cations such as transparent thin-film transistors128, sensors129 and photo detectors130,
energy converters and storage131, LEDs132–134 among many others, possible.

4.1.1 Structural properties

The unit cell of SWCNTs can be understood as a seamless cylinder rolled up starting from
a single graphene sheet. Different nanotube structures are obtained due to different roll
up directions of the graphene sheet and are identified by their chirality. Two numbers n

and m with n, m ∈ N0 are defined as the chiral index usually written as (n, m). The chiral
index determines the composition of the circumferential vector C⃗h out of the graphene
lattice vectors a⃗1 and a⃗2 as indicated in fig. 4.1 for representative examples of a (4,4),
(6,0) and (6,5) SWCNTs. The vector addition is expressed by

C⃗h = n · a⃗1 + m · a⃗2 (4.1)

while C⃗h is connected with the SWCNT diameter by

d = |C⃗h|
π

= a

√
n2 + m2 + nm

π
. (4.2)
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4. Emitter Systems

Three different groups of nanotubes can be distinguished by their chirality: In armchair
nanotubes n = m, in zig-zag nanotubes one of the two indices equals zero and in chiral
SWCNTs m ̸= n and n, m ̸= 0. The length of the unit cell is defined by the translational
vector T⃗

T⃗ = 2m + n

dr
a⃗1 − 2n + m

dr
a⃗2. (4.3)

with dr as greatest common divisor of (2m + n) and (2n + m)135. Chiral SWCNTs exist in
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Figure 4.1: Schematic of the unit cell in the graphene lattice for the three different types
of SWCNTs: Armchair nanotubes with n = m, zig-zag tubes where n = 0 or m = 0 and
chiral SWCNTs with n ̸= m and n, m ̸= 0. A (4,4), (6,0) and (6,5) nanotube is shown
as representative examples. The origin of the name zigzag and armchair is indicated
by the yellow shaded structures. The graphene lattice vectors a⃗1 and a⃗2, as well as the
circumference C⃗h and translation vector T⃗ are indicated. Adapted from136.

a right-handed and mirrored left-handed form which are distinguishable by measuring the
circular dichroism and separable with different chiral wrapping agents137,138. Classification
of SWCNTs by the chiral index enables also an easy assignment of their conductance
behavior since there are metallic nanotubes with (n − m) mod3 = 0 and semiconducting
nanotubes for any other combination of n and m. In the following, all discussions regarding
carbon nanotubes are referring to semiconducting SWCNTs since only photoluminescent
semiconducting nanotubes were studied in this work. Apart from this short overview more
details can be found in the literature135,136,139–142.
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4.1. Single-walled carbon nanotubes (SWCNTs)

4.1.2 Optical properties

Due to their direct band gap, semiconducting carbon nanotubes exhibit photoluminescence
emission in the NIR to infrared (IR) region. Also strong Raman scattering is observed
due to resonance enhancement, comparable to other related carbon materials such as
graphene143 or fullerenes144.

The basic emission and absorption properties of SWCNTs can be very well approximated
by zone-folding the graphene band structure in the context of a free carrier model142.
The result can be seen in the schematic band structure in fig. 4.2. Transitions over the
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Figure 4.2: Schematics of the SWCNT band structure with a band gap between the
highest valence band V B1 and the lowest conduction band CB1.(a) shows the dominant
transitions E11 and E22 (red solid arrows) polarized parallel to the nanotube axis together
with the emission (black dashed arrow). (b) depicts the less prominent transitions E12

and E21 polarized perpendicular. The insets illustrate the orientation of the excitation
(red arrows) and emission (black dashed arrows) dipole moments and their orientation
with respect to the nanotube axis. Adapted from145

band gap between the highest valence band V B1 and the lowest conduction band CB1,
which connect bands with equal indices Eii are polarized parallel to the nanotube axis
as shown by the red solid arrows in fig. 4.2 (a). They are the predominant transitions in
SWCNTs. Less prominent are the transitions between bands of unequal indices Eij and
are polarized perpendicular to the nanotube long axis (fig. 4.2 (b))145,146. Relaxation after
optical excitation occurs mainly from the lowest conduction band CB1 into the highest
valence band V B1 and the resulting emitted photon is again polarized parallel to the
SWCNT axis (fig. 4.2 (a), (b) black dashed arrows).

Due to the 1D nature of carbon nanotubes the Coulomb interaction between charge carri-
ers can not be neglected. Thus the before mentioned free carrier model needs to be refined
by a model of excitons in order to describe the electronic system in more detail. The en-
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ergy minimization by the attractive electron-hole interaction results in a bright excitonic
state Ebright

11 300 to 400 meV below the continuum state E∞
11

147. This lowering of the en-
ergy is strongly dependent on the magnitude of the exciton binding energy Ebind and the
counteracting band-gap renormalization energy EBGR. Because of the high surface area of
SWCNTs both, the exciton binding energy Ebind and the band-gap renormalization energy
EBGR are influenced by the dielectric constant of the surrounding environment148. There-
fore a shift in the PL emission energy can be used to determine the dielectric surroundings
of SWCNTs149–151. The strongly bound excitons exhibit an exciton Bohr radius on the
order of few nanometers and are delocalized along the circumference of the nanotube, but
also mobile along its long axis with a diffusion length of about 100 nm152,153.

A very small Stokes-shift makes it experimentally challenging to separate emitted light
and reflected light from the excitation, thus for optical investigations the E22 transition is
excited. Excess energy between the Ebright

11 state and higher energy states after excitation
is rapidly converted non-radiatively and PL emission occurs through relaxation from the
Ebright

11 into the ground state154,155. Next to radiative recombination of excitons, non-
radiative recombination through dark states156,157 and other decay channels158 influence
the relaxation dynamics, which results in radiative lifetimes of E11 states in SWCNTs on
the order of several tens or hundreds of ps159–161. Thus the resulting quantum yield is in
the range of up to 7% for suspended SWCNTs162 but often lower and is further reduced
by quenching through defect sites163–165.

The energy of the band gap is roughly inversely proportional to the nanotube diameter
d. Thus an assignment of the chirality can be conducted upon the analysis of the PL
energy. Representative PL spectra for a (6,5), (8,3) and (8,3) SWCNT with emission
maxima at about 980 nm, 960 nm and 880 nm166 are shown in fig. 4.3 (a). The FWHM of
the presented emission peaks are between 10 and 30 nm.

Raman spectroscopy provides a well established tool for the investigation of graphitic
materials giving access to information on the degree of doping and functionalization167

but also nanotube specific parameters such as the phonon dispersion168, length, type and
chirality139. The resonant Raman condition can be achieved if the excitation wavelength
matches a transition energy Eii = ωex or the scattered Raman photon energy matches a
transition energy Eii = ωex − ωphonon. Both, or one of these conditions need to be met
to enhance the signal in case of single nanotube detection. Usually the most prominent
Raman features are the G band observed between 1500 and 1600 cm−1, a graphite-like
band common to all graphitic materials, and the G’ band usually located between 2600
and 2700 cm−1. Splitting of the G band into two sub-bands (G+ and G−) allows the
determination of semiconducting behavior169. Another important SWCNT Raman signal
is the radial breathing mode (RBM) in the range of 100–400 cm−1, a mode associated with
the vibration of carbon atoms in radial direction in relation to the nanotube axis. The
RBM shows inverse proportionality to the diameter, the frequency ωRBM is dependent on
the direct environment and enables a chirality assignment170. The defect-induced D band
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Figure 4.3: (a) PL spectra from three different individual SWCNTs after optical ex-
citation at 565 nm. The emission maximum is situated at about 980 nm for the (6,5)
chirality (black solid line), at 960 nm for (8,3) (red dashed line) and at 880 nm for (6,4)
SWCNTs (blue dotted line). (b) shows a combined Raman and PL spectrum from an
individual (6,4) nanotube. Next to the PL maximum at about 880 nm the prominent G
(≈ 1540 cm−1) and G’ (≈ 2570 cm−1) Raman lines are visible.

at approximately 1300 cm−1 allows for the determination of the defect concentration171.
A representative combined Raman and PL spectrum of a (6,4) SWCNT is depicted in
fig. 4.3 (b) for an excitation wavelength of 565 nm showing the G and G’ Raman bands
together with the PL signal peaking at 880 nm. There is no obvious D band contribution
visible and RBM peaks are not within the detected spectral range.

A more detailed description of the different Raman processes can be found in references136

and140.

4.2 Photon upconverting lanthanide doped nanoparticles

The process of photon upconversion is a method to convert long-wavelength excitation light
into output radiation at shorter wavelengths. Next to second harmonic generation and two
photon absorption172, upconversion is among the most investigated processes to achieve
this phenomenon. Many applications of photon upconversion, such as in lasers173,174,
lighting or displays175,176 and in labeling and bioimaging177,178 have been proposed and
realized. Advances in the synthesis of monodisperse colloidal nanocrystals, especially for
lanthanide doped nanophosphors179,180, and the ability to control size and shape have
made these material systems even more attractive for the investigation and application of
upconversion processes.
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4.2.1 Structural properties

Upconverted PL could be observed in NaYF4, YF3
181, SrCl2 182, different ceramic mate-

rials183,184 and fluorohafnate glasses185 as host materials doped with lanthanide ions such
as Yb3+, Er3+, Tm3+ and Ho3+ or combinations of these. The most efficient upconversion
(UC) materials known today are based on fluorides doped with Yb3+ and Er3+ or Yb3+

and Tm3+ 186–188. An important criterion for efficient UC host materials are low phonon
energies to minimize the chances for non-radiative multiphonon relaxation processes187,189.
Lanthanide-doping in these matrices is always accompanied by the formation of crystal
defects such as interstitial anions and cation vacancies to maintain charge neutrality. To
sustain a single crystal phase of the host for efficient UC, the dopant concentration needs
to be rigorously controlled. In order to minimize crystal defects and lattice stress, which
further promote non-radiative relaxation processes, host lattices based on cations like Na+,
Ca2+ and Y3+ with ionic radii close to those of the lanthanide dopant ions, appear to be
superior190. NaYF4 proved to be the most efficient UC host material and crystallizes in
a cubic (α-NaYF4) and a hexagonal (β-NaYF4) structure. Cubic α-NaYF4 crystallizes in
the CaF2 structure type191 with Na and Y creating a cubic closest packing (ccp) Bravais
lattice and F filling all the eight tetrahedral positions as can be seen in fig. 4.4 (a). Thus
Na and Y are coordinated by eight F atoms, respectively and F by four Na/Y atoms
(gray shaded cube and yellow shaded tetrahedron in fig. 4.4 (a)). The hexagonal phase of
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Figure 4.4: (a) Crystal structure of cubic α-NaYF4 with the space group Fm3̄m. The
structure is based in the CaF2 structure typ with a ccp Na/Y lattice and F situated in
the tetrahedral sites (yellow shaded tetrahedron). Na and Y are coordinated by eight
F atoms (gray shaded cube). (b) Crystal structure of hexagonal β-NaYF4 in the space
group P63/m. Sodium ions are situated along the unit cell edges in direction of the c-
axis. They are coordinated by eight F atoms which leads to chains of surface connected,
distorted octahedra (red shaded octahedra). The coordination octahedra for the lower
right Na atoms were omitted to improve the visibility of the structure. Central Na and
Y ions are coordinated by nine F atoms.

NaYF4 crystallizes in a structure derivative of the UCl3 structure with the space group
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4.2. Photon upconverting lanthanide doped nanoparticles

P63/m 192 as depicted in fig. 4.4 (b)193. In this structure Na ions are situated along the
unit cell edges in direction of the c-axis. The coordination by eight F atoms leads to chains
of face connected, distorted coordination octahedra (red shaded octahedra in fig. 4.4 (b)).
Na and Y ions situated in the center of the unit cell are coordinated by nine F atoms,
respectively. For highly efficient UC nanocrystals the dopant concentration of Er should
not exceed 3%.

Recent progress in the synthesis of lanthanide doped NaYF4 has made it possible to create
colloidal solutions of doped NaYF4 nanocrystals with diameters down to several tens of
nanometers. Adjustment of the synthesis conditions leads also to good control of the
nanocrystal morphology, which appears in form of spheres, rods, hexagonal prisms and
plates180.

4.2.2 Optical properties

The nonlinear PL phenomena known in the literature as UC194 in these materials is
characterized by subsequent absorption of two or more photons via long-lived intermediate
energy states followed by the emission of photons at a shorter wavelength than the initial
pump wavelength. The UC process can be divided into three general mechanisms: excited
state absorption (ESA), energy transfer upconversion (ETU) and photon avalanche (PA).
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Figure 4.5: Energy diagram of a simplified three level system to visualize three possi-
ble UC mechanisms:(a) ESA, (b) ETU and (c) PA. The green dashed dotted, the red
dashed and the blue full arrows represent photon excitation, energy transfer and emission
processes, respectively. Adapted from179

In the case of ESA the absorption of successive photons occurs in a single ion. A schematic
energy diagram for a simplified three level system is shown in fig. 4.5 (a). Resonant
excitation promotes the ion from the ground level G to the excited metastable level E1 in
a process called ground state absorption (GSA). After a second pump photon is absorbed,
further excitation from E1 to E2 occurs which results in UC emission according to the
E2 → G optical transition179. Also the process of ETU utilizes the sequential absorption
of two photons but the essential difference to ESA is that the second excitation is realized
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4. Emitter Systems

through energy transfer between two adjacent ions. Each of the two neighboring ions can
absorb a pump photon of the same energy, populating in both the metastable level E1
(fig. 4.5 (b) step I). Following a non-radiative energy transfer, one of the ions is promoted to
the upper emitting state E2 while the other ion relaxes into the ground state G (fig. 4.5 (b)
step II). The efficiency of this mechanism is strongly dependent on the average distance
between the neighboring ions and can be influenced by the dopant concentration179. PA
UC features an unusual pump mechanism requiring a pump intensity above a certain
threshold195. The first excitation populates E1 by weak non-resonant GSA followed by
resonant ESA resulting in the population of the higher excited state E2 (fig. 4.5 (c) step I).
Besides relaxing back into the ground state G a cross relaxation to a neighboring ion can
occur which results in both ions being in the first excited state E1 (fig. 4.5 (c) step II).
If the rate of cross relaxation exceeds the rate for relaxation directly into the ground
state G the available number of ions in the excited state for subsequent ESA increases
(fig. 4.5 (c) step III)196. Fig. 4.6 illustrates the involved optical processes in the example
of Yb and Er doped NaYF4 upon excitation in the NIR. ESA occurs in the Er system
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Figure 4.6: Energy diagram for ytterbium and erbium in Yb and Er doped NaYF4 and
the involved excitation (dotted/dashed arrows), energy transfer (dashed arrows) and
emission processes (solid arrows). Next to the direct excitation of Er in an subsequent
two photon process Yb3+ can act as an energy transmitter and populate higher excited
states in Er3+ due to the close proximity in the crystal matrix

after subsequent absorption of two photons with the wavelength of ≈980 nm into the 4F7/2

state and is followed by emission from the 2H11/2 and 4S3/2 levels in the visible (VIS) range
(≈550 nm) after internal non-radiative relaxation. The Yb dopant, which is introduced
in excess compared to Er, can assist the population of the first excitation in Er (4I11/2)
for subsequent ESA by energy transfer but mainly contributes to the ETU process. ETU
occurs in this system by energy transfer from the excited state in Yb into either the 4F7/2
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4.2. Photon upconverting lanthanide doped nanoparticles

state of Er connected to the green emission or the 4F9/2 level for subsequent relaxation
through emission of a red (≈650 nm) photon. The efficiency of all UC processes can be
improved by using emitters with a long lifetime of the first excited state. Although, the
use of smaller particles makes it necessary to consider additional non-radiative pathways
due to the higher fraction of ions in close proximity to the surface197, common lifetimes
are reported on the order of several milliseconds198.

By selecting suitable dopants and dopant combinations the UC-emission can be tuned
from the VIS to the NIR spectral region199. A low autofluorescence background, non
blinking emission and a very high photostablity200,201 together with the highly controllable
morphology make them useful emitters with a broad range of applications.
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5 Experimental details

This chapter is giving an overview of the experimental setups used for the experiments
presented in this work, the investigated sample materials and their preparation. The first
part gives insight into the optical systems including details of excitation and detection
pathways in the utilized microscope as well as a description of the aperture SNOM con-
figuration. The preparation of carbon nanotube, silver nanowire and rare earth doped
nanocrystal samples are described in the second part.

5.1 Microscope setup

5.1.1 Confocal microscope

The basis for all used optical setups was an inverted optical microscope (Nikon Eclipse
TE2000) equipped with an oil immersion objective featuring a NA of 1.4 (Nikon CFI
Planapochromat VC 60x). To allow confocal raster scanning the sample is mounted on
a closed loop x,y-piezo stage (Physik Instrumente PI–527). The laser sources used for
excitation were semiconductor diode lasers with λex = 565 nm (Coherent Sapphire) and
λex = 980 nm (custom made Spectra-Laser). In order to ensure excitation with only one
laser line and to suppress any fluorescence from the laser gain material a narrow bandpass
filter (FWHM of 10 nm) with the corresponding central wavelength was placed after each
laser source. Confocal excitation was achieved after consecutive beam expansion to a beam
diameter of ≈ 10 mm by placing a pinhole with a diameter of 25µm in the focal spot of
the second beam expansion for spatial filtering. The beam diameter was chosen to ensure
a slight overfilling of the objective back aperture in order to make use of the full NA of
the microscope objective.

Fig. 5.1 (a) and (b) shows a schematic beam path of the available detection methods
after confocal excitation. The beam splitter separates the excitation from the detection
and needs to be selected according to the excitation wavelength λex (dichroic 568 nm from
Melles Griot or pellicle 33:67 from Thorlabs). The beam needs to be collimated again by L1
after the intermediate image, which is created by the tube lens integrated in the microscope
body, and can be focused subsequently (L2) on the pixel array of a charge coupled device
(CCD) camera (Andor Newton or Andor iDus) for wide-field real-space imaging. Focusing
(L2) on the chip of an avalanche photo diode (APD) (Laser Components COUNT 100 or
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COUNT 200) and simultaneous raster scanning of the sample enables the detection of
confocal scanning images. As a third alternative detection mode a spectrometer can be
used by focusing into the entrance slit of a compact optical spectrometer (Andor Shamrock
303i). The fourth detection method is the imaging of BFP patterns as shown in fig. 5.1 (b),
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Figure 5.1: Schematic of the optical setup. Four different imaging and detection meth-
ods are available after confocal laser excitation at λex = 565 or 980 nm: (a) Real space
imaging by a CCD camera, scanning confocal detection using an avalanche photo diode
(APD) and spectroscopy at the current position. After collimation (L1) the lens L2 fo-
cuses the signal onto the CCD array, APD chip or the spectrometer entrance slit. (b)
Fourier (BFP) imaging by a CCD camera. Together with the tube lens, the lens L3
projects the BFP onto the detector array. An optical filter F can be placed optionally in
all detection methods to filter the desired spectral region.

where the lens L3, together with the tube lens, project the Fourier plane onto the CCD
camera. Details of the Fourier plane imaging can be found in section 5.1.2

In the case of real-space imaging, BFP imaging or confocal scanning the desired detected
spectral range can be chosen by the placement of different optical filters F: For the in-
vestigation of SPPs launched by SWCNT emission in chapter 6 a 950 nm long-pass was
chosen. To filter for a broader selection of chiralities a 860 nm long-pass was used for the
plasmon excitation of SWCNT emission in chapter 7. One distinct emission band of the
rare earth doped nanocrystals (NCs) was selected by a band-pass filter centered at 670 nm
with a FWHM of 10 nm in the experiments presented in chapter 8.
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5.1. Microscope setup

5.1.2 BFP imaging

As described in chapter 3 a map of the angular distribution of emission created in the
BFP of a lens contains a lot of information on the emission characteristics of the observed
object. In order to record this BFP pattern in the case of a microscope one can use the
fact that every lens creates a Fourier transformation of the image in the focal plane behind
the lens, again with the distance of the focal length113,202. It has to be noted that the
limited lens diameter corresponds to a filtering of k-vectors larger than kmax. Although
this leads to image distortions, which influence the exact image, they do not contradict
the demonstrated principle of the image formation. Usually, the first Fourier plane of
the objective lens (OL in fig. 5.2) is not directly accessible since it is situated inside the
objective barrel in the case of most commercially available objectives. The used microscope
contains a tube lens (TL) inside the microscope body which creates an intermediate image
(image plane’) for access through the oculars. This intermediate image can be used to
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Figure 5.2: Schematic of the beam path in order to image the BFP of a microscope
objective. The two rays with different radiation angles θ1/θ2 are collected by the objective
lens (OL, focal length fobj.) and are projected onto the Fourier plane inside the objective
barrel. After the image plane’ is recreated by the tube lens (TL, focal length fTL)
the Bertrand lens (BL, focal length fBL) forms again the Fourier image’ which can be
recorded by a detector. The emission angles θ1/θ2 are connected with the wave-vectors
k′

1/k′
2 in Fourier space according to eq. 3.4.

create a second Fourier image by positioning a Bertrand lens13 (BL) at the exact distance
of its focal length to the intermediate image. Thus a detector placed at the distance of
the focal length fBL to the Bertrand lens is able to record the BFP of the initial image
in the focal plane of the microscope objective. The setup of the tube lens together with
the Bertrand lens is also called in the literature 4f -configuration or -correlator203. By
using two consecutive 4f -configurations it is possible to create an intermediate Fourier
plane which is accessible to place adequate beam stops and masks for Fourier filtering or
selection of specific spatial frequencies204. This is conceptually comparable to dark-field
imaging in TEM205 or Fourier filtering in the context of image or signal processing206. It
is important to note that the here described and used configuration is creating the BFP
image out of all collected light in the field of view of the objective. In order to limit the
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pattern to a confocal detection volume a pinhole can be placed in the intermediate image
plane between tube lens and Bertrand lens (fig. 5.2).

5.1.3 Aperture scanning optical near-field microscopy (SNOM) configuration

Aperture SNOM is a near-field microscopy technique which enables optical excitation and
collection from a confined region at the end of an aperture fiber tip. Usually, the fiber
is coated with a metal film in order to prevent light from leaking out of the fiber. The
aperture SNOM can be used in collection mode, excitation mode or a combination of
both33. In excitation mode the tapered fiber is used to channel down the light coupled
into the fiber at the long end and confine it to a small excitation volume where evanescent
waves reach only a few nanometers beyond the tip end.

The before described confocal system can be equipped with a home built head for shear-
force detection used for atomic force microscopy (AFM), which gives the possibility to
keep an aperture tip or glass tip within a constant distance of only several nanometers
from the sample surface. Commercial aluminum coated aperture probes (Lovalite) with a
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Figure 5.3: Schematic of the aperture SNOM configuration. The aperture fiber (AF)
is mounted to the tuning fork (TF) and excited with a HeNe laser at λex = 633 nm.
Besides the scan motion from the basic confocal setup the tip scan stage can move the
tip position relative to the sample. The tip sample distance control is enabled by a SPM
controller regulating upon the frequency shift of the tuning fork together z-piezo tube
(PZ).

nominal aperture diameter of 70 nm for aperture SNOM measurements and home etched
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glass fiber tips for AFM investigations were mounted to a quartz tuning fork (TF) at the
end of a z-piezo tube (PT), as depicted in fig. 5.3. The tip sample distance control is
regulated by a commercially available SPM controller (attocube ASC500) using a phase-
locked-loop (PLL), constantly monitoring the resonance frequency of the tuning fork. To
ensure a constant oscillation, the tuning fork is driven by a dither piezo, mounted in close
range, with a variable frequency f . Three feedback loops are applied to keep the tip at
a constant distance with respect to the sample surface: The amplitude of the tuning fork
resonance maximum is held constant by a first proportional-integral (PI) feedback loop
which regulates the driving amplitude of the dither piezo. A second PI loop is controlling
the driving frequency fd of the dither piezo in order to keep the phase of the resonance at
a constant value. The actual distance between tip and sample surface is then controlled
by a third PI loop which regulates the voltages leading to the z-piezo tube by comparing
the frequency shift between the undisturbed system and the system under the influence
of forces originating from the surface in close range. A more detailed description of the
distance control can be found in the reference by Georgi 136 . In contrast to the system
described by136 the lateral displacement of the tip was achieved by mounting the z-piezo
tube inside a x/y-scan stage similar to the sample scan stage in fig. 5.3. Using aperture
SNOM tips as probes requires much more attention to the mechanical stability of the fiber
end reaching out of the scan head. Every mechanical contact has a large influence on the
resonance frequency of the tuning fork, hence the lateral tip displacement by a x/y-piezo
tube was not applicable.

5.2 Sample preparation and configuration

5.2.1 SWCNTs samples on multilayer thin films

Samples of SWCNTs were prepared from raw commercially available powder, produced
using cobalt-molybdenum catalyst (CoMoCat) particles207,208 and the high pressure car-
bon monoxide (HiPCO) method209,210. Besides the presence of many different chiralities
upon synthesis211 CoMoCat material shows an excess of (6,5) SWCNTs, next to smaller
amounts of (6,4), (8,3) and (9,1) SWCNTs. Whereas HiPCO SWCNTs exhibit a rather
uniform distribution of these chiralities and in general a larger diameter and chirality dis-
tribution. The interest in these specific chiralities is their emission wavelengths which are
situated in the still detectable range of the used silicon detectors and the excitation with
the used laser sources is readily possible (see section 5.1). Since raw SWCNTs are not sol-
uble in water and are forming bundles due to the strong van der Waals forces interacting
between the nanotube sidewalls, they are brought into solution with the aid of surfac-
tants. These surfactants enclose the nanotubes in a micelle due to the non-polar part and
arrange the contact with the surrounding solvent through their polar part. Frequently
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used surfactants for dissolving SWCNT are e.g. sodium dodecyl sulfate (SDS)163, sodium
cholate (SC)212 and sodium deoxycholate (SDC)213 among many others214.

One milligram of raw HiPCO (Unidym Inc.) and one milligram CoMoCat (Sigma-Aldrich
Inc.) SWCNTs per mL wt% SDC solution in water were each dispersed by sonication over
3 h (Bandelin Sonopuls HD2200/UW2200) at the lowest power setting and constant ice
cooling. After subsequent centrifugation to remove remaining bundles, the supernatant
solutions were used to be spin-coated on top of multilayer metal/dielectric sample sub-
strates.

All the experiments in chapter 6 were conducted with HiPCO SWCNTs spin-coated onto
metal/dielectric multilayer samples provided by the group of Dr. Alexandre Bouhelier
(Universiteé de Bourgogne, Dijon, France). The samples consisted of a 25 nm gold film
evaporated on standard microscope cover slides (borosilicate glass D 263TM, Marienfeld
GmbH). The thickness of the cover glasses was between 130 and 160µm and they feature
a refractive index of nD = 1.52 at 589 nm. On top of the gold film SiOx spacer layers with
different thicknesses of 8, 10, 15, 28 and 35 nm were evaporated.

The multilayer sample substrate used in the experiments presented in chapter 7 were
provided by the group of Prof. Ulf Kleineberg (Ludwig-Maximilians-Universität München,
Germany). Featuring a 20 nm gold film evaporated on top of the same microscope cover
glasses with an additional 20 nm SiOx spacer layer. Solutions of CoMoCat SWCNTs were
spin-coated on top.

5.2.2 Silver nanowires and rare earth nanocrystals: sample preparation

Silver nanowire material was synthesized in the group of Prof. Sebastian Mackowski
(Nikolaus Copernikus University, Torun, Poland) using a solution based polyol pro-
cess215,216. AgNO3 is reduced by ethylene glycol in the presence of copper nanoparticles
and polyvinylpyrrolidone (PVP) in heated solution at 160◦C. The copper nanoparticles
act as growth seeds and the PVP is channeling the growth along one direction by stop-
ping the nanowire to grow in diameter through creation of micelles. At the same time
aggregation of several NWs is prevented by the PVP. With this method silver NWs up
to 50µm in length and a rather broad diameter distribution from 20 nm to 300 nm217 are
obtained. Fig. 5.4 (a) shows a representative SEM image of a silver NWs together with a
more detailed micrograph of two inter-crossing NWs in fig. 5.4 (b).

Rare earth doped NCs were synthesized in the group of Prof. Paras N. Prasad (State Uni-
versity of New York, Buffalo, NY, United States of America). The used NCs consisted of
NaYF4 doped with 20 wt% ytterbium and 2 wt% erbium. NaYF4 NCs were obtained by
thermolysis of yttrium-tri fluor acetate (TFA), ytterbium-TFA, erbium-TFA and sodium-
TFA precursors218,219. With this method doped NCs with a size distribution of 25-30 nm
were obtained178. Fig. 5.5 shows a representative emission spectrum of a single NC after
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(a) (b)

Figure 5.4: (a) SEM micrograph of silver NWs. The scale bar represents 10µm. (b).
Detailed SEM micrograph with larger magnification of two silver NWs inter-crossing.
The scale bar represents 100 nm.

excitation with 980 nm, featuring two distinct emission bands with maxima around 550
and 660 nm. These main emission bands can be assigned to relaxations in the doped Er
ions after UC excitation indicated in fig. 4.6 in section 4.2.2 as green and red solid arrows.
Several electronic levels contribute to the emission bands resulting in several visible sub-
peaks. Based on the cubic lattice structure of the used NaYF4 host crystal, as shown in
fig. 4.4 (a) in section 4.2.1, and the dopant concentration of 2 wt% emitting Er ions the
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Figure 5.5: Emission spectrum of NaYF4 doped with 20 wt% yttrium and 2 wt% er-
bium. Two emission bands at about 660 and 550 nm are visible. The sub-peaks are
caused by several energetic closely situated bands contributing to the emission (see also
section 4.2.2)
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number of emission centers in a single crystal, with a diameter of 20 nm (50 nm), can be
estimated to be about ≈ 600 (9200).

To prepare combined samples, a droplet of the silver NW solution was spin-coated on a
standard microscope cover glass (Marienfeld GmbH). Doped NCs were spin-coated in a
second step on top of the nanowire sample.
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6 Launching SPPs by SWCNT emission

This chapter is based on the article "Launching Propagating Surface Plasmon Polaritons
by a Single Carbon Nanotube Dipolar Emitter" which was published in Nano Lett. 2012,
12, 177.

As presented in chapter 2, direct excitation of SPPs with propagating light is not pos-
sible and different schemes coupling laser light to SPPs have been developed. Since for
nanophotonic applications device miniaturization and integration of optics and electron-
ics on a single chip is desirable, different methods were proposed to excite SPPs through
emission from dye molecules56–61 or semiconductor nanocrystals62–64. Despite the possible
integration into circuitry, electrical contacting and excitation of such single SPP sources,
however, would be extremely challenging and external optical pumping would still be
required. Ideally, SPP sources would operate in the NIR spectral region to exploit the
long propagation length of plasmons in this regime and to minimize losses as described in
section 2.2. Moreover, efficient coupling of SPPs to functional elements, for example for
focusing91,220 refraction221 and guiding26 requires the directional excitation of plasmons.

In the following the description of directional excitation of propagating surface plasmon
polaritons on a thin metal film by individual single-walled carbon nanotubes is investi-
gated. Upon laser excitation in the visible photoluminescent SWCNTs launch SPPs in the
NIR propagating for several micrometers predominately in the direction of the nanotube
axis. SPP excitation and propagation are investigated by leakage radiation microscopy, in-
troduced in section 2.4.1, in real and Fourier space. Polarized radiation patterns recorded
for single SWCNTs on gold films reveal an almost complete redistribution of the angu-
lar emission with respect to SWCNTs on glass, resulting in highly directive PL emission
lobes. The observed emission characteristics of the nanotubes are also in marked dif-
ference to the case of coupling to localized radiating surface plasmons in a sharp metal
tip antenna105. Rigorous model calculations of spatial intensity distributions and radi-
ation patterns show that plasmon excitation results from radiating point dipole sources.
The observed directionality and long propagation length together with the well-controlled
emission spectra of SWCNTs and the possibility of electrical excitation of emission222,223

makes them promising candidates as functional elements in nanophotonic devices.
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6. Launching SPPs by SWCNT emission

6.1 Emission characteristics of single SWCNTs on a thin gold
film

A solution of dispersed HiPCO nanotubes prepared as described in section 5.2.1 was spin-
coated onto a 25 nm gold film evaporated on a microscope cover glass, with an additional
35±5 nm SiOx spacer layer on top. The dielectric spacer layer was introduced to prevent
quenching of the SWCNT PL via coupling to non-radiative lossy modes in the metal93,224.
The used microscope and detection methods of scanning confocal, real space and back
focal plane detection are described in section 5.1 (fig. 5.1). For all detection methods in
this chapter a 950 nm longpass was chosen which, together with the diminishing detection
efficiency of the CCD camera and APD above 1010 nm, limits the detected spectral window
to select the emission of (6,5) SWCNTs.

As a first step the samples were imaged by scanning confocal PL microscopy to locate (6,5)
SWCNTs. A representative PL image is shown in fig. 6.1 (a). The SWCNTs appear in the
confocal image as diffraction-limited luminescent spots. This is expected since the raw
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Figure 6.1: (a) Confocal PL image of single SWCNTs on a 35 nm SiOx spacer layer on
top of a 25 nm gold film. The scale bar represents 2.0µm. The laser polarization, indi-
cated by the white arrow, selects mainly nanotubes with vertical orientation. Launching
of SPPs upon local laser excitation is shown for three SWCNTs marked in (a) by b, c and
d. In the Fourier (k-) space images of these nanotubes ((b)-(d)) SPP excitation renders
sharp arcs formed by photons with in-plane momentum kx matching the plasmon mo-
mentum kSPP. In the corresponding real space images ((e)-(g)) SPPs propagation leads
to a double lobe structure extending several microns away from the central excitation
spot. The scale bar represents 4.0µm. The same directivity of plasmon excitation is seen
in the corresponding Fourier and real space images ((b) and (e), (c) and (f), (d) and (g),
respectively). Plasmons are launched predominately in the direction of the SWCNTs.

material contains rather short nanotubes that are cut further by sonication225–227 with
typical lengths in the range of 500 nm157. Next, BFP radiation patterns (fig. 6.1 (b)-(d))
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and real space image (fig. 6.1 (e)-(g)) of each SWCNT, identified in the PL image, were
recorded . The most prominent characteristic of the Fourier plane images (fig. 6.1 (b)-(d))
is the confinement of the emission to a very narrow angular range. The observed rings
are the signatures of plasmons radiating into the substrate228: The radius of the rings is
determined by the resonance condition between SPPs bound to the SiOx-gold interface
and photons in the lower half-space with higher refractive index (noil/glass). Due to mo-
mentum conservation plasmons can only couple to photons with equal in-plane momentum
kSPP = kx. The fact that the rings are not continuous and only bright arcs are observed
originates from a polarized excitation source, demonstrating the directional excitation and
propagation of the SPPs. Directional propagation of the SPPs is even more evident in
the corresponding real space images (fig. 6.1 (e)-(g)) recorded at the same positions which
show elongated spatial distribution of the emission indicating a propagation length of sev-
eral micrometers. For nanotubes the strongest optical transitions as well as the PL are
polarized along the nanotube axis, as discussed in section 4.1.2. Since the polarization of
the exciting laser was vertical, as indicated by the arrow in fig. 6.1 (a), mainly SWCNTs
oriented parallel to this direction could be excited efficiently and are observed. From both
real and Fourier space images in fig. 6.1 we can thus conclude that SPPs are launched
mainly in the direction of the SWCNT axis. In addition, no horizontally oriented real
and Fourier space patterns could be detected which is a clear indication that nanotube
orientation and plasmon propagation direction coincide.

d)c)a) c

d

b) c

d

Figure 6.2: Confocal PL images of randomly oriented nanotubes on a dielectric/gold
substrate recorded for vertical (a) and horizontal excitation polarization (b) as indicated
by the direction of the arrows (scale bar 2µm, same intensity scaling).(c) and (d) show
the radiation patterns detected at the respective positions c and d marked in (a) and
(b). The nanotube at position c that is excited only for vertical polarization is seen
to launch propagating surface plasmons mainly in the same direction. In contrast, the
nanotube at position d shows a stronger PL response for horizontal polarization and
correspondingly, plasmon excitation occurs mainly in horizontal direction. The lower
polarization contrast observed in the confocal images at position d results from the non
perfect horizontal orientation of this nanotube.

To further confirm the relative orientation between a nanotube and the SPP propagation
direction confocal scans and subsequent BFP patterns with two perpendicular excitation
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6. Launching SPPs by SWCNT emission

polarizations were measured. Two confocal PL scans on the same sample area are shown,
recorded with vertical excitation polarization in fig. 6.2 (a) and horizontal excitation po-
larization in fig. 6.2 (b). Two selected SWCNTs marked with c and d in both images are
compared. At position c the nanotube is efficiently excited by light with vertical polar-
ization (fig. 6.2 (a)) and shows no emission after excitation with horizontally polarized
light (fig. 6.2 (b)). Nanotube d is visible in both images but with much higher signal to
noise ratio after excitation with horizontally polarized light, which is evidence for a slightly
rotated orientation of the nanotube with respect to the horizontal axis. The different emis-
sion contrast is due to the before mentioned orientation of the main contributing optical
transitions in SWCNTs. BFP images recorded at both positions confirm these findings
and show a pattern oriented with the two bright arcs in the direction of the vertical axis in
the case of nanotube c (fig. 6.2 (c)) and a by ≈85◦ rotated pattern in the case of nanotube
d (fig. 6.2 (d)). Again, this supports the assumption that SPPs launched by the SWCNT
emission are propagating in the direction parallel to the nanotube axis.

Another method to confirm the relative orientation of the SWCNTs with respect to the
SPP propagation direction is the comparison of BFP patterns with the actual SWCNT
orientation measured by AFM. On top of the confocal microscope a home built shear-
force AFM head equipped with an etched glass fiber tip ,as described in section 2.4.2,
was placed. After overlapping the glass tip with the confocal laser spot the system is
able to record AFM topography information in the same sample area mapped confocally.
Fig. 6.3 (a) Depicts a confocal PL map together with a magnified topography scan (b)
showing the two luminescent SWCNTs at the positions c and d. The identification of
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Figure 6.3: (a) Confocal PL image of nanotubes on a dielectric/gold substrate (scale
bar 1µm). (b) Atomic force microscopy topography image showing the two photolumi-
nescent nanotubes at positions c and d marked by arrows in (a) (scale bar 300 nm). The
identification of the thin nanotubes with diameter of around 0.8 nm is somewhat hindered
by the surface roughness of the SiOx spacer layer. In the present case the identification
is supported by the comparable nanotube position and separation seen in the PL and the
AFM image. The radiation patterns recorded for the two differently oriented nanotubes
at position c and d are shown in (c) and (d). The orientation of the nanotubes ΦCNT

coincides with the direction of the plasmon excitation seen in (c) and (d).
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6.2. Theoretical simulation of single dipole BFP and real space patterns on a metal film

the thin nanotubes with diameters of around 0.8 nm is somewhat hindered by the surface
roughness of the SiOx spacer layer but is supported by the comparable nanotube position
and separation seen in the PL and the AFM image. Subsequently, BFP patterns were
measured at the same positions (fig. 6.3 (c) and (d)), which show the direction of plasmon
propagation coinciding with the nanotube orientation ΦCNT.

6.2 Theoretical simulation of single dipole BFP and real space
patterns on a metal film

In order to quantify the plasmon propagation length LD, the plasmon wave-vector kSPP

as well as to examine the mechanism of plasmon excitation BFP patterns and real-space
images were modeled theoretically. Fig. 6.4 illustrates the geometry applied in the theoret-
ical calculations. The SWCNT, treated as a single dipolar emitter p⃗CNT

105,111, is situated
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Figure 6.4: Schematic of the sample geometry and coordinate system for the calculation
of real and Fourier space images from a SWCNT single dipole situated on a spacer/gold
film (ε2, d2 and ε1, d1). The nanotube is surrounded by a dielectric medium (ε3) and
the gold film is connected to the coverglass/objective (ε0).

on top of the SiOx layer (ε3) with the thickness d2 surrounded by air (ε3). Underneath
the spacer layer the gold film (ε1) with a thickness of d1=25 nm is located, connected to
the half-space made up by the microscope cover glass, the immersion oil and the objective
lens (ε0). An asymptotic expression for the surface plasmon fields for a single in-plane
dipole is given in15,18,229 as

E
(∣∣k′∣∣ , φ

)
∝ cos(φ) 1√

r
E0e

i
(

kSPP+i 1
2LSPP

)
|k′|

. (6.1)

The Fourier pattern rendered by a single dipole can then be calculated directly as the
modulus square of the Fourier transform of eq. 6.1. Since no analytical expression for the
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6. Launching SPPs by SWCNT emission

Fourier transform of eq. 6.1 is available, a Lorentzian line shape function can be used as
an approximation for fitting of the experimental data230:

I
(∣∣k′∣∣ , φ

)
= y0 + I0

cos2 (φ − Φ)
(|k′| − k′

SP P )2 + (2LSPP)−2
(6.2)

Here y0 denotes the contribution of a potential background, I0 is the amplitude, Φ is the
in-plane orientational angle of the dipole corresponding to the direction of the SWCNT,
k′

SPP determines the position of the maximum of the emission ring corresponding to the
plasmon resonance condition k′

SPP = k′
x and LSPP is the propagation length of the SPPs.

Fig. 6.5 shows a comparison between cross-sections from the intensity of the numerical
Fourier transform of the asymptotic expression (eq. 6.1) and the Lorentzian approximation
(eq. 6.2), both calculated in the direction along the nanotube long axis (φ = Φ). For
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Figure 6.5: Comparison of the modulus square of the numerical Fourier transform of the
asymptotic plasmon field (eq. 6.1) according to18 and a Lorentzian line shape function
(eq. 6.2) using the same plasmon propagation length LD. The curves represent cross-
sections obtained for φ = 0 and Φ = 0. The Lorentzian line shape function represents a
good approximation regarding both peak position and peak width.

the simulation in fig. 6.5 k′
SPP was calculated for the given sample geometry according

to the formula for a multilayer geometry with a transparent coating (eq. 2.9) and LD.
Despite small differences at the base of the peaks the Lorentzian line shape function
represents a good approximation for the intensity distribution of a single dipole in the BFP.
Especially the peak maximum and the FWHM, which are important for the determination
of k′

SPP/θSPP and LD are very well reproduced.

Real space images of single dipole emitters were calculated by Fourier transformation of
the angular spectrum of the electromagnetic field at the gold/glass interface created by
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6.3. Determination of the propagation length and plasmon wave-vector

a single in-plane dipole considering the imaging properties of the used microscope. First,
the electric fields from a single dipole propagating through the multilayer geometry is
considered by a plane wave expansion across the different interfaces including evanescent
waves which are converted into propagating waves for angles larger than the critical an-
gle231. The fields are split up into s- and p- components to be treated by a multilayer
Fresnel transmission coefficient. Further propagation into the far field and the creation of
the image by a focusing lens onto the detector was calculated according to Tang et al. 115 .
To obtain the good agreement between calculated and experimental image a defocus of

0.04 a.u.

0.00 a.u.

0.04 a.u.

0.00 a.u.

(a) (b)

Figure 6.6: Experimental (a) and theoretical (b) real space image rendered by a single
in-plane dipole and dected by the CCD camera. The scale bar represents 4.0µm in both
images.

the imaging system corresponding to a shift of 130µm of the CCD camera needed to be
included. This positioning error is within the mechanical and optical tolerances of the used
alignment procedure, wile the focusing of the microscope objective on the sample surface
is, on the opposite, much more precise. In general the calculation reproduces all of the
features of the experimental image. Imprecisions in the background correction, needed to
remove residual laser light passing through the spectral filter, can explain the fact that a
strong central peak is observed in the experiment that does not appear in the calculation.
Importantly, in real space images contributions from emission channels other than those
mediated by SPPs such as direct emission through the layer structure appear at the same
central location and thus cannot be distinguished clearly. This underlines the advantages
of BFP imaging in which SPPs appear as characteristic narrow arcs in fig. 6.7.

6.3 Determination of the propagation length and plasmon
wave-vector from leakage radiation BFP patterns

BFP patterns from nanotubes on samples with different spacer thicknesses of d2 = 8, 10,
15, 28 and 35 nm and constant metal thickness (d1 = 25 nm) were measured. Fitting the
experimentally obtained BFP patterns enables the determination of k′

SPP and LD with
the orientation of the nanotube ΦCNT as only additional fit parameter. Fig. 6.7 depicts
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6. Launching SPPs by SWCNT emission

a representative example where the experimentally obtained Fourier pattern (fig. 6.7 (a))
was fitted according to eq. 6.2 (fig. 6.7 (b)) with the resulting residuum after subtract-
ing the experimental from the best-fit pattern (fig. 6.7). To compare the experimental

5 a.u.

-5 a.u.

40 a.u.

0 a.u.

40 a.u.

0 a.u.

(a) (c)(b)

Figure 6.7: (a) Experimentally obtained Fourier plane pattern. (b) Fit of (a) according
to eq. 6.2. (c) Residuum after subtraction (b)-(a)

results with theoretical predictions θSPP and LSPP were calculated numerically using the
plasmon dispersion relation for a multilayer system discussed in section 2.2.1. For the
calculation the dielectric constant of gold ε1 at 980 nm from Johnson and Christy 35 and
the measured thicknesses of the gold and the SiOx layers were used. Refractive indices of
SiOx were adjusted to ε1 = nSiOx = 1.5 (a physically reasonable choice) and of the upper
medium to ε3 = nair = 1.037, to reproduce better the experimental values. The increased
refractive index for the air-filled half-space is representing the presence of residual SDC
surfactant around the SWCNTs. Fig. 6.8 (a) shows the results for the plasmon emission an-
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Figure 6.8: Results for (a) the plasmon emission angle θSPP (black squares) and (b)
the propagation length LD (black triangles) obtained from fitted SWCNT BFP patterns
on spacer layers with different thicknesses d2. Also shown are theoretical values for both
quantities with different spacer thicknesses calculated according to eq. 2.9 (black solid
lines). The error bars represent the standard deviation from several different SWCNTs
situated on the same spacer layer.

gle θSPP obtained from fitting several SWCNT BFP patterns recorded for different spacer
thicknesses d2 (black squares). The error bars result from the standard deviation due to
averaging over several different nanotubes on the same spacer layer. Theoretical values
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6.4. Polarization resolved BFP patterns

for the plasmon angle as a function of the spacer thickness are also plotted (black solid
line) and show a good agreement. The results for propagation lengths LD extracted from
fits are shown in fig. 6.8 (b) (black triangles) together with the calculated values (black
solid line). In this case the experimental values reside at much lower propagation lengths
than the calculation would suggest. Although the employed calculation model accounts
for the damping of the plasmon by the dielectric spacer layer and also considers radiation
damping by out-coupled leakage radiation, it does not include damping effects by surface
roughness232. Increased surface roughness lowers the propagation length significantly due
to additional out-coupling of SPPs through scattering at the surface defects233,234. In ad-
dition fitting the propagation length connected to the FWHM of the Lorentzian line-shape
is limited by the resolution limit of the CCD camera that results from the pixel size and
the magnification of the imaging system.

A full fitting procedure to further improve the unknown parameters nSiOx and nair could
result in a better match between experiment and calculation. However, there is no guaran-
tee that the values of the refractive indices resulting from the best fit would be the actual
values of these parameters, and in fact the success of the fitting procedure could hide
potentially relevant sources of error, such as scattering from surface roughness. There-
fore any further fitting was chosen not to be carried out. The present model also treats
the interaction between the emitting state of the nanotube and the SPP within the weak
coupling limit. Strong coupling235,236 on the other hand would be expected to result in a
larger width of the arcs and an apparent decrease of the plasmon propagation length, and
therefore could help explaining the remaining disagreement between the experiment and
the calculation. Note that in the present configuration the propagation length is mainly
limited through coupling to leakage radiation that is used to study the SPPs. For thicker
films exceeding 100 nm this coupling would be negligible leading to propagation length on
the order of 70µm.

6.4 Polarization resolved BFP patterns

Coupling to plasmons almost completely reshapes the emission of nanotubes both spatially
and with respect to polarization as compared to PL emission on dielectrics. Polarization
resolved radiation patterns of single SWCNTs on glass and on SPP supporting metal films
are presented in fig. 6.9. Also shown are the corresponding theoretical patterns calculated
for a single dipolar emitter (fig. 6.9 (b), (d), (f)). The multilayer structure used in the
calculation of the field is the one used in the calculation of the SPP propagation properties:
two layers with a finite thickness (gold and SiOx) bound by two half-spaces (glass/objective
and air). As the only free parameter the dipole orientation has been adjusted to match
the measured patterns without analyzer (fig. 6.9 (d) and (j), respectively).
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6. Launching SPPs by SWCNT emission

On glass the PL is distributed over a large angular range with highest intensities occurring
in the directions perpendicular to the nanotube axis resulting in two broad lobes with
a maximum peaking near the critical angle (fig. 6.9 (a)). The PL pattern of the same
SWCNT recorded with vertical and horizontal analyzer orientations and the corresponding
emission patterns are also shown. The PL is polarized mainly parallel to the dipole
orientation (fig. 6.9 (b) and (e)). Remarkably, a single emitter situated on a air-dielectric
interface also leads to a substantial orthogonal component as can be seen both from theory
and experiment (6.9 (c) and (f)). This fact implicates consequences for measurements of
polarization contrast, which will not reach zero, when single molecules with a high NA
objective are investigated. In contrast the emission patterns from SWCNTs on a metal

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.9: Comparison between experimentally obtained and calculated Fourier pat-
terns with different polarizations for a SWCNT deposited on glass: (a), (d) without
analyzer, (b), (e) analyzed vertically and (c), (f) analyzed horizontally. The correspond-
ing images for a SWCNT on a 25 nm gold film: (g), (j) without analyzer, (h), (k) analyzed
vertically and (i), (l) analyzed horizontally. The white arrow in the theoretical images
(d) and (j) indicates the direction of the point dipole used for the calculations.)

film (fig. 6.9 (g)-(i)) show emission concentrated in the direction of the dipole with radial
polarization (fig. 6.9 (j)-(l)). That clearly shows that SPPs are launched in the direction of
the dipole axis and therefore in the direction of the SWCNT corresponding to a redirection
of the SWCNT emission into a narrow angular range in Fourier space together with a
directivity along the SWCNT axis. The good agreement between the theoretical images
calculated for a single dipole and the experimental images observed for SWCNTs shows
that nanotubes act as dipolar sources for plasmons propagating mainly in the direction of
the nanotube axis.

Conclusion

This chapter discussed the excitation of propagating SPPs by single optically excited semi-
conducting SWCNTs on a thin metal film. Placing a single dipolar emitter onto a metal
thin film completely reshapes the emission characteristics towards a narrow angular range
in the BFP, a unique feature of propagating SPPs. Leakage radiation microscopy images
in the BFP and real-space could be modeled successfully and revealed the propagation
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6.4. Polarization resolved BFP patterns

length and direction of SPPs. The findings were further supported by a combined BFP
pattern and AFM study of single SWCNTs, as well as by polarization resolved detection
and subsequent BFP pattern recording. The polarization behavior of SPPs launched by
single SWCNTs was found to be radial and was compared to measurements of SWCNTs
on glass. The experimentally obtained BFP patterns could be reproduced by theoretical
calculations with very good agreement. In essence, exciton recombination in nanotubes
launches propagating SPPs on the metal film. These plasmons can couple to photon modes
in the lower half-space that are finally detected as leakage radiation.
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7 Remote excitation of SWCNTs by
propagating SPPs

As shown in the previous chapter, single dipolar emitters are able to excite propagating
SPPs which can be investigated by the technique of BFP imaging. However, an important
step for a successful device integration is also the possibility to couple SPPs back to
propagating radiation. One possible method to achieve this is the opposite scheme, wherein
transitions in a dipolar emitter are excited via propagating SPPs. This has been done
in the past for dye film patches237 and clusters of quantum dots238 located on metal
waveguide structures and in the vicinity of a plasmonic nanowire239. The source of SPPs in
all of these investigations was a focused laser beam either using the adapted Kretschmann
configuration with a high NA objective or scattered light at gratings and nanowire edges.

Metal coated aperture fiber probes are an established tool to launch SPPs through the
large wave vector components in the near-field of a sub-diffraction aperture, which has
been used in the past to investigate SPP self interference53 and addressing of nanoholes
by SPPs69.

The aim of the work presented in this chapter was to investigate the remote coupling
between propagating SPPs and a single emitter. As in the previous chapter, the emitter
system was chosen to be SWCNTs due to their known excitation and emission behavior,
which enables a straight forward theoretical description as single dipolar emitters and the
spectral separation between the excitation and emitted radiation. After characterization
of the SPP excitation behavior of the aperture probe by analysis of real space and BFP
images, the remote excitation of excitons in individual SWCNTs on a thin metal film
via propagating SPPs launched by the aperture probe is discussed. The SWCNT acts
as local sensor, mapping the SPP fields created by the aperture probe and the response
from the nanotube is detected as leakage radiation at longer wavelengths due to the
launch of SPPs, as shown in the previous chapter. A rather simple and established model
for the theoretical description of aperture probes is used to understand the formation
of the obtained intensity maps. The presented results enable further insight into the
coupling between SPPs and single dipolar emitters and provide additional perspectives
for integration of emitter systems into plasmonic circuits.
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7. Remote excitation of SWCNTs by propagating SPPs

7.1 Excitation of SPPs with an aperture SNOM probe

For all the experiments presented in this chapter the home built shear force AFM head, as
described in section 5.1.3, equipped with a commercial aluminum coated aperture probe
(Loavlite) was used for the fine distance and positioning control. The nominal aperture
diameter was 70 nm and the thickness of the metal coating was stated to be 50 nm. All
detection modes are equal to the previous chapter 6, as described in section 5.1 and the
aperture AFM head was attached on top of the confocal microscope. The coupling of laser
light into the fiber was achieved by focusing an expanded, collimated beam of a linearly
polarized HeNe-laser (λex = 632.8 nm, Thorlabs HRP170) with a NA = 0.25 air objective
onto the end face of the fiber (see fig. 5.3 in section 5.1.3).

The used sample substrate, consisting of a 20 nm gold film on a standard microscope cover
glass with an added SiOx spacer layer on top, was first used without SWCNT coverage to
investigate the SPP excitation behavior of the aperture probe.

(a) (b)

(c) (d)

Figure 7.1: (a) Real space and corresponding (b) BFP pattern from an aperture probe
excited at 633 nm and positioned about 4µm away from a 20 nm thick gold film. The
radiation is distributed over the sample surface in (a) real space and the (b) BFP pattern
is restricted to a maximum angle corresponding to a NA of 1.0 (white dotted circle). Upon
approach close to several nanometer to the surface the radiation in real space is confined
to a small central spot (the maximum intensity is 20 times higher compared to (a)) and
in the BFP angles larger than the critical angle are observed. The scale bar in all real
space images corresponds to 2µm and the maximum collected angle is indicated by a
white dashed circle in the BFP patterns.

Fig. 7.1 (a) shows the real space image from the emission out of the aperture tip at a tip-
sample distance of about 4µm. The light is distributed over a large fraction of the sample
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7.1. Excitation of SPPs with an aperture SNOM probe

area only patterned by a few sample surface defects in the gold film. A corresponding
BFP pattern in fig. 7.1 (b) shows the transmitted light confined into the allowed light
zone with intensities recorded up to the critical angle θcrit., indicated by the white dotted
circle. This is in agreement with Snell’s law and the definition of a propagating wave48.
Only propagating waves are arriving in the detection sphere of the microscope objective
and no SPPs are excited, which would show up as a signal contribution for angles larger
than θcrit.. Upon activation of the PLL distance control the tip can be brought in the
vicinity of the sample surface up to only several nanometer. Fig. 7.1 (c) illustrates the
drastic change in the real space image after the approach. The radiation is now confined
to a small central spot with two additional lobes extending from the center and decaying
within about 1.5µm. Next to the spatial confinement the overall intensity is drastically
increased compared to the case of the aperture tip being further away from the surface.
The maximum intensity for the intensity scale is 20 times higher compared to fig. 7.1 (a).
Also in the BFP pattern in fig. 7.1 (d) the change upon the approach is visible by an
additional intensity contribution in the detected forbidden zone between the critical angle
(white dotted circle) and the maximum collected angle by the objective (white dashed
circle). This intensity contribution can be attributed to leakage radiation detected from
SPPs launched by the aperture probe in the upper left and right direction. It can be
correlated with the two lobes reaching away from the central bright spot in the real space
image (fig. 7.1 (c)).

(a) (b)

(c) (d)

Figure 7.2: Real space images together with the corresponding BFP patterns for SPPs
launched by an aperture probe, recorded for two different input polarizations (a),(b) and
(c),(d). The output polarization direction, determined from the connecting line between
the two lobes, is indicated by the white arrows as well as the critical angle (white dotted
circle) and the maximum collection angle of the objective (white dashed circle). It has
to be noted that the stripe in (c) is an imaging artifact due to the CCD read out.
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7. Remote excitation of SWCNTs by propagating SPPs

The fiber input polarization provides an additional parameter to control the propagation
direction of the launched SPPs240. In order to control the polarization a rotatable half-
wave plate was mounted in front of the fiber coupling objective. Fig. 7.2 (a) shows the
real space image with an approached aperture probe and horizontal input polarization,
as indicated by the white arrow. Starting from a bright central spot, again two lobes are
reaching to the left and to the right, decaying in intensity over the distance. This image
reveals a high similarity with the real space images obtained for excited SWCNTs on a
gold film presented in the previous chapter 6 (see fig. 6.1 (e)-(g)). SPPs are propagating
in opposite directions away from the central excitation spot. In the corresponding BFP
pattern in fig. 7.2 (b) two crescents in the direction of the polarization are visible. They
are situated again in the region of forbidden light for angles larger than the critical angle
(indicated by the white dotted circle) and correspond to the leakage radiation signal
from the excited SPPs. This result reproduces the experimental BFP pattern from Hecht
et al. 53 and verifies the ability to launch SPPs with the given aperture probe configuration.
The double crescent intensity distribution in the BFP for aperture probes was explained
by Van Labeke et al. 241 using theoretical calculations. The FWHM of the crescents in
the experimental BFP patterns (fig. 7.2 (b)) is larger than compared to the case of SPPs
launched by a SWCNT in the previous chapter (see fig. 6.1 (b)-(d)) mainly due to the
reduced propagation length at the laser excitation wavelength. For the given sample
geometry, according to eq. 2.9, the propagation length at λex = 632.8 nm is 2.3µm while
at λex = 980 nm, as in the case of an emitting (6,5) SWCNT, it is 28.2µm. By rotating the
wave-plate the fiber input polarization was now rotated by about 70◦ and the resulting real
space image is presented in fig. 7.2 (c). As expected, the orientation of the two lobes follows
the altered polarization, indicated again by the white double arrow. The same expected
rotation can be observed in the corresponding BFP pattern, shown in fig. 7.2 (d).

In summary, an aperture fiber probe is an adequate tool to realize a scanning SPP source.
After coupling laser light into the fiber end the radiation is channeled down to a confined
spot at the tip apex. Evanescent fields, extending only few nanometers away from the
tip combined with a lateral confinement to the region around the tip apex due to the
aperture, present a controlled method to excite SPPs. Additional control can be gained by
adjustment of the fiber input polarization, which allows adaption of the SPP propagation
direction.

7.2 Remote excitation of SWCNTs by propagating SPPs excited
with an aperture SNOM probe

For the subsequent investigation of the coupling between SPPs, launched by an aperture
probe, and excitons in SWCNTs, the gold film/spacer layer sample was covered with
individual CoMoCat nanotubes. First the sample was scanned confocally in order to
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7.2. Remote excitation of SWCNTs by SPPs excited with an aperture SNOM probe

localize luminescent SWCNTs. The focus of the confocal microscope was then positioned
on a SWCNT location and fixed for constant detection of the leakage radiation emission
of the particular SWCNT. If the SWCNT is successfully excited the following PL emission
occurs mainly via SPPs excitation, which can be detected through leakage radiation, as
shown in the previous chapter 6. Now the aperture probe was scanned in excitation mode
over the SWCNT position and the leakage radiation response was recorded simultaneously
in dependence of the probe position as shown in fig. 7.3. The detection signal was filtered

a) b) c)

Figure 7.3: Emission maps from a single SWCNT during an aperture probe scan for two
different input polarizations (a) and (b) with fixed detection on the nanotube position.
The insets on the lower right show the corresponding BFP patterns characterizing the
aperture probe output upon a feed at λex = 633 nm, the white arrows indicate the input
polarization determined according to241. (c) depicts the confocal leakage radiation BFP
pattern of the same SWCNT after excitation with λex = 565 nm. The white arrow
indicates the orientation of the nanotube. The scale bar represents 300 nm in both maps.

with a 860 nm long-pass filter, in order to selectively detect emission response originating
from the SWCNTs. Two scans were conducted with different aperture input polarizations
(λex = 633 nm) monitored by BFP images as illustrated by the insets in fig. 7.3 (a) and
(b). In order to determine the orientation of the SWCNT a BFP image was taken with
direct confocal excitation at λex = 565 nm by the method established in the previous
chapter in section 6.1. Fig. 7.3 (c) shows the BFP pattern, which gives a clear indication
for nearly horizontal alignment of the SWCNT. Two main features of both emission maps,
in fig. 7.3 (a) and (b) can be seen. The first are two emission lobes about 400 nm away from
the center (not so pronounced in fig. 7.3 (b)). This signature is a clear sign for remote
excitation since the SWCNT shows a signal when the aperture probe is exciting SPPs
away from the nanotube position. The observed range of remote excitation is limited
by the SPP propagation length. The second emission contribution is located closer to
the SWCNT position and features a nearly circular emission with a rather dark center.
This feature does not exhibit an exponential intensity decay such as shown in the case
of SPPs excited by a point dipole in section 6.2, which points towards a more complex
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7. Remote excitation of SWCNTs by propagating SPPs

field distribution, generated by the aperture probe, that is discussed in more detail in
the following section. Remarkably, the orientation of the resulting leakage radiation map
pattern resembles strongly the orientation of the input light and is not influenced by the
SWCNT dipole orientation determined by the BFP pattern in fig. 7.3 (c).

7.3 Theoretical modeling of the SPP fields generated by an
aperture probe on a thin metal film

Since the image contrast of the fields probed by the SWCNT is not sufficiently explained
by a dipolar SPP source, as indicated in the previous section, theoretical calculations of the
fields created by the aperture probe on the surface of the metal film have been performed.
These will allow to explain the field mapping behavior of the SWCNTs and to assign
different contributions in the image contrast. A plane wave expansion through the multi-
layered structure as used by Baida et al. 70 was employed. In this treatment the aperture
probe is simulated with the Bethe-Bouwkamp model, which assumes a circular aperture
with the radius a in a perfect metallic thin film screen irradiated by a plane wave from the
top242. It is a recognized model in the field of aperture SNOM243 and was successfully
used before in the literature to describe the emission behavior of an aperture fiber probe
in the context of aperture SNOM and to reproduce experimental data240,244. Fig. 7.4
shows the geometry assumed for the theoretical calculation, which places the aperture
probe with an aperture diameter a and the laser input polarization of Θ at the distance
zT over the sample surface. The multilayer sample is characterized by the thickness of
the metal layer d1 as well as the dielectric constants of the different layer and half-spaces
air (ε0), gold (ε1) and glass (ε2). The cylindrical coordinate system is given by r, Ψ and
z. According to Baida et al. 70 the field components of an aperture probe on the metal
surface at z = 0 can be described by the following integrals over the range of collected
k-vectors, containing first order Bessel functions Jn:

Ex (r, Ψ) = Aex

{
cos2 (Θ − Ψ)

∫ kmax

0
α (k) J0 (kr) k dk

− sin2 (Θ − Ψ)
∫ kmax

0
β (k) J0 (kr) k dk

− cos [2 (Θ − Ψ)]
∫ kmax

0
[α (k) + β (k)] J1 (kr)

kr
k dk

}
,

Ey (r, Ψ) = Aex

{
sin (Θ − Ψ) cos (Θ − Ψ)
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0
[α (k) + β (k)]

[2J1 (kr)
kr

− J0 (kr)
]

k dk

}
,

Ez (r, Ψ) = Aex
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−i cos (Θ − Ψ)
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0

k2α (k)
w3

J1 (kr) dk

]}
,

(7.1)
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Figure 7.4: Schematic of the multilayer sample system which is used for the calculations
of the fields emitted by the tip. Θ represents the angle of the light polarization coupled
into the fiber, a the aperture radius, zT the tip sample distance, Φ the orientation of the
SWCNT dipole p⃗ and the respective dielectric constants of the layer system (ε0, ε1, ε2)
and the thickness of the gold film d1. The cylindrical coordinate system is defined by r,
Ψ and z.

where α (k) and β (k) are defined as:

α (k) = tTM (k) sin (ak)
ak

ε0w2
ε2w0

eiw0|zT|,

β (k) = tTE (k) 3 [ak cos (ak) − sin (ak)]
(ak)3 eiw0zT .

(7.2)

The multilayer structure is included in eq 7.2 by transmission coefficients tTM and tTE,
which can be expressed in terms of Fresnel coefficients in reflection or transmission of the
various interfaces, considering the finite thickness of the metal d1:

tl (k) = tl
01tl

12ei(w1−w2)d1

1 + rl
01rl

12e2iw1d1
, l = TE, TM (7.3)

with

tTE
01 = 2w0

w0 + w1
, rTE

01 = w0 − w1
w0 + w1

,

tTE
12 = 2w1

w1 + w2
, rTE

12 = w1 − w2
w1 + w2

,

tTM
01 = 2ε1w0

ε1w0 + ε0w1
rTM

01 = ε1w0 − ε0w1
ε1w0 + ε0w1

,

tTE
12 = 2ε2w1

ε2w1 + ε1w2
rTM

12 = ε2w1 − ε1w2
ε2w1 + ε1w2

. (7.4)
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7. Remote excitation of SWCNTs by propagating SPPs

Different wm with m = 0, 1, 2 consider the wave-vectors in the different media given by
the following relation:

wm =

√
εm

ω2

c2 − k2. (7.5)

Aex describes an amplitude factor for the initial electric field incident onto the modeled
aperture:

Aex = −8iωa3Eex
6π2c

, (7.6)

with Eex as initial field amplitude. Fig. 7.5 (a) shows the total intensity Ixyz = |Ex|2 +
|Ey|2 + |Ez|2 for the used sample/tip geometry in the experiment calculated according
to eq. 7.1. Next to the enhanced intensity around the aperture metal coating an addi-
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Figure 7.5: (a) Calculated intensity Ixyz = |Ex|2 + |Ey|2 + |Ez|2 of the full field created
in the metal air interface of a 20 nm gold film by the emission of an aperture probe at
λex = 633 nm. (b) shows the corresponding vector plot of the in-plane component Ex+Ey

in (a). The length and color of the arrows indicate the magnitude of the polarization in
the direction given by the arrow’s orientation. The fiber input polarization is in both
cases parallel to the x-axis (Θ = 0◦).

tional contribution about 1µm away from the aperture position can be recognized. The
corresponding vector plot of the in-plane field component from fig. 7.5 (a) is shown in
fig. 7.5 (b).

In general, the formation of the image contrast in the experimental emission maps
(fig. 7.3 (a) and (b)) can be understood by the squared product between the field pro-
duced by the aperture tip on the surface E⃗tip (z = 0) and the transition dipole moment
µ⃗SWCNT of the nanotube:

I (x, y) ∝
∣∣∣E⃗tip · µ⃗SWCNT

∣∣∣2 . (7.7)

The two emission lobes in the experimental maps can be very well understood by excitation
via the in-plane component of the aperture tip emission field, since the SWCNTs main
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7.3. Theoretical modeling of the SPP fields

contributing transitions are polarized parallel to the nanotube’s axis. Additionally, in
measurements with a radially polarized doughnut mode245 exciting SWCNTs on a gold film
no evidence of an increased sensitivity of SWCNT transitions for perpendicular polarized
field components could be found. In the vector plot in fig. 7.5 (b) it is shown, that the
field contribution remote from the aperture center shows a radial polarization distribution.
Thus the main orientation of the lobes follows the input polarization of the fiber but, as in
the case of the experimental condition from fig. 7.3 (a) where the SWCNT orientation is
roughly 60◦ rotated with respect to the input polarization Θ, the lobes are expected to be
oriented with an angle between the SWCNT orientation and the fiber input polarization Θ.
A big factor, which modifies the experimental situation compared to the ideal calculation,
is the tip shape. The asymmetric intensity distribution in the experimental emission
maps (fig. 7.3 (a) and (b)) is a strong indication for effects caused by a non ideal tip
shape. Further, SWCNTs exhibit photo-bleaching behavior upon exposure to high electric
fields99,246, which can explain the reduced signal to noise ration for the second subsequent
aperture scan in fig. 7.3 (b).

Fig. 7.6 (a) shows the intensity profile through the experimentally obtained emission map
(black solid line), indicated in the inset by the white dashed line, together with a scaled
calculated profile, according to eq. 7.1, for the in-plane Ixy component (blue dotted line)
excited by an aperture probe. The position of the remote lobe emission feature can be

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

I 
 [

a
.u

.]

x  [μm]

 experiment

 calculation I
z

 calculation I
xy

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

I 
 [

a
.u

.]

x  [μm]

 experiment
 calculation I

xy

 scaled

0.00

0.04

0.08

0.12

0.16

0.20

0.24

 I
  

[a
.u

.]

(a) (b)

Figure 7.6: (a) intensity profile through the experimental emission map in fig. 7.3 (a)
along the white dashed line in the inset together with a scaled profile from the in-plane
component Ixy (blue dotted line), obtained by calculations of the field emitted by an
aperture probe. A good agreement for the position of the outer lobes between experiment
and calculation is evident as indicated by the vertical red dashed lines. (b) shows the
same experimental profile as in (a) together with the out of plane component Iz (red
dashed line) and the in-plane component Ixy (blue dotted line).

reproduced very well as indicated by the red dashed vertical lines. It has to be noted, that
an even more remote excitation could be achieved by using light for the excitation in the
NIR region. Since the damping of the SPP in gold is much lower at these energies, the
propagation length is highly increased, as shown in section 2.2.2.
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7. Remote excitation of SWCNTs by propagating SPPs

For the explanation of the second, central emission feature in the experimental intensity
maps fig. 7.6 (b) shows the same experimental profile (black solid line) together with the
theoretical profiles for the in-plane component Ixy (blue dotted line) and perpendicular
component Iz (red dashed line) of the tip emission. Although the perpendicular component
Iz seems to reproduce the central feature rather well, the insensitivity of the SWCNT
towards perpendicularly polarized fields and the missing agreement in the lobe position
render the assumption rather unlikely. Up to now the considerations of the image contrast
only included the excitation efficiency (eq. 7.7). The overestimated intensity in the central
region for the in-plane component Ixy, in the direct surroundings of the aperture tip,
can be understood by taking the conditions for the detection of leakage radiation into
consideration. In order to detect the leakage radiation from SPPs launched by the SWCNT
with the given Kretschmann like microscopy configuration, the refractive index of the
upper half-space medium n0 needs to be larger than the substrate medium under the
metal film (n2). This is given as long the tip is not on top of the SWCNT position but
as the tip moves during the scan over the SWCNT this condition is changed due to the
fiber core towards nearly equal refractive indices (n0 ≈ n2). Thus the central part of the
emission maps is strongly reduced in detected intensity. This can be also seen as an effect
of channeling the radiation into the fiber core, which has been investigated before for the
detection of single molecules with an aperture probe on glass247. An additional quenching
of the SWCNT emission can be expected by the influence of the metal coating in the direct
surroundings of the aperture probe.

Conclusion

This chapter investigated the localized SPP excitation behavior of metal coated aperture
probes, used in aperture SNOM, when located in close proximity to a metal film. With
correlated real-space and BFP pattern images the SPP excitation was demonstrated and
the influence of the fiber emission polarization on the SPP propagation direction was
shown. By placing SWCNTs on the metal film and subsequent scanning with the before
investigated aperture SPP source while detecting the emission from the SWCNTs, remote
excitation of SWCNTs was demonstrated. Theoretical modeling of the excited SPP fields
reveals that the SWCNT maps the SPPs locally with sub-diffraction resolution. These
results demonstrate the possible integration of SWCNTs not only as SPP source but also
as element to recouple propagating SPPs back to free space radiation.
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8 Radiation channels close to a plasmonic
nanowire

This chapter is based on the article "Radiation channels close to a plasmonic nanowire
visualized by back focal plane imaging" which was published in ACS Nano 2013, 7, 10257.

Metallic NWs have drawn particular attention as plasmonic building blocks due to their
successful implementation as waveguides15,248,249, routers and logic gates250–252. SPPs on
metallic NWs have been investigated by direct visualization253, using a scanning aperture
probe87, by electrical detection254 as well as by calculations88. A key step in plasmonic
applications of NWs is the coupling of the initial energy source to the NW and the con-
tributing energy relaxation pathways62,64. Importantly, sub-wavelength light confinement
by the SPPs can be used to enhance the interaction between objects and light220. This
coupling and the excitation and propagation of SPPs have been experimentally visualized
by leakage radiation microscopy12,255,256 combined with imaging of the BFP for a variety
of plasmonic structures and devices14,19,53.

In the following chapter the coupling of the emission from rare earth doped nanocrystals to
SPP modes in silver NWs on glass were investigated. The ability of these nanocrystals to
exhibit stable, non-bleaching upconverted PL on the anti-Stokes side of the laser energy194

was employed to avoid temporal intensity fluctuations and to exclude any background
contribution from laser scattering, metal luminescence or the sample substrate. With the
help of the quantitative analysis of the recorded BFP patterns it is possible to separate
the contributions of two different radiation channels. Namely, the direct dipolar emission
of the nanocrystals into the glass substrate, observed also in the absence of the NW,
and the excitation of propagating SPPs in the NW. In addition to the branching ratio
into these two channels the SPP quasi-momentum and the plasmonic active wire length
were obtained, all important parameters of active emitter-plasmon structures62,68. The
results gathered through optical methods were supported by a TEM investigation of the
plasmonic nanowires, extracting important parameters, such as material composition and
other structure related quantities.
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8. Radiation channels close to a plasmonic nanowire

8.1 Transmission electron microscopy (TEM) characterization of
plasmonic silver NWs

Silver nanowire samples, synthesized as described in section 5.2.2 were investigated
first via TEM measurements carried out by Dr. Angela Wochnik in the group of
Prof. Christina Scheu. The TEM experiments were aiming towards the investigation
of material properties of the NWs, such as diameter distributions of the wires and a sur-
rounding polymer layer as well as the purity of the wire material. In order to gather a
good understanding of the plasmonic behavior the chemical composition of the nanowires
has to be known. Contaminants, such as oxide layers, have strong implications for the
properties of supported plasmons, since they cause a change in the dielectric function of
the plasmonic materials and thus influence the SPP dispersion relation (see section 2.2).

Silver NWs were drop-casted out of solution on a copper TEM grid equipped with a lacey-
carbon film as additional sample substrate. The subsequent investigation was performed
with a FEI Titan 80-300 (S)TEM microscope operating at 300 kV. The microscope was
equipped with an energy dispersive X-ray detector (EDAX), which was used for analytical
characterization. Diffraction patterns were recorded using a CCD camera (Gatan Ultra-
Scan 1000) with a resolution of 4 million pixel and evaluated, using a calibrated camera
constant obtained by measuring a Si standard. Fig. 8.1 (a) shows a representative TEM
scan of a NW. Next to the NW (dark contrast) an indication of a cover layer around the
NW with a light contrast can be seen. It is more evident in a magnified TEM image, taken
from the area marked by the red dashed square, shown in fig. 8.1 (b). The surrounding
layer can be attributed to the PVP used as a surfactant during the nanowire synthe-
sis215,259 as described in section 5.2.2 and was not evident in initial SEM experiments
(see fig. 5.4 in section 5.2.2). Additionally, small particles can be found embedded in the
surrounding PVP layer. As a first step towards the identification of the exact NW mate-
rial a diffraction pattern was taken at the center of the wire marked with I in fig. 8.1 (a).
Fig. 8.1 (c) shows the indexed diffraction pattern, which reveals the relative orientation
between the incoming electron beam and the crystal planes. Together with the fact that
silver crystallizes with a face centered cubic (fcc) lattice191, the zone axis could be de-
termined as [011]. The reciprocal distances determined from the diffraction pattern with
2.34 Å for the 111 plane, 2.04 Å for the 200 plane and 1.44 Å for the 220 are in very good
agreement with the characteristic values given in the literature for Ag257,258. Indicated by
red arrows in fig. 8.1 (c) are additional reflexes, which are situated on a discrete ring with
the radius corresponding to a d-spacing of about 2.08 Å. This d-spacing value is close to
the value for the 111 plane in copper258,260. Also the fact that the reflexes are distributed
on a discrete ring is a strong indication of randomly oriented crystals such as in the case
of powder diffraction measurements191. A fast Fourier transformation analysis (data not
shown) of single particles in fig. 8.1 (c) reveals not only the d-spacing of 2.08 Å for the 111
plane but also a spacing of 1.80 Å for the 200 plane characteristic for Cu. These results
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Figure 8.1: (a) TEM image from a representative silver NW with a clearly visible
surrounding layer. Markers I and II show the detection position for the EDX spectra
presented in fig. 8.2. The scale-bar represents 100 nm. (b) Shows a high resolution
image of a magnified sample area from (a) indicated by the red dashed square. In the
surrounding of the NW the wrapping polymer is clearly visible together with embedded
single Cu nanoparticles. Here, the scale-bar represents 2 nm. (c) Depicts an electron
diffraction pattern taken at position I. Apparent diffraction reflexes are indexed. The
zone axis was determined to be [011] and the d-spacings of the indexed reflexes coincide
with values for silver in the literature257,258. Indicated by the red arrows are additional
reflexes originating from Cu nanoparticles in the polymer. The scale-bar represents
2 nm−1.

give a strong indication that the Cu nanoparticles, used in the synthesis as crystallization
seeds, are embedded in the surrounding PVP layer in close proximity to the nanowire. No
reflexes originating from silver oxides could be found.

In order to further analyze the chemical composition of the nanowires and the surrounding
polymer, EDX spectra were taken at the positions I and II marked in fig. 8.1 (a). Fig. 8.2
shows an overlay of the spectra obtained at both positions divided into two graphs for
improved visibility. The elemental analysis occurs through comparison of the different
peak positions with values given in the literature261,262 and are indicated by the vertical
lines. As expected, the dominating contribution on the nanowire is silver as can be seen
by the cluster of peaks situated around 3.1 keV in fig. 8.2 (a). Apparently, they are less
pronounced in the case of the polymer. Typical X-ray emission lines for copper (at about
1.0, 8.0 and 9.0 keV) are visible due to the use of a copper TEM grid but even more due to
the presence of Cu nanoparticles, since they are much more intense in the case of the PVP
EDX spectrum at position II. This correlates nicely with the results from the electron
diffraction data in fig. 8.1 (c). A signal for carbon is visible at about 0.25 keV, which
appears more pronounced in the spectrum from the polymer due to the higher carbon
content of the PVP. The signal for oxygen is only visible in the spectrum of the polymer
and can be attributed again to PVP. Both spectra show small traces of iron and cobalt
contaminants. In summary, the NW appear to consist only of silver, without any oxide
contamination. The second result is the presence of a PVP polymer layer surrounding
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8. Radiation channels close to a plasmonic nanowire
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Figure 8.2: EDX spectra from the nanowire in fig. 8.1 (b) taken on the wire itself (black
solid line, position I) and on the surrounding polymer layer (red dotted line, position II).
For increased visibility the complete spectra are shown for two magnified energy ranges
(a) and (b). The vertical lines indicate energy positions of characteristic element X-ray
emission lines261,262.

the nanowires, which contains embedded copper nanoparticles as residue from the wire
synthesis.

In the course of the TEM investigation magnified scans, comparable to fig. 8.1 (b) were
taken from 77 different NWs. Out of these images the wire diameter Dwire and the PVP
thickness dPVP were measured. Fig. 8.3 a shows the histogram of the wire diameter, to-
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Figure 8.3: Distribution of (a) NW diameters from 77 different NWs measured from
TEM images. The histogram was fitted with two Gaussian curves (blue solid line and
green dashed line) revealing a maximum in the distribution at 95±30 nm and 220±43 nm.
Also the thickness of the surrounding polymer layer was measured from the same NWs
(b). This distribution exhibits a maximum at 48±37 nm, determined again by a Gaussian
fit (green solid line).

gether with two Gaussian fits around the maxima in the distribution peaking at 95±30 nm
(blue solid line) and 220±43 nm (green dashed line). The range of the diameter distribu-
tion coincides with the findings obtained by AFM topography measurements presented in
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8.2. Optical investigation of different emission channels close to a plasmonic NW

the following sections 8.2 and 8.4. Fig. 8.3 (b) shows the distribution for the measured
PVP thickness dPVP together with a Gaussian fit (green solid line) of the data peaking at
48±37 nm.

8.2 Optical investigation of different emission channels close to
a plasmonic NW

For the optical investigations in the following section combined samples, consisting of
NaYF4 nanocrystals doped with 20 wt% Yb3+and 2 wt% Er3+ subsequently spin-coated
on top of silver nanowires on a glass substrate, as described in section 5.2.2, were used.

First, a sample area of 100µm2 was characterized by detecting the upconverted PL after
excitation at 980 nm with a narrow band pass filter centered at 670 nm with a FWHM
of 10 nm in front of the APD used for confocal scanning signal detection as described
in section 5.1.1. A representative PL image of a magnified sample area can be seen
in fig. 8.4 (a). Subsequently the same sample area was mapped via AFM to measure

0.0 a.u.

1.0 a.u.

0 nm

150 nm
(a) (b)

Figure 8.4: (a) Confocal PL map of a representative sample area together with the cor-
responding topography data in (b). In the PL map the NWs show up as elongated struc-
tures with higher intensity at the NW ends. Several single PL spots are located around
the NWs which can be attributed to single or small clusters of rare earth nanocrystals
which can also be seen in the AFM data. The scale bar represents 2.0µm in both images.

the topographic height of each investigated NW. In the PL map (fig. 8.4 (a)) the NWs
appear as luminescent elongated structures with additional bright end spots or bright
spots along the wire. In addition, weaker luminescent spots are distributed all over the
sample. The topography of the same sample area (fig. 8.4 (b)) shows the NWs at the
same positions with lengths of few micrometers and heights between 100 and 250 nm as
well as several smaller structures nearby (about 20 nm in height). The size of the smaller
structures together with their luminescent behavior identifies them as single nanocrystals
or small clusters of several crystals. From the PL signal shown in fig. 8.4 (a) it is evident
that nanocrystals deposited in the vicinity of the NWs show enhanced PL and that the
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8. Radiation channels close to a plasmonic nanowire

plasmonic enhancement is most efficient at the NW ends. Emission enhancement can
result from new radiation channels provided by the metal nanostructure corresponding to
an increased local density of states104. In general, radiation channels are connected to
characteristic angular distributions of emission that can be studied by BFP imaging13,263,
as described in section 3.

To illustrate the change of the emission characteristics induced by the NW BFP patterns
of NCs without NW were measured, filtering the detected signal for the upconverted PL
(bandpass 670 nm). Fig. 8.5 shows a representative example. The patterns consist of a

0.0 a.u.

1.0 a.u.

Figure 8.5: Back-focal plane PL emission pattern detected for a nanocrystal on glass.
The detected angular range is limited by the maximum collection angle of the microscope
objective that is given by its NA = 1.4.

radially symmetric intensity distribution that increases from the largest detectable angle
given by the NA of the microscope objective towards the critical angle. For smaller angles
the pattern shows a more uniform and weaker intensity.

In the next step BFP patterns were recorded for different NWs at varying excitation
positions along the NW, again filtering the detected signal for the upconverted PL. Fig. 8.6
shows a representative example of the PL map of a single NW (fig. 8.6 (a)) together with
the excitation positions and the recorded BFP patterns (fig. 8.6 (b)-(d)). When the NW

b

c
d

(a) (b) (c) (d)

Figure 8.6: (a) Confocal PL map of a wire decorated with nanocrystals. The scale bar
represents 2.0µm. Upon excitation at different positions (b-d) the corresponding BFP
patterns (b)-(d) were recorded. The detected angular range is limited by the maximum
collection angle of the microscope objective that is given by its NA = 1.4.

is excited in the middle the BFP image (fig. 8.6 (c)) shows a symmetric pattern oriented
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8.3. Theoretical description of the BFP pattern from different emission channels

along the NW axis with two brighter lobes at the rims of the pattern. In contrast, the
patterns recorded upon excitation of the NW ends (fig. 8.6 (b),(d)) exhibit an asymmetric
intensity distribution with the lobes on the opposite side of the excitation position being
brighter than the other. In addition, a fringe pattern with more contrast is visible when
the NW is excited at the ends. This indicates that the position of excitation strongly
influences the angular emission characteristics of the NW.

8.3 Theoretical description of the BFP pattern from different
emission channels

The analysis and subsequent separation of radiation channels is possible if each of the
contributing channels can be modeled theoretically. In order to describe the measured BFP
patterns two apparent signal contributions can be distinguished: The direct emission from
NCs and detected leakage radiation from SPPs propagating along the nanowire surface.

8.3.1 Theoretical modeling of the direct NC emission pattern

The first signal contribution stems from nanocrystal emission which is not coupled to the
NW as presented for nanocrystals in the absence of a NW in fig. 8.5. As described in
section 5.2.2, a single nanocrystal contains between 600 and 103 dipolar emission centers
without preferred orientation, depending on the exact particle size. Thus the resulting
BFP pattern can be treated as the sum of patterns from randomly oriented dipoles. This
contribution is modeled using the theoretical description of dipolar emission on an interface
from Lieb et al. 13 as described in section 3.1.1. Due to the symmetry of the resulting
functions the random orientation of dipoles can be represented by two orthogonal in-plane
dipoles and an additional dipole perpendicular to the surface, also indicated in fig. 8.7 (a)
by black arrows (p⃗x, p⃗y and p⃗z). Thus the intensity in the the BFP INC can be described
by the sum of the individual patterns of the single dipoles:

INC
(
k⃗BFP

)
= Idipole, x + Idipole, y + Idipole, z, (8.1)

as depicted in fig. 8.7 (c). The comparison of the experimental pattern in fig. 8.7 (b) and
modeled pattern in fig. 8.7 (c) reveals a very good agreement.

8.3.2 Theoretical modeling of the NW leakage radiation emission pattern

The second contribution originates from SPPs launched by nearby nanocrystals propagat-
ing along the NW surface which are detected as leakage radiation255,256. A characteristic
signature of this radiation channel is the fringe pattern in the BFP image that results from
the finite length of the NW in the µm range emitting via leakage radiation. BFP patterns
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Figure 8.7: (a) Schematic of the BFP imaging for randomly oriented dipoles represented
by two orthogonal in-plane and one out-of-plane dipole, indicated by black arrows. Also
indicated are the projections of the critical angle θcrit., the maximum detectable angle
θmax, NA and k vector k′

max, NA determined by the objective NA. (b) shows an experi-
mental BFP from a single NC on glass together with a (c) modeled pattern, calculated
according to eq. 8.1.

of SPPs propagating along a plasmonic nanowire were described before in the literature
by Shegai et al. 19 . The used model consisted of a chain of dipoles connected with a phase
relation as introduced in section 3.2.2 and reproduces qualitatively the observed fringe
pattern in the experimental BFP patterns (fig. 8.6). Although the fringe distance could
be reproduced in some cases with good agreement, the intensity distribution between the
single fringe components could not be modeled well.

In order to improve the description of the NW radiation channel a leaky 1D antenna
resonator model, following the calculations from Taminiau et al. 20 was employed. The
configuration is defined by the finite NW length L, the wire orientation given by the in-
plane angle Ψ and the input excitation at the position a as shown in fig. 8.8. Plasmon
propagation depends on kSPP supported by the NW and a complex reflection coefficient r

at its end including the phase change ϕ taken up with each reflection:

r = |r| · eiϕ; 0 ≤ |r| ≤ 1. (8.2)

In order to include losses in the metal the plasmon wave-vector kSPP is defined as a complex
value in direct correlation with the propagation length LD

32 as derived in section 2.1:

kSPP = k′
SPP + ik′′

SPP = k′
SPP + i

1
2LD

(8.3)
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8.3. Theoretical description of the BFP pattern from different emission channels

Taminiau et al. 20 first derive the current distribution J (x, a) along the nanowire as a
superposition of harmonic waves for −L

2 ≤ x < a as

J (x, a) =
J0
(
eikSPPa + reikSPPLe−ikSPPa

)
1 − r2e2ikSPPL

(
reikSPPLeikSPPx − e−ikSPPx

)
, (8.4)

and for a < x ≤ L
2 as

J (x, a) =
J0
(
reikSPPLeikSPPa + e−ikSPPa

)
1 − r2e2ikSPPL

(
eikSPPx − reikSPPLe−ikSPPx

)
. (8.5)

J0 stands for the initial amplitude of the induced wave and depends on the type of dipole,
its oscillator strength, the three-dimensional (3D) configuration and modal fields235,264.
Since the focus of interest in this discussion is on the intensity distribution in the BFP and
not in the calculation of absolute intensity values the initial amplitude is set to J0 = 1.
The underlying model for the presented current expression is conceptually equal to the
dipole-chain model used by Shegai et al. 19 mentioned above with the addition of the
variable excitation position a. To obtain the observed far field in Fourier space the current
distribution is subjected to a Fourier transform which results in the formula for the fields
in Fourier space:

ENW, BFP = E0

∫ L
2

− L
2

J (x, a) e−ik∥x dx (8.6)

E0 describes the field of a point dipole at the origin and oriented parallel to the wire’s long
axis, which can be used to consider the air/glass interface on which the NW is deposited.
This concept is again comparable to the approach chosen by Shegai et al. 19 where the
structure factor, describing the phase relation between the different dipoles in the chain,
is multiplied by a single dipole BFP pattern, reflecting the radiation behavior through the
interface. The evaluation of the integral in eq. 8.6 gives a full description of the intensity
distribution of SPP leakage radiation from a plasmonic nanowire in the Fourier plane with
the orientation angle Ψ:

INW
(
k⃗BF P

)
= IΨ

dipole ·

∣∣∣∣∣∣ i
1 − r2e2ikSPPL

A

[
reikSPPLe−i(k∥−kSPP)z

k∥ − kSPP
− e−i(k∥+kSPP)z

k∥ + kSPP

]a

− L
2

+B

[
e−i(k∥−kSPP)z

k∥ − kSPP
− reikSPPLe−i(k∥+kSPP)z

k∥ + kSPP

]L
2

a

∣∣∣∣∣∣
2

,

(8.7)

with

A = eikSPPa + reikSPPLe−ikSPPa

B = reikSPPLeikSPPa + e−ikSPPa
(8.8)

and

k∥ = k⃗BFP · e⃗NW

e⃗NW =
(

cos(Ψ)
sin(Ψ)

)
.

(8.9)
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8. Radiation channels close to a plasmonic nanowire

Fig. 8.8 shows a representative NW BFP pattern INW calculated for a wire with a length
of L = 4.0µm, a diameter of 150 nm and a plasmon wave vector of k′

SPP = 1.648 · 107m−1

predicted for SPPs in NWs surrounded by glass, excited at the nanocrystal emission at
670 nm19,40. The modulus of the reflection coefficient |r| was taken to be 0.6 and the phase
shift ϕ = 80◦ 63. The NW is excited at a = −1.8µm, which corresponds to a excitation
position 200 nm away from the wire edge. Together with the clearly visible fringes resulting
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Figure 8.8: Schematic of the formation of a BFP pattern for the leaky antenna resonator
as described in eq. 8.7. Indicated by the arrows are the wave-vectors for the right (red
k′

SPP, right) and the left (green k′
SPP, left.) direction and their projection onto the Fourier

plane after leaking into the glass substrate at the resonance angle θSPP given by k′
SPP =

k0nobj. sin θSPP.

from the finite wire length the schematic in fig. 8.8 illustrates the formation of the BFP
pattern, which explains the asymmetry in the intensity distribution that is also seen in
the experimental patterns after exciting the wire at the ends (fig. 8.6 (b) and (d)). If the
NW is excited at the left end, SPPs can travel only to the right before they are reflected.
In Fourier space the wave-vector components are sorted by their propagation direction.
Therefore it is evident that the excitation in the middle of the NW results in a symmetric
BFP pattern with similar intensities on both sides (fig. 8.6 (c)). The present model treats
the several µm long NWs as quasi-1D structures. For shorter NWs with considerably
smaller aspect ratio the contribution of distinct sub- and super-radiant modes becomes
more significant20,264,265 due to the lower order of the modes.

The influence of the excitation position a on the fringe position and distribution in the leak-
age radiation BFP pattern INW is summarized in fig. 8.9. Fig. 8.9 (a) shows an intensity
map of profiles through calculated NW BFP patterns INW along the central propagation
direction k∥ as a function of the excitation position a. For this calculation, according to
eq. 8.7, an exemplary NW with a length of L = 4.0µm, a diameter of 150 nm, a reflection
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8.3. Theoretical description of the BFP pattern from different emission channels

coefficient of |r| = 0.6 and a phase shift of ϕ = 80◦ 63 was chosen. The excitation position
a, in this map ranges from central excitation of the NW (a = 0 nm) to excitation at the
wire edge (a = 2.0µm). The figure illustrates the significant changes in the fringe pattern
upon different excitation positions. Not only the intensity ratio between single fringes
changes, but also the position with respect to k∥ is subjected to a significant change. The
change is further clarified by full range BFP patterns for different excitation positions, as
marked by the orange dashed lines b–e in fig. 8.9 (a). Fig. 8.9 (b) shows a BFP pattern
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Figure 8.9: (a) map of profiles through theoretical BFP pattern INW along the propa-
gation direction k∥ as a function of the excitation position a, calculated for a 4µm long
NW with a diameter of 150 nm. The intensity scale is slightly saturated in order to
reveal fringe features in the central region |k∥|

k0
< 1. Orange dashed lines b–e mark the

positions for the complete calculated patterns for central (b) excitation (a = 0 nm), two
positions separated 100 nm from each other (c) a = 1.02µm, (d) a = 1.12µm and the
end excitation with a = 2.0µm. All BFP patterns exhibit the same intensity scaling.

calculated for excitation in the center of the NW (a = 0µm) and reveals a symmetric
intensity distribution with the same number of fringes on each side. Whereas excitation
on the NW end (a = 2.0µm) results in an asymmetric intensity distribution, decaying
from the right to left side, as discussed in fig. 8.8. Fig. 8.9 (c) and (d) depict two BFP
patterns calculated for excitation positions a = 1.02µm and a = 1.12µm only separated
100 nm from each other. Still a significant change in the fringe pattern on the right side
of the BFP pattern is noticeable.

The fringe pattern in general can be understood in the context of a finite length emitter.
For SPPs propagating on an unconfined metal film with an exponential intensity decay
can be modeled in the BFP by a Lorentzian line-shape with the maximum centered at
kSPP, as shown in section 6.2. In the case of a SPP propagating along a plasmonic NW,
the propagation is confined to the length of the NW, thus the system behaves like a
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8. Radiation channels close to a plasmonic nanowire

finite emitter of leakage radiation. This finite emitter, approximated in real space by a
delta function with the width L, leads in the BFP after Fourier transformation to a sinc
function266:

sinc
(
k∥
)

= L
sin

(
k∥

L
2

)
k∥

L
2

. (8.10)

Since the SPP still decays exponentially the leakage radiation signature in the BFP consist
of a convolution of the Lorentzian line-shape with the sinc function, which creates a sinc-
like function with a maximum centered at kSPP. This is illustrated by the fringe pattern
in the background of fig. 8.10. Fig. 8.10 shows the theoretical dispersion relation for a
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Figure 8.10: Calculated plasmon dispersion kSPP (ω) (black solid line) for a silver NW
with a diameter of 150 nm surrounded by glass according to eq. 2.19, together with
the maximum detectable k-vector by a NA = 1.4 objective kmax (ω). The underlying
sinc

(
k∥
)
-like pattern illustrates the fringes caused by the finite length emitter at the NC

emission frequency ωNC, which enables the detection of SPP leakage radiation from the
NW, even if the central k′

SPP value is beyond the detectable kmax.

silver NW with a diameter of 150 nm, surrounded by glass according to eq. 2.19, kSPP (ω)
(black solid line) together with the maximum detectable k-vector range for a NA = 1.4
objective kmax (ω) left of the dashed red line. For a given emission wavelength of the NCs
ωNC (orange dotted line) the NW exhibits a kSP P value outside the detectable range of
the objective kmax. However, the fringes from the sinc-like intensity distribution in the
BFP, centered at kSPP, extend far into the detectable range. This enables not only the
detection of leakage radiation but also the determination of kSP P , by fitting the intensity
decay of the fringe pattern, as well as the emitter length L, from the fringe distance, as
shown in the following section.
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8.4. Discussion of parameters extracted from fitting BFP patterns

8.4 Discussion of parameters extracted from fitting BFP
patterns

All experimental BFP patterns were fitted with a combination of the NW pattern INW

and the pattern consisting of randomly oriented dipoles INC developed in section 8.3:

IBF P,fit

(
D, W, k′

SPP, L, LD, a
)

= D · INC + W · INW
(
k′

SPP, L, LD, a
)

(8.11)

After adjusting the orientation angle Ψ to the NW axis, the free fit parameters were the
amplitudes of the different channel contributions D and W , the real part of the plasmon
wave-vector k′

SPP together with the propagation length LD, the wire length L and the NC
position a. Representative fits of experimental BFP patterns are shown in fig. 8.11 (d)-(f)
together with the experimentally obtained patterns (fig: 8.11 (a)-(c)). The fitted patterns

(a) (b) (c)

(d) (e) (f)

Figure 8.11: (a)-(c) Experimentally obtained BFP patterns from a NW excited at three
different positions (b-d in fig: 8.6) (a) together with best fit patterns (d)-(f) calculated
according to eq. 8.11.

agree very well with the experimental results supporting the simplified model describing
the emission by the two distinct channels.

Theoretical BFP patterns used in the fit for the NC and the NW were normalized to the
intensity radiated into all possible angles below and above the air/dielectric interface, as
discussed in section 3.1.1 in the context of the detection efficiency dipolar radiation:∫ π

0

∫ 2π

0
INC dφdθ = 1,

∫ π

0

∫ 2π

0
INW dφdθ = 1, (8.12)

Thus, the amplitudes D and W can be seen as the number of photons emitted via each
channel. The branching ratio F between the two radiation channels, that reflects the
coupling strength between NC and NW can be defined as F = W

D . For the 49 studied
NW positions this branching ratio was found to be 0.7 ± 0.3 on average. No correlation
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8. Radiation channels close to a plasmonic nanowire

between the branching ratio and the wire thickness could be observed. The spread in F

probably reflects different NC to NW distances also caused by different thicknesses of the
polymer layer covering the nanowires.

From the fringe distance in the BFP pattern parallel to the nanowire orientation k∥ one
gains direct access to the active plasmonic length of the individual nanowire, i.e. the
length of the nanowire over which light is emitted via leakage radiation:

Lwire,BFP = 2π

∆k||
. (8.13)

In fig. 8.12 (a) the wire length LBFP determined from the BFP patterns is plotted against
the length measured via AFM topography LAFM. Within the margin of error all lengths
extracted from the fringe distances are slightly smaller than the respective lengths de-
termined by AFM. These differences can be attributed to a surrounding layer of PVP as
shown in section 8.1 that will increase LAFM. This method to extract the active plasmonic
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Figure 8.12: (a) Plot of the length extracted from the fringe distance in the BFP pat-
terns LBFP against the physical length measured by AFM LAFM on the same nanowire.
(b) The fitted k′

SPP is plotted against the thickness for each corresponding wire together
with the uncertainty of the fit indicated by the gray shaded area. The black solid and
the red dashed line represent the theoretical k values for the SPP at the metal glass
interface k′

SPP, glass and at the metal air interface k′
SPP, air, based on40. Indicated by the

green dashed dotted line is the maximum detectable k′
max, NA with the used microscope

objective (NA = 1.4).

resonator length by BFP pattern analysis exhibits a high sensitivity and offers an optical
length determination without the need of additional detection techniques, such as AFM.

The finite length L of the NW over which it emits via leakage radiation leads to a fringe pat-
tern in the BFP enabling the determination of k′

SPP even if k′
SPP lies outside the detectable

wave vector range of the microscope objective as discussed in the previous section 8.3.2.
In order to compare the values for k′

SPP, determined by fitting the BFP patterns for the
different NWs with theoretical calculations, the model of thin metal cylindrical waveguides
embedded in a medium40 was used. This model was already employed for similar silver
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8.4. Discussion of parameters extracted from fitting BFP patterns

NWs to calculate k′
SPP for a given wire thickness19 and is discussed in more detail in sec-

tion 2.2.3. As shown in fig. 8.12 (b) for larger NW diameters the experimental values k′
SPP

are situated in between the theoretical k′ values for the SPPs on NWs embedded in glass
(black solid line) and embedded in air (red dashed line). This is a strong indication for a
hybridized plasmon as described by Shegai et al.19. For decreasing wire thickness the values
approach the larger and more bound k′

SPP, glass as shown by theoretical calculations267.

Values for the propagation length LD obtained from the fits show a general trend for an
increasing propagation length with increasing nanowire diameter, in agreement with the
literature267. This effect can be attributed to the increasing mode diameter for the SPP
on the NW with increasing NW diameter and the associated lower losses in the metal.

Conclusion

This chapter focused on the emission channels in the vicinity of metallic nanowires. In
the first step, the material composition of the silver nanowires was characterized by TEM
and EDX spectroscopy. Besides the silver NWs, few copper nanoparticles embedded in
a polymer layer surrounding the NWs remaining from the wire synthesis were observed.
In a second step, these plasmonic NWs, deposited on a glass substrate, were combined
with rare earth doped nanocrystals, which exhibit upconverted PL emission in the VIS.
Radiation patterns of this coupled system were recorded in the BFP. It was found that the
emission in the vicinity of a NW can be approximately described by two emission channels
that can be calculated analytically: Dipolar emission, also observed in the absence of the
nanowire, and leakage radiation from the nanowire. The latter can be calculated using an
antenna-resonator model that considers the air-dielectric interface on which the nanowire
is deposited and, additionally the position of excitation along the nanowire. Fitting of
the experimentally observed patterns provides estimates of the ratio F of photons emitted
via the nanowire mediated and dipolar channels with a mean value of F = 0.7. Finally,
the fit of the back focal plane patterns gives access to the wave vector kSPP of the SPP
supported by the nanowire and the plasmonic active length L. These results are important
for plasmonic applications of nanowires since the understanding of emission characteristics,
coupling efficiency and SPP properties supported by such NWs, plays a key role in device
integration.
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9 Summary and outlook

In this work coupling between SPPs and different emitter systems has been investigated by
the technique of BFP imaging. SPPs as surface bound electromagnetic waves propose the
unique possibility to concentrate light to sub-wavelength scales and transport this energy
over a length several magnitudes larger. For current efforts in the field of plasmonics
towards device integration and miniaturization it is important to realize the excitation,
manipulation and back conversion between light and SPPs without the need of external
light sources. Thus, the integration of nanoscale emitters in a plasmonic architecture is
desirable but requires a more profound knowledge about the coupling mechanism and
the contributing relaxation pathways in coupled emitter-SPP systems. In order to gather
detailed insight on the interaction between emitters and SPPs the focus of this work was
to study single emitters in elementary plasmonic configurations that are accessible by
analytical descriptions.

Next to standard microscopy methods combined BFP imaging enables access to emission
characteristics, by detection of angularly resolved emission maps in the Fourier plane.
Radiation channels are connected to characteristic angular distributions of emission that
can be studied by BFP imaging. This technique has been used in the presented studies to
determine SPP propagation and SPP properties as well as to separate and assign radiation
channels.

The first key result of this work is the successful demonstration of SPPs launched by a
single dipolar SWCNT emitter on a metal thin film after local optical excitation. Placing
a single dipolar emitter onto a thin metal film completely reshapes the emission char-
acteristics towards a narrow angular range in the BFP, a unique feature of propagating
SPPs. Leakage radiation microscopy images in the BFP, which show two narrow crescents
appearing at angles larger than the critical angle could be modeled successfully and con-
tained the propagation length and direction of the SPPs. Corresponding real-space images
revealed SPP propagation away from the single dipolar plasmon source and could be re-
produced by calculations with very good agreement. The findings were further supported
by a combined BFP pattern and AFM study of single SWCNTs, as well as by polarization
resolved detection and subsequent BFP pattern recording. The polarization behavior of
SPPs launched by single SWCNTs was found to be radial and was compared to measure-
ments of SWCNTs on glass, which showed parallel polarization with respect to the dipole
orientation. Experimentally obtained BFP patterns on both substrates could be repro-
duced by theoretical calculations with very good agreement. These results demonstrate
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9. Summary and outlook

that nanotubes can act as SPP sources making them promising candidates for integration
in plasmonic and nanophotonic circuits. Moreover, these results provided the basis for
the successful demonstration of electrically excited SPPs by means of electroluminescent,
on-chip integrated SWCNTs, achieved within cooperation68.

The second key finding was the demonstration of remote excitation of SWCNT excitons
via propagating SPPs. A scanning aperture probe was used as a SPP source enabling a
fine control of the excitation position and the SPP propagation direction. First, light was
coupled into an aperture probe, as used in SNOM, and was characterized regarding its
SPP launching behavior when placed in close proximity to a thin metal film. Correlated
real-space and BFP pattern images confirmed the SPP excitation and further revealed
the influence of the fiber emission polarization on the SPP propagation direction. Second,
photoluminescence images of SWCNTs, placed on the metal film, were recorded by raster-
scanning the aperture probe SPP source. These images revealed an emission response
from the SWCNTs while the aperture was roughly 400 nm away from the SWCNT posi-
tion. This is a clear indication for remote excitation of SWCNT excitons via propagating
SPPs. Theoretical modeling of the excited SPP fields showed that the SWCNT maps the
SPPs locally with sub-diffraction resolution. The emission response of SWCNTs towards
specific field components of an exciting SPP could also be confirmed by Rai et al. 268 who
demonstrated the remote excitation efficiency as a function of relative angle and distance
between the SWCNT and the SPP source.

In the last part of this work, radiation channels in the vicinity of a plasmonic nanowire were
investigated. As a first step, the material composition of the silver nanowires was charac-
terized by TEM and EDX spectroscopy. Besides the silver NWs, few copper nanoparticles,
used in the wire synthesis, embedded in a polymer layer surrounding the NWs were ob-
served. In a second step, rare earth doped nanocrystals, which exhibit upconverted PL
emission in the VIS, were combined with the plasmonic NWs. Dipolar emission, also
observed in the absence of the nanowire, and leakage radiation from the nanowire could
be assigned and separated by analyzing recorded BFP patterns. The SPP contribution
from the NW can be calculated using an antenna-resonator model that considers the air-
dielectric interface on which the nanowire is deposited and the position of excitation along
the nanowire. Fitting of the experimentally observed patterns provides estimates of the
ratio F of photons emitted via the nanowire mediated and dipolar channels. Finally, the
fit of the back focal plane patterns gives access to the wave vector kSPP of the SPP sup-
ported by the NW and the plasmonic active length L. These results are important for
plasmonic applications of nanowires since the understanding of emission characteristics,
coupling efficiency and SPP properties supported by such NWs, plays a key role in device
integration.

The use of BFP imaging could be expanded towards the observation and theoretical de-
scription of different emission processes and configurations such as optical antennas or
more advanced plasmonic structures269. Further development of the method itself could
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potentially provide access to additional quantities of investigated systems in an angularly
resolved matter. One aspect of advanced BFP imaging was recently shown by Taminiau
et al. 270 and Karaveli et al. 271 , who combined the detection of the Fourier plane with
a dispersive element and thus were able to show spectrally resolved momentum maps.
The application of this method in combination with white-light reflection measurements
would allow directly the recording of the dispersion relation of plasmonic metal structures
and thin films. By monitoring possible changes in the dispersion relation if an emitter
is placed on the metal structure the coupling regime between the SPP and the emitter
system could be further investigated58,272,273. Another possible advancement would make
use of the knowledge of the unique radiation patterns in the BFP from emitter systems.
A selection of a distinct region in Fourier space by spatial filtering could enable selective
measurements of properties connected to a specific radiation channel for a combined sys-
tem. As an example, in the case of the presented nanocrystal-nanowire system radiation
lifetimes could be measured for the coupled and uncoupled fraction of radiation at the
same sample position. In summary, BFP imaging serves as a versatile optical detection
method to image angular emission characteristics as unique properties of a studied system.
At the same time it provides the capability to be readily integrated and combined with
existing microscopy techniques.

89





Bibliography

[1] Ritchie, R. Plasma Losses by Fast Electrons in Thin Films. Phys. Rev. 1957, 106 ,
874–81.

[2] Barnes, W.; Dereux, A.; Ebbesen, T. Surface plasmon subwavelength optics. Nature
2003, 424 , 824–30.

[3] Barnes, W. L. Surface plasmon-polariton length scales: a route to sub-wavelength
optics. J. Opt. 2006, 8 , 87–93.

[4] Oulton, R. F.; Sorger, V. J.; Genov, D. A.; Pile, D. F. P.; Zhang, X. A hybrid
plasmonic waveguide for subwavelength confinement and long-range propagation.
Nat. Photonics 2008, 2 , 496–500.

[5] Murray, W. A.; Barnes, W. L. Plasmonic Materials. Adv. Mater. 2007, 19 , 3771–82.

[6] Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions.
Science 2006, 311 , 189–93.

[7] Lal, S.; Hafner, J. H.; Halas, N. J.; Link, S.; Nordlander, P. Noble Metal Nanowires:
From Plasmon Waveguides to Passive and Active Devices. Acc. Chem. Res. 2012,
45 , 1887–95.

[8] Heeres, R. W.; Kouwenhofen, L. P.; Zwiller, V. Quantum interference in plasmonic
circuits. Nature Nanotechnol. 2013, 8 , 719–22.

[9] Kauranen, M.; Zayats, A. V. Nonlinear plasmonics. Nature Photon. 2012, 6 , 737–48.

[10] Otto, A. Excitation of Nonradiative Surface Plasma Waves in Silver by the Method
of Frustrated Total Reflection. Z. Phys. 1968, 216 , 398–410.

[11] Kretschmann, E. Die Bestimmung optischer Konstanten von Metallen durch Anre-
gung von Oberflächenplasmaschwingungen. Z. Phys. 1971, 241 , 313–24.

[12] Drezet, A.; Hohenau, A.; Koller, D.; Stepanov, A.; Ditlbacher, H.; Steinberger, B.;
Aussenegg, F. R.; Leitner, A.; Krenn, J. R. Leakage radiation microscopy of surface
plasmon polaritons. Mater. Sci. Eng. B 2008, 149 , 220–29.

[13] Lieb, M. A.; Zavislan, J. M.; Novotny, L. Single-molecule orientations determined
by direct emission pattern imaging. J. Opt. Soc. Am. B 2004, 21 , 1210–15.

[14] Hohenau, A.; Krenn, J. R.; Drezet, A.; Mollet, O.; Huant, S.; Genet, C.; Stein, B.;
Ebbesen, T. W. Surface plasmon leakage radiation microscopy at the diffraction
limit. Opt. Express 2011, 19 , 25749–62.

[15] Zhang, D. G.; Fu, Q.; Wang, X. X.; Chen, Y. K.; Wang, P.; Ming, H. Charaterization
of a dye doped planar polymer waveguide by leakage radiation microscopy. J. Opt.
2012, 14 , 015003.

91

http://dx.doi.org/10.1103/PhysRev.106.874
http://dx.doi.org/10.1103/PhysRev.106.874
http://dx.doi.org/10.1103/PhysRev.106.874
http://dx.doi.org/10.1103/PhysRev.106.874
http://dx.doi.org/10.1103/PhysRev.106.874
http://dx.doi.org/10.1038/nature01937
http://dx.doi.org/10.1038/nature01937
http://dx.doi.org/10.1038/nature01937
http://dx.doi.org/10.1038/nature01937
http://dx.doi.org/10.1038/nature01937
http://dx.doi.org/10.1088/1464-4258/8/4/S06
http://dx.doi.org/10.1088/1464-4258/8/4/S06
http://dx.doi.org/10.1088/1464-4258/8/4/S06
http://dx.doi.org/10.1088/1464-4258/8/4/S06
http://dx.doi.org/10.1088/1464-4258/8/4/S06
http://dx.doi.org/10.1088/1464-4258/8/4/S06
http://dx.doi.org/10.1038/nphoton.2008.131
http://dx.doi.org/10.1038/nphoton.2008.131
http://dx.doi.org/10.1038/nphoton.2008.131
http://dx.doi.org/10.1038/nphoton.2008.131
http://dx.doi.org/10.1038/nphoton.2008.131
http://dx.doi.org/10.1038/nphoton.2008.131
http://dx.doi.org/10.1002/adma.200700678
http://dx.doi.org/10.1002/adma.200700678
http://dx.doi.org/10.1002/adma.200700678
http://dx.doi.org/10.1002/adma.200700678
http://dx.doi.org/10.1002/adma.200700678
http://dx.doi.org/10.1126/science.1114849
http://dx.doi.org/10.1126/science.1114849
http://dx.doi.org/10.1126/science.1114849
http://dx.doi.org/10.1126/science.1114849
http://dx.doi.org/10.1126/science.1114849
http://dx.doi.org/10.1021/ar300133j
http://dx.doi.org/10.1021/ar300133j
http://dx.doi.org/10.1021/ar300133j
http://dx.doi.org/10.1021/ar300133j
http://dx.doi.org/10.1021/ar300133j
http://dx.doi.org/10.1021/ar300133j
http://dx.doi.org/10.1038/nnano.2013.150
http://dx.doi.org/10.1038/nnano.2013.150
http://dx.doi.org/10.1038/nnano.2013.150
http://dx.doi.org/10.1038/nnano.2013.150
http://dx.doi.org/10.1038/nnano.2013.150
http://dx.doi.org/10.1038/nnano.2013.150
http://dx.doi.org/10.1038/nphoton.2012.244
http://dx.doi.org/10.1038/nphoton.2012.244
http://dx.doi.org/10.1038/nphoton.2012.244
http://dx.doi.org/10.1038/nphoton.2012.244
http://dx.doi.org/10.1038/nphoton.2012.244
http://dx.doi.org/10.1007/BF01391532
http://dx.doi.org/10.1007/BF01391532
http://dx.doi.org/10.1007/BF01391532
http://dx.doi.org/10.1007/BF01391532
http://dx.doi.org/10.1007/BF01391532
http://dx.doi.org/10.1007/BF01391532
http://dx.doi.org/10.1007/BF01395428
http://dx.doi.org/10.1007/BF01395428
http://dx.doi.org/10.1007/BF01395428
http://dx.doi.org/10.1007/BF01395428
http://dx.doi.org/10.1007/BF01395428
http://dx.doi.org/10.1007/BF01395428
http://dx.doi.org/10.1016/j.mseb.2007.10.010
http://dx.doi.org/10.1016/j.mseb.2007.10.010
http://dx.doi.org/10.1016/j.mseb.2007.10.010
http://dx.doi.org/10.1016/j.mseb.2007.10.010
http://dx.doi.org/10.1016/j.mseb.2007.10.010
http://dx.doi.org/10.1016/j.mseb.2007.10.010
http://dx.doi.org/10.1364/JOSAB.21.001210
http://dx.doi.org/10.1364/JOSAB.21.001210
http://dx.doi.org/10.1364/JOSAB.21.001210
http://dx.doi.org/10.1364/JOSAB.21.001210
http://dx.doi.org/10.1364/JOSAB.21.001210
http://dx.doi.org/10.1364/JOSAB.21.001210
http://dx.doi.org/10.1364/OE.19.025749
http://dx.doi.org/10.1364/OE.19.025749
http://dx.doi.org/10.1364/OE.19.025749
http://dx.doi.org/10.1364/OE.19.025749
http://dx.doi.org/10.1364/OE.19.025749
http://dx.doi.org/10.1364/OE.19.025749
http://dx.doi.org/10.1088/2040-8978/14/1/015003
http://dx.doi.org/10.1088/2040-8978/14/1/015003
http://dx.doi.org/10.1088/2040-8978/14/1/015003
http://dx.doi.org/10.1088/2040-8978/14/1/015003
http://dx.doi.org/10.1088/2040-8978/14/1/015003
http://dx.doi.org/10.1088/2040-8978/14/1/015003


Bibliography

[16] Berthelot, J.; Tantussi, F.; Rai, P.; Colas des Francs, G.; Weeber, J.-C.; Bereux, A.;
Fuso, F.; Allegrini, M.; Bouhelier, A. Determinant role of the edges in defining surface
plasmon propagation in stripe waveguides and tapered concentrators. J. Opt. Soc.
Am. B 2012, 29 , 226–31.

[17] Descrovi, E.; Barakat, E.; Angelini, A.; Munzert, P.; De Leo, N.; Boarino, L.; Gior-
gis, F.; Herzig, H. P. Leakage radiation interference microscopy. Opt. Lett. 2013,
38 , 3374–76.

[18] Archambault, A.; Teperik, T. V.; Marquier, F.; Greffet, J. J. Surface plasmon Fourier
optics. Phys. Rev. B 2009, 79 , 195414–22.

[19] Shegai, T.; Miljković, V. D.; Bao, K.; Xu, H.; Nordlander, P.; Johansson, P.; Käll, M.
Unidirectional Broadband Light Emission from Supported Plasmonic Nanowires.
Nano Lett. 2011, 11 , 706–11.

[20] Taminiau, T. H.; Stefani, F. D.; van Hulst, N. F. Optical Nanorod Antennas Modeled
as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes. Nano
Lett. 2011, 11 , 1020–24.

[21] Bharadwaj, P.; Bouhelier, A.; Novotny, L. Electrical Excitation of Surface Plasmons.
Phys. Rev. Lett. 2011, 106 , 226802.

[22] Zhang, Y.; Boer-Duchemin, E.; Wang, T.; Rogez, B.; Comtet, G.; Le Moal, E.;
Dujardin, G.; Hohenau, A.; Gruber, C.; Krenn, J. R. Edge scattering of surface
plasmons excited by scanning tunneling microscopy. Opt. Expr. 2013, 21 , 13938–
48.

[23] Zenneck, J. Über die Ausbreitung der Wellen in der drahtlosen Telegraphie. Ann.
Phys. 1909, 333 , 665–736.

[24] Sommerfeld, A. Über die Fortpflanzung ebener elektromagnetischer Wellen längs
einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie. Ann. Phys.
1907, 328 , 846–66.

[25] Powell, C.; Swan, J. Effect of Oxidation on the Characteristic Loss Spectra of Alu-
minum and Magnesium. Phys. Rev. 1960, 118 , 640–43.

[26] Gramotnev, D. K.; Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat.
Photonics 2010, 4 , 83–91.

[27] Gan, Q.; Bartoli, F. J.; Kafafi, Z. H. Plasmonic-Enhanced Organic Photovoltaics:
Breaking the 10% Efficiency Barrier. Adv. Mater. 2013, 25 , 2385–96.

[28] Roh, S.; Chung, T.; Lee, B. Overview of the Characteristics of Mirco- and Nano-
Structured Surface Plasmon Resonance Sensors. Sensors 2011, 11 , 1565–88.

[29] Szunerits, S.; Boukherroub, R. Sensing using localised surface plasmon resonance
sensors. Chem. Commun. 2012, 48 , 8999–9010.

[30] Berini, P.; De Leon, I. Surface plasmon-polariton amplifier and lasers. Nat. Photonics
2012, 6 , 16–24.

[31] Maier, S. A., Ed. Plasmonics: Fundamentals and Applications, 1st ed.; Springer,
2007.

92

http://dx.doi.org/10.1364/JOSAB.29.000226
http://dx.doi.org/10.1364/JOSAB.29.000226
http://dx.doi.org/10.1364/JOSAB.29.000226
http://dx.doi.org/10.1364/JOSAB.29.000226
http://dx.doi.org/10.1364/JOSAB.29.000226
http://dx.doi.org/10.1364/JOSAB.29.000226
http://dx.doi.org/10.1364/JOSAB.29.000226
http://dx.doi.org/10.1364/OL.38.003374
http://dx.doi.org/10.1364/OL.38.003374
http://dx.doi.org/10.1364/OL.38.003374
http://dx.doi.org/10.1364/OL.38.003374
http://dx.doi.org/10.1364/OL.38.003374
http://dx.doi.org/10.1103/PhysRevB.79.195414
http://dx.doi.org/10.1103/PhysRevB.79.195414
http://dx.doi.org/10.1103/PhysRevB.79.195414
http://dx.doi.org/10.1103/PhysRevB.79.195414
http://dx.doi.org/10.1103/PhysRevB.79.195414
http://dx.doi.org/10.1103/PhysRevB.79.195414
http://dx.doi.org/10.1021/nl103834y
http://dx.doi.org/10.1021/nl103834y
http://dx.doi.org/10.1021/nl103834y
http://dx.doi.org/10.1021/nl103834y
http://dx.doi.org/10.1021/nl103834y
http://dx.doi.org/10.1021/nl103828n
http://dx.doi.org/10.1021/nl103828n
http://dx.doi.org/10.1021/nl103828n
http://dx.doi.org/10.1021/nl103828n
http://dx.doi.org/10.1021/nl103828n
http://dx.doi.org/10.1021/nl103828n
http://dx.doi.org/10.1021/nl103828n
http://dx.doi.org/10.1103/PhysRevLett.106.226802
http://dx.doi.org/10.1103/PhysRevLett.106.226802
http://dx.doi.org/10.1103/PhysRevLett.106.226802
http://dx.doi.org/10.1103/PhysRevLett.106.226802
http://dx.doi.org/10.1103/PhysRevLett.106.226802
http://dx.doi.org/10.1364/OE.21.013938
http://dx.doi.org/10.1364/OE.21.013938
http://dx.doi.org/10.1364/OE.21.013938
http://dx.doi.org/10.1364/OE.21.013938
http://dx.doi.org/10.1364/OE.21.013938
http://dx.doi.org/10.1364/OE.21.013938
http://dx.doi.org/10.1364/OE.21.013938
http://dx.doi.org/10.1002/andp.19093330402
http://dx.doi.org/10.1002/andp.19093330402
http://dx.doi.org/10.1002/andp.19093330402
http://dx.doi.org/10.1002/andp.19093330402
http://dx.doi.org/10.1002/andp.19093330402
http://dx.doi.org/10.1002/andp.19093330402
http://dx.doi.org/10.1002/andp.19073281003
http://dx.doi.org/10.1002/andp.19073281003
http://dx.doi.org/10.1002/andp.19073281003
http://dx.doi.org/10.1002/andp.19073281003
http://dx.doi.org/10.1002/andp.19073281003
http://dx.doi.org/10.1002/andp.19073281003
http://dx.doi.org/10.1103/PhysRev.118.640
http://dx.doi.org/10.1103/PhysRev.118.640
http://dx.doi.org/10.1103/PhysRev.118.640
http://dx.doi.org/10.1103/PhysRev.118.640
http://dx.doi.org/10.1103/PhysRev.118.640
http://dx.doi.org/10.1103/PhysRev.118.640
http://dx.doi.org/10.1038/nphoton.2009.282
http://dx.doi.org/10.1038/nphoton.2009.282
http://dx.doi.org/10.1038/nphoton.2009.282
http://dx.doi.org/10.1038/nphoton.2009.282
http://dx.doi.org/10.1038/nphoton.2009.282
http://dx.doi.org/10.1038/nphoton.2009.282
http://dx.doi.org/10.1002/adma.201203323
http://dx.doi.org/10.1002/adma.201203323
http://dx.doi.org/10.1002/adma.201203323
http://dx.doi.org/10.1002/adma.201203323
http://dx.doi.org/10.1002/adma.201203323
http://dx.doi.org/10.1002/adma.201203323
http://dx.doi.org/10.3390/s110201565
http://dx.doi.org/10.3390/s110201565
http://dx.doi.org/10.3390/s110201565
http://dx.doi.org/10.3390/s110201565
http://dx.doi.org/10.3390/s110201565
http://dx.doi.org/10.3390/s110201565
http://dx.doi.org/10.1039/c2cc33266c
http://dx.doi.org/10.1039/c2cc33266c
http://dx.doi.org/10.1039/c2cc33266c
http://dx.doi.org/10.1039/c2cc33266c
http://dx.doi.org/10.1039/c2cc33266c
http://dx.doi.org/10.1039/c2cc33266c
http://dx.doi.org/10.1038/nphoton.2011.285
http://dx.doi.org/10.1038/nphoton.2011.285
http://dx.doi.org/10.1038/nphoton.2011.285
http://dx.doi.org/10.1038/nphoton.2011.285
http://dx.doi.org/10.1038/nphoton.2011.285


Bibliography

[32] Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings;
Springer, 1986.

[33] Novotny, L.; Hecht, B. Principles of Nano-Optics, 2nd ed.; Cambridge University
Press, 2012.

[34] Marti, O.; Bielefeld, H.; Hecht, B.; Leiderer, P.; Mlynek, J. Near-field optical mea-
surement of the surface plasmon field. Opt. Commun. 1993, 96 , 225–28.

[35] Johnson, P. B.; Christy, R. W. Optical Constants of Noble Metals. Phys. Rev. B
1972, 6 , 4370–79.

[36] Arakawa, E. T.; Williams, M. W.; Hamm, R. N.; Ritchie, R. H. Effect of Damping
on Surface Plasmon Dispersion. Phys. Rev. Lett. 1973, 31 , 1127–29.

[37] Pockrand, I. Surface plasma oscillations at silver surfaces with thin transparent and
absorbing coatings. Surf. Sci. 1978, 72 , 577–88.

[38] Hondros, D. Über elektromagnetische Drahtwellen. Ann. Phys. 1909, 335 , 905–50.

[39] Neubrech, F.; Kolb, T.; Lovrincic, R.; Fahsold, G.; Pucci, A. Resonances of individ-
ual metal nanowires in the infrared. Appl. Phys. Lett. 2006, 89 , 253104.

[40] Novotny, L. Effective Wavelength Scaling for Optical Antennas. Phys. Rev. Lett.
2007, 98 , 266802.

[41] Novotny, L.; Hafner, C. Light propagation in a cylindrical waveguide with a complex,
metallic, dielectric function. Phys. Rev. E 1994, 50 , 4094–106.

[42] Burke, J. J.; Stegeman, G. I.; Tamir, T. Surface-polariton-like waves guided by thin,
lossy metal films. Phys. Rev. B 1986, 33 , 5186–5201.

[43] Zayats, A. V.; Smolyaninov, I. I.; Maradudin, A. A. Nano-optics of surface plasmon
polaritons. Phys. Rep. 2005, 408 , 131–314.

[44] Kano, H.; Mizuguchi, S.; Kawata, S. Excitation of surface-plasmon polaritons by a
focused laser beam. J. Opt. Soc. Am. B 1998, 15 , 1381–86.

[45] Bouhelier, A.; Wiederrecht, G. P. Excitation of broadband surface plasmon polari-
tons: Plasmonic continuum spectroscopy. Phys. Rev. B 2005, 71 , 195406.

[46] Bouhelier, A.; Ignatovich, F.; Bruyant, A.; Huang, C.; Colas des Francs, G.; Wee-
ber, J.-C.; Deeux, A.; Wiederrecht, G. P.; Novotny, L. Surface plasmon interference
excited by tightly focused laser beams. Opt. Lett. 2007, 32 , 2535–37.

[47] Wood, R. W. On a Remarkable Case of Uneven Distribution of Light in a Diffraction
Grating Spectrum. Proc. Phys. Soc. London 1902, 18 , 269–75.

[48] Hecht, E. Optics, 4th ed.; Addison Wesley, 2002.

[49] Ropers, C.; Neacsu, C. C.; Elsaesser, T.; Albrecht, M.; Raschke, M. B.; Lienau, C.
Grating-Coupling of Surface Plasmons onto Metallic Tips: A Nanoconfined Light
Source. Nano Lett. 2007, 7 , 2784–88.

[50] Lezec, H. J.; Degiron, A.; Devaux, E.; Linke, R. A.; Martin-Moreno, L.; Garcia-
Vidal, F. J.; Ebbesen, T. W. Beaming Light from a Subwavelength Aperture. Science
2002, 297 , 820–22.

93

http://dx.doi.org/10.1016/0030-4018(93)90265-7
http://dx.doi.org/10.1016/0030-4018(93)90265-7
http://dx.doi.org/10.1016/0030-4018(93)90265-7
http://dx.doi.org/10.1016/0030-4018(93)90265-7
http://dx.doi.org/10.1016/0030-4018(93)90265-7
http://dx.doi.org/10.1016/0030-4018(93)90265-7
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1103/PhysRevLett.31.1127
http://dx.doi.org/10.1103/PhysRevLett.31.1127
http://dx.doi.org/10.1103/PhysRevLett.31.1127
http://dx.doi.org/10.1103/PhysRevLett.31.1127
http://dx.doi.org/10.1103/PhysRevLett.31.1127
http://dx.doi.org/10.1103/PhysRevLett.31.1127
http://dx.doi.org/10.1016/0039-6028(78)90371-0
http://dx.doi.org/10.1016/0039-6028(78)90371-0
http://dx.doi.org/10.1016/0039-6028(78)90371-0
http://dx.doi.org/10.1016/0039-6028(78)90371-0
http://dx.doi.org/10.1016/0039-6028(78)90371-0
http://dx.doi.org/10.1016/0039-6028(78)90371-0
http://dx.doi.org/10.1002/andp.19093351504
http://dx.doi.org/10.1002/andp.19093351504
http://dx.doi.org/10.1002/andp.19093351504
http://dx.doi.org/10.1002/andp.19093351504
http://dx.doi.org/10.1002/andp.19093351504
http://dx.doi.org/10.1063/1.2405873
http://dx.doi.org/10.1063/1.2405873
http://dx.doi.org/10.1063/1.2405873
http://dx.doi.org/10.1063/1.2405873
http://dx.doi.org/10.1063/1.2405873
http://dx.doi.org/10.1063/1.2405873
http://dx.doi.org/10.1103/PhysRevLett.98.266802
http://dx.doi.org/10.1103/PhysRevLett.98.266802
http://dx.doi.org/10.1103/PhysRevLett.98.266802
http://dx.doi.org/10.1103/PhysRevLett.98.266802
http://dx.doi.org/10.1103/PhysRevLett.98.266802
http://dx.doi.org/10.1103/PhysRevE.50.4094
http://dx.doi.org/10.1103/PhysRevE.50.4094
http://dx.doi.org/10.1103/PhysRevE.50.4094
http://dx.doi.org/10.1103/PhysRevE.50.4094
http://dx.doi.org/10.1103/PhysRevE.50.4094
http://dx.doi.org/10.1103/PhysRevE.50.4094
http://dx.doi.org/10.1103/PhysRevB.33.5186
http://dx.doi.org/10.1103/PhysRevB.33.5186
http://dx.doi.org/10.1103/PhysRevB.33.5186
http://dx.doi.org/10.1103/PhysRevB.33.5186
http://dx.doi.org/10.1103/PhysRevB.33.5186
http://dx.doi.org/10.1103/PhysRevB.33.5186
http://dx.doi.org/10.1016/j.physrep.2004.11.001
http://dx.doi.org/10.1016/j.physrep.2004.11.001
http://dx.doi.org/10.1016/j.physrep.2004.11.001
http://dx.doi.org/10.1016/j.physrep.2004.11.001
http://dx.doi.org/10.1016/j.physrep.2004.11.001
http://dx.doi.org/10.1016/j.physrep.2004.11.001
http://dx.doi.org/10.1364/JOSAB.15.001381
http://dx.doi.org/10.1364/JOSAB.15.001381
http://dx.doi.org/10.1364/JOSAB.15.001381
http://dx.doi.org/10.1364/JOSAB.15.001381
http://dx.doi.org/10.1364/JOSAB.15.001381
http://dx.doi.org/10.1364/JOSAB.15.001381
http://dx.doi.org/10.1103/PhysRevB.71.195406
http://dx.doi.org/10.1103/PhysRevB.71.195406
http://dx.doi.org/10.1103/PhysRevB.71.195406
http://dx.doi.org/10.1103/PhysRevB.71.195406
http://dx.doi.org/10.1103/PhysRevB.71.195406
http://dx.doi.org/10.1103/PhysRevB.71.195406
http://dx.doi.org/10.1364/OL.32.002535
http://dx.doi.org/10.1364/OL.32.002535
http://dx.doi.org/10.1364/OL.32.002535
http://dx.doi.org/10.1364/OL.32.002535
http://dx.doi.org/10.1364/OL.32.002535
http://dx.doi.org/10.1364/OL.32.002535
http://dx.doi.org/10.1088/1478-7814/18/1/325
http://dx.doi.org/10.1088/1478-7814/18/1/325
http://dx.doi.org/10.1088/1478-7814/18/1/325
http://dx.doi.org/10.1088/1478-7814/18/1/325
http://dx.doi.org/10.1088/1478-7814/18/1/325
http://dx.doi.org/10.1088/1478-7814/18/1/325
http://dx.doi.org/10.1021/nl071340m
http://dx.doi.org/10.1021/nl071340m
http://dx.doi.org/10.1021/nl071340m
http://dx.doi.org/10.1021/nl071340m
http://dx.doi.org/10.1021/nl071340m
http://dx.doi.org/10.1021/nl071340m
http://dx.doi.org/10.1126/science.1071895
http://dx.doi.org/10.1126/science.1071895
http://dx.doi.org/10.1126/science.1071895
http://dx.doi.org/10.1126/science.1071895
http://dx.doi.org/10.1126/science.1071895


Bibliography

[51] Ditlbacher, H.; Krenn, J.; Schider, G.; Leitner, A.; Aussenegg, F. R. Two-dimensional
optics with surface plasmon polaritons. Appl. Phys. Lett. 2002, 81 , 1762.

[52] Ditlbacher, H.; Krenn, J. R.; Hohenau, A.; Leitner, A.; Aussenegg, F. R. Efficiency
of local light-plasmon coupling. Appl. Phys. Lett. 2003, 83 , 3665.

[53] Hecht, B.; Bielefeldt, H.; Novotny, L.; Inoue, Y.; Pohl, D. W. Local Excitation,
Scattering, and Interference of Surface Plasmons. Phys. Rev. Lett. 1996, 77 , 1889–
92.

[54] Baudrion, A.-L.; de Leon-Perez, F.; Mahboub, O.; Hohenau, A.; Ditlbacher, H.;
Garcia-Vidal, F. J.; Dintinger, J.; Ebbesen, T. W.; Martin-Moreno, L.; Krenn, J. R.
Coupling efficiency of light to surface plasmon polariton for single subwavelength
holes in a gold film. Opt. Expr. 2008, 16 , 3420–29.

[55] Lalulet, J.-Y.; Drezet, A.; Genet, C.; Ebbesen, T. W. Generation of surface plasmons
at single subwavelength slits: from slit to ridge plasmon. New J. Phys. 2008, 10 ,
105014.

[56] Pockrand, I.; Brillante, A.; Möbius, D. Exciton-surface plasmon coupling: An ex-
perimental investigation. J. Chem. Phys. 1982, 77 , 6289–95.

[57] Lakowicz, J. Radiative decay engineering 3. Surface plasmon-coupled directional
emission. Anal. Biochem. 2004, 324 , 153–69.

[58] Bellessa, J.; Bonnand, C.; Plenet, J. C.; Mugnier, J. Strong Coupling between Sur-
face Plasmons and Excitons in an Organic Semiconductor. Phys. Rev. Lett 2004,
93 , 036404.

[59] Fedutik, Y.; Temnov, V.; Woggon, U.; Ustinovich, E.; Artemyev, M. Exciton-
Plasmon Interaction in a Composite Metal-Insulator-Semiconductor Nanowire Sys-
tem. J. Am. Chem. Soc. 2007, 129 , 14939–45.

[60] Hakala, T.; Toppari, J.; Kuzyk, A.; Pettersson, M.; Tikkanen, H.; Kunttu, H.;
Törmä, P. Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-
Plasmon Polaritons and Rhodamine 6G Molecules. Phys. Rev. Lett. 2009, 103 ,
053602.

[61] Valmorra, F.; Bröll, M.; Schwaiger, S.; Welzel, N.; Heitmann, D.; Mendach, S.
Strong coupling between surface plasmon polariton and laser dye rhodamine 800.
Appl. Phys. Lett. 2011, 99 , 051110.

[62] Akimov, A. V.; Mukherjee, A.; Yu, C. L.; Chang, D. E.; Zibrov, A. S.; Hemmer, P. R.;
Park, H.; Lukin, M. D. Generation of single optical plasmons in metallic nanowires
coupled to quantum dots. Nature 2007, 450 , 402–6.

[63] Kolesov, R.; Grotz, B.; Balasubramanian, G.; Stö, R. J.; Nicolet, A. A. L.; Hem-
mer, P. R.; Jelezko, F.; Wrachtrup, J. Wave-particle duality of single surface plasmon
polaritons. Nat. Phys. 2009, 5 , 470–74.

[64] Gruber, C.; Trügler, A.; Hohenau, A.; Hohenester, U.; Krenn, J. R. Spectral Modi-
fications and Polarization Dependent Coupling in Tailored Assemblies of Quantum
Dots and Plasmonic Nanowires. Nano Lett. 2013, 9 , 1–6.

94

http://dx.doi.org/10.1063/1.1506018
http://dx.doi.org/10.1063/1.1506018
http://dx.doi.org/10.1063/1.1506018
http://dx.doi.org/10.1063/1.1506018
http://dx.doi.org/10.1063/1.1506018
http://dx.doi.org/10.1063/1.1506018
http://dx.doi.org/10.1063/1.1625107
http://dx.doi.org/10.1063/1.1625107
http://dx.doi.org/10.1063/1.1625107
http://dx.doi.org/10.1063/1.1625107
http://dx.doi.org/10.1063/1.1625107
http://dx.doi.org/10.1063/1.1625107
http://dx.doi.org/10.1103/PhysRevLett.77.1889
http://dx.doi.org/10.1103/PhysRevLett.77.1889
http://dx.doi.org/10.1103/PhysRevLett.77.1889
http://dx.doi.org/10.1103/PhysRevLett.77.1889
http://dx.doi.org/10.1103/PhysRevLett.77.1889
http://dx.doi.org/10.1103/PhysRevLett.77.1889
http://dx.doi.org/10.1103/PhysRevLett.77.1889
http://dx.doi.org/10.1364/OE.16.003420
http://dx.doi.org/10.1364/OE.16.003420
http://dx.doi.org/10.1364/OE.16.003420
http://dx.doi.org/10.1364/OE.16.003420
http://dx.doi.org/10.1364/OE.16.003420
http://dx.doi.org/10.1364/OE.16.003420
http://dx.doi.org/10.1088/1367-2630/10/10/105014
http://dx.doi.org/10.1088/1367-2630/10/10/105014
http://dx.doi.org/10.1088/1367-2630/10/10/105014
http://dx.doi.org/10.1088/1367-2630/10/10/105014
http://dx.doi.org/10.1088/1367-2630/10/10/105014
http://dx.doi.org/10.1088/1367-2630/10/10/105014
http://dx.doi.org/10.1063/1.443834
http://dx.doi.org/10.1063/1.443834
http://dx.doi.org/10.1063/1.443834
http://dx.doi.org/10.1063/1.443834
http://dx.doi.org/10.1063/1.443834
http://dx.doi.org/10.1063/1.443834
http://dx.doi.org/10.1016/j.ab.2003.09.039
http://dx.doi.org/10.1016/j.ab.2003.09.039
http://dx.doi.org/10.1016/j.ab.2003.09.039
http://dx.doi.org/10.1016/j.ab.2003.09.039
http://dx.doi.org/10.1016/j.ab.2003.09.039
http://dx.doi.org/10.1016/j.ab.2003.09.039
http://dx.doi.org/10.1103/PhysRevLett.93.036404
http://dx.doi.org/10.1103/PhysRevLett.93.036404
http://dx.doi.org/10.1103/PhysRevLett.93.036404
http://dx.doi.org/10.1103/PhysRevLett.93.036404
http://dx.doi.org/10.1103/PhysRevLett.93.036404
http://dx.doi.org/10.1103/PhysRevLett.93.036404
http://dx.doi.org/10.1021/ja074705d
http://dx.doi.org/10.1021/ja074705d
http://dx.doi.org/10.1021/ja074705d
http://dx.doi.org/10.1021/ja074705d
http://dx.doi.org/10.1021/ja074705d
http://dx.doi.org/10.1021/ja074705d
http://dx.doi.org/10.1021/ja074705d
http://dx.doi.org/10.1103/PhysRevLett.103.053602
http://dx.doi.org/10.1103/PhysRevLett.103.053602
http://dx.doi.org/10.1103/PhysRevLett.103.053602
http://dx.doi.org/10.1103/PhysRevLett.103.053602
http://dx.doi.org/10.1103/PhysRevLett.103.053602
http://dx.doi.org/10.1103/PhysRevLett.103.053602
http://dx.doi.org/10.1063/1.3619845
http://dx.doi.org/10.1063/1.3619845
http://dx.doi.org/10.1063/1.3619845
http://dx.doi.org/10.1063/1.3619845
http://dx.doi.org/10.1063/1.3619845
http://dx.doi.org/10.1038/nature06230
http://dx.doi.org/10.1038/nature06230
http://dx.doi.org/10.1038/nature06230
http://dx.doi.org/10.1038/nature06230
http://dx.doi.org/10.1038/nature06230
http://dx.doi.org/10.1038/nature06230
http://dx.doi.org/10.1038/nphys1278
http://dx.doi.org/10.1038/nphys1278
http://dx.doi.org/10.1038/nphys1278
http://dx.doi.org/10.1038/nphys1278
http://dx.doi.org/10.1038/nphys1278
http://dx.doi.org/10.1038/nphys1278
http://dx.doi.org/10.1021/nl4019947
http://dx.doi.org/10.1021/nl4019947
http://dx.doi.org/10.1021/nl4019947
http://dx.doi.org/10.1021/nl4019947
http://dx.doi.org/10.1021/nl4019947
http://dx.doi.org/10.1021/nl4019947
http://dx.doi.org/10.1021/nl4019947


Bibliography

[65] Walters, R. J.; van Loon, R. V. A.; Brunets, I.; Schmitz, J.; Polman, A. A silicon-
based electrical source of surface plasmon polaritons. Nat. Mater. 2010, 9 , 21–5.

[66] Wang, L.; Li, T.; Li, L.; Xia, W.; Xu, X. G.; Zhu, S. N. Electrically generated
unidirectional surface plasmon source. Opt. Expr. 2012, 20 , 8710–17.

[67] Koller, D. M.; Hohenau, H., A. Ditlbacher; Galler, N.; Reil, F.; Aussenegg, F. R.;
Leitner, A.; List, E. J. W.; Krenn, J. R. Organic plasmon-emitting diode. Nat.
Photon. 2008, 2 , 684–87.

[68] Rai, P.; Hartmann, N.; Berthelot, J.; Arocas, J.; Colas des Francs, G.; Hartschuh, A.;
Bouhelier, A. Electrical Excitation of Surface Plasmons by an Individual Carbon
Nanotube Transistor. Phys. Rev. Lett. 2013, 111 , 026804.

[69] Sönnichsen, C.; Duch, A. C.; Steininger, G.; Koch, M.; von Plessen, G.; Feldmann, J.
Launching surface plasmons into nanoholes in metal films. Appl. Phys. Lett. 2000,
76 , 140–42.

[70] Baida, F. I.; Van Labeke, D.; Bouhelier, A.; Huser, T.; Pohl, D. W. Propagation
and diffraction of locally excited surface plasmons. J. Opt. Soc. Am. A 2001, 18 ,
1552–61.

[71] Brun, M.; Drezet, A.; Mariette, H.; Chevalier, N.; Woehl, J. C.; Huant, S. Remote
optical adressing of single nano-objects. Europhys. Lett. 2003, 64 , 634–40.

[72] Mollet, O.; Cuche, A.; Drezet, A.; Huant, S. Leakage radiation microscopy of surface
plasmons launched by a nanodiamond-based tip. Diam. Relat. Mater. 2011, 20 ,
995–98.

[73] Raether, H. Excitation of Plasmons and Interband Transitions by Electrons; Springer
Tracts in Modern Physics; Springer, 1980; Vol. 88.

[74] Rocca, M. Low-energy EELS investigation of surface electronic excitations on metals.
Surf. Sci. Rep. 1995, 22 , 1–71.

[75] Marty, R.; Girard, C.; Arbouet, G., A. Colas des Francs Near-field coupling of a
point-like dipolar source with a thin metallic film: Implication for STM plasmon
excitation. Chem. Phys. Lett. 2012, 532 , 100–5.

[76] Simon, H. J.; Guha, J. K. Directional surface plasmon scattering from silver films.
Opt. Commun. 1976, 18 , 391–94.

[77] Bouhelier, A.; Huser, T.; Tamaru, H.; Güntherodt, H.-J.; Pohl, D. W.; Baida, F. I.;
Van Labeke, D. Plasmon optics of structured silver films. Phys. Rev. B 2001, 63 ,
155404.

[78] Krenn, J. R.; Weeber, J.-C. Surface plasmon polaritons in metal stripes and wires.
Phil. Trans. R. Soc. Lond. A 2004, 362 , 739–56.

[79] Ditlbacher, H.; Krenn, J. R.; Leitner, A.; Aussenegg, F. R. Surface plasmon
polariton-based optical beam profiler. Opt. Lett. 2004, 29 , 1408–10.

[80] Stepanov, A. L.; Krenn, J. R.; Ditlbacher, H.; Hohenau, A.; Drezet, A.; Stein-
berger, B.; Leitner, A.; Aussenegg, F. A. Quantitative analysis of surface plasmon
interaction with silver nanoparticles. Opt. Lett. 2005, 30 , 1524–26.

95

http://dx.doi.org/10.1038/nmat2595
http://dx.doi.org/10.1038/nmat2595
http://dx.doi.org/10.1038/nmat2595
http://dx.doi.org/10.1038/nmat2595
http://dx.doi.org/10.1038/nmat2595
http://dx.doi.org/10.1038/nmat2595
http://dx.doi.org/10.1364/OE.20.008710
http://dx.doi.org/10.1364/OE.20.008710
http://dx.doi.org/10.1364/OE.20.008710
http://dx.doi.org/10.1364/OE.20.008710
http://dx.doi.org/10.1364/OE.20.008710
http://dx.doi.org/10.1364/OE.20.008710
http://dx.doi.org/10.1038/nphoton.2008.200
http://dx.doi.org/10.1038/nphoton.2008.200
http://dx.doi.org/10.1038/nphoton.2008.200
http://dx.doi.org/10.1038/nphoton.2008.200
http://dx.doi.org/10.1038/nphoton.2008.200
http://dx.doi.org/10.1038/nphoton.2008.200
http://dx.doi.org/10.1103/PhysRevLett.111.026804
http://dx.doi.org/10.1103/PhysRevLett.111.026804
http://dx.doi.org/10.1103/PhysRevLett.111.026804
http://dx.doi.org/10.1103/PhysRevLett.111.026804
http://dx.doi.org/10.1103/PhysRevLett.111.026804
http://dx.doi.org/10.1103/PhysRevLett.111.026804
http://dx.doi.org/10.1063/1.125682
http://dx.doi.org/10.1063/1.125682
http://dx.doi.org/10.1063/1.125682
http://dx.doi.org/10.1063/1.125682
http://dx.doi.org/10.1063/1.125682
http://dx.doi.org/10.1364/JOSAA.18.001552
http://dx.doi.org/10.1364/JOSAA.18.001552
http://dx.doi.org/10.1364/JOSAA.18.001552
http://dx.doi.org/10.1364/JOSAA.18.001552
http://dx.doi.org/10.1364/JOSAA.18.001552
http://dx.doi.org/10.1364/JOSAA.18.001552
http://dx.doi.org/10.1209/epl/i2003-00275-y
http://dx.doi.org/10.1209/epl/i2003-00275-y
http://dx.doi.org/10.1209/epl/i2003-00275-y
http://dx.doi.org/10.1209/epl/i2003-00275-y
http://dx.doi.org/10.1209/epl/i2003-00275-y
http://dx.doi.org/10.1209/epl/i2003-00275-y
http://dx.doi.org/10.1016/j.diamond.2011.05.012
http://dx.doi.org/10.1016/j.diamond.2011.05.012
http://dx.doi.org/10.1016/j.diamond.2011.05.012
http://dx.doi.org/10.1016/j.diamond.2011.05.012
http://dx.doi.org/10.1016/j.diamond.2011.05.012
http://dx.doi.org/10.1016/j.diamond.2011.05.012
http://dx.doi.org/10.1016/0167-5729(95)00004-6
http://dx.doi.org/10.1016/0167-5729(95)00004-6
http://dx.doi.org/10.1016/0167-5729(95)00004-6
http://dx.doi.org/10.1016/0167-5729(95)00004-6
http://dx.doi.org/10.1016/0167-5729(95)00004-6
http://dx.doi.org/10.1016/j.cplett.2012.02.058
http://dx.doi.org/10.1016/j.cplett.2012.02.058
http://dx.doi.org/10.1016/j.cplett.2012.02.058
http://dx.doi.org/10.1016/j.cplett.2012.02.058
http://dx.doi.org/10.1016/j.cplett.2012.02.058
http://dx.doi.org/10.1016/j.cplett.2012.02.058
http://dx.doi.org/10.1016/j.cplett.2012.02.058
http://dx.doi.org/10.1016/0030-4018(76)90158-9
http://dx.doi.org/10.1016/0030-4018(76)90158-9
http://dx.doi.org/10.1016/0030-4018(76)90158-9
http://dx.doi.org/10.1016/0030-4018(76)90158-9
http://dx.doi.org/10.1016/0030-4018(76)90158-9
http://dx.doi.org/10.1103/PhysRevB.63.155404
http://dx.doi.org/10.1103/PhysRevB.63.155404
http://dx.doi.org/10.1103/PhysRevB.63.155404
http://dx.doi.org/10.1103/PhysRevB.63.155404
http://dx.doi.org/10.1103/PhysRevB.63.155404
http://dx.doi.org/10.1098/rsta.2003.1344
http://dx.doi.org/10.1098/rsta.2003.1344
http://dx.doi.org/10.1098/rsta.2003.1344
http://dx.doi.org/10.1098/rsta.2003.1344
http://dx.doi.org/10.1098/rsta.2003.1344
http://dx.doi.org/10.1364/OL.29.001408
http://dx.doi.org/10.1364/OL.29.001408
http://dx.doi.org/10.1364/OL.29.001408
http://dx.doi.org/10.1364/OL.29.001408
http://dx.doi.org/10.1364/OL.29.001408
http://dx.doi.org/10.1364/OL.29.001408
http://dx.doi.org/10.1364/OL.30.001524
http://dx.doi.org/10.1364/OL.30.001524
http://dx.doi.org/10.1364/OL.30.001524
http://dx.doi.org/10.1364/OL.30.001524
http://dx.doi.org/10.1364/OL.30.001524
http://dx.doi.org/10.1364/OL.30.001524


Bibliography

[81] Dawson, P.; de Fornel, F.; Goudonnet, J.-P. Imaging of Surface Plasmon Propagation
and Edge Interaction Using a Photon Scanning Tunneling Microscope. Phys. Rev.
Lett. 1994, 72 , 2927–30.

[82] Dawson, P.; Puygranier, B. A. F.; Goudonnet, J.-P. Surface plasmon propagation
length: A direct comparison using photon scanning tunneling microscopy and at-
tenuated total reflection. Phys. Rev. B 2001, 63 , 205410.

[83] Weeber, J.-C.; Krenn, J. R.; Dereux, A.; Lamprecht, B.; Lacroute, Y.; Goudon-
net, J. P. Near-field observation of surface plasmon polariton propagation on thin
metal stripes. Phys. Rev. B 2001, 64 , 045411.

[84] Karrai, K.; Grober, R. D. Piezoelectric tipsample distance control for near field
optical microscopes. Appl. Phys. Lett. 1995, 66 , 1842–44.

[85] Adam, P. M.; Salomon, L.; de Fornel, F.; Goudonnet, J. P. Determination of the
spatial extension of the surface-plasmon evanescent field of a silver film with a photon
scanning tunneling microscope. Phys. Rev. B 1993, 48 , 2680–83.

[86] Yin, L.; Vlasko-Vlasov, V. K.; Rydh, A.; Pearson, J.; Welp, U.; Chang, S.-H.;
Gray, S. K.; Schatz, G. C.; Brown, D. B.; Kimball, C. W. Surface plasmons at
single nanoholes in Au films. Appl. Phys. Lett. 2004, 85 , 467–69.

[87] Ditlbacher, H.; Hohenau, A.; Wagner, D.; Kreibig, U.; Rogers, M.; Hofer, F.;
Aussenegg, F. R.; Krenn, J. R. Silver Nanowires as Surface Plasmon Resonators.
Phys. Rev. Lett. 2005, 95 , 257403.

[88] Laroche, T.; Girard, C. Near-field optical properties of single plasmonic nanowires.
Appl. Phys. Lett. 2006, 89 , 233119.

[89] Krenn, J. R.; Dereux, A.; Weeber, J. C.; Bourillot, E.; Lacroute, Y.; Goudon-
net, J. P.; Schider, G.; Gotschy, W.; Leitner, A.; Aussenegg, F. R.; Girard, C.
Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanopar-
ticles. Phys. Rev. B 1993, 48 , 2680–83.

[90] Denkova, D.; Verellen, N.; Silhanek, A. V.; Valev, V. K.; Van Dorpe, P.;
Moshchalkov, V. V. Mapping Magnetic Near-Field Distributions of Plasmonic
Nanoantennas. ACS Nano 2013, 7 , 3168–76.

[91] Yin, L.; Vlasko-Vlasov, V. K.; Pearson, J.; Hiller, J. M.; Hua, J.; Welp, U.;
Brown, D. E.; Kimball, C. W. Subwavelength Focusing and Guiding of Surface
Plasmons. Nano Lett. 2005, 5 , 1399–402.

[92] Kihm, H. W.; Kim, J.; Koo, S.; Ahn, J.; Ahn, K.; Lee, K.; Park, N.; Kim, D.-S.
Optical magnetic field mapping using a subwavelength aperture. Opt. Express 2013,
21 , 5625–33.

[93] Fort, E.; Grésillon, S. Surface enhanced fluorescence. J. Phys. D 2008, 41 , 013001.

[94] Ditlbacher, H.; Krenn, J. R.; Felidj, N.; Lamprecht, B.; Schider, G.; Salerno, M.;
Leitner, A.; Aussenegg, F. R. Fluorescence imaging of surface plasmon fields. Appl.
Phys. Lett. 2002, 80 , 404–6.

[95] Chance, R. R.; Prock, A.; Silbey, R. Molecular fluorescence and energy transfer near
interfaces; Advances in Chemical Physics; Wiley & Sons, 2007; Vol. 37.

96

http://dx.doi.org/10.1103/PhysRevLett.72.2927
http://dx.doi.org/10.1103/PhysRevLett.72.2927
http://dx.doi.org/10.1103/PhysRevLett.72.2927
http://dx.doi.org/10.1103/PhysRevLett.72.2927
http://dx.doi.org/10.1103/PhysRevLett.72.2927
http://dx.doi.org/10.1103/PhysRevLett.72.2927
http://dx.doi.org/10.1103/PhysRevLett.72.2927
http://dx.doi.org/10.1103/PhysRevB.63.205410
http://dx.doi.org/10.1103/PhysRevB.63.205410
http://dx.doi.org/10.1103/PhysRevB.63.205410
http://dx.doi.org/10.1103/PhysRevB.63.205410
http://dx.doi.org/10.1103/PhysRevB.63.205410
http://dx.doi.org/10.1103/PhysRevB.63.205410
http://dx.doi.org/10.1103/PhysRevB.63.205410
http://dx.doi.org/10.1103/PhysRevB.64.045411
http://dx.doi.org/10.1103/PhysRevB.64.045411
http://dx.doi.org/10.1103/PhysRevB.64.045411
http://dx.doi.org/10.1103/PhysRevB.64.045411
http://dx.doi.org/10.1103/PhysRevB.64.045411
http://dx.doi.org/10.1103/PhysRevB.64.045411
http://dx.doi.org/10.1063/1.113340
http://dx.doi.org/10.1063/1.113340
http://dx.doi.org/10.1063/1.113340
http://dx.doi.org/10.1063/1.113340
http://dx.doi.org/10.1063/1.113340
http://dx.doi.org/10.1063/1.113340
http://dx.doi.org/10.1063/1.113340
http://dx.doi.org/10.1063/1.113340
http://dx.doi.org/10.1063/1.113340
http://dx.doi.org/10.1063/1.113340
http://dx.doi.org/10.1063/1.113340
http://dx.doi.org/10.1063/1.113340
http://dx.doi.org/10.1063/1.113340
http://dx.doi.org/10.1063/1.1773362
http://dx.doi.org/10.1063/1.1773362
http://dx.doi.org/10.1063/1.1773362
http://dx.doi.org/10.1063/1.1773362
http://dx.doi.org/10.1063/1.1773362
http://dx.doi.org/10.1063/1.1773362
http://dx.doi.org/10.1103/PhysRevLett.95.257403
http://dx.doi.org/10.1103/PhysRevLett.95.257403
http://dx.doi.org/10.1103/PhysRevLett.95.257403
http://dx.doi.org/10.1103/PhysRevLett.95.257403
http://dx.doi.org/10.1103/PhysRevLett.95.257403
http://dx.doi.org/10.1063/1.2403914
http://dx.doi.org/10.1063/1.2403914
http://dx.doi.org/10.1063/1.2403914
http://dx.doi.org/10.1063/1.2403914
http://dx.doi.org/10.1063/1.2403914
http://dx.doi.org/10.1063/1.113340
http://dx.doi.org/10.1063/1.113340
http://dx.doi.org/10.1063/1.113340
http://dx.doi.org/10.1063/1.113340
http://dx.doi.org/10.1063/1.113340
http://dx.doi.org/10.1063/1.113340
http://dx.doi.org/10.1021/nn305589t
http://dx.doi.org/10.1021/nn305589t
http://dx.doi.org/10.1021/nn305589t
http://dx.doi.org/10.1021/nn305589t
http://dx.doi.org/10.1021/nn305589t
http://dx.doi.org/10.1021/nn305589t
http://dx.doi.org/10.1021/nl050723m
http://dx.doi.org/10.1021/nl050723m
http://dx.doi.org/10.1021/nl050723m
http://dx.doi.org/10.1021/nl050723m
http://dx.doi.org/10.1021/nl050723m
http://dx.doi.org/10.1021/nl050723m
http://dx.doi.org/10.1364/OE.21.005625
http://dx.doi.org/10.1364/OE.21.005625
http://dx.doi.org/10.1364/OE.21.005625
http://dx.doi.org/10.1364/OE.21.005625
http://dx.doi.org/10.1364/OE.21.005625
http://dx.doi.org/10.1088/0022-3727/41/1/013001
http://dx.doi.org/10.1088/0022-3727/41/1/013001
http://dx.doi.org/10.1088/0022-3727/41/1/013001
http://dx.doi.org/10.1088/0022-3727/41/1/013001
http://dx.doi.org/10.1088/0022-3727/41/1/013001
http://dx.doi.org/10.1063/1.1435410
http://dx.doi.org/10.1063/1.1435410
http://dx.doi.org/10.1063/1.1435410
http://dx.doi.org/10.1063/1.1435410
http://dx.doi.org/10.1063/1.1435410
http://dx.doi.org/10.1063/1.1435410


Bibliography

[96] Solis, D.; Chang, W.-C.; Khanal, B. P.; Bao, K.; Nordlander, P.; Zubarev, E. R.;
Link, S. Bleach-Imaged Plasmon Propagation (BlIPP) in Single Gold Nanowires.
Nano Lett. 2010, 10 , 3482–85.

[97] Kubitschek, U., Ed. Fluorescence Microscopy - From Principles to Biological Appli-
cations, 1st ed.; Wiley-Blackwell, 2013.

[98] Hartschuh, A. Tip-Enhanced Near-Field Optical Microscopy. Angew. Chem. Int. Ed.
2008, 47 , 8178–91.

[99] Hartschuh, A.; Qian, H.; Böhmler, M.; Georgi, C. Tip-enhanced near-field optical
microscopy of carbon nanotubes. Anal. Biochem. Chem. 2009, 394 , 1787–95.

[100] Böhmler, M.; Wang, Z.; Myalitsin, A.; Mews, A.; Hartschuh, A. Optical Imaging
of CdSe Nanowires with Nanoscale Resolution. Angew. Chem. Int. Ed. 2011, 50 ,
11536–38.

[101] Huang, B.; Bates, M.; Zhuang, X. Super-Resolution Fluorescence microscopy. Annu.
Rev. Biochem. 2009, 78 , 993–1016.

[102] Müller, T.; Schumann, C.; Kraegeloh, A. STED Microscopy and its Applications:
New Insights into Cellular Processes on the Nanoscale. ChemPhysChem 2012, 13 ,
1986–2000.

[103] Huang, C.; Bouhelier, A.; Colas des Francs, G.; Bruyant, A.; Guenot, A.; Finot, E.;
Weeber, J.-C.; Dereux, A. Gain, detuning, and radiation patterns of nanoparticle
optical antennas. Phys. Rev. B 2008, 78 , 155407.

[104] Bharadwaj, P.; Deutsch, B.; Novotny, L. Optical Antennas. Adv. Opt. Photon. 2009,
1 , 438–83.

[105] Böhmler, M.; Hartmann, N.; Georgi, C.; Hennrich, F.; Green, A. A.; Hersam, M. C.;
Hartschuh, A. Enhancing and redirecting carbon nanotube photoluminescence by
an optical antenna. Opt. Express 2010, 18 , 16443–51.

[106] Taminiau, T. H.; Stefani, F. D.; Segerink, F. B.; Van Hulst, N. F. Optical antennas
direct single-molecule emission. Nat. Photonics 2008, 2 , 234–37.

[107] Schuller, J. A.; Karaveli, S.; Schiros, T.; He, K.; Yang, S.; Kymissis, I.; Shan, J.;
Zia, R. Orientation of luminescent excitons in layered nanomaterials. Nat. Nanotech-
nol. 2013, 8 , 271–76.

[108] Otsuki, S.; Murase, N.; Kano, H. Back focal plane microscopic ellipsometer with
internal reflection geometry. Opt. Commun. 2013, 294 , 24–28.

[109] Novotny, L. Allowed and forbidden light in near-field optics. I. A single dipole. J.
Opt. Soc. Am. A 1997, 14 , 91–104.

[110] Bömler, M. Tip-enhanced near-field optical microscopy on the quasi 1D semicon-
ductors carbon nanotubes and CdSe nanowires. Ph.D. thesis, Ludwig-Maximilians-
Universität München, 2012.

[111] Hartmann, N. Räumliche Abstrahlcharakteristiken von Kohlenstoffnanoröhren und
deren Manipulation. M.Sc. thesis, Ludwig-Maximilians-Universität München, 2009.

97

http://dx.doi.org/10.1021/nl1016128
http://dx.doi.org/10.1021/nl1016128
http://dx.doi.org/10.1021/nl1016128
http://dx.doi.org/10.1021/nl1016128
http://dx.doi.org/10.1021/nl1016128
http://dx.doi.org/10.1002/anie.200801605
http://dx.doi.org/10.1002/anie.200801605
http://dx.doi.org/10.1002/anie.200801605
http://dx.doi.org/10.1002/anie.200801605
http://dx.doi.org/10.1002/anie.200801605
http://dx.doi.org/10.1007/s00216-009-2827-4
http://dx.doi.org/10.1007/s00216-009-2827-4
http://dx.doi.org/10.1007/s00216-009-2827-4
http://dx.doi.org/10.1007/s00216-009-2827-4
http://dx.doi.org/10.1007/s00216-009-2827-4
http://dx.doi.org/10.1007/s00216-009-2827-4
http://dx.doi.org/10.1002/anie.201105217
http://dx.doi.org/10.1002/anie.201105217
http://dx.doi.org/10.1002/anie.201105217
http://dx.doi.org/10.1002/anie.201105217
http://dx.doi.org/10.1002/anie.201105217
http://dx.doi.org/10.1002/anie.201105217
http://dx.doi.org/10.1146/annurev.biochem.77.061906.092014
http://dx.doi.org/10.1146/annurev.biochem.77.061906.092014
http://dx.doi.org/10.1146/annurev.biochem.77.061906.092014
http://dx.doi.org/10.1146/annurev.biochem.77.061906.092014
http://dx.doi.org/10.1146/annurev.biochem.77.061906.092014
http://dx.doi.org/10.1146/annurev.biochem.77.061906.092014
http://dx.doi.org/10.1002/cphc.201100986
http://dx.doi.org/10.1002/cphc.201100986
http://dx.doi.org/10.1002/cphc.201100986
http://dx.doi.org/10.1002/cphc.201100986
http://dx.doi.org/10.1002/cphc.201100986
http://dx.doi.org/10.1002/cphc.201100986
http://dx.doi.org/10.1103/PhysRevB.78.155407
http://dx.doi.org/10.1103/PhysRevB.78.155407
http://dx.doi.org/10.1103/PhysRevB.78.155407
http://dx.doi.org/10.1103/PhysRevB.78.155407
http://dx.doi.org/10.1103/PhysRevB.78.155407
http://dx.doi.org/10.1103/PhysRevB.78.155407
http://dx.doi.org/10.1364/AOP.1.000438
http://dx.doi.org/10.1364/AOP.1.000438
http://dx.doi.org/10.1364/AOP.1.000438
http://dx.doi.org/10.1364/AOP.1.000438
http://dx.doi.org/10.1364/AOP.1.000438
http://dx.doi.org/10.1364/OE.18.016443
http://dx.doi.org/10.1364/OE.18.016443
http://dx.doi.org/10.1364/OE.18.016443
http://dx.doi.org/10.1364/OE.18.016443
http://dx.doi.org/10.1364/OE.18.016443
http://dx.doi.org/10.1364/OE.18.016443
http://dx.doi.org/10.1038/nphoton.2008.32
http://dx.doi.org/10.1038/nphoton.2008.32
http://dx.doi.org/10.1038/nphoton.2008.32
http://dx.doi.org/10.1038/nphoton.2008.32
http://dx.doi.org/10.1038/nphoton.2008.32
http://dx.doi.org/10.1038/nphoton.2008.32
http://dx.doi.org/10.1038/nnano.2013.20
http://dx.doi.org/10.1038/nnano.2013.20
http://dx.doi.org/10.1038/nnano.2013.20
http://dx.doi.org/10.1038/nnano.2013.20
http://dx.doi.org/10.1038/nnano.2013.20
http://dx.doi.org/10.1038/nnano.2013.20
http://dx.doi.org/10.1016/j.optcom.2012.12.013
http://dx.doi.org/10.1016/j.optcom.2012.12.013
http://dx.doi.org/10.1016/j.optcom.2012.12.013
http://dx.doi.org/10.1016/j.optcom.2012.12.013
http://dx.doi.org/10.1016/j.optcom.2012.12.013
http://dx.doi.org/10.1016/j.optcom.2012.12.013
http://dx.doi.org/10.1364/JOSAA.14.000091
http://dx.doi.org/10.1364/JOSAA.14.000091
http://dx.doi.org/10.1364/JOSAA.14.000091
http://dx.doi.org/10.1364/JOSAA.14.000091
http://dx.doi.org/10.1364/JOSAA.14.000091
http://dx.doi.org/10.1364/JOSAA.14.000091


Bibliography

[112] Weyl, H. Ausbreitung elektromagnetischer Wellen über einem ebenen Leiter. Ann.
Phys. 1919, 365 , 481–500.

[113] Born, M.; Wolf, E. Principles of Optics, 6th ed.; Cambridge University Press, 2006.

[114] Wilson, T.; Juskaitis, R. The axial response of confocal microscopes with high nu-
merical aperture objective lenses. Bioimaging 1995, 3 , 35–8.

[115] Tang, W. T.; Chung, E.; Kim, Y.-H.; So, P. T. C.; Sheppard, C. J. R. Investigation
of the point spread function of surface plasmon-coupled emission microscopy. Opt.
Express 2007, 15 , 4634–46.

[116] Fattinger, C.; Lukosz, W. Optical-environment-dependent lifetimes and radiation
patterns of luminescent centers in very thin films. J. Lumin. 1984, 31 , 933–35.

[117] Zhang, J.; See, C. W.; Somekh, M. G.; Pitter, M. C.; Liu, S. G. Wide-field surface
plasmon microscopy with solid immersion excitation. Appl. Phys. Lett. 2004, 85 ,
5451–53.

[118] Stabler, G.; Somekh, M. G.; See, C. W. High resolution wide-field surface plasmon
mircoscopy. J. Microsc. 2004, 214 , 328–33.

[119] Moh, K. J.; Yuan, X.-C.; Bu, J.; Zhu, S. W.; Gao, B. Z. Surface plasmon resonance
imaging of cell-substrate contacts with radially polarized beams. Opt. Express 2008,
16 , 20734–41.

[120] Zhang, D. G.; Yuan, X.-C.; Yuan, G. H.; Wang, P.; Ming, H. Directional fluorescence
emission characterized with leakage radiation microscopy. J. Opt. 2010, 12 , 035002.

[121] Huang, B.; Yu, F.; Zare, R. N. Surface Plasmon Resonance imaging Using a High
Numerical Aperture Microscope Objective. Anal. Chem. 2007, 79 , 2979–83.

[122] Berthelot, J.; Bouhelier, A.; Colas des Francs, G.; Weeber, J.-C.; Dereux, A. Exci-
tation of a one-dimensional evanescent wave by conical edge diffraction of surface
plasmon. Opt. Express 2011, 19 , 5303–12.

[123] Song, M.; Bouhelier, A.; Bramant, P.; Sharma, J.; Dujardin, E.; Zhang, D.; Colas des
Francs, G. Imaging Symmetry-Selected Corner Plasmon Modes in Penta-Twinned
Crystalline Ag Nanowires. ACS Nano 2011, 5 , 5874–80.

[124] Gryczynski, I.; Malicka, J.; Gryczynski, Z.; Lakowicz, J. R. Radiative decay en-
gineering 4. Experimental studies of surface plasmon-coupled directional emission.
Anal. Biochem. 2004, 324 , 170–82.

[125] Enderlein, J.; Ruckstuhl, T. The efficiency of surface-plasmon coupled emission for
sensitive fluorescence detection. Opt. Express 2005, 13 , 8855–65.

[126] Zhang, D. G.; Moh, K. J.; Yuan, X.-C. Surface plasmon-coupled emission from
shaped PMMA films doped with fluorescence molecules. Opt. Express 2010, 18 ,
12185–90.

[127] Chen, Y.; Zhang, D.; Han, L.; Rui, G.; Xinagxian, W.; Wang, P.; Ming, H. Surface-
plasmon-coupled emission microscopy with a polarization converter. Opt. Lett. 2013,
38 , 736–38.

98

http://dx.doi.org/10.1002/andp.19193652104
http://dx.doi.org/10.1002/andp.19193652104
http://dx.doi.org/10.1002/andp.19193652104
http://dx.doi.org/10.1002/andp.19193652104
http://dx.doi.org/10.1002/andp.19193652104
http://dx.doi.org/10.1002/andp.19193652104
http://dx.doi.org/10.1002/1361-6374(199503)3:1<35::AID-BIO4>3.0.CO;2-M
http://dx.doi.org/10.1002/1361-6374(199503)3:1<35::AID-BIO4>3.0.CO;2-M
http://dx.doi.org/10.1002/1361-6374(199503)3:1<35::AID-BIO4>3.0.CO;2-M
http://dx.doi.org/10.1002/1361-6374(199503)3:1<35::AID-BIO4>3.0.CO;2-M
http://dx.doi.org/10.1002/1361-6374(199503)3:1<35::AID-BIO4>3.0.CO;2-M
http://dx.doi.org/10.1002/1361-6374(199503)3:1<35::AID-BIO4>3.0.CO;2-M
http://dx.doi.org/10.1364/OE.15.004634
http://dx.doi.org/10.1364/OE.15.004634
http://dx.doi.org/10.1364/OE.15.004634
http://dx.doi.org/10.1364/OE.15.004634
http://dx.doi.org/10.1364/OE.15.004634
http://dx.doi.org/10.1364/OE.15.004634
http://dx.doi.org/10.1364/OE.15.004634
http://dx.doi.org/10.1016/0022-2313(84)90165-0
http://dx.doi.org/10.1016/0022-2313(84)90165-0
http://dx.doi.org/10.1016/0022-2313(84)90165-0
http://dx.doi.org/10.1016/0022-2313(84)90165-0
http://dx.doi.org/10.1016/0022-2313(84)90165-0
http://dx.doi.org/10.1016/0022-2313(84)90165-0
http://dx.doi.org/10.1063/1.1815391
http://dx.doi.org/10.1063/1.1815391
http://dx.doi.org/10.1063/1.1815391
http://dx.doi.org/10.1063/1.1815391
http://dx.doi.org/10.1063/1.1815391
http://dx.doi.org/10.1063/1.1815391
http://dx.doi.org/10.1111/j.0022-2720.2004.01309.x
http://dx.doi.org/10.1111/j.0022-2720.2004.01309.x
http://dx.doi.org/10.1111/j.0022-2720.2004.01309.x
http://dx.doi.org/10.1111/j.0022-2720.2004.01309.x
http://dx.doi.org/10.1111/j.0022-2720.2004.01309.x
http://dx.doi.org/10.1111/j.0022-2720.2004.01309.x
http://dx.doi.org/10.1364/OE.16.020734
http://dx.doi.org/10.1364/OE.16.020734
http://dx.doi.org/10.1364/OE.16.020734
http://dx.doi.org/10.1364/OE.16.020734
http://dx.doi.org/10.1364/OE.16.020734
http://dx.doi.org/10.1364/OE.16.020734
http://dx.doi.org/10.1088/2040-8978/12/3/035002
http://dx.doi.org/10.1088/2040-8978/12/3/035002
http://dx.doi.org/10.1088/2040-8978/12/3/035002
http://dx.doi.org/10.1088/2040-8978/12/3/035002
http://dx.doi.org/10.1088/2040-8978/12/3/035002
http://dx.doi.org/10.1088/2040-8978/12/3/035002
http://dx.doi.org/10.1021/ac062284x
http://dx.doi.org/10.1021/ac062284x
http://dx.doi.org/10.1021/ac062284x
http://dx.doi.org/10.1021/ac062284x
http://dx.doi.org/10.1021/ac062284x
http://dx.doi.org/10.1021/ac062284x
http://dx.doi.org/10.1364/OE.19.005303
http://dx.doi.org/10.1364/OE.19.005303
http://dx.doi.org/10.1364/OE.19.005303
http://dx.doi.org/10.1364/OE.19.005303
http://dx.doi.org/10.1364/OE.19.005303
http://dx.doi.org/10.1364/OE.19.005303
http://dx.doi.org/10.1364/OE.19.005303
http://dx.doi.org/10.1021/nn201648d
http://dx.doi.org/10.1021/nn201648d
http://dx.doi.org/10.1021/nn201648d
http://dx.doi.org/10.1021/nn201648d
http://dx.doi.org/10.1021/nn201648d
http://dx.doi.org/10.1021/nn201648d
http://dx.doi.org/10.1016/j.ab.2003.09.036
http://dx.doi.org/10.1016/j.ab.2003.09.036
http://dx.doi.org/10.1016/j.ab.2003.09.036
http://dx.doi.org/10.1016/j.ab.2003.09.036
http://dx.doi.org/10.1016/j.ab.2003.09.036
http://dx.doi.org/10.1016/j.ab.2003.09.036
http://dx.doi.org/10.1364/OPEX.13.008855
http://dx.doi.org/10.1364/OPEX.13.008855
http://dx.doi.org/10.1364/OPEX.13.008855
http://dx.doi.org/10.1364/OPEX.13.008855
http://dx.doi.org/10.1364/OPEX.13.008855
http://dx.doi.org/10.1364/OPEX.13.008855
http://dx.doi.org/10.1364/OPEX.13.008855
http://dx.doi.org/10.1364/OPEX.13.008855
http://dx.doi.org/10.1364/OPEX.13.008855
http://dx.doi.org/10.1364/OPEX.13.008855
http://dx.doi.org/10.1364/OPEX.13.008855
http://dx.doi.org/10.1364/OPEX.13.008855
http://dx.doi.org/10.1364/OL.38.000736
http://dx.doi.org/10.1364/OL.38.000736
http://dx.doi.org/10.1364/OL.38.000736
http://dx.doi.org/10.1364/OL.38.000736
http://dx.doi.org/10.1364/OL.38.000736
http://dx.doi.org/10.1364/OL.38.000736


Bibliography

[128] Cao, Q.; Hur, S.-H.; Zhu, Z.-T.; Sun, Y.; Wang, C.; Meitl, M. A.; Shim, M.;
Rogers, J. A. Highly Bendable, Transparent Thin-Film Transistors That Use
Carbon-Nanotube-Based Conductors and Semiconductors with Elastomeric Di-
electrics. Adv. Mater. 2006, 18 , 304–9.

[129] Snow, E. S.; Perkins, F. K.; Houser, E. J.; Badescu, S. C.; Reinecke, T. L. Chemical
detection with a single-walled carbon nanotube capacitor. Science 2005, 307 , 1942–
45.

[130] Yang, L.; Wang, S.; Zheng, Q.; Zhang, Z.; Peng, L.-M. Carbon Nanotube Photoelec-
tronic and Photovoltaic Devices and their Applications in Infrared Detection. Small
2013, 9 , 1225–36.

[131] Dai, L.; Channg, D. W.; Baek, J.-B.; Lu, W. Carbon Nanomaterials for Advanced
Energy Conversion and Storage. Small 2012, 8 , 1130–66.

[132] Engel, M.; Small, J. P.; Steiner, M.; Freitag, M.; Green, A. A.; Hersam, M. C.;
Avouris, P. Thin Film Nanotube Transistors Based on Self-Assembled, Aligned,
Semiconducting Carbon Nanotube Arrays. ACS Nano 2008, 2 , 2445–52.

[133] Kinoshita, M.; Steiner, M.; Engel, M.; Small, J. P.; Green, A. A.; Hersam, M. C.;
Krupke, R.; Mendez, E. E.; Phaedon, A. The polarized carbon nanotube thin film
LED. Opt. Express 2010, 18 , 25738–45.

[134] Pfeiffer, M. H. P.; Stürzl, N.; Marquardt, C. W.; Engel, M.; Dehm, S.; Hennrich, F.;
Kappes, M. M.; Lemmer, U.; Krupke, R. Electroluminescence from chirality-sorted
(9,7)-semiconducting carbon nanotube devices. Opt. Express 2011, 19 , 1184–89.

[135] Reich, S.; Thomsen, C.; Maultzsch, J. Carbon Nanotubes; Wiley-VCH: Weinheim,
2004.

[136] Georgi, C. Exciton Mobility and Localized Defects in Single Carbon Nanotubes
Studied with Tip-Enhanced Near-Field Optical Microscopy. Ph.D. thesis, Ludwig-
Maximilians-Universität München, 2011.

[137] Dukovic, G.; Balaz, M.; Doak, P.; Berova, N. D.; Zheng, M.; Mclean, R. S.;
Brus, L. E. Racemic Single-Walled Carbon Nanotubes Exhibit Circular Dichroism
When Wrapped with DNA. J. Am. Chem. Soc. 2006, 128 , 9004–5.

[138] Akazaki, K.; Toshimitsu, F.; Ozawa, H.; Fujigaya, T.; Nakashima, N. Recognition
and One-Pot Extraction of Right- and Left-Handed Semiconducting Single-Walled
Carbon Nanotube Enantiomers Using Fluorene-Binaphthol Chiral Copolymers. J.
Am. Chem. Soc. 2012, 134 , 12700–7.

[139] Jorio, A., Dresselhaus, M. S., Dresselhaus, G., Eds. Carbon Nanotubes; Topics in
Applied Physics; Springer: Berlin / Heidelberg, 2008; Vol. 111.

[140] Gokus, T. Time-Resolved Photoluminescence and Elastic White Light Scattering
of Individual Carbon Nanotubes and Optical Characterization of Oxygen Plasma
Treated Graphene. Ph.D. thesis, Ludwig-Maximilians-Universität München, 2011.

[141] Qian, H. Tip-Enhanced Near-Field Optical Spectroscopy on Single-Walled Carbon
Nanotubes. Ph.D. thesis, Ludwig-Maximilians-Universität München, 2008.

99

http://dx.doi.org/10.1002/adma.200501740
http://dx.doi.org/10.1002/adma.200501740
http://dx.doi.org/10.1002/adma.200501740
http://dx.doi.org/10.1002/adma.200501740
http://dx.doi.org/10.1002/adma.200501740
http://dx.doi.org/10.1002/adma.200501740
http://dx.doi.org/10.1002/adma.200501740
http://dx.doi.org/10.1126/science.1109128
http://dx.doi.org/10.1126/science.1109128
http://dx.doi.org/10.1126/science.1109128
http://dx.doi.org/10.1126/science.1109128
http://dx.doi.org/10.1126/science.1109128
http://dx.doi.org/10.1126/science.1109128
http://dx.doi.org/10.1126/science.1109128
http://dx.doi.org/10.1002/smll.201203151
http://dx.doi.org/10.1002/smll.201203151
http://dx.doi.org/10.1002/smll.201203151
http://dx.doi.org/10.1002/smll.201203151
http://dx.doi.org/10.1002/smll.201203151
http://dx.doi.org/10.1002/smll.201203151
http://dx.doi.org/10.1002/smll.201101594
http://dx.doi.org/10.1002/smll.201101594
http://dx.doi.org/10.1002/smll.201101594
http://dx.doi.org/10.1002/smll.201101594
http://dx.doi.org/10.1002/smll.201101594
http://dx.doi.org/10.1002/smll.201101594
http://dx.doi.org/10.1021/nn800708w
http://dx.doi.org/10.1021/nn800708w
http://dx.doi.org/10.1021/nn800708w
http://dx.doi.org/10.1021/nn800708w
http://dx.doi.org/10.1021/nn800708w
http://dx.doi.org/10.1021/nn800708w
http://dx.doi.org/10.1364/OE.18.025738
http://dx.doi.org/10.1364/OE.18.025738
http://dx.doi.org/10.1364/OE.18.025738
http://dx.doi.org/10.1364/OE.18.025738
http://dx.doi.org/10.1364/OE.18.025738
http://dx.doi.org/10.1364/OE.18.025738
http://dx.doi.org/10.1364/OE.19.0A1184
http://dx.doi.org/10.1364/OE.19.0A1184
http://dx.doi.org/10.1364/OE.19.0A1184
http://dx.doi.org/10.1364/OE.19.0A1184
http://dx.doi.org/10.1364/OE.19.0A1184
http://dx.doi.org/10.1364/OE.19.0A1184
http://dx.doi.org/10.1021/ja062095w
http://dx.doi.org/10.1021/ja062095w
http://dx.doi.org/10.1021/ja062095w
http://dx.doi.org/10.1021/ja062095w
http://dx.doi.org/10.1021/ja062095w
http://dx.doi.org/10.1021/ja062095w
http://dx.doi.org/10.1021/ja304244g
http://dx.doi.org/10.1021/ja304244g
http://dx.doi.org/10.1021/ja304244g
http://dx.doi.org/10.1021/ja304244g
http://dx.doi.org/10.1021/ja304244g
http://dx.doi.org/10.1021/ja304244g
http://dx.doi.org/10.1021/ja304244g
http://dx.doi.org/10.1021/ja304244g


Bibliography

[142] Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nan-
otubes. 1998,

[143] Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the
properties of graphene. Nat. Nanotechnol. 2013, 8 , 235–46.

[144] Kuzmany, H.; Pfeiffer, R.; Hulman, M.; Kramberger, C. Raman spectroscopy of
fullerenes and fullerene-nanotube composites. Phil. Trans. R. Soc. Lond. A 2004,
362 , 2375–406.

[145] Miyauchi, Y.; Oba, M.; Maruyama, S. Cross-polarized optical absorption of single-
walled nanotubes by polarized photoluminescence excitation spectroscopy. Phys.
Rev. B 2006, 74 , 205440.

[146] Lefebvre, J.; Finnie, P. Polarized Photoluminescence Excitation Spectroscopy of
Single-Walled Carbon Nanotubes. Phys. Rev. Lett. 2007, 98 , 167406.

[147] Maultzsch, J.; Pomraenke, R.; Reich, S.; Chang, E.; Prezzi, D.; Ruini, A.; Moli-
nari, E.; Strano, M. S.; Thomsen, C.; Lienau, C. Exciton binding energies in carbon
nanotubes from two-photon photoluminescence. Phys. Rev. B 2005, 72 , 241402.

[148] Walsh, A. G.; Vamivakas, A. N.; Yin, Y.; Cronin, S. B.; Ünlü, M. S.; Goldberg, B. B.;
Swan, A. K. Scaling of exciton binding energy with external dielectric function in
carbon nanotubes. Physica E 2008, 40 , 2375–79.

[149] Okazaki, T.; Saito, T.; Matsuura, K.; Ohshima, S.; Yumura, M.; Iijima, S. Photolu-
minescence Mapping of "As-Grown" Single-Walled Carbon Nanotubes: A Compari-
son with Micelle-Encapsulated Nanotube Solutions. Nano Lett. 2005, 5 , 2618–23.

[150] Ohno, Y.; Iwasaki, S.; Murakami, Y.; Kishimoto, S.; Maruyama, S.; Mizutani, T.
Chirality-dependent environmental effects in photoluminescence of single-walled car-
bon nanotubes. Phys. Rev. B 2006, 73 , 235427.

[151] Dyatlowa, O. A.; Gomis-Bresco, J.; Malic, E.; Telg, H.; Maultzsch, J.; Zhong, G.;
Geng, J.; Woggon, U. Dielectric screeing effects on transistion energies in aligned
carbon nanotubes. Phys. Rev. B 2012, 85 , 245449.

[152] Siitonen, A. J.; Tsyboulski, D. A.; Bachilo, S. M.; Weisman, R. B. Surfactant-
Dependent Exciton Mobility in Single-Walled Carbon Nanotubes Studied by Single-
Molecule Reactions. Nano Lett. 2010, 10 , 1595–99.

[153] Georgi, C.; Böhmler, M.; Qian, H.; Novotny, L.; Hartschuh, A. Probing exciton
propagation and quenching in carbon nanotubes with near-field optical microscopy.
Phys. Status Solidi B 2009, 246 , 2683–88.

[154] Manzoni, C.; Gambetta, A.; Menna, E.; Meneghetti, M.; Lanzani, G.; Cerullo, G.
Intersubband Exciton Relaxation Dynamics in Single-Walled Carbon Nanotubes.
Phys. Rev. Lett. 2005, 94 , 207401.

[155] Hertel, T.; Perebeinos, V.; Crochet, J.; Arnold, K.; Kappes, P., M. abd Avouris
Intersubband Decay of 1-D Exciton Resonances in Carbon Nanotubes. Nano Lett.
2008, 8 , 87–91.

[156] Torrens, O. N.; Zheng, M.; Kikkawa, J. M. Energy of K -Momentum Dark Excitons
in Carbon Nanotubes by Optical Spectroscopy. Phys. Rev. Lett. 2008, 101 , 157401.

100

http://dx.doi.org/10.1038/nnano.2013.46
http://dx.doi.org/10.1038/nnano.2013.46
http://dx.doi.org/10.1038/nnano.2013.46
http://dx.doi.org/10.1038/nnano.2013.46
http://dx.doi.org/10.1038/nnano.2013.46
http://dx.doi.org/10.1038/nnano.2013.46
http://dx.doi.org/10.1098/rsta.2004.1446
http://dx.doi.org/10.1098/rsta.2004.1446
http://dx.doi.org/10.1098/rsta.2004.1446
http://dx.doi.org/10.1098/rsta.2004.1446
http://dx.doi.org/10.1098/rsta.2004.1446
http://dx.doi.org/10.1098/rsta.2004.1446
http://dx.doi.org/10.1103/PhysRevB.74.205440
http://dx.doi.org/10.1103/PhysRevB.74.205440
http://dx.doi.org/10.1103/PhysRevB.74.205440
http://dx.doi.org/10.1103/PhysRevB.74.205440
http://dx.doi.org/10.1103/PhysRevB.74.205440
http://dx.doi.org/10.1103/PhysRevB.74.205440
http://dx.doi.org/10.1103/PhysRevB.74.205440
http://dx.doi.org/10.1103/PhysRevLett.98.167406
http://dx.doi.org/10.1103/PhysRevLett.98.167406
http://dx.doi.org/10.1103/PhysRevLett.98.167406
http://dx.doi.org/10.1103/PhysRevLett.98.167406
http://dx.doi.org/10.1103/PhysRevLett.98.167406
http://dx.doi.org/10.1103/PhysRevLett.98.167406
http://dx.doi.org/10.1103/PhysRevB.72.241402
http://dx.doi.org/10.1103/PhysRevB.72.241402
http://dx.doi.org/10.1103/PhysRevB.72.241402
http://dx.doi.org/10.1103/PhysRevB.72.241402
http://dx.doi.org/10.1103/PhysRevB.72.241402
http://dx.doi.org/10.1103/PhysRevB.72.241402
http://dx.doi.org/10.1016/j.physe.2007.07.007
http://dx.doi.org/10.1016/j.physe.2007.07.007
http://dx.doi.org/10.1016/j.physe.2007.07.007
http://dx.doi.org/10.1016/j.physe.2007.07.007
http://dx.doi.org/10.1016/j.physe.2007.07.007
http://dx.doi.org/10.1016/j.physe.2007.07.007
http://dx.doi.org/10.1021/nl051888y
http://dx.doi.org/10.1021/nl051888y
http://dx.doi.org/10.1021/nl051888y
http://dx.doi.org/10.1021/nl051888y
http://dx.doi.org/10.1021/nl051888y
http://dx.doi.org/10.1021/nl051888y
http://dx.doi.org/10.1021/nl051888y
http://dx.doi.org/10.1103/PhysRevB.73.235427
http://dx.doi.org/10.1103/PhysRevB.73.235427
http://dx.doi.org/10.1103/PhysRevB.73.235427
http://dx.doi.org/10.1103/PhysRevB.73.235427
http://dx.doi.org/10.1103/PhysRevB.73.235427
http://dx.doi.org/10.1103/PhysRevB.73.235427
http://dx.doi.org/10.1103/PhysRevB.85.245449
http://dx.doi.org/10.1103/PhysRevB.85.245449
http://dx.doi.org/10.1103/PhysRevB.85.245449
http://dx.doi.org/10.1103/PhysRevB.85.245449
http://dx.doi.org/10.1103/PhysRevB.85.245449
http://dx.doi.org/10.1103/PhysRevB.85.245449
http://dx.doi.org/10.1021/nl9039845
http://dx.doi.org/10.1021/nl9039845
http://dx.doi.org/10.1021/nl9039845
http://dx.doi.org/10.1021/nl9039845
http://dx.doi.org/10.1021/nl9039845
http://dx.doi.org/10.1021/nl9039845
http://dx.doi.org/10.1021/nl9039845
http://dx.doi.org/10.1002/pssb.200982306
http://dx.doi.org/10.1002/pssb.200982306
http://dx.doi.org/10.1002/pssb.200982306
http://dx.doi.org/10.1002/pssb.200982306
http://dx.doi.org/10.1002/pssb.200982306
http://dx.doi.org/10.1002/pssb.200982306
http://dx.doi.org/10.1103/PhysRevLett.94.207401
http://dx.doi.org/10.1103/PhysRevLett.94.207401
http://dx.doi.org/10.1103/PhysRevLett.94.207401
http://dx.doi.org/10.1103/PhysRevLett.94.207401
http://dx.doi.org/10.1103/PhysRevLett.94.207401
http://dx.doi.org/10.1021/nl0720915
http://dx.doi.org/10.1021/nl0720915
http://dx.doi.org/10.1021/nl0720915
http://dx.doi.org/10.1021/nl0720915
http://dx.doi.org/10.1021/nl0720915
http://dx.doi.org/10.1103/PhysRevLett.101.157401
http://dx.doi.org/10.1103/PhysRevLett.101.157401
http://dx.doi.org/10.1103/PhysRevLett.101.157401
http://dx.doi.org/10.1103/PhysRevLett.101.157401
http://dx.doi.org/10.1103/PhysRevLett.101.157401
http://dx.doi.org/10.1103/PhysRevLett.101.157401


Bibliography

[157] Harutyunyan, H.; Gokus, T.; Green, A. A.; Hersam, M. C.; Allegrini, M.;
Hartschuh, A. Defect-Induced Photoluminescence from Dark Excitonic States in
Individual Single-Walled Carbon Nanotubes. Nano Lett. 2009, 9 , 2010–14.

[158] Kinder, J. M.; Mele, E. J. Nonradiative recombination of excitons in carbon nan-
otubes mediated by free charge carriers. Phys. Rev. B 2008, 78 , 155429.

[159] Berciaud, S.; Cognet, L.; Lounis, B. Luminescence Decay and the Absorption Cross
Section of individual Single-Walled Carbon Nanotubes. Phys. Rev. Lett. 2008, 101 ,
077402.

[160] Gokus, T.; Cognet, L.; Duque, J. G.; Pasquali, M.; Hartschuh, A.; Lounis, B. Mono-
and Biexponential Luminescence Decays of Individual Single-Walled Carbon Nan-
otubes. J. Phys. Chem. C 2010, 114 , 14025–28.

[161] Miyauchi, Y.; Matsuda, K.; Yamamoto, Y.; Nakashima, N.; Kanemitsu, Y. Length-
Dependent Photoluminescence Lifetimes in Single-Walled Carbon Nanotubes. J.
Phys. Chem. C 2010, 114 , 12905–8.

[162] Lefebvre, J.; Austing, D. G.; Bond, J.; Finnie, P. Photoluminescence Imaging of
Suspended Single-Walled Carbon Nanotubes. Nano Lett. 2006, 6 , 1603–8.

[163] O’Connell, M. J.; Bachilo, S. M.; huffman, C. B.; Moore, V. C.; Strano, M. S.;
Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J.;
Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Band Gap Fluorescence from in-
dividual Single-Walled Carbon Nanotubes. Science 2002, 297 , 593–6.

[164] Wang, F.; Dukovic, G.; Brus, L. E.; Heinz, T. F. Time-Resolved Fluorescence of
Carbon Nanotubes and Its Implication for Radiative Lifetimes. Phys. Rev. Lett.
2004, 92 , 177401.

[165] Crochet, J.; Clemens, M.; Hertel, T. Quantum Yield Heterogeneities of Aqueous
Single-Wall Carbon Nanotube Suspensions. J. Am. Chem. Soc. 2007, 129 , 8058–59.

[166] Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weis-
man, R. B. Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes.
Science 2002, 298 , 2361–66.

[167] Das, A.; Sood, A. K.; Govindaraj, A.; Saitta, A. M.; Lazzeri, M.; Mauri, F.; Rao, C.
N. R. Doping in Carbon Nanotubes Probed by Raman and Transport Measurements.
Phys. Rev. Lett. 2007, 99 , 136803.

[168] Saito, R.; Jorio, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S.; Pi-
menta, M. A. Probing Phonon Dispersion Relations of Graphite by Double Reso-
nance Raman Scattering. Phys. Rev. Lett. 2002, 88 , 027401.

[169] Jorio, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S.; Swan, A. K.;
Ünlü, M. S.; Goldberg, B. B.; Pimenta, M. A.; Hafner, J. H.; Lieber, C. M.; Saito, R.
G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys.
Rev. B 2002, 65 , 155412.

[170] Jorio, A.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Hunter, M.; McClure, T.; Dressel-
haus, G.; Dresselhaus, M. S. Structural (n,m) Determination of Isolated Single-Wall
Carbon Nanotubes by Resonant Raman Scattering. Phys. Rev. Lett. 2001, 86 , 1118–
21.

101

http://dx.doi.org/10.1021/nl9002798
http://dx.doi.org/10.1021/nl9002798
http://dx.doi.org/10.1021/nl9002798
http://dx.doi.org/10.1021/nl9002798
http://dx.doi.org/10.1021/nl9002798
http://dx.doi.org/10.1021/nl9002798
http://dx.doi.org/10.1103/PhysRevB.78.155429
http://dx.doi.org/10.1103/PhysRevB.78.155429
http://dx.doi.org/10.1103/PhysRevB.78.155429
http://dx.doi.org/10.1103/PhysRevB.78.155429
http://dx.doi.org/10.1103/PhysRevB.78.155429
http://dx.doi.org/10.1103/PhysRevB.78.155429
http://dx.doi.org/10.1103/PhysRevLett.101.077402
http://dx.doi.org/10.1103/PhysRevLett.101.077402
http://dx.doi.org/10.1103/PhysRevLett.101.077402
http://dx.doi.org/10.1103/PhysRevLett.101.077402
http://dx.doi.org/10.1103/PhysRevLett.101.077402
http://dx.doi.org/10.1103/PhysRevLett.101.077402
http://dx.doi.org/10.1021/jp1049217
http://dx.doi.org/10.1021/jp1049217
http://dx.doi.org/10.1021/jp1049217
http://dx.doi.org/10.1021/jp1049217
http://dx.doi.org/10.1021/jp1049217
http://dx.doi.org/10.1021/jp1049217
http://dx.doi.org/10.1021/jp1049217
http://dx.doi.org/10.1021/jp1027492
http://dx.doi.org/10.1021/jp1027492
http://dx.doi.org/10.1021/jp1027492
http://dx.doi.org/10.1021/jp1027492
http://dx.doi.org/10.1021/jp1027492
http://dx.doi.org/10.1021/jp1027492
http://dx.doi.org/10.1021/jp1027492
http://dx.doi.org/10.1021/nl060530e
http://dx.doi.org/10.1021/nl060530e
http://dx.doi.org/10.1021/nl060530e
http://dx.doi.org/10.1021/nl060530e
http://dx.doi.org/10.1021/nl060530e
http://dx.doi.org/10.1021/nl060530e
http://dx.doi.org/10.1126/science.1072631
http://dx.doi.org/10.1126/science.1072631
http://dx.doi.org/10.1126/science.1072631
http://dx.doi.org/10.1126/science.1072631
http://dx.doi.org/10.1126/science.1072631
http://dx.doi.org/10.1126/science.1072631
http://dx.doi.org/10.1103/PhysRevLett.92.177401
http://dx.doi.org/10.1103/PhysRevLett.92.177401
http://dx.doi.org/10.1103/PhysRevLett.92.177401
http://dx.doi.org/10.1103/PhysRevLett.92.177401
http://dx.doi.org/10.1103/PhysRevLett.92.177401
http://dx.doi.org/10.1103/PhysRevLett.92.177401
http://dx.doi.org/10.1021/ja071553d
http://dx.doi.org/10.1021/ja071553d
http://dx.doi.org/10.1021/ja071553d
http://dx.doi.org/10.1021/ja071553d
http://dx.doi.org/10.1021/ja071553d
http://dx.doi.org/10.1021/ja071553d
http://dx.doi.org/10.1126/science.1078727
http://dx.doi.org/10.1126/science.1078727
http://dx.doi.org/10.1126/science.1078727
http://dx.doi.org/10.1126/science.1078727
http://dx.doi.org/10.1126/science.1078727
http://dx.doi.org/10.1103/PhysRevLett.99.136803
http://dx.doi.org/10.1103/PhysRevLett.99.136803
http://dx.doi.org/10.1103/PhysRevLett.99.136803
http://dx.doi.org/10.1103/PhysRevLett.99.136803
http://dx.doi.org/10.1103/PhysRevLett.99.136803
http://dx.doi.org/10.1103/PhysRevLett.88.027401
http://dx.doi.org/10.1103/PhysRevLett.88.027401
http://dx.doi.org/10.1103/PhysRevLett.88.027401
http://dx.doi.org/10.1103/PhysRevLett.88.027401
http://dx.doi.org/10.1103/PhysRevLett.88.027401
http://dx.doi.org/10.1103/PhysRevLett.88.027401
http://dx.doi.org/10.1103/PhysRevB.65.155412
http://dx.doi.org/10.1103/PhysRevB.65.155412
http://dx.doi.org/10.1103/PhysRevB.65.155412
http://dx.doi.org/10.1103/PhysRevB.65.155412
http://dx.doi.org/10.1103/PhysRevB.65.155412
http://dx.doi.org/10.1103/PhysRevB.65.155412
http://dx.doi.org/10.1103/PhysRevLett.86.1118
http://dx.doi.org/10.1103/PhysRevLett.86.1118
http://dx.doi.org/10.1103/PhysRevLett.86.1118
http://dx.doi.org/10.1103/PhysRevLett.86.1118
http://dx.doi.org/10.1103/PhysRevLett.86.1118
http://dx.doi.org/10.1103/PhysRevLett.86.1118
http://dx.doi.org/10.1103/PhysRevLett.86.1118


Bibliography

[171] Maultzsch, J.; Reich, S.; Thomsen, C.; Webster, S.; Czerw, R.; Carroll, D. L.;
Vieira, S. M. C.; Birkett, P. R.; Rego, C. A. Raman characterization of boron-doped
multiwalled carbon nanotubes. Appl. Phys. Lett. 2002, 81 , 2647–49.

[172] Boyd, R. W., Ed. Nonlinear Optics, 1st ed.; Academic Press, 2003.

[173] Joubert, M.-F. Photon avalanche upconversion in rare earth laser materials. Opt.
Mater. 1999, 11 , 181–203.

[174] Scheps, R. Upconversion Laser Processes. Prog. Quant. Electr. 1996, 20 , 271–358.

[175] Downing, E.; Hesselink, L.; Ralston, J.; Macfarlane, R. A Three-Color, Solid-State,
Three-Dimensional Display. Science 1996, 273 , 1185–89.

[176] Suyver, J. F.; Aebischer, A.; Biner, D.; Gerner, P.; Grimm, J.; Heer, S.;
Krämer, K. W.; Reinhard, C.; Güdel, H. U. Novel materials doped with tricalent
lanthanides and transition metal ions showing near-infrared to visible photon up-
conversion. Opt. Mater. 2005, 27 , 1111–30.

[177] Gorris, H. H.; Wolfbeis, O. S. Photon-upconverting nanoparticles for optical encod-
ing and multiplexing of cells, biomolecules, and microspheres. Angew. Chem. Int.
Ed. 2013, 52 , 3584–600.

[178] Kumar, R.; Nyk, M.; Ohulchanskyy, T. Y.; Flask, C. A.; Prasad, P. N. Combined
Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF4 Nanocrystals.
Adv. Funct. Mater. 2009, 19 , 853–59.

[179] Wang, F.; Liu, X. Recent advances in the chemistry of lanthanide-doped upconver-
sion nanocrystals. Chem. Soc. Rev. 2009, 38 , 976–89.

[180] Ye, X.; Collins, J. E.; Kang, Y.; Chen, J.; Chen, D. T. N.; Yodh, A. G.; Murray, C. B.
Morphologically controlled synthesis of colloidal upconversion nanophosphors and
their shape-directed self-assembly. Proc. Natl. Acad. Sci. U.S.A. 2010, 107 , 22430–
35.

[181] Auzel, F.; Pecile, D. Comparison and efficiency of materials for summation of photons
assisted by energy transfer. J. Lumin. 1973, 8 , 32–43.

[182] Salley, G. M.; Valienty, R.; Guedel, H. U. Luminescence upconversion mechanism in
Yb3+–Tb3+ systems. J. Lumin. 2001, 94 , 305–9.

[183] Auzel, F.; Pecile, D. Absolute efficiency for IR to blue conversion materials and
theoretical prediction for optimized matrices. J. Lumin. 1976, 11 , 321–30.

[184] Wu, X.; Denis, J. P.; Özen, G.; Pelle, F. Infrared-to-visible conversion luminescence
of Tm3+ and Yb3+ ions in glass ceramics. J. Lumin. 1994, 60 , 212–15.

[185] Chamarro, M. A.; Cases, R. Energy up-conversion in (Yb, Ho) and (Yb, Tm) doped
fluorohafnate glasses. J. Lumin. 1988, 42 , 267–74.

[186] Suyver, J. F.; Grimm, J.; Krämer, K. W.; Güdel, H. U. Highly efficient near-infrared
to visible up-conversion process in NaYF4:Er3+, Yb2+. J. Lumin. 2005, 114 , 53–59.

[187] Suyver, J. F.; Grimm, J.; van Deen, M. K.; Biner, D.; Krämer, K. W.; Güdel, H. U.
Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or
Yb3+. J. Lumin. 2006, 117 , 1–12.

102

http://dx.doi.org/10.1063/1.1512330
http://dx.doi.org/10.1063/1.1512330
http://dx.doi.org/10.1063/1.1512330
http://dx.doi.org/10.1063/1.1512330
http://dx.doi.org/10.1063/1.1512330
http://dx.doi.org/10.1063/1.1512330
http://dx.doi.org/10.1016/S0925-3467(98)00043-3
http://dx.doi.org/10.1016/S0925-3467(98)00043-3
http://dx.doi.org/10.1016/S0925-3467(98)00043-3
http://dx.doi.org/10.1016/S0925-3467(98)00043-3
http://dx.doi.org/10.1016/S0925-3467(98)00043-3
http://dx.doi.org/10.1016/S0925-3467(98)00043-3
http://dx.doi.org/10.1016/0079-6727(95)00007-0
http://dx.doi.org/10.1016/0079-6727(95)00007-0
http://dx.doi.org/10.1016/0079-6727(95)00007-0
http://dx.doi.org/10.1016/0079-6727(95)00007-0
http://dx.doi.org/10.1016/0079-6727(95)00007-0
http://dx.doi.org/10.1126/science.273.5279.1185
http://dx.doi.org/10.1126/science.273.5279.1185
http://dx.doi.org/10.1126/science.273.5279.1185
http://dx.doi.org/10.1126/science.273.5279.1185
http://dx.doi.org/10.1126/science.273.5279.1185
http://dx.doi.org/10.1126/science.273.5279.1185
http://dx.doi.org/10.1016/j.optmat.2004.10.021
http://dx.doi.org/10.1016/j.optmat.2004.10.021
http://dx.doi.org/10.1016/j.optmat.2004.10.021
http://dx.doi.org/10.1016/j.optmat.2004.10.021
http://dx.doi.org/10.1016/j.optmat.2004.10.021
http://dx.doi.org/10.1016/j.optmat.2004.10.021
http://dx.doi.org/10.1016/j.optmat.2004.10.021
http://dx.doi.org/10.1002/anie.201208196
http://dx.doi.org/10.1002/anie.201208196
http://dx.doi.org/10.1002/anie.201208196
http://dx.doi.org/10.1002/anie.201208196
http://dx.doi.org/10.1002/anie.201208196
http://dx.doi.org/10.1002/anie.201208196
http://dx.doi.org/10.1002/anie.201208196
http://dx.doi.org/10.1002/adfm.200800765
http://dx.doi.org/10.1002/adfm.200800765
http://dx.doi.org/10.1002/adfm.200800765
http://dx.doi.org/10.1002/adfm.200800765
http://dx.doi.org/10.1002/adfm.200800765
http://dx.doi.org/10.1002/adfm.200800765
http://dx.doi.org/10.1039/b809132n
http://dx.doi.org/10.1039/b809132n
http://dx.doi.org/10.1039/b809132n
http://dx.doi.org/10.1039/b809132n
http://dx.doi.org/10.1039/b809132n
http://dx.doi.org/10.1039/b809132n
http://dx.doi.org/10.1073/pnas.1008958107
http://dx.doi.org/10.1073/pnas.1008958107
http://dx.doi.org/10.1073/pnas.1008958107
http://dx.doi.org/10.1073/pnas.1008958107
http://dx.doi.org/10.1073/pnas.1008958107
http://dx.doi.org/10.1073/pnas.1008958107
http://dx.doi.org/10.1073/pnas.1008958107
http://dx.doi.org/10.1016/0022-2313(73)90033-1
http://dx.doi.org/10.1016/0022-2313(73)90033-1
http://dx.doi.org/10.1016/0022-2313(73)90033-1
http://dx.doi.org/10.1016/0022-2313(73)90033-1
http://dx.doi.org/10.1016/0022-2313(73)90033-1
http://dx.doi.org/10.1016/0022-2313(73)90033-1
http://dx.doi.org/10.1016/S0022-2313(01)00310-6
http://dx.doi.org/10.1016/S0022-2313(01)00310-6
http://dx.doi.org/10.1016/S0022-2313(01)00310-6
http://dx.doi.org/10.1016/S0022-2313(01)00310-6
http://dx.doi.org/10.1016/S0022-2313(01)00310-6
http://dx.doi.org/10.1016/S0022-2313(01)00310-6
http://dx.doi.org/10.1016/0022-2313(76)90016-8
http://dx.doi.org/10.1016/0022-2313(76)90016-8
http://dx.doi.org/10.1016/0022-2313(76)90016-8
http://dx.doi.org/10.1016/0022-2313(76)90016-8
http://dx.doi.org/10.1016/0022-2313(76)90016-8
http://dx.doi.org/10.1016/0022-2313(76)90016-8
http://dx.doi.org/10.1016/0022-2313(94)90132-5
http://dx.doi.org/10.1016/0022-2313(94)90132-5
http://dx.doi.org/10.1016/0022-2313(94)90132-5
http://dx.doi.org/10.1016/0022-2313(94)90132-5
http://dx.doi.org/10.1016/0022-2313(94)90132-5
http://dx.doi.org/10.1016/0022-2313(94)90132-5
http://dx.doi.org/10.1016/0022-2313(88)90054-3
http://dx.doi.org/10.1016/0022-2313(88)90054-3
http://dx.doi.org/10.1016/0022-2313(88)90054-3
http://dx.doi.org/10.1016/0022-2313(88)90054-3
http://dx.doi.org/10.1016/0022-2313(88)90054-3
http://dx.doi.org/10.1016/0022-2313(88)90054-3
http://dx.doi.org/10.1016/j.jlumin.2004.11.012
http://dx.doi.org/10.1016/j.jlumin.2004.11.012
http://dx.doi.org/10.1016/j.jlumin.2004.11.012
http://dx.doi.org/10.1016/j.jlumin.2004.11.012
http://dx.doi.org/10.1016/j.jlumin.2004.11.012
http://dx.doi.org/10.1016/j.jlumin.2004.11.012
http://dx.doi.org/10.1016/j.jlumin.2005.03.011
http://dx.doi.org/10.1016/j.jlumin.2005.03.011
http://dx.doi.org/10.1016/j.jlumin.2005.03.011
http://dx.doi.org/10.1016/j.jlumin.2005.03.011
http://dx.doi.org/10.1016/j.jlumin.2005.03.011
http://dx.doi.org/10.1016/j.jlumin.2005.03.011


Bibliography

[188] Boyer, J.-C.; Vetrone, F.; Cuccia, L. A.; Capobianco, J. A. Synthesis of colloidal
Upconverting NaYF4 Nanocrystals Doped with Er3+, Yb3+ and Tm3+, Yb3+ via
Thermal Decomposition of Lanthanide Trifluoracetate Precursors. J. Am. Chem.
Soc. 2006, 128 , 7444–45.

[189] Schäfer, H.; Ptacek, P.; Kömpe, K.; Haase, M. Lanthanide-Doped NaYF4 Nanocrys-
tals in Aqueous Solution Displaying Strong Up-Conversion Emission. Chem. Mater.
2007, 19 , 1396–1400.

[190] Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 2011,
50 , 5808–29.

[191] Giacovazzo, C.; Monaco, H. L.; Artioli, G.; Viterbo, D.; Ferraris, G.; Gilli, G.;
Zanotti, G.; Catti, M. Fundamentals of Crystallography, 2nd ed.; Oxford University
Press: Oxford, 2002.

[192] Krämer, K. W.; Biner, D.; Frei, G.; Güdel, H. U.; Hehlen, M. P.; Lüthi, S. R.
Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion
Phosphors. Chem. Mater. 2004, 16 , 1244–51.

[193] Lissner, F.; Krämer, K.; Mayer, G.; Hu, Z.; Kaindl, G. Die Chloride Na3xM2-xCl6
(M = La–SM) und NaM2Cl6 (M = Nd, Sm): Derivate des UCl3-Typs. Synthese,
Kristallstruktur und Röntgenabsorptionsspektroskopie (XANES). Z. anorg. allg.
Chem. 1994, 620 , 444–50.

[194] Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem.
Rev. 2004, 104 , 139–73.

[195] Chivian, J. S.; Case, W. E.; Eden, D. D. The Photon avalanche: A new phenomenon
in Pr+

3 -based infrared quantum counters. Appl. Phys. Lett. 1979, 35 , 124–25.

[196] Case, W. E.; Koch, M. E.; Kueny, A. W. The photon avalanche in rare-earth crystals.
J. Lumin. 1990, 45 , 351–53.

[197] Stouwdam, J. W.; van Veggel, F. C. J. M. Near-infrared Emission of Redispersible
Er3+, Nd3+, and Ho3+ Doped LaF3 Nanoparticles. Nano Lett. 2002, 2 , 733–37.

[198] Chen, X.; Ma, E.; Liu, G. Energy Levels and Optical Spectroscopy of Er3+ in Gd2O3
Nanocrystals. J. Phys. Chem. C 2007, 111 , 10404–11.

[199] Wang, F.; Liu, X. Upconversion Multicolor Fine-Tuning: Visible to Near-Infrared
Emission from Lanthanide-Doped NaYF4 Nanoparticles. J. Am. Chem. Soc. 2008,
130 , 5642–43.

[200] Wu, S.; Han, G.; Milliron, D. J.; Aloni, S.; Altoe, V.; Talapin, D. V.; Cohen, B. E.;
Shuck, P. J. Non-blinking and photostable upconverted luminescence from single
lanthanide-doped nanocrystals. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 , 10917–21.

[201] Park, Y. I.; Kim, J. H.; Lee, K. T.; Jeon, K.-S.; Na, H. B.; Yu, J. H.; Kim, H. M.;
Lee, N.; Choi, S. H.; Baik, S.-I.; Kim, H.; Park, S. P.; Park, B.-J.; Kim, Y. W.;
Lee, S. H.; Yoon, S.-Y.; Song, I. C.; Moon, W. K.; Suh, Y. D.; Hyeon, T. Nonblinking
and Nonbleaching Upconverting Nanoparticles as an Optical Imaging Nanoprobe and
T1 Magnetic Resonance Imaging Contrast Agent. Adv. Mater. 2009, 21 , 4467–71.

[202] Meschede, D. Optik, Licht und Laser, 2nd ed.; Teubner, 2005.

103

http://dx.doi.org/10.1021/ja061848b
http://dx.doi.org/10.1021/ja061848b
http://dx.doi.org/10.1021/ja061848b
http://dx.doi.org/10.1021/ja061848b
http://dx.doi.org/10.1021/ja061848b
http://dx.doi.org/10.1021/ja061848b
http://dx.doi.org/10.1021/ja061848b
http://dx.doi.org/10.1021/ja061848b
http://dx.doi.org/10.1021/cm062385b
http://dx.doi.org/10.1021/cm062385b
http://dx.doi.org/10.1021/cm062385b
http://dx.doi.org/10.1021/cm062385b
http://dx.doi.org/10.1021/cm062385b
http://dx.doi.org/10.1021/cm062385b
http://dx.doi.org/10.1002/anie.201005159
http://dx.doi.org/10.1002/anie.201005159
http://dx.doi.org/10.1002/anie.201005159
http://dx.doi.org/10.1002/anie.201005159
http://dx.doi.org/10.1002/anie.201005159
http://dx.doi.org/10.1021/cm031124o
http://dx.doi.org/10.1021/cm031124o
http://dx.doi.org/10.1021/cm031124o
http://dx.doi.org/10.1021/cm031124o
http://dx.doi.org/10.1021/cm031124o
http://dx.doi.org/10.1021/cm031124o
http://dx.doi.org/10.1002/zaac.19946200307
http://dx.doi.org/10.1002/zaac.19946200307
http://dx.doi.org/10.1002/zaac.19946200307
http://dx.doi.org/10.1002/zaac.19946200307
http://dx.doi.org/10.1002/zaac.19946200307
http://dx.doi.org/10.1002/zaac.19946200307
http://dx.doi.org/10.1002/zaac.19946200307
http://dx.doi.org/10.1002/zaac.19946200307
http://dx.doi.org/10.1021/cr020357g
http://dx.doi.org/10.1021/cr020357g
http://dx.doi.org/10.1021/cr020357g
http://dx.doi.org/10.1021/cr020357g
http://dx.doi.org/10.1021/cr020357g
http://dx.doi.org/10.1021/cr020357g
http://dx.doi.org/10.1063/1.91044
http://dx.doi.org/10.1063/1.91044
http://dx.doi.org/10.1063/1.91044
http://dx.doi.org/10.1063/1.91044
http://dx.doi.org/10.1063/1.91044
http://dx.doi.org/10.1063/1.91044
http://dx.doi.org/10.1016/0022-2313(90)90191-D
http://dx.doi.org/10.1016/0022-2313(90)90191-D
http://dx.doi.org/10.1016/0022-2313(90)90191-D
http://dx.doi.org/10.1016/0022-2313(90)90191-D
http://dx.doi.org/10.1016/0022-2313(90)90191-D
http://dx.doi.org/10.1021/nl025562q
http://dx.doi.org/10.1021/nl025562q
http://dx.doi.org/10.1021/nl025562q
http://dx.doi.org/10.1021/nl025562q
http://dx.doi.org/10.1021/nl025562q
http://dx.doi.org/10.1021/nl025562q
http://dx.doi.org/10.1021/jp072980g
http://dx.doi.org/10.1021/jp072980g
http://dx.doi.org/10.1021/jp072980g
http://dx.doi.org/10.1021/jp072980g
http://dx.doi.org/10.1021/jp072980g
http://dx.doi.org/10.1021/jp072980g
http://dx.doi.org/10.1021/ja800868a
http://dx.doi.org/10.1021/ja800868a
http://dx.doi.org/10.1021/ja800868a
http://dx.doi.org/10.1021/ja800868a
http://dx.doi.org/10.1021/ja800868a
http://dx.doi.org/10.1021/ja800868a
http://dx.doi.org/10.1073/pnas.0904792106
http://dx.doi.org/10.1073/pnas.0904792106
http://dx.doi.org/10.1073/pnas.0904792106
http://dx.doi.org/10.1073/pnas.0904792106
http://dx.doi.org/10.1073/pnas.0904792106
http://dx.doi.org/10.1073/pnas.0904792106
http://dx.doi.org/10.1002/adma.200901356
http://dx.doi.org/10.1002/adma.200901356
http://dx.doi.org/10.1002/adma.200901356
http://dx.doi.org/10.1002/adma.200901356
http://dx.doi.org/10.1002/adma.200901356
http://dx.doi.org/10.1002/adma.200901356
http://dx.doi.org/10.1002/adma.200901356


Bibliography

[203] Lauterborn, W.; Kurz, T.; Wiesenfeldt, M. Kohärente Optik - Grundlagen für
Physiker und Ingenieure, 1st ed.; Springer, 1993.

[204] Mollet, O.; Huant, S.; Drezet, A. Scanning plasmonic microscopy by image recon-
struction from the Fourier space. Opt. Express 2012, 20 , 28923–28.

[205] Egerton, R. F., Ed. Physical Principles of Electron Microscopy, 1st ed.; Springer US,
2013.

[206] Orfanidis, S. J., Ed. Optimum Signal processing, 2nd ed.;
http://eceweb1.rutgers.edu/ orfanidi/osp2e/, 2007.

[207] Hafner, J. H.; Bronikowski, M. J.; Azamian, B. R.; Nikolaev, P.; Rinzler, A. G.;
Colbert, D. T.; Smith, K. A.; Smalley, R. E. Catalytic growth of single-wall carbon
nanotubes from metal particles. Chem. Phys. Lett. 1998, 296 , 195–202.

[208] Kitiyanan, B.; Alvarez, W. E.; Harwell, J. H.; Resasco, D. E. Controlled production
of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-
Mo catalysts. Chem. Phys. Lett. 2000, 317 , 497–503.

[209] Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature
1993, 363 , 603–5.

[210] Bethune, D. S.; Kiang, C. H.; de Vries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.;
Beyers, R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer
walls. Nature 1993, 363 , 605–7.

[211] Prasek, J.; Drbohlavova, J.; Chomoucka, J.; Hubalek, J.; Jasek, O.; Adam, V.;
Kizek, R. Methods for carbon nanotube synthesis - review. J. Mater. Chem. 2011,
21 , 15872–84.

[212] Choi, J. H.; Strano, M. S. Solvatochromism in single-walled carbon nanotubes. Appl.
Phys. Lett. 2007, 90 , 223114.

[213] Duque, J. G.; Pasquali, M.; Cognet, L.; Lounis, B. Environmental and Synthesis-
Dependent Luminescence Properties of Individual Single-Walled Carbon Nanotubes.
ACS Nano 2009, 3 , 2153–6.

[214] Moore, V. C.; Strano, M. S.; Haroz, E. H.; Hauge, R. H.; Smalley, R. E. Individu-
ally Suspended Single-Walled Carbon nanotubes in Various Surfactants. Nano Lett.
2003, 3 , 1379–82.

[215] Sun, Y.; Yin, Y.; Mayers, B. T.; Herricks, T.; Xia, Y. Uniform Silver Nanowires
Synthesis by Redusing AgNO3 with Ethylene Glycol in the Presence of Seeds and
Poly(Vinyl Pyrrolidone). Chem. Mater. 2002, 14 , 4736–45.

[216] Olejnik, M.; Krajnik, B.; Kowalska, D.; Twardowska, M.; Czechowski, N.; Hof-
mann, E.; Mackowski, S. Imaging of fluorescence enhancement in photosynthetic
complexes coupled to silver nanowires. Appl. Phys. Lett. 2013, 102 , 083703.

[217] Olejnik, M.; Twardowska, M.; Zaleszczyk, W.; Mackowski, S. Bioconjugation of
Silver Nanowires with Photosynthetic Light-Harvesting Complexes. Act. Phys. Pol.
A 2012, 122, 357–60.

104

http://dx.doi.org/10.1364/OE.20.028923
http://dx.doi.org/10.1364/OE.20.028923
http://dx.doi.org/10.1364/OE.20.028923
http://dx.doi.org/10.1364/OE.20.028923
http://dx.doi.org/10.1364/OE.20.028923
http://dx.doi.org/10.1364/OE.20.028923
http://dx.doi.org/10.1016/S0009-2614(98)01024-0
http://dx.doi.org/10.1016/S0009-2614(98)01024-0
http://dx.doi.org/10.1016/S0009-2614(98)01024-0
http://dx.doi.org/10.1016/S0009-2614(98)01024-0
http://dx.doi.org/10.1016/S0009-2614(98)01024-0
http://dx.doi.org/10.1016/S0009-2614(98)01024-0
http://dx.doi.org/10.1016/S0009-2614(99)01379-2
http://dx.doi.org/10.1016/S0009-2614(99)01379-2
http://dx.doi.org/10.1016/S0009-2614(99)01379-2
http://dx.doi.org/10.1016/S0009-2614(99)01379-2
http://dx.doi.org/10.1016/S0009-2614(99)01379-2
http://dx.doi.org/10.1016/S0009-2614(99)01379-2
http://dx.doi.org/10.1016/S0009-2614(99)01379-2
http://dx.doi.org/10.1038/363603a0
http://dx.doi.org/10.1038/363603a0
http://dx.doi.org/10.1038/363603a0
http://dx.doi.org/10.1038/363603a0
http://dx.doi.org/10.1038/363603a0
http://dx.doi.org/10.1038/363603a0
http://dx.doi.org/10.1038/363603a0
http://dx.doi.org/10.1038/363603a0
http://dx.doi.org/10.1038/363603a0
http://dx.doi.org/10.1038/363603a0
http://dx.doi.org/10.1038/363603a0
http://dx.doi.org/10.1039/c1jm12254a
http://dx.doi.org/10.1039/c1jm12254a
http://dx.doi.org/10.1039/c1jm12254a
http://dx.doi.org/10.1039/c1jm12254a
http://dx.doi.org/10.1039/c1jm12254a
http://dx.doi.org/10.1063/1.2745228
http://dx.doi.org/10.1063/1.2745228
http://dx.doi.org/10.1063/1.2745228
http://dx.doi.org/10.1063/1.2745228
http://dx.doi.org/10.1063/1.2745228
http://dx.doi.org/10.1063/1.2745228
http://dx.doi.org/10.1021/nn9003956
http://dx.doi.org/10.1021/nn9003956
http://dx.doi.org/10.1021/nn9003956
http://dx.doi.org/10.1021/nn9003956
http://dx.doi.org/10.1021/nn9003956
http://dx.doi.org/10.1021/nn9003956
http://dx.doi.org/10.1021/nn9003956
http://dx.doi.org/10.1021/nn9003956
http://dx.doi.org/10.1021/nn9003956
http://dx.doi.org/10.1021/nn9003956
http://dx.doi.org/10.1021/nn9003956
http://dx.doi.org/10.1021/nn9003956
http://dx.doi.org/10.1021/cm020587b
http://dx.doi.org/10.1021/cm020587b
http://dx.doi.org/10.1021/cm020587b
http://dx.doi.org/10.1021/cm020587b
http://dx.doi.org/10.1021/cm020587b
http://dx.doi.org/10.1021/cm020587b
http://dx.doi.org/10.1021/cm020587b
http://dx.doi.org/10.1063/1.4794171
http://dx.doi.org/10.1063/1.4794171
http://dx.doi.org/10.1063/1.4794171
http://dx.doi.org/10.1063/1.4794171
http://dx.doi.org/10.1063/1.4794171
http://dx.doi.org/10.1063/1.4794171


Bibliography

[218] Zhang, Y.-W.; Sun, X.; Si, R.; You, L.-P.; Yan, C.-H. Single-Crystalline and
Monodisperse LaF3 Triangular Nanoplates from a Single-Source Precursor. J. Am.
Chem. Soc. 2005, 127 , 3260–1.

[219] Ehlert, O.; Thomann, R.; Darbandi, M.; Nann, T. A Four-Color Colloidal Multi-
plexing Nanoparticle System. ACS Nano 2008, 2 , 120–4.

[220] Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L.
Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9 ,
193–204.

[221] Hohenau, A.; Krenn, J. R.; Stepanov, A. L.; Drezet, A.; Ditlbacher, H.; Stein-
berger, B.; Leitner, A.; Aussenegg, F. R. Dielectric optical elements for surface
plasmons. Opt. Lett. 2005, 30 , 893–95.

[222] Freitag, M.; Chen, J.; Tersoff, J.; Tsang, J. C.; Fu, Q.; Liu, J.; Avouris, P. Mobile
Ambipolar Domain in Carbon-Nanotube Infrared Emitters. Phys. Rev. lett. 2004,
93 , 076803.

[223] Avouris, P.; Freitag, M.; Perebeinos, V. Carbon-nanotube photonics and optoelec-
tronics. Nature Photon. 2008, 2 , 341–50.

[224] Vasilev, K.; Knoll, W.; Kreiter, M. Fluorescence intensites of chromophores in front
of a thin metal film. J. Chem. Phys. 2004, 120 , 3439–45.

[225] Hennrich, F.; Krupke, R.; Arnold, K.; Rojas Stütz, J. A. R.; Lebedkin, S.; Koch, T.;
Schimmel, T.; Kappes, M. M. The Mechanism of Cavitation-Induced Scission of
Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2007, 111 , 1932–37.

[226] Casey, J. P.; Bachilo, S. M.; Moran, C. H.; Weisman, R. B. Chirality-Resolved
Length Analysis of Single-Walled Carbon Nanotube Samples through Shear-Aligned
Photoluminescence Anisotropy. ACS Nano 2008, 2 , 1738–46.

[227] Chew, H. B.; Moon, M.-W.; Lee, K. R.; Kim, K.-S. Compressive dynamic scission
of carbon nanotubes under sonication: fracture by atomic ejection. Proc. R. Soc. A
2010, 467 , 1270–89.

[228] Drezet, A.; Hohenau, A.; Koller, D.; Stepanov, A.; Ditlbacher, H.; Steinberger, B.;
Aussenegg, F. R.; Leitner, A.; Krenn, J. R. Leakage radiation microscopy of surface
plasmon polaritons. Materials Science and Engineering: B 2008, 149 , 220–29.

[229] Drezet, A.; Hohenau, A.; Stepanov, A. L.; Ditlbacher, H.; Steinberger, B.; Galler, N.;
Aussenegg, F. R.; Leitner, A.; Krenn, J. R. How to erase surface plasmon fringes.
Appl. Phys. Lett. 2006, 89 , 091117.

[230] Colas des Francs, G.; Grandidier, J.; Massenot, S.; Bouhelier, A.; Weeber, J.-C.;
Dereux, A. Integrated plasmonic waveguides: A mode solver based on density of
states formulation. Phys. Rev. B 2009, 80 , 115419.

[231] Arnoldus, H. F.; Foley, J. T. Transmission of dipole radiation through interfaces and
the phenomenon of anti-critical angles. J. Opt. Soc. Am. A 2004, 21 , 1109–17.

[232] Kolomenski, A.; Kolomenskii, A.; Noel, J.; Peng, S.; Schuessler, H. Propagation
length of surface plasmons in a metal film with roughness. Appl. Opt. 2009, 48 ,
5683–91.

105

http://dx.doi.org/10.1021/ja042801y
http://dx.doi.org/10.1021/ja042801y
http://dx.doi.org/10.1021/ja042801y
http://dx.doi.org/10.1021/ja042801y
http://dx.doi.org/10.1021/ja042801y
http://dx.doi.org/10.1021/ja042801y
http://dx.doi.org/10.1021/ja042801y
http://dx.doi.org/10.1021/ja042801y
http://dx.doi.org/10.1021/ja042801y
http://dx.doi.org/10.1021/ja042801y
http://dx.doi.org/10.1021/ja042801y
http://dx.doi.org/10.1021/ja042801y
http://dx.doi.org/10.1021/ja042801y
http://dx.doi.org/10.1038/nmat2630
http://dx.doi.org/10.1038/nmat2630
http://dx.doi.org/10.1038/nmat2630
http://dx.doi.org/10.1038/nmat2630
http://dx.doi.org/10.1038/nmat2630
http://dx.doi.org/10.1364/OL.30.000893
http://dx.doi.org/10.1364/OL.30.000893
http://dx.doi.org/10.1364/OL.30.000893
http://dx.doi.org/10.1364/OL.30.000893
http://dx.doi.org/10.1364/OL.30.000893
http://dx.doi.org/10.1364/OL.30.000893
http://dx.doi.org/10.1103/PhysRevLett.93.076803
http://dx.doi.org/10.1103/PhysRevLett.93.076803
http://dx.doi.org/10.1103/PhysRevLett.93.076803
http://dx.doi.org/10.1103/PhysRevLett.93.076803
http://dx.doi.org/10.1103/PhysRevLett.93.076803
http://dx.doi.org/10.1103/PhysRevLett.93.076803
http://dx.doi.org/10.1038/nphoton.2008.94
http://dx.doi.org/10.1038/nphoton.2008.94
http://dx.doi.org/10.1038/nphoton.2008.94
http://dx.doi.org/10.1038/nphoton.2008.94
http://dx.doi.org/10.1038/nphoton.2008.94
http://dx.doi.org/10.1038/nphoton.2008.94
http://dx.doi.org/10.1063/1.1640341
http://dx.doi.org/10.1063/1.1640341
http://dx.doi.org/10.1063/1.1640341
http://dx.doi.org/10.1063/1.1640341
http://dx.doi.org/10.1063/1.1640341
http://dx.doi.org/10.1063/1.1640341
http://dx.doi.org/10.1021/jp065262n
http://dx.doi.org/10.1021/jp065262n
http://dx.doi.org/10.1021/jp065262n
http://dx.doi.org/10.1021/jp065262n
http://dx.doi.org/10.1021/jp065262n
http://dx.doi.org/10.1021/jp065262n
http://dx.doi.org/10.1021/nn800351n
http://dx.doi.org/10.1021/nn800351n
http://dx.doi.org/10.1021/nn800351n
http://dx.doi.org/10.1021/nn800351n
http://dx.doi.org/10.1021/nn800351n
http://dx.doi.org/10.1021/nn800351n
http://dx.doi.org/10.1021/nn800351n
http://dx.doi.org/10.1098/rspa.2010.0495
http://dx.doi.org/10.1098/rspa.2010.0495
http://dx.doi.org/10.1098/rspa.2010.0495
http://dx.doi.org/10.1098/rspa.2010.0495
http://dx.doi.org/10.1098/rspa.2010.0495
http://dx.doi.org/10.1098/rspa.2010.0495
http://dx.doi.org/10.1364/OE.19.025749
http://dx.doi.org/10.1364/OE.19.025749
http://dx.doi.org/10.1364/OE.19.025749
http://dx.doi.org/10.1364/OE.19.025749
http://dx.doi.org/10.1364/OE.19.025749
http://dx.doi.org/10.1364/OE.19.025749
http://dx.doi.org/10.1063/1.2339043
http://dx.doi.org/10.1063/1.2339043
http://dx.doi.org/10.1063/1.2339043
http://dx.doi.org/10.1063/1.2339043
http://dx.doi.org/10.1063/1.2339043
http://dx.doi.org/10.1103/PhysRevB.80.115419
http://dx.doi.org/10.1103/PhysRevB.80.115419
http://dx.doi.org/10.1103/PhysRevB.80.115419
http://dx.doi.org/10.1103/PhysRevB.80.115419
http://dx.doi.org/10.1103/PhysRevB.80.115419
http://dx.doi.org/10.1103/PhysRevB.80.115419
http://dx.doi.org/10.1364/JOSAA.21.001109
http://dx.doi.org/10.1364/JOSAA.21.001109
http://dx.doi.org/10.1364/JOSAA.21.001109
http://dx.doi.org/10.1364/JOSAA.21.001109
http://dx.doi.org/10.1364/JOSAA.21.001109
http://dx.doi.org/10.1364/JOSAA.21.001109
http://dx.doi.org/10.1364/AO.48.005683
http://dx.doi.org/10.1364/AO.48.005683
http://dx.doi.org/10.1364/AO.48.005683
http://dx.doi.org/10.1364/AO.48.005683
http://dx.doi.org/10.1364/AO.48.005683
http://dx.doi.org/10.1364/AO.48.005683


Bibliography

[233] Braundmeier, A.; Arakawa, E. Effect of surface roughness on surface plasmon reso-
nance absorption. J. Phys. Chem. Solids 1974, 35 , 517–20.

[234] Kapitza, H. Influence of surface roughness on the reflection of gold films in the region
of surface plasmon excitation. Opt. Commun. 1976, 16 , 73–75.

[235] Chang, D. E.; Sørensen, A. S.; Hemmer, P. R.; Lukin, M. D. Strong coupling of
single emitters to surface plasmons. Phys. Rev. B 2007, 76 , 035420.

[236] Novotny, L. Strong coupling, energy splitting, and level crossings: A classical per-
spective. Am. J. Phys. 2010, 78 , 1199–1202.

[237] Kuzyk, A.; Pettersson, M.; Toppari, J. J.; Hakala, T. K.; Tikkanen, H.; Kunttu, H.;
Törmä, P. Molecular coupling of light with plasmonic waveguides. Opt. Express
2007, 15 , 9908–17.

[238] Wang, Y.; Liu, X.; Whitmore, D.; Xing, W.; Potma, E. O. Remote multi-color
excitation using femtosecond propagating surface plasmon polaritons in gold films.
Opt. Express 2011, 19 , 13454–63.

[239] Wei, H.; Ratchford, D.; Li, X. E.; Xu, H.; Shih, C.-K. Propagating Surface Plasmon
Induced Photon Emission from Quantum Dots. Nano Lett. 2009, 9 , 4168–71.

[240] Van Labeke, D.; Baida, F.; Barchiesi, D.; Courjon, D. A theoretical model for the
Inverse Scanning Tunneling Optical Microscope (ISTOM). Opt. Commun. 1995,
114 , 470–80.

[241] Van Labeke, D.; Baida, F. I.; Vigoureux, J.-M. A theoretical study of near-field
detection and exciation of surface plasmons. Ultramicroscopy 1998, 71 , 351–59.

[242] Bouwkamp, C. Diffraction Theory. Rep.Prog. Phys. 1954, 17 , 35–100.

[243] Hecht, B.; Sick, B.; Wild, U. P.; Deckert, V.; Zenobi, R.; Martin, O. J. F.; Pohl, D. W.
Scanning near-field optical microscopy with aperture probes: fundamentals and ap-
plications. J. Chem. Phys. 2000, 112 , 7761–74.

[244] Van Labeke, D.; Barchiesi, D.; Baida, F. Optical characterization of nanosources
used in scanning near-field optical microscopy. J. Opt. Soc. Am. A 1995, 12 , 695–
703.

[245] Novotny, L.; Beversluis, M. R.; Youngworth, K. S.; Brown, T. G. Longitudinal Field
Modes Probed by Single Molecules. Phys. Rev. Lett. 2001, 86 , 5251–54.

[246] Georgi, C.; Hartmann, N.; Gokus, T.; Green, A. A.; Hersam, M. C.; Hartschuh, A.
Photoinduced luminescence blinking and bleaching in individual single-walled carbon
nanotubes. ChemPhysChem 2008, 9 , 1460–64.

[247] Veerman, J. A.; Garcia-Parajo, M. F.; Kuipers, L.; Van Hulst, N. F. Single molecule
mapping of the optical field distribution of probes for near-field microscopy. J. Mi-
crosc. 1999, 194 , 477–82.

[248] Pyayt, A. L.; Wiley, B.; Xia, Y.; Chen, A.; Dalton, L. Integration of photonic and
silver nanowire plasmonic waveguides. Nat. Nanotechnol. 2008, 3 , 660–65.

106

http://dx.doi.org/10.1016/S0022-3697(74)80005-3
http://dx.doi.org/10.1016/S0022-3697(74)80005-3
http://dx.doi.org/10.1016/S0022-3697(74)80005-3
http://dx.doi.org/10.1016/S0022-3697(74)80005-3
http://dx.doi.org/10.1016/S0022-3697(74)80005-3
http://dx.doi.org/10.1016/S0022-3697(74)80005-3
http://dx.doi.org/10.1016/0030-4018(76)90053-5
http://dx.doi.org/10.1016/0030-4018(76)90053-5
http://dx.doi.org/10.1016/0030-4018(76)90053-5
http://dx.doi.org/10.1016/0030-4018(76)90053-5
http://dx.doi.org/10.1016/0030-4018(76)90053-5
http://dx.doi.org/10.1016/0030-4018(76)90053-5
http://dx.doi.org/10.1103/PhysRevB.76.035420
http://dx.doi.org/10.1103/PhysRevB.76.035420
http://dx.doi.org/10.1103/PhysRevB.76.035420
http://dx.doi.org/10.1103/PhysRevB.76.035420
http://dx.doi.org/10.1103/PhysRevB.76.035420
http://dx.doi.org/10.1103/PhysRevB.76.035420
http://dx.doi.org/10.1119/1.3471177
http://dx.doi.org/10.1119/1.3471177
http://dx.doi.org/10.1119/1.3471177
http://dx.doi.org/10.1119/1.3471177
http://dx.doi.org/10.1119/1.3471177
http://dx.doi.org/10.1119/1.3471177
http://dx.doi.org/10.1039/c0cp01985b
http://dx.doi.org/10.1039/c0cp01985b
http://dx.doi.org/10.1039/c0cp01985b
http://dx.doi.org/10.1039/c0cp01985b
http://dx.doi.org/10.1039/c0cp01985b
http://dx.doi.org/10.1364/OE.19.013454
http://dx.doi.org/10.1364/OE.19.013454
http://dx.doi.org/10.1364/OE.19.013454
http://dx.doi.org/10.1364/OE.19.013454
http://dx.doi.org/10.1364/OE.19.013454
http://dx.doi.org/10.1364/OE.19.013454
http://dx.doi.org/10.1021/nl9023897
http://dx.doi.org/10.1021/nl9023897
http://dx.doi.org/10.1021/nl9023897
http://dx.doi.org/10.1021/nl9023897
http://dx.doi.org/10.1021/nl9023897
http://dx.doi.org/10.1021/nl9023897
http://dx.doi.org/10.1016/0030-4018(94)00555-9
http://dx.doi.org/10.1016/0030-4018(94)00555-9
http://dx.doi.org/10.1016/0030-4018(94)00555-9
http://dx.doi.org/10.1016/0030-4018(94)00555-9
http://dx.doi.org/10.1016/0030-4018(94)00555-9
http://dx.doi.org/10.1016/0030-4018(94)00555-9
http://dx.doi.org/10.1016/S0304-3991(97)00067-3
http://dx.doi.org/10.1016/S0304-3991(97)00067-3
http://dx.doi.org/10.1016/S0304-3991(97)00067-3
http://dx.doi.org/10.1016/S0304-3991(97)00067-3
http://dx.doi.org/10.1016/S0304-3991(97)00067-3
http://dx.doi.org/10.1016/S0304-3991(97)00067-3
http://dx.doi.org/10.1088/0034-4885/17/1/302
http://dx.doi.org/10.1088/0034-4885/17/1/302
http://dx.doi.org/10.1088/0034-4885/17/1/302
http://dx.doi.org/10.1088/0034-4885/17/1/302
http://dx.doi.org/10.1088/0034-4885/17/1/302
http://dx.doi.org/10.1063/1.481382
http://dx.doi.org/10.1063/1.481382
http://dx.doi.org/10.1063/1.481382
http://dx.doi.org/10.1063/1.481382
http://dx.doi.org/10.1063/1.481382
http://dx.doi.org/10.1063/1.481382
http://dx.doi.org/10.1364/JOSAA.12.000695
http://dx.doi.org/10.1364/JOSAA.12.000695
http://dx.doi.org/10.1364/JOSAA.12.000695
http://dx.doi.org/10.1364/JOSAA.12.000695
http://dx.doi.org/10.1364/JOSAA.12.000695
http://dx.doi.org/10.1364/JOSAA.12.000695
http://dx.doi.org/10.1364/JOSAA.12.000695
http://dx.doi.org/10.1103/PhysRevLett.86.5251
http://dx.doi.org/10.1103/PhysRevLett.86.5251
http://dx.doi.org/10.1103/PhysRevLett.86.5251
http://dx.doi.org/10.1103/PhysRevLett.86.5251
http://dx.doi.org/10.1103/PhysRevLett.86.5251
http://dx.doi.org/10.1103/PhysRevLett.86.5251
http://dx.doi.org/10.1002/cphc.200800179
http://dx.doi.org/10.1002/cphc.200800179
http://dx.doi.org/10.1002/cphc.200800179
http://dx.doi.org/10.1002/cphc.200800179
http://dx.doi.org/10.1002/cphc.200800179
http://dx.doi.org/10.1002/cphc.200800179
http://dx.doi.org/10.1046/j.1365-2818.1999.00520.x
http://dx.doi.org/10.1046/j.1365-2818.1999.00520.x
http://dx.doi.org/10.1046/j.1365-2818.1999.00520.x
http://dx.doi.org/10.1046/j.1365-2818.1999.00520.x
http://dx.doi.org/10.1046/j.1365-2818.1999.00520.x
http://dx.doi.org/10.1046/j.1365-2818.1999.00520.x
http://dx.doi.org/10.1046/j.1365-2818.1999.00520.x
http://dx.doi.org/10.1038/nnano.2008.281
http://dx.doi.org/10.1038/nnano.2008.281
http://dx.doi.org/10.1038/nnano.2008.281
http://dx.doi.org/10.1038/nnano.2008.281
http://dx.doi.org/10.1038/nnano.2008.281
http://dx.doi.org/10.1038/nnano.2008.281


Bibliography

[249] Davies, M.; Wochnik, A.; Feil, F.; Jung, C.; Bräuchle, C.; Scheu, C.; Michaelis, J.
Synchronous Emission from Nanometric Silver Particles through Plasmonic Coupling
on Silver Nanowires. ACS Nano 2012, 6 , 6049–57.

[250] Fang, Y.; Li, Z.; Huang, Y.; Zhang, S.; Nordlander, P.; Halas, N. J.; Xu, H. Branched
Silver Nanowires as Controllable Plasmon Routers. Nano Lett. 2010, 10 , 1950–54.

[251] Wei, H.; Li, Z.; Tian, X.; Wang, Z.; Cong, F.; Liu, N.; Zhang, S.; Nordlander, P.;
Halas, N. J.; Xu, H. Quantum Dot-Based Local Field Imaging Reveals Plasmon-
Based Interferometric Logic in Silver Nanowire Networks. Nano Lett. 2011, 11 ,
471–75.

[252] Wei, H.; Wang, Z.; Tian, X.; Käll, M.; Xu, H. Cascaded logic gates in nanophotonic
plasmon networks. Nat. Commun. 2011, 2 , 387.

[253] Dickson, R. M.; Lyon, L. A. Unidirectional Plasmon Propagation in Metallic
Nanowires. J. Phys. Chem. B 2000, 104 , 6095–98.

[254] Falk, A. L.; Koppens, F. H. L.; Yu, C. L.; Kang, K.; Snapp, N. d.-L.; Akimov, A. V.;
Jo, M.-H.; Lukin, M. D.; Park, H. Near-field electrical detection of optical plasmons
and single-plasmon sources. Nat. Phys. 2009, 5 , 475–79.

[255] Zhang, D. G.; Yuan, X.-C.; Bouhelier, A.; Wang, P.; Ming, H. Excitation of surface
plasmon polaritons guided mode by Rhoadmine B molecules doped in a PMMA
stripe. Opt. Lett. 2010, 35 , 408–10.

[256] Massenot, S.; Grandidier, J.; Bouhelier, A.; Colas des Francs, G.; Markey, L.;
Renger, J.; Gonzalez, M. U.; Quidant, R. Polymer-metal waveguides characteri-
zation by Fourier plane leakage radiation microscopy. Appl. Phys. Lett. 2007, 91 ,
243102.

[257] Holgersson, S.; Sedström, E. Experimentelle Untersuchungen über die Gitterstruktur
einiger Metallegierungen. Ann. Phys. 1924, 380 , 143–62.

[258] Wyckoff, R. W. G., Ed. Crystal Structures, 2nd ed.; Interscience Publishers, 1963;
Vol. 1.

[259] Korte, K. E.; Skrabalak, S. E.; Xia, Y. Rapid synthesis of silver nanowires through
a CuCl- or CuCl2-mediated polyol process. J. Mat. Chem. 2008, 18 , 437–41.

[260] Davey, W. P. Precision Measurements of the Lattics Constants of Twelve Common
Metals. Phys. Rev. 1925, 25 , 753–61.

[261] Bearden, J. X-Ray Wavelengths. Rev. Mod. Phys. 1967, 39 , 78–127.

[262] Krause, M. O.; Oliver, J. H. Natural Widths of Atomic K and L Levels, Kα X-Ray
Lines and Several KLL Auger Lines. J. Phys. Chem. Ref. Data 1979, 8 , 329–38.

[263] Curto, A. G.; Volpe, G.; Taminiau, T. H.; Kreuzer, M. P.; Quidant, R.; van
Hulst, N. F. Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna.
Science 2010, 329 , 930–33.

[264] Dorfmüller, J.; Vogelgesang, R.; Khunsin, W.; Rockstuhl, C.; Etrich, C.; Kern, K.
Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory. Nano Lett.
2010, 10 , 3596–603.

107

http://dx.doi.org/10.1021/nn3011224
http://dx.doi.org/10.1021/nn3011224
http://dx.doi.org/10.1021/nn3011224
http://dx.doi.org/10.1021/nn3011224
http://dx.doi.org/10.1021/nn3011224
http://dx.doi.org/10.1021/nn3011224
http://dx.doi.org/10.1021/nl101168u
http://dx.doi.org/10.1021/nl101168u
http://dx.doi.org/10.1021/nl101168u
http://dx.doi.org/10.1021/nl101168u
http://dx.doi.org/10.1021/nl101168u
http://dx.doi.org/10.1021/nl101168u
http://dx.doi.org/10.1021/nl103228b
http://dx.doi.org/10.1021/nl103228b
http://dx.doi.org/10.1021/nl103228b
http://dx.doi.org/10.1021/nl103228b
http://dx.doi.org/10.1021/nl103228b
http://dx.doi.org/10.1021/nl103228b
http://dx.doi.org/10.1038/ncomms1388
http://dx.doi.org/10.1038/ncomms1388
http://dx.doi.org/10.1038/ncomms1388
http://dx.doi.org/10.1038/ncomms1388
http://dx.doi.org/10.1038/ncomms1388
http://dx.doi.org/10.1038/ncomms1388
http://dx.doi.org/10.1021/jp001435b
http://dx.doi.org/10.1021/jp001435b
http://dx.doi.org/10.1021/jp001435b
http://dx.doi.org/10.1021/jp001435b
http://dx.doi.org/10.1021/jp001435b
http://dx.doi.org/10.1021/jp001435b
http://dx.doi.org/10.1038/nphys1284
http://dx.doi.org/10.1038/nphys1284
http://dx.doi.org/10.1038/nphys1284
http://dx.doi.org/10.1038/nphys1284
http://dx.doi.org/10.1038/nphys1284
http://dx.doi.org/10.1038/nphys1284
http://dx.doi.org/10.1364/OL.35.000408
http://dx.doi.org/10.1364/OL.35.000408
http://dx.doi.org/10.1364/OL.35.000408
http://dx.doi.org/10.1364/OL.35.000408
http://dx.doi.org/10.1364/OL.35.000408
http://dx.doi.org/10.1364/OL.35.000408
http://dx.doi.org/10.1364/OL.35.000408
http://dx.doi.org/10.1063/1.2824840
http://dx.doi.org/10.1063/1.2824840
http://dx.doi.org/10.1063/1.2824840
http://dx.doi.org/10.1063/1.2824840
http://dx.doi.org/10.1063/1.2824840
http://dx.doi.org/10.1063/1.2824840
http://dx.doi.org/10.1002/andp.19243801803
http://dx.doi.org/10.1002/andp.19243801803
http://dx.doi.org/10.1002/andp.19243801803
http://dx.doi.org/10.1002/andp.19243801803
http://dx.doi.org/10.1002/andp.19243801803
http://dx.doi.org/10.1002/andp.19243801803
http://dx.doi.org/10.1039/b714072j
http://dx.doi.org/10.1039/b714072j
http://dx.doi.org/10.1039/b714072j
http://dx.doi.org/10.1039/b714072j
http://dx.doi.org/10.1039/b714072j
http://dx.doi.org/10.1039/b714072j
http://dx.doi.org/10.1103/PhysRev.25.753
http://dx.doi.org/10.1103/PhysRev.25.753
http://dx.doi.org/10.1103/PhysRev.25.753
http://dx.doi.org/10.1103/PhysRev.25.753
http://dx.doi.org/10.1103/PhysRev.25.753
http://dx.doi.org/10.1103/PhysRev.25.753
http://dx.doi.org/10.1103/RevModPhys.39.78
http://dx.doi.org/10.1103/RevModPhys.39.78
http://dx.doi.org/10.1103/RevModPhys.39.78
http://dx.doi.org/10.1103/RevModPhys.39.78
http://dx.doi.org/10.1103/RevModPhys.39.78
http://dx.doi.org/10.1063/1.555595
http://dx.doi.org/10.1063/1.555595
http://dx.doi.org/10.1063/1.555595
http://dx.doi.org/10.1063/1.555595
http://dx.doi.org/10.1063/1.555595
http://dx.doi.org/10.1063/1.555595
http://dx.doi.org/10.1126/science.1191922
http://dx.doi.org/10.1126/science.1191922
http://dx.doi.org/10.1126/science.1191922
http://dx.doi.org/10.1126/science.1191922
http://dx.doi.org/10.1126/science.1191922
http://dx.doi.org/10.1021/nl101921y
http://dx.doi.org/10.1021/nl101921y
http://dx.doi.org/10.1021/nl101921y
http://dx.doi.org/10.1021/nl101921y
http://dx.doi.org/10.1021/nl101921y


BIBLIOGRAPHY

[265] Encina, E. R.; Coronado, E. A. Plasmonic Nanoantennas: Angular Scattering Prop-
erties of Multipole Resonances in Noble Metal Nanorods. J. Phys. Chem. C 2008,
112 , 9586–94.

[266] Butz, T., Ed. Fouriertransformation für Fußgänger, 6th ed.; Vieweg+Teubner, 2009.

[267] Li, Q.; Qiu, M. Plasmonic wave propagation in silver nanowires: guiding modes or
not? Opt. Express 2013, 21 , 8587–95.

[268] Rai, P.; Hartmann, N.; Berthelot, J.; Colas-des Francs, G.; Hartschuh, A.; Bouhe-
lier, A. In-plane remote photoluminescence excitation of carbon notube by propa-
gating surface plasmon. Opt. Lett. 2012, 37 , 4711–13.

[269] Zhu, W.; Wang, D.; Crozier, K. B. Direct Observation of Beamed Raman Scattering.
Nano Lett. 2012, 12 , 6235–43.

[270] Taminiau, T. H.; Karaveli, S.; van Hulst, N. F.; Zia, R. Quantifying the magnetic
nature of light emission. Nature Commun. 2012, 3 , 979.

[271] Karaveli, S.; Wang, S.; Xiao, G.; Zia, R. Time-Resolved Energy-Momentum Spec-
troscopy of Electric and Magnetic Dipole Transitions in Cr3+:MgO. ACS Nano 2013,
7 , 7165–72.

[272] Bonnand, C.; Bellessa, J.; Plenet, J. C. Properties of surface plasmons strongly
coupled to excitons in an organic semiconductor near a metallic surface. Phys. Rev.
B 2006, 73 , 245330.

[273] Berrier, A.; Cools, R.; Arnold, C.; Offermans, P.; Crego-Calama, M.;
Brongersma, S. H.; Gomez-Rivas, J. Active Control of the Strong Coupling Regime
between Porphyrin Excitons and Surface Plasmon Polaritons. ACS Nano 2011, 5 ,
6226–32.

108

http://dx.doi.org/10.1021/jp7120142
http://dx.doi.org/10.1021/jp7120142
http://dx.doi.org/10.1021/jp7120142
http://dx.doi.org/10.1021/jp7120142
http://dx.doi.org/10.1021/jp7120142
http://dx.doi.org/10.1021/jp7120142
http://dx.doi.org/10.1364/OE.21.008587
http://dx.doi.org/10.1364/OE.21.008587
http://dx.doi.org/10.1364/OE.21.008587
http://dx.doi.org/10.1364/OE.21.008587
http://dx.doi.org/10.1364/OE.21.008587
http://dx.doi.org/10.1364/OE.21.008587
http://dx.doi.org/10.1364/OL.37.004711
http://dx.doi.org/10.1364/OL.37.004711
http://dx.doi.org/10.1364/OL.37.004711
http://dx.doi.org/10.1364/OL.37.004711
http://dx.doi.org/10.1364/OL.37.004711
http://dx.doi.org/10.1364/OL.37.004711
http://dx.doi.org/10.1021/nl303297b
http://dx.doi.org/10.1021/nl303297b
http://dx.doi.org/10.1021/nl303297b
http://dx.doi.org/10.1021/nl303297b
http://dx.doi.org/10.1021/nl303297b
http://dx.doi.org/10.1038/ncomms1984
http://dx.doi.org/10.1038/ncomms1984
http://dx.doi.org/10.1038/ncomms1984
http://dx.doi.org/10.1038/ncomms1984
http://dx.doi.org/10.1038/ncomms1984
http://dx.doi.org/10.1038/ncomms1984
http://dx.doi.org/10.1021/nn402568d
http://dx.doi.org/10.1021/nn402568d
http://dx.doi.org/10.1021/nn402568d
http://dx.doi.org/10.1021/nn402568d
http://dx.doi.org/10.1021/nn402568d
http://dx.doi.org/10.1021/nn402568d
http://dx.doi.org/10.1103/PhysRevB.73.245330
http://dx.doi.org/10.1103/PhysRevB.73.245330
http://dx.doi.org/10.1103/PhysRevB.73.245330
http://dx.doi.org/10.1103/PhysRevB.73.245330
http://dx.doi.org/10.1103/PhysRevB.73.245330
http://dx.doi.org/10.1103/PhysRevB.73.245330
http://dx.doi.org/10.1103/PhysRevB.73.245330
http://dx.doi.org/10.1021/nn201077r
http://dx.doi.org/10.1021/nn201077r
http://dx.doi.org/10.1021/nn201077r
http://dx.doi.org/10.1021/nn201077r
http://dx.doi.org/10.1021/nn201077r
http://dx.doi.org/10.1021/nn201077r


Acronyms

1D . . . . . . . . . . . . . . . . . . . . . . . one-dimensional

3D . . . . . . . . . . . . . . . . . . . . . . . three-dimensional

AFM . . . . . . . . . . . . . . . . . . . . . atomic force microscopy

APD . . . . . . . . . . . . . . . . . . . . . . avalanche photo diode

ATR . . . . . . . . . . . . . . . . . . . . . . attenuated total reflection

BFP . . . . . . . . . . . . . . . . . . . . . . back focal plane

CCD . . . . . . . . . . . . . . . . . . . . . . charge coupled device

ccp . . . . . . . . . . . . . . . . . . . . . . . cubic closest packing

CoMoCat . . . . . . . . . . . . . . . . . . . cobalt-molybdenum catalyst

EDX . . . . . . . . . . . . . . . . . . . . . . energy-dispersive X-Ray

EELS . . . . . . . . . . . . . . . . . . . . . electron energy loss spectroscopy

ESA . . . . . . . . . . . . . . . . . . . . . . excited state absorption

ETU . . . . . . . . . . . . . . . . . . . . . . energy transfer upconversion

fcc . . . . . . . . . . . . . . . . . . . . . . . face centered cubic

FET . . . . . . . . . . . . . . . . . . . . . . field effect transistor

FWHM . . . . . . . . . . . . . . . . . . . . full width at half maximum

GSA . . . . . . . . . . . . . . . . . . . . . . ground state absorption

HiPCO . . . . . . . . . . . . . . . . . . . . high pressure carbon monoxide

IR . . . . . . . . . . . . . . . . . . . . . . . infrared

109



Acronyms

LED . . . . . . . . . . . . . . . . . . . . . . light emitting diode

LSPP . . . . . . . . . . . . . . . . . . . . . localized surface plasmon polariton

NA . . . . . . . . . . . . . . . . . . . . . . . numerical aperture

NC . . . . . . . . . . . . . . . . . . . . . . . nanocrystal

NIR . . . . . . . . . . . . . . . . . . . . . . near infrared

NW . . . . . . . . . . . . . . . . . . . . . . nanowire

OLED . . . . . . . . . . . . . . . . . . . . . organic light emitting diode

PA . . . . . . . . . . . . . . . . . . . . . . . photon avalanche

PI . . . . . . . . . . . . . . . . . . . . . . . proportional-integral

PL . . . . . . . . . . . . . . . . . . . . . . . photoluminescence

PLL . . . . . . . . . . . . . . . . . . . . . . phase-locked-loop

PSTM . . . . . . . . . . . . . . . . . . . . . photon scanning tunneling microscopy

PVP . . . . . . . . . . . . . . . . . . . . . . polyvinylpyrrolidone

RBM . . . . . . . . . . . . . . . . . . . . . radial breathing mode

SC . . . . . . . . . . . . . . . . . . . . . . . sodium cholate

SDC . . . . . . . . . . . . . . . . . . . . . . sodium deoxycholate

SDS . . . . . . . . . . . . . . . . . . . . . . sodium dodecyl sulfate

SEM . . . . . . . . . . . . . . . . . . . . . . scanning electron microscopy

SNOM . . . . . . . . . . . . . . . . . . . . . scanning near-field optical microscopy

SP . . . . . . . . . . . . . . . . . . . . . . . surface plasmon

SPCE . . . . . . . . . . . . . . . . . . . . . surface plasmon coupled emission

SPM . . . . . . . . . . . . . . . . . . . . . . scanning probe microscopy

SPP . . . . . . . . . . . . . . . . . . . . . . surface plasmon polariton

STM . . . . . . . . . . . . . . . . . . . . . . scanning tunneling microscopy

STOM . . . . . . . . . . . . . . . . . . . . . scanning tunneling optical microscopy

SWCNT . . . . . . . . . . . . . . . . . . . . single-walled carbon nanotube

110



Acronyms

TEM . . . . . . . . . . . . . . . . . . . . . transmission electron microscopy

TFA . . . . . . . . . . . . . . . . . . . . . . tri fluor acetate

TM . . . . . . . . . . . . . . . . . . . . . . transvere magnetic

UC . . . . . . . . . . . . . . . . . . . . . . . upconversion

VIS . . . . . . . . . . . . . . . . . . . . . . visible

111





List of Figures

2.1 (a) Schematic of the charges and electromagnetic field lines of a SPP propa-
gating on a metal/dielectric interface. (b) shows the exponential dependence
of the field amplitude |Ez| in the direction of z into the two different media. . . 6

2.2 Real part of SPP dispersion relation for a silver/air interface . . . . . . . . . . 7
2.3 Schematic of a metal/dielectric multilayer system considered for the calculation

of the SPP dispersion relation in eq. 2.7 . . . . . . . . . . . . . . . . . . . . . . 8
2.4 (a) SPP dispersion relations comparing the solution for a gold/air interface

with the multilayer solutions for different glass coating thicknesses d2. (b) Cor-
relation of the real part of the plasmon wave-vector k′

SPP with the thicknesses
of the metal film d1 and the glass coating d2. . . . . . . . . . . . . . . . . . . . 10

2.5 (a) Calculated propagation length LD over a range of wavelengths/frequencies
for silver, gold and copper. (b) Dependency of the propagation length LD at
1000 nm on the thickness of a gold film d1 and the thickness of a glass cover
layer (ε2 = 1.52) d2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Schematic of the metal wire used for the calculation of the dispersion relation
in eq. 2.19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Comparison of SPP dispersion relations calculated for a silver/air interface, a
multilayer system and a nanowire with the same metal thicknesses. . . . . . . . 13

2.8 Illustration of the SPP dispersion for a silver/air interface, the light line k0,
the dispersion for light in glass kglass and the maximum dispersion accessible
with a high numerical oil immersion objective kmax. . . . . . . . . . . . . . . . 14

2.9 SPP excitation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 ATR measurements in the (a) Otto and (b) Kretschmann configuration for

different air gap sizes and gold film thicknesses. . . . . . . . . . . . . . . . . . . 16
2.11 Schematic of leakage radiation emission from a propagating SPP on a metal

film into the substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.12 Schematic of SPP detection via PSTM/STOM . . . . . . . . . . . . . . . . . . 19

3.1 (a) Schematic of radiated power by an emitter on an interface into different an-
gular zones. (b) Schematic of the projection of angular emission by an imaging
lens onto the BFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Schematic of the geometry used for the calculation of Fourier patterns from
dipoles on an interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

113



List of Figures

3.3 Calculated BFP patterns for dipoles on a glass/air interface with different ori-
entations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Plot of the detection efficiency γ for an in-plane and a vertical dipole, as well as
randomly oriented dipoles on a glass substrate detected with an index matched
oil immersion microscope objective. . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 (a) Reflection BFP pattern from a 20 nm gold film coated with 20 nm SiOx and
excited at 900 nm. (b) Cross section through the reflection pattern. . . . . . . . 27

3.6 (a) Schematic of a single dipole chain connected with a phase for the simulation
of SPP propagation along a plasmonic nanowire. (b) Calculated BFP pattern
for NW with a diameter of 50 nm and (c) 100 nm. . . . . . . . . . . . . . . . . . 28

4.1 Schematic of the unit cell in the graphene lattice for the three different types
of SWCNTs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Schematic of the band structure of SWCNTs illustrating the different transi-
tions polarized parallel (a) and perpendicular (b) to the nanotube axis. . . . . 33

4.3 (a) PL spectra from three different individual nanotubes after optical excitation
at 565 nm. (b) Combined Raman and PL spectrum from a (6,4) SWCNT. . . . 35

4.4 Crystal structure of (a) cubic α-NaYF4 and hexagonal β-NaYF4. . . . . . . . . 36
4.5 Energy diagram of a simplified three level system to visualize three possible

UC mechanisms:(a) ESA, (b) ETU and (c) PA. . . . . . . . . . . . . . . . . . . 37
4.6 Energy diagram for ytterbium and erbium and the involved excitation, energy

transfer and emission processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Schematic of the optical setup. (a) Real-space imaging, scanning confocal de-
tection and spectroscopy. (b) Fourier (BFP) imaging. . . . . . . . . . . . . . . 42

5.2 Schematic of the beam path in order to image the BFP of a microscope objective. 43
5.3 Schematic of the aperture SNOM configuration . . . . . . . . . . . . . . . . . . 44
5.4 (a) SEM micrograph of silver NWs. The scale bar represents 10µm. (b).

Detailed SEM micrograph of two silver NWs. The scale bar represents 100 nm. 47
5.5 Emission spectrum of NaYF4 doped with 20 wt% yttrium and 2 wt% erbium. . 47

6.1 Confocal PL image of single SWCNTs together with corresponding Fourier
space and real space images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Confocal PL images of SWCNTs on a dielectric/gold substrate for different
excitation polarizations with the corresponding BFP patterns. . . . . . . . . . . 51

6.3 Correlation between confocal SWCNT PL position (a), nanotube orientation
from AFM topography (b) and corresponding BFP patterns (c), (d). . . . . . . 52

6.4 Schematic of the sample geometry and coordinate system for the calculation
of real and Fourier space images from a SWCNT single dipole situated on a
spacer/gold film. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.5 Comparison of the modulus square of the numerical Fourier transform of the
asymptotic plasmon field and a Lorentzian line shape function. . . . . . . . . . 54

114



List of Figures

6.6 Experimental (a) and theoretical (b) real space image rendered by a single in-
plane dipole and dected by the CCD camera. The scale bar represents 4.0µm
in both images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.7 (a) Experimentally obtained Fourier plane pattern. (b) Fit of (a) according to
eq. 6.2. (c) Residuum after subtraction (b)-(a) . . . . . . . . . . . . . . . . . . 56

6.8 Results for the plasmon emission angle θSPP (a) and the propagation length LS

(b) obtained from fitted SWCNT BFP patterns on spacer layers with different
thicknesses d2 together with theoretical values calculated according to eq. 2.9. . 56

6.9 Comparison between experimentally obtained and calculated Fourier patterns
with different polarizations for a SWCNT deposited on glass and ona 25 nm
gold film. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.1 Real space and corresponding BFP patterns for an aperture probe 4µm away
from a 20 nm gold film (a), (b) and approached close to several nm (c), (d) to
the surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2 (a),(c) real space images and (b),(d) BFP patterns for SPPs launched by an
aperture probe, recorded with two different input polarizations. . . . . . . . . . 63

7.3 Emission maps from a single SWCNT during an aperture probe scan for two
different input polarizations (a) and (b) together with a BFP pattern of the
same nanotube after confocal excitation. . . . . . . . . . . . . . . . . . . . . . . 65

7.4 Schematic of the multilayer sample system which is used for the calculations
of the fields emitted by an aperture tip. . . . . . . . . . . . . . . . . . . . . . . 67

7.5 Calculated (a) intensity and (b) in-plane polarization for the field created in
the metal air interface of a 20 nm gold film by the emission of an aperture probe . 68

7.6 Comparison between an experimental and calculated intensity profiles for the
Iz and Ixy component of the field, emitted by an aperture probe. . . . . . . . . 69

8.1 (a) Overview and (b) magnified TEM images from a representative silver
nanowire. (c) shows a electron diffraction pattern measured on the NW. . . . . 73

8.2 EDX spectra from the silver nanowire in fig. 8.1 (b) taken on the wire (black
solid line, position I) and on the polymer layer (red dotted line, position II)
divided into two energy ranges (a) and (b). . . . . . . . . . . . . . . . . . . . . 74

8.3 Distribution of (a) nanowire diameters Dwire and (b) polymer thicknesses dPVP

from 77 different silver NWs measured from TEM images. . . . . . . . . . . . . 74
8.4 (a) Confocal PL map of a representative sample area together with the corre-

sponding topography data in (b) from silver NWs decorated with rare earth
doped NC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.5 Back-focal plane PL emission pattern detected for a nanocrystal on glass. . . . 76
8.6 (a) Confocal PL map of a wire decorated with nanocrystals, together with

corresponding BFP patterns recorded at different positions along the NW. . . . 76
8.7 (a) Schematic of the BFP imaging for randomly oriented dipoles together with

an experimental (b) and a modeled BFP pattern. . . . . . . . . . . . . . . . . . 78

115



LIST OF FIGURES

8.8 Schematic of the formation of a BFP pattern for the leaky antenna resonator
as described in eq. 8.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.9 map of profiles through theoretical BFP pattern INW along the propagation
direction k∥ in dependency of the excitation position a, together with four
complete calculated pattern for different excitation positions. . . . . . . . . . . 81

8.10 Calculated plasmon dispersion kSPP (ω) for a silver NW and the maximum de-
tectable k-vector by a NA = 1.4 objective kmax (ω) together with an underlying
sinc

(
k∥
)

pattern due to the finite emitter length. . . . . . . . . . . . . . . . . . 82
8.11 (a)-(c) Experimentally obtained BFP patterns from a NW excited at three

different positions together with best fit patterns (d)-(f) calculated according
to eq. 8.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.12 (a) Plot of the length extracted from the fringe distance in the BFP pat-
terns LBFP against the physical length measured by AFM LAFM on the same
nanowire. (b) The fitted k′

SPP is plotted against the thickness for each corre-
sponding wire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

116



List of Publications

The following peer-reviewed papers have been published during the course of my PhD
research and further activities:

N. Hartmann, F. Tantussi, G. Colas-des-Francs, A. Guggenmos, U. Kleineberg, A. Bouhe-
lier, F. Fuso, M. Allegrini, A. Hartschuh "Mapping of propagating surface plasmons
launched by a scanning source with single carbon nanotubes", 2013, in preparation.

D. Piatkowski, N. Hartmann, M. Nyk, M. Olejnik, T. Mancabelli, S. Mackowski,
A. Hartschuh "Silver Nanowires as Receiving-Radiating Antennas in Plasmon Enhanced
Up-Conversion Processes", 2013, in preparation

M. Handloser, T. Winzer, G. Piredda, N. Hartmann, A. Lombardo, A. Guggenmoos,
R. Ciesielski, A. Comin, U. Kleineberg, A. C. Ferrari, E. Malic, A. Hartschuh "Controlling
the coupled coherence and population dynamics in graphene using chirped laser pulses",
2013 in preparation.

N. Mauser, N. Hartmann, M. Hoffmann, J. Janik, A. Högele, A. Hartschuh, "Antenna-
enhanced Optoelectronic Probing of Carbon Nanotubes", Nature Commun. 2013, sub-
mitted

N. Hartmann, D. Piatkowski, R. Ciesielski, S. Mackowski, A. Hartschuh, "Radiation Chan-
nels Close to a Plasmonic Nanowire Visualized by Back Focal Plane Imaging", ACS Nano
2013, 7, 10257.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh,
A. Bouhelier, "Electrical exciation of surface plasmons by an individual carbon nanotube
transistor", Phys. Rev. Lett. 2013, 111, 026804.

P. Rai, N. Hartmann, J. Berthelot, G. Colas des Francs, A. Hartschuh, A. Bouhelier, "In-
plane remote photoluminescence excitation of carbon nanotube by propagating surface
plasmon", Opt. Lett. 2012, 37, 4711.

N. Hartmann, G. Piredda, J. Berthelot, G. Colas des Francs, A. Bouhelier, A. Hartschuh,
"Launching Propagating Surface Plasmon Polaritons by a Single Carbon Nanotube Dipolar
Emitter", Nano Lett. 2012, 12, 177.

117



LIST OF PUBLICATIONS

M. Böhmler, N. Hartmann, C. Georgi, F. Hennrich, M. C. Hersam, A. Hartschuh, "En-
hancing and Redirecting Carbon Nanotube Photoluminescence by an Optical Antenna",
Opt. Express 2010, 18, 16443.

R. Appel, N. Hartmann, H. Mayr,"Scope and Limitations of Cyclopropanations with Sulfur
Ylides", J. Am. Chem. Soc. 2010, 132, 17894.

H. Qian, P. T. Araujo, C. Georgi, T. Gokus, N. Hartmann, A. A. Green, A. Jorio,
M. C. Hersam, L. Novotny, A. Hartschuh, "Visualizing the Local Optical Response of
Semiconducting Carbon Nanotubes to DNA-wrapping", Nano Lett. 2008, 8, 2706.

C. Georgi, N. Hartmann, T. Gokus, A. A. Green, M. C. Hersam, A. Hartschuh, "Photo-
induced luminescence blinking and bleaching in individual Single-Walled Carbon Nan-
otubes", ChemPhysChem 2008, 9, 1460.

118



List of Conferences

NFO12, San Sebastian (Spain), 03.09 - 06.09.2012
Poster: Coupling between excitons in carbon nanotubes and propagating surface plasmons

HBSM12, Tübingen (Germany), 27.08 - 30.08.2012
Poster: Coupling of Excitons in Carbon Nanotubes to Propagating Surface Plasmons

DPG Frühjahrstagung 2012, Berlin (Germany), 26.03. - 30.03.2012
Oral presentation: Coupling of Excitons in Carbon Nanotubes to Propagating Surface
Plasmons

ANAP Meeting, Sønderborg (Denmark), 01.09 - 02.09.2011
Oral presentation: Exciting Surface Plasmons by Carbon Nanotube Photoluminescence

CRANN, Dublin (Ireland), 07.06.2011
Poster: Interfacing carbon nanotube photoluminescence to a plasmonic architecture

SPP5, Busan (South Korea), 15.05 - 20.05.2011
Oral presentation: Launching Surface Plasmons by Carbon Nanotube Photoluminescence

DPG Frühjahrstagung 2011, Dresden (Germany), 13.03. - 18.03.2011
Oral presentation: Launching Surface Plasmons by Carbon Nanotube Photoluminescence

Workshop on Carbon Nanotube Optics 2010, Niederstetten (Germany), 07.10. - 10.10.2010
Poster: Coupling of SWNT Photoluminescence to Surface Plasmons in Metallic Antennas
and Metallic Thin Films

NFO11, Beijing (PR China), 29.08. - 02.09.2010
Poster: Coupling of Carbon Nanotube Photoluminescence to Surface Plasmons in Metallic
Antennas and Metallic Thin Films

EMRS 2010 Spring Meeting, Strasbourg (France), 07.06. - 11.06.2010
Poster: Optical Antennas Enhance and Redirect Nanotube Photoluminescence

Workshop on Carbon Nanotube Optics 2009, Kleinwalsertal (Austria), 17.07. - 19.07.2009
Poster: Imaging of radiation patterns from SWNTs on substrates

119





Acknowledgements

First and foremost I want to thank my doctoral advisor Prof. Dr. Achim Hartschuh for
giving me the opportunity to work in his group and the continuous support and encour-
agement. His scientific enthusiasm and his excellent way of explaining always motivated
to dive into and explore new fields and ideas. Further, I want to thank him for giving me
the opportunity to present the results of my work on various workshops and conferences.

I want to thank Dr. Alexandre Bouhelier for his support as the second reviewer of my
thesis as well as the great atmosphere and dedication during the joint project E2-Plas.

I also want to thank Prof. Dr. Maria Allegrini, Dr. Padmabh Rai and Dr. Jo-
hann Berthelot for the pleasant time we shared during the joint experiments, discus-
sions and efforts in the E2-Plas project. In this context my special thanks go out to
Dr. Francesco Tantussi for the great working atmosphere and effort during the realiza-
tion of the aperture SNOM SPP excitation and further.

I thank Dr. Dawid Piatkowski for the collaboration and the great time during the joint
experiment on plasmonic nanowires coupled to rare-earth doped nanocrystals and beyond.

In regards to TEM measurements, I thank Dr. Angela Wochnik for her expertise and
patience during the analysis of many silver nanowires.

For the supply of excellent gold film samples with added spacer layers I thank Alexan-
der Guggenmos.

All former and current group members Alexandre, Alberto, Amit, Giovanni, Harald,
Hayk, Huihong, Julia, Kevin, Matthias, Miriam, Nina, Paulo, Richard, Tobia,
Tobias and Xian, I want to thank for the great atmosphere, the friendships, the discus-
sions and activities on and off campus.

A special mention goes to Dr. Carsten Georgi. I am very grateful for the time I was
allowed to spend with him and learn from his experience and knowledge. My thoughts
are with his family and friends.

Besonders möchte ich mich bei meiner Familie, meinen Eltern und meiner Schwester
für die ständige Unterstützung, Anerkennung und Ermutigungen auf dem gesamten Weg
bedanken.

最要感谢的是你，晓文。如果没有你的理解、陪伴和支持，我就不可能顺利地完成这篇

论文!

121


	Contents
	Introduction
	Surface plasmon polaritons (SPPs)
	Fundamental SPP properties
	SPP dispersion relation in different geometries
	Dispersion relation in a multilayer structure
	SPP propagation length
	Dispersion relation in metal cylinders

	Excitation of SPPs
	Detection of SPPs
	Leakage radiation
	Near-field Microscopy
	Fluorescence detection


	Back focal plane (BFP) imaging
	Theoretical description of radiation patterns in the BFP
	Dipolar emission characteristics in the BFP
	Calculation of intensity distribution in the BFP
	Detection efficiency of dipoles


	SPP BFP imaging
	SPP signatures in the BFP
	Calculation of BFP patterns for propagating plasmons on a noble metal nanowire


	Emitter Systems
	Single-walled carbon nanotubes (SWCNTs)
	Structural properties
	Optical properties

	Photon upconverting lanthanide doped nanoparticles
	Structural properties
	Optical properties


	Experimental details
	Microscope setup
	Confocal microscope
	BFP imaging
	Aperture scanning optical near-field microscopy (SNOM) configuration

	Sample preparation and configuration
	SWCNTs samples on multilayer thin films
	Silver nanowires and rare earth nanocrystals: sample preparation


	Launching SPPs by SWCNT emission
	Emission characteristics of single SWCNTs on a thin gold film
	Theoretical simulation of single dipole BFP and real space patterns on a metal film
	Determination of the propagation length and plasmon wave-vector from leakage radiation BFP patterns
	Polarization resolved BFP patterns

	Remote excitation of SWCNTs by propagating SPPs
	Excitation of SPPs with an aperture SNOM probe
	Remote excitation of SWCNTs by SPPs excited with an aperture SNOM probe
	Theoretical modeling of the SPP fields generated by an aperture probe on a thin metal film

	Radiation channels close to a plasmonic nanowire
	Transmission electron microscopy (TEM) characterization of plasmonic silver NWs
	Optical investigation of different emission channels close to a plasmonic NW
	Theoretical description of the BFP pattern from different emission channels
	Theoretical modeling of the direct NC emission pattern
	Theoretical modeling of the NW leakage radiation emission pattern

	Discussion of parameters extracted from fitting BFP patterns

	Summary and outlook
	Bibliography
	Acronyms
	List of Figures
	List of Publications
	List of Conferences
	Acknowledgements

