Aus dem Friedrich-Baur-Institut der Medizinischen Fakultät an der Neurologischen Klinik und Poliklinik (Direktorin: Prof. Dr. med. Marianne Dieterich) der Ludwig-Maximilians-Universität München

Proteomische Einzelfaser-Analysen Myofibrillärer Myopathien mit Hilfe der Laser Dissektions-Mikroskopie

Dissertation zum Erwerb des Doktorgrades der Humanbiologie an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München

> vorgelegt von Sarah Feldkirchner aus München 2013

Mit Genehmigung der Medizinischen Fakultät der Universität München

Berichterstatter:	Prof. Dr. med. Benedikt Schoser
Mitberichterstatter:	Prof. Dr. Dr. h.c. Hans A. Kretzschmar
	Prof. Dr. Jens Waschke
	Prof. Dr. Dr. Christoph Klein
Mitbetreuung durch den	
Promovierten Mitarbeiter:	PD Dr. med. Joachim Schessl
Dekan:	Prof. Dr. med. Dr. h.c. M. Reiser, FACR, FRCR
Tag der mündlichen Prüfung:	11.11. 2013

Meinen Eltern und meinem Schatz Markus Limmer

Teile dieser Arbeit wurden veröffentlicht in:

Feldkirchner S, Walter M.C, Müller S, Kubny C, Krause S, Kress W, Hanisch FG, Schoser B, Schessl J. Proteomic characterization of aggregate components in an intrafamilial variable FHL1opathy. *Neuromuscul Disord, under revision*

Feldkirchner S, Schessl J, Müller S, Schoser B, Hanisch FG. Patient-specific protein aggregates in myofibrillar myopathies: Laser microdissection and differential proteomics for identification of plaque components. *Proteomics. 2012 Oct 9. doi: 10.1002/pmic.201100559.*

Schessl J, **Feldkirchner S**, Kubny C, Schoser B. Reducing body myopathy and other FHL1related muscular disorders. *Semin Pediatr Neurol. 2011 Dec 18(4):257-63. Review*.

Inhaltsverzeichnis

A	Zu	Zusammenfassung1		
B	Ein	Einleitung		
1	Му	Myofibrilläre Myopathien		5
	1.1	Klir	nische Symptomatik der Myofibrillären Myopathien	7
	1.2	Hist	topathologische Merkmale der Myofibrillären Myopathien	7
	1.3	Mo	lekulare Pathogenese: Proteinaggregation	9
	1.4	FHI	L1 und FHL1opathien	11
	1.4	.1	Aufbau und Funktion des Four and a half Lim-Domain Proteins 1	11
	1.4	1.2	Klinik der FHL1opathien	14
	1.4	1.3	Pathogenese	17
	1.5	My	otilin und Myotilinopathien	17
	1.6	Titi	n und Titin-assoziierte Myopathien	18
2	La	ser M	likrodissektion und proteomisches Profiling	20
	2.1	Def	inition und Anwendung der Laser Mikrodissektion	20
	2.2	LM	D in Kombination mit qualitativer und quantitativer Massenspektrometrie	22
	2.2	2.1	Massenspektrometrie	22
	2.2	2.2	Quantitative Proteomics mittels iTRAQ	23
C	Zie	elsetz	ung	25
D	Ma	iteria	l und Methoden	27
1	Pat	tiente	en	27
2	Ch	emik	alien	27
3	Mo	oleku	largenetische Methoden	27
	3.1	DN.	A-Extraktion	27
	3.2	Pho	tometrische Bestimmung von Nukleinsäure-Konzentrationen	27
	3.3	Poly	ymerase-Ketten-Reaktion	28
	3.3	8.1	Prinzip der Polymerase-Ketten-Reaktion	28
	3.3	8.2	PCR-Primer	28
	3.3	3.3	PCR-Reaktionsbedingungen	28
	3.4	Auf	reinigung der PCR-Produkte	29
	3.5	Seq	uenz-Analyse	29
	3.6	Nex	t Generation Sequencing	29
4	Zel	lkult	ur	30
	4.1	Diff	ferenzierung/Fusion von Patienten-Myoblasten	30

	4.1	1.1 Lamininbeschichtung von Coverslips	. 30
	4.1	1.2 Aussähen der Zellen	30
	4.2	Fixieren und Färben der Myotuben	31
5	His	stochemie/Immunhistochemie und Mikroskopie	31
	5.1	Hämatoxylin und Eosin (H&E) Färbung	31
	5.2	Modifizierte Trichrom Gomori Färbung	32
	5.3	Nitroblau-Tetrazolium (NBT)-Menadion Färbung	32
	5.4	Immunfluoreszenzfärbung	32
	5.5	Mikroskopie	32
6	Las	ser Mikrodissektion und Massenspektrometrie	33
	6.1	Schnitte herstellen	33
	6.2	Auslasern	33
	6.3	Massenspektrometrie	34
	6.3	3.1 Qualitative Proteomics (LC-MS/MS)	34
	6.3	3.2 Quantitative Proteomics (iTRAQ-Labeling und MALDI-TOF/TOF)	35
7	Bio	ochemische Methoden	35
	7.1	Herstellung von Proteinextrakten aus mittels LMD mikrodissektierten Einzelfas	sern
	und A	Aggregaten	. 35
	7.2	Herstellung von Proteinextrakten aus Muskelgewebs-Schnitten	35
	7.3	Bestimmung der Proteinkonzentration	36
	7.4	Westernblot-Analyse	36
	7.4	4.1 SDS-Gel/Westernblot	36
	7.4	4.2 Poceau S-Färbung	37
	7.4	4.3 Immunodetektion	37
	7.4	4.4 Relative Quantifizierung der Immunoblot-Signale	37
	7.4	4.5 Stripping	38
E	Erg	gebnisse	39
I		andardisierung	
	1.1	Quantifizierung des für die MS erforderlichen Zellmaterials	39
	1.2	Erstenung eines generenen Proteinprofils von normalen Skelettmuskelzellen	40
	1.5	Untersuchung eventuell negativer Einflusse verschiedener Farbemethoden auf	
2	MIS-A	Allalyst	42
2		arakteristerung der Lusammensetzung pathologischer Proteinaggregate	, . 44
	⊿.1	Quantative IVIS-Allalyse	44

	2.2	Qu	antitative MS-Analyse	47
	2.3	FH	L1opathie	48
	2.3	.1	Klinischer Phänotyp der Patienten 1 und 2	48
	2.3	.2	Histologische Charakterisierung	49
	2.3	.3	Proteomische Analyse und Validierung mittels Westernblot-Analyse	53
	2.3	5.4	Genetische Analyse	61
	2.4	Му	otilinopathie	63
	2.4	.1	Klinischer Phänotyp des Patienten 3	63
	2.4	.2	Histologische Charakterisierung	63
	2.4	.3	Proteomische Analyse	64
	2.4	.4	Genetische Analyse (NGS)	68
	2.5	Titi	in-assoziierte Myopathie	68
	2.5	5.1	Klinik und Histopathologie der Patientin 4	68
	2.5	5.2	Proteomische Analyse	70
	2.5	5.3	Genetische Analyse	71
	2.6	Un	klassifizierte MFMs	71
	2.6	5.1	Quantitative Analyse Patient 5	72
	2.6	5.2	Quantitative Analyse Patient 6	73
	2.6	5.3	Quantitative Analyse Patient 7	74
	2.6	5.4	Quantitative Analyse Patient 8	75
	2.7	An	alyse von Aggregatmaterial aus Mausmodellen	75
	2.7	'.1	Plectin-KO Maus	76
	2.7	.2	R350P-Desmin-Knockin-Maus	79
F	Dis	kuss	sion	81
1	Ch	arak	terisierung pathologischer Proteinaggregate	81
2	Qu	alita	tive Proteomics	82
3	Qu	anti	tative Proteomics	83
	3.1	Mu	tation im FHL1-Gen	83
	3.1	.1	Quantitative Analyse aggregathaltiger Zellen	84
	3.1	.2	Quantitative Analyse präzise ausgelaserter Aggregate	86
	3.2	Mu	tation im Myotilin-Gen	90
	3.3	Mu	tation im Titin-Gen	91
	3.4	Un	klassifizierte MFMs	92

4	(Gen	neinsamkeiten und Unterschiede der Proteinprofile der	Myofibrillären	
N	lyoj	pat	hien		
5	V	Validierung der proteomischen Daten mittels Immunhistochemie			
6	V	Validierung der proteomischen Daten mittels Westernblot-Analyse			
7	A	Anv	vendbarkeit der Methodik in der Diagnostik		
8	ł	Fazi	it und Ausblick		
G	ſ	Lite	eraturverzeichnis		
H	A	Anh	nang		
1	V	Ver	zeichnis der verwendeten Abkürzungen		
2	ŀ	Abb	oildungsverzeichnis		
3	ł	Prir	nersequenzen		
4	ł	Bioj	ptate für Gewebeschnitte		
	4.1	l	Normalkontrollen		
	4.2	2	Patientenproben		
	4.3	3	Tiermodellproben		
5	A	Ant	ikörper		
6	ł	Pro	teomische Analysen		
	6.1	l	Quantifizierung des Muskelfasermaterials		
	6.2	2	Vergleichsanalyse Färbungen		
	(6.2.	1 Kontrolle N2		
	(6.2.	2 Kontrolle N3		
	6.3	3	Vergleichsanalyse Muskelgruppen		
	(6.3.	1 Musculus gastrocnemius		
	(6.3.	2 Musculus vastus lateralis		
	(6.3.	3 Musculus biceps brachii		
	6.4	ł	Qualitative Analyse (P1, P3 und P9)		
	6.5	5	Testlauf MALDI-TOF/TOF		
	6.6	5	Quantitative Analyse Patient 1-Ganze Muskelfasern		
	6.7	7	Quantitative Analyse Patient 1-Aggregate		
	6.8	3	Quantitative Analyse Patient 2		
	6.9)	Quantitative Analyse Patient 3		
	6.1	0	Quantitative Analyse Patient 4		
	6.1	1	Quantitative Analyse Patient 5		
	6.1	2	Quantitative Analyse Patient 6		

Ehrenwörtliche Erklärung 192		
Workshops und Vorträge		
7 Danksagung		
6.16	Quantitative Analyse R350P-Desmin-Knockin-Mäuse	
6.15	Quantitative Analyse Plectin-KO-Mäuse	
6.14	Quantitative Analyse Patient 8	
6.13	Quantitative Analyse Patient 7	

A Zusammenfassung

Proteinaggregation ist ein histopathologisches Kennzeichen unterschiedlicher neurodegenerativer Erkrankungen, wie z.B. Morbus Huntington, Alzheimer und Parkinsonsche Erkrankung, wird aber auch in kongenitalen Myopathien beobachtet. Im Fokus dieser Arbeit stehen vor allem die Myofibrillären Myopathien (MFMs), die eine klinisch und genetisch heterogene Gruppe von Erkrankungen der Skelettmuskulatur bilden. Eine progressive Muskelschwäche stellt hier das Hauptsymptom bei den betroffenen Patienten dar. Zudem zeigen sich oft extramuskuläre Symptome, wie eine kardiale Beteiligung, Katarakte, Kontrakturen, Skoliose oder Epidermolysis bullosa simplex bei verschiedenen Unterformen der MFMs. Ursächlich für diese Erkrankung sind Mutationen in Genen, die für sarkomerische und extrasarkomerische Proteine, wie Filamin C, Myotilin und FHL1 sowie α-B Crystallin, Desmin und Plectin kodieren. Allerdings schätzt man, dass mehr als 50 % der Erkrankungen auf bisher noch unklassifizierte Gendefekte zurückzuführen sind. Man vermutet bei den Myofibrillären Myopathien zudem pathogenetisch veränderte Qualitätskontrollmechanismen wie das Ubiquitin-Proteasomsystem und die Autophagie. Histopathologisch kennzeichnend sind neben myofibrillärer Degeneration Desmin-positive Proteinaggregate. Diese weisen eine Akkumulation zahlreicher weiterer Komponenten wie Cytoskelett- und myofibrilläre Proteine, intermediäre Filamente, Chaperone uvm. auf. Bisher ist nicht bekannt, ob sich die Aggregationsprozessierung und die damit verbundene Ablagerung von eventuell toxischen Akkumulaten in der Zelle oder der Verlust bzw. andere Änderungen der Proteinfunktion primär pathogen auswirken.

Ziel dieser Arbeit ist die detaillierte Zusammensetzung von pathologischen Proteinaggregaten in Myofibrillären Myopathien zu charakterisieren. Damit sollen spezifische MFM-assoziierte Plaquekomponenten identifiziert werden, die eine Klassifizierung und bessere pathogenetische Einordnung dieser neuromuskulären Erkrankung unterstützen. Zudem soll der Nachweis mutationsspezifischer Aggregatbestandteile eine Differenzierung der MFM-Subtypen ermöglichen. Des Weiteren sollen Einblicke in die Pathomechanismen der Myofibrillären Myopathien, insbesondere in die Aggregationsprozessierung inklusive daran beteiligter Proteine, gewonnen werden, um schließlich molekulare Therapiestrategien entwickeln zu können. Eine Kombination aus Laser-gestützter Mikrodissektion und proteomischer MS-basierter Analyse wurde zur Realisierung der Projektziele eingesetzt. Die Laser Mikrodissektion, eine 1996 von Emmert-Buck entwickelte Methode, erlaubt die Isolierung heterogenen Zellmaterials zur differentiellen Diagnostik. Dies ermöglicht uns eine selektive Untersuchung von reinem Aggregatmaterial im Vergleich zu morphologisch unauffälligem Zellmaterial. Mittels unterschiedlicher massenspektrometrischer Ansätze kann dann ein spezifisches Profil der akkumulierten Proteine erstellt werden. Zum einen wurde hierbei ein qualitatives massenspektrometrisches Analyseverfahren gewählt, das lediglich eine Unterscheidung zwischen An- und Abwesenheit der Proteine zulässt. Zum anderen wurde ein quantitativer Ansatz verfolgt, der eine Bestimmung des relativen Mengenverhältnisses der Proteine von Aggregat- versus Kontrollprobe ermöglicht. Um eine Quantifizierung der Proteine durchzuführen wurde die iTRAQ (isobaric Tags for Relative and Absolute Quantitation)-Technologie gewählt. Bei diesem Verfahren werden isobare Tags, die aus unterschiedlich schweren Reporter- und Balance-Gruppen bestehen, über ihre Peptid-reaktive NHS-Gruppe an trypsinierte Peptide geknüpft. Durch die "Collision Induced Dissociation" im Massenspektrometer und dem damit einhergehenden Verlust der Balance-Gruppe lassen sich die Tags und damit die Peptide voneinander unterscheiden, wodurch eine relative Quantifizierung der Proteine in den unterschiedlich markierten Proben erfolgen kann.

Im Vorfeld wurde zur Etablierung eines standardisierten Protokolls in einer ersten Versuchsreihe überprüft, welche Mengen an Muskelfasermaterial benötigt werden, um zufriedenstellende Ergebnisse in der massenspektrometrischen Downstream-Analyse zu erhalten. Nach der massenspektrometrischen Vergleichsanalyse von 50, 100, 200 und 500 mikrodissektierten Fasern aus 10 µm dicken Cryoschnitten konnte eine Gesamtfaserfläche von 600.000 µm² als Standard festgelegt werden. Anschließend erfolgte eine Untersuchung der Kompatibilität konventioneller Färbemethoden mit den verwendeten proteomischen Analyseverfahren. Der Vergleich von Hämatoxylin & Eosin- und Trichrom-gefärbtem sowie unbehandeltem Probenmaterial zeigte, dass durch die histochemischen Verfahren kein negativer Einfluss auf die massenspektrometrischen Daten ausgeübt wird. Somit sprach nichts gegen die Visualisierung der Aggregate mit den entsprechenden Färbemethoden.

Um eine Grundlage für die proteomische Forschung zu schaffen, wurde zudem ein Proteinprofil von unterschiedlichen Muskelgruppen gesunder Kontrollpersonen erstellt. Es zeigte sich, dass zwischen den Muskelgruppen nur wenige proteomische Unterschiede bestehen. Allerdings konnte eine gewisse Variabilität in der Proteinidentifikationsrate beobachtet werden, die als Messungenauigkeit hingenommen werden muss.

Nach der Vorarbeit konnten nun die eigentlichen Projektziele in Angriff genommen werden. Mithilfe der qualitativen massenspektrometrischen Analyse gelang es uns nicht echte Aggregatkomponenten zu identifizieren, da Aggregat- und Kontrollproben bezüglich des Proteinprofils mit einer Konvergenz von etwa 80 % kaum unterscheidbar waren. Somit konnten mit dieser technischen Strategie keine eindeutigen und aussagekräftigen Daten generiert werden.

Die quantitative massenspektrometrische Analyse sollte Abhilfe schaffen. Hier wurde in einem ersten Versuch getestet, ob auch schon durch den proteomischen Vergleich von aggregathaltigen Fasern mit morphologisch normalen Fasern Aggregatbestandteile identifiziert werden können. Allerdings zeigte sich bei der Analyse der Proben eines Patienten mit einer FHL1-Genmutation (Patient 1), dass das mutierte Protein in den aggregathaltigen Muskelfasern nicht signifikant erhöht vorliegt. Dagegen konnte nachgewiesen werden, dass vor allem stressinduzierte Faktoren, wie diverse Hitzeschockproteine oder Proteine, die in Mechanismen des Qualitätskontrollsystems, wie UPS und Autophagie involviert sind, hochreguliert in den morphologisch veränderten, Plaque-haltigen Muskelfasern vorliegen. Dies weist auf eine enge Korrelation des Aggregationsprozesses in Myofibrillären Myopathien und der Hochregulierung von Molekülen, die die Proteindegradation unterstützen und damit das Überleben der Zellen gewährleisten sollen, hin. Demnach kann durch den Vergleich morphologisch abnormaler und normaler Muskelfasern nur eine Veränderung der physiologischen Verhältnisse in der Muskelfaser untersucht werden und keine Identifizierung von Aggregatkomponenten erfolgen.

Die erfolgreiche Klassifizierung von Proteinen als echte Bestandteile der Aggregate wurde erst durch den Vergleich präzise mikrodissektierter Aggregate mit Kontrollmuskelfasern in der quantitativen Analyse ermöglicht. So zeigen sich vor allem Z-Scheiben- und Cytoskelettassoziierte Proteine wie Desmin, Filamin A/C, Myotilin, Xin related Protein 2, α -B Crystallin uvm. als "Aggregatmarker" für alle Subtypen der Myofibrillären Myopathien.

Des Weiteren konnten mutationsspezifische Aggregatkomponenten bestimmt werden, die spezifisch bei einzelnen MFM-Formen nachgewiesen werden und bei denen es sich

möglicherweise um spezifische Interaktionspartner der mutierten Proteine handelt. Beispielsweise findet man nur bei Myotilinopathien PRAF3 und Reticulon 2 akkumuliert, bei den Titinopathien unfusioniertes Ubiquitin und bei FHL1opathien das Chaperon BAG3 und MYBPH. Dies ermöglicht eine Unterscheidung der Myopathien voneinander und erleichtert somit eine genetische Klassifizierung.

Die Entdeckung neuer kausaler Krankheitsgene wird durch diese Methodik allerdings nicht direkt ermöglicht. Zwar können Proteine, die bisher nicht mit myofibrillären Veränderungen in Zusammenhang gebracht wurden, als putative Kandidaten in Betracht gezogen werden, aber die Annahme, dass sich die Hauptkomponente der Aggregate zwangsweise als das Protein erweist, das mutiert vorliegt, hat sich als falsch herausgestellt. Dies scheint ausschließlich bei den FHL1opathien der Fall zu sein. Bei Myotilinopathien wird Myotilin nur an fünfter Stelle der hochregulierten Proteine angetroffen und sticht, da es sich bei Myotilin um einen ubiquitären MFM-Marker handelt, nicht als Krankheits-verursachendes Gen heraus. Trotzdem scheinen bei diesen beiden Subtypen Parallelen im Aggregationsprozess vorzuliegen. So liegt nahe, dass die Mutation eine Falschfaltung und anschließende Akkumulation der mutierten und nachfolgend auch assoziierten Proteine verursacht. Im Falle der Titinopathie dagegen kann Titin nicht als Aggregatkomponente identifiziert werden. Somit scheint die Mutation hier nicht eine Akkumulation des betroffenen Proteins zu verursachen, sondern auf bisher unbekannte Weise die Aggregation anderer Proteine zu induzieren. Vermutlich liegt dem Pathomechanismus hier der Funktionsverlust des Proteins zugrunde. Der Aggregationsprozess und dessen Auslöser scheinen demnach komplexer und vielfältiger als vermutet.

Die Tatsache, dass der Krankheitsbeginn der Myofibrillären Myopathien oftmals erst im Alter zu beobachten ist legt die Vermutung nahe, dass Proteindegradationsmechanismen den "Proteinabfall" für eine gewisse Zeit bewältigen können. Mit der Alterung scheinen diese allerdings an Effizienz zu verlieren, was die allmähliche Akkumulation in den Zellen erklärt. Die Identifizierung von Proteinen des Qualitätskontrollsystems in den Aggregaten und die Anhäufung von Stressfaktoren in aggregathaltigen Zellen bekräftigt diese Hypothese. So könnte die Induktion und Aktivierung von Chaperonen, und alternativer proteosomaler oder autophagischer Proteine eine denkbare therapeutische Strategie darstellen.

B Einleitung

1 Myofibrilläre Myopathien

Myofibrilläre Myopathien (MFM) sind progressive Erkrankungen der humanen Skelettmuskulatur, die zu einer schweren körperlichen Beeinträchtigung und zum vorzeitigen Tod führen können. Sie sind histopathologisch durch die Bildung von pathologischen, Desmin-positiven Proteinaggregaten (Goebel 1997, Horowitz and Schmalbruch 1994) und myofibrillärer Degeneration charakterisiert (Selcen et al 2004, Selcen 2008) und stellen eine genetisch und klinisch heterogene Gruppe neuromuskulärer Erkrankungen dar. Mutationen in Genen, die für sarkomerische und extrasarkomerische Proteine kodieren, wie Desmin (Bar et al 2004, Goldfarb et al 1998, Pinol-Ripoll et al 2009), Myotilin (Berciano et al 2008, Foroud et al 2005, Olive et al 2005, Penisson-Besnier et al 2006, Selcen and Engel 2004), ZASP (Griggs et al 2007, Selcen and Engel 2005), α-B Crystallin (Reilich et al 2010, Selcen and Engel 2003), Filamin C (Kley et al 2007, Luan et al 2010, Shatunov et al 2009, Vorgerd et al 2005), Bag3 (Selcen et al 2009) und FHL1 (Knoblauch et al 2010, Quinzii et al 2008, Schessl et al 2008, Schessl et al 2009, Schoser et al 2009, Shalaby et al 2008, Windpassinger et al 2008) sind kausal für die Manifestation einer Myofibrillären Myopathie. Allerdings wird dieser Erkrankungsformenkreis bei einer Vielzahl von MFM-Patienten durch weitere unbekannte Gendefekte verursacht. Die Blockade des Ubiquitin-Proteasomsystems durch diverse Faktoren, wie p62, mutiertem Ubiquitin sowie die Anwesenheit von mutiertem Protein und die autophagische sowie lysosomale Proteindegradierung spielt bei diesen Erkrankungen eine wichtige Rolle bezüglich des Abbaus der Proteinaggregate (Olive 2009, Schroder and Schoser 2009). Spezifische Therapien stehen für diese signifikante Gruppe erblicher Muskelerkrankungen bedauerlicherweise bisher nicht zur Verfügung.

Abbildung 1: Myofibrilläre Myopathien

Grafische Darstellung einer Muskelfaser, in der die einzelnen Myofibrillen durch das extramyofibrilläre Cytoskelett miteinander verknüpft werden. Mutationen in Genen, die für extramyofibrilläre (Desmin, α-B Crystallin, Plectin) und myofibrilläre Proteine (Filamin C, Myotilin, ZASP, FHL1, BAG3) codieren, führen zur Fehlfaltung der Proteine und zur Bildung von pathologischen Aggregaten, Z-Scheibenveränderungen und dysfunktionalen Mitochondrien. Das Ubiquitin-Proteasom- und Autophagie-Lysosomen-System fungieren als wichtige Kontrollmechanismen und sind für den Abbau der falsch gefalteten Proteine und Proteinaggregate verantwortlich. (Quelle: Schröder und Schoser 2009)

1.1 Klinische Symptomatik der Myofibrillären Myopathien

Der Beginn der klinischen Symptomatik von Myofibrillären Myopathien reicht von der frühen Kindheit bis zum Erwachsenenalter und zeigt einen unterschiedlichen Verlauf und Schweregrad. Die progressive Muskelschwäche und -atrophie prägt sich bei Betroffenen phänotypisch als distale Myopathie, Gliedergürtel-Muskeldystrophie, Scapuloperoneales Syndrom, generalisierte Myopathie aus oder zeigt die Beeinträchtigung isolierter Muskelgruppen (Schroder and Schoser 2009). Auch eine kardiale und respiratorische Beteiligung sind bei unterschiedlichen Subgruppen der MFMs beschrieben (Ferrer and Olive 2008, Selcen 2010). Bei MFM-Patienten zeigen sich dabei restriktive, aber auch hypertrophe Kardiomyopathien sowie mit Arrhythmien einhergehende atrioventrikuläre Blocks (Arbustini et al 1998, El Menyar et al 2004, Schroder and Schoser 2009).

Extramuskuläre Symptome werden bei den Myofibrillären Myopathien ebenfalls beobachtet. Beispielsweise sind Nageldystrophien und die Hauterkrankung Epidermolysis bullosa simplex kennzeichnend für Plectinopathien (Pulkkinen et al 1996), wohingegen Katarakte oft im Zusammenhang mit Mutationen im *CRYAB* Gen beobachtet werden und somit mit αB-Crystallinopathien einhergehen (Vicart et al 1998). Merkmale wie Skoliose, Kontrakturen und das Rigid Spine Syndrom deuten oft auf Mutationen in den Genen *Bag3* oder *FHL1* hin, während Neuropathien bei Filaminopathien, Myotilinopathien, BAG3opathien und ZASPopathien diagnostiziert werden können (Schroder and Schoser 2009).

1.2 Histopathologische Merkmale der Myofibrillären Myopathien

Histopathologisch stellen die Myofibrillären Myopathien eine homogene Gruppe dar. Sie sind durch myofibrilläre Degeneration in Verbindung mit sarkoplasmatischen oder cytoplasmatischen, amorphen, granulären oder hyalinen Einschlüssen charakterisiert. Zu den myopathischen Merkmalen zählen die Abrundung der Muskelfasern, Fasersplitterung, pathologische Erhöhung der Faserkalibervariabilität, internalisierte oder apoptotische Myonuklei, Veränderungen der Z-Scheiben und Sarkomerstruktur und ein vermehrter Anteil an Fett- und Bindegewebe.

Die Proteinaggregate unterscheiden sich in Form und Größe und sind in der HE-Färbung als baso- oder eosinophile Einschlüsse, in der modifizierten Trichromfärbung nach Gomori als dunkelblaue oder pinke Akkumulationen zu erkennen. Im Elektronenmikroskop (EM) kann man zwischen sarkoplasmatisch granulofilamentösen, nukleär filamentösen Proteinaggregaten und cytoplasmatischen Bodies unterscheiden (Ferrer and Olive 2008, Schroder and Schoser 2009). NBT-Menadion-reaktive Reducing Bodies werden ausschließlich bei FHL1opathien (Schessl et al 2008) und sogenannte Spheroid Bodies, die aus feinen unstrukturierten Filamenten bestehen, eine runde bis längliche Form (2-15 pm) aufweisen und in der modifizierten Trichrom-Färbung grün angefärbt werden (Goebel et al 1978), in Myotilinopathien beobachtet (Foroud et al 2005, Olive et al 2005). Zusätzlich finden sich autophagische, umrandete ("rimmed") und nicht umrandete ("non-rimmed") Vakuolen, die allerdings auch für die Gruppe der erblichen und erworbenen Inclusion Body Myopathien kennzeichnend sind (Kumamoto et al 2004). Des Weiteren ist in den Fasern von MFM-Patienten oftmals ein abnormes Aktivitätsmuster bzw. Über- oder Dysfunktion von oxidativen Enzymen (Oxidoreduktasen) der mitochondrialen Atmungskette, wie der Cytochrom c Oxidase (COX), der NADH- und Succinat-Dehydrogenase (Reimann et al 2003) und zudem eine inhomogene Mitochondrienverteilung im EM zu erkennen.

Abbildung 2: Histopathologische Veränderungen bei Myofibrillären Myopathien

(a-d) Subsarcolemmale und cytoplasmatische Proteinaggregate, sowie (e) autophagische Vakuolen und (f) Fasersplitterung in der HE und Trichromfärbung in einer genetisch klassifizierten Myofibrillären Myopathie (Myotilinopathie). (g) Cytochrom-C-Oxidase und (i) NADH zeigen eine erhöhte Aktivität in einigen Zellen. (h) In der Succinat-Dehydrogenase-Färbung sind ausradierte Fasern und damit eine Fehlverteilung der Mitochondrien zu erkennen. (j) Zudem liegen Desmin-positive Aggregate in den Zellen vor.

Zur Unterscheidung der unterschiedlichen Subklassen der Myofibrillären Myopathien kann eine Studie herangezogen werden, die Hinweise gibt, dass beispielsweise "rubbed-out" Fasern häufiger in Desminopathien und αB-Crystallinopathien beobachtet werden und dagegen "rimmed" und "non-rimmed" Vakuolen häufiger in Myotilinopathien und ZASPopathien vorliegen (Claeys et al 2009). Zudem wird beschrieben, dass granulofilamentöses Material überwiegend in Desminopathien und α B-Crystallinopathien gefunden wird, während bei ZASP-, Myotilin- und Filaminopathien mehrheitlich filamentöse, cytoplasmatische Einschlüsse gefunden werden (Claeys et al 2008).

1.3 Molekulare Pathogenese: Proteinaggregation

Proteinaggregate sind nicht nur ein pathologisches Merkmal für neurodegenerative Erkrankungen wie den Morbus Alzheimer und den Morbus Parkinson (Aguzzi and O'Connor 2010), sondern auch für Myofibrilläre Myopathien. Proteine werden durch unterschiedlichste Faktoren, wie genetische Mutationen, inkorrektes Proteinassembly, abnorme Modifikationen und Umweltstress falsch gefaltet (Schubert et al 2000). Die inkorrekt gefalteten Proteine sind nicht funktionell und neigen zur Akkumulation, da zumeist hydrophobe Reste durch die Falschfaltung freigelegt werden, die die Aggregationsanfälligkeit erhöhen (Schiaffino 2012). Die Proteinaggregation ist ein komplexer, mehrstufiger Prozess, der die Bildung mehrerer Intermediärprodukte miteinschließt, und abschließend entweder zur Bildung geordneter Fibrillen oder zu amorphen Ablagerungen führt.

Bei neurodegenerativen Erkrankungen geht man davon aus, dass der Aggregationsprozess einem altersabhängigen Versagen des Qualitätskontrollmechanismus zu Grunde liegt (Douglas and Dillin 2010, Morimoto 2008). Die Proteinqualitäts-Maschinerie der Zelle, die die Akkumulation der Proteine verhindern soll (Kopito 2000) sorgt dafür, dass zum einen die korrekte Faltung durch molekulare Chaperone wie Hitzeschockproteine unterstützt wird, zum anderen werden Proteine, die nicht erfolgreich gefaltet werden können durch spezifische Ubiquitin E3 Ligasen polyubiquitiniert und proteosomal abgebaut (Cyr et al 2002). Ein Defekt der Ubiquitin-Proteasom-Maschinerie führt zur Akkumulation der falsch gefalteten Proteine, die aggregierten Proteine nicht mehr durch die engen Kanäle der Proteasomen passen und diese verstopfen oder durch indirekte Mechanismen inhibieren (Snyder et al 2003).

Einen alternativen Abbauweg stellt der lysosomale Degradations-Pathway Autophagie dar. Man geht davon aus, dass aggregierte Proteine, die mittels Mikrotubuli-abhängigem retrograden Transport in sogenannten Aggresomen abgelagert werden, schließlich durch

abgebaut werden (Knaevelsrud and Simonsen 2010, Kopito 2000). Autophagie Unterschiedliche posttranslationale Modifikationen, wie K63-Ubiquitinierung (Tan et al 2008), Acetylierung (Jeong et al 2009) und Phosphorylierung (Thompson et al 2009) dienen als Signal für den Abbau mittels Autophagie. Spezifisch zum Erhalt der Z-Scheiben dient die Selective Autophagie (CASA), ein BAG3-vermittelter Chaperon-assisted Proteindegradations-Signalweg, der an der Freisetzung und dem Abbau zerstörter Bestandteile der Z-Scheiben beteiligt ist. Dabei reguliert BAG3 die Aktivität der Hitzeschockproteine Hsc70 und HspB8 während der durch p62 und CHIP initiierten Autophagosomenbildung. Ein Defekt der CASA führt zum Auflösen der Z-Scheiben und damit einhergehender Muskelschwäche (Arndt et al 2010).

Abbildung 3: Abbau von Proteinaggregaten

Im Idealfall werden neu synthetisierte Proteine in ihre funktionelle Konformation gefaltet. Bei Erbkrankheiten neigen genetisch mutierte Genprodukte zu fehlerhafter Faltung. Molekulare Chaperone falten diese fehlerhaft

oder nicht gefalteten Proteine unter Beteiligung von Cochaperonen. Zumeist werden die falsch gefalteten Proteine allerdings für den Abbau markiert. K48-verknüpfte Ubiquitinierung markiert das Protein für den proteosomalen Abbau. Aggregatbildende Proteine können alternativ durch den Autophagieweg unter Beteiligung von p62 und NBR1 abgebaut oder durch HDAC6 in Aggresomen transportiert und dort gelagert werden. Diese sind durch eine K63-verknüpfte Ubiquitinierung markiert. Auch im Kern unterstützt p62 die Degradation von nukleären Aggregaten durch das Proteasom. (Quelle: Knaevelsrud and Simonsen 2010)

Zunehmend wird bei neurodegenerativen Erkrankungen davon ausgegangen, dass die Intermediate eine porenbildende Eigenschaft besitzen, was zur Permeabilisierung zellulärer Membranen und Lipidlayern führt, und somit einen cytotoxischen Effekt auf die Zellen ausüben (Glabe 2006, Lesne et al 2006). Demnach könnte die Bildung von Proteinablagerungen und -einschlüssen sogar eine protektive Rolle spielen (Bretteville and Planel 2008). Allerdings wurde ebenfalls beschrieben, dass die Ablagerungen mit der Erhöhung von oxidativem Stress und Entzündungen einhergehend zur Beschädigung der Zelle führen (Ando et al 1997).

Proteinaggregate werden auch in der sporadischen Einschlusskörpermyositis gefunden, bei der die Muskelfasern von Patienten filamentöse Einschlüsse mit akkumuliertem β -Amyloid-Protein enthalten (Askanas and Engel 2006). Proteinaggregate, die dagegen vorwiegend bestimmte Z-Scheibenassoziierte Proteine beinhalten, werden in Myofibrillären Myopathien beobachtet. Allerdings findet man auch hier Ablagerungen mit Amyloidmaterial (β -Amyloidvorstufen) und Autophagosomen (De Bleecker et al 1996).

So sind nicht nur mutierte MFM-spezifische Proteine, wie z.B. FHL1 in FHL1opathien dafür bekannt Bestandteil der pathologischen Aggregate bei Myofibrillären Myopathien zu sein. Es finden sich eine Reihe von Cytoskelettproteinen wie Myotilin, Dystrophin und Xin (Kley et al 2007), intermediäre Filamentproteine wie Desmin (De Bleecker et al 1996, Nakano et al 1996), aber auch Proteine des Ubiquitin-Proteasom-Systems (Olive et al 2008), nukleäre Proteine (Olive et al 2009), Chaperone (Claeys et al 2009) uvm. (Ferrer and Olive 2008) in den Aggregaten. Allerdings wurden bisher keine einzelnen Aggregate auf ihre detaillierte Zusammensetzung untersucht.

1.4 FHL1 und FHL1 opathien

1.4.1 Aufbau und Funktion des Four and a half Lim-Domain Proteins 1

Das FHL1-Gen liegt auf dem humanen Chromosom Xq26.3 und codiert ein Protein mit einer molaren Masse von 32 kDa. FHL1, das auch SLIM1 genannt wird, besteht aus vier und einer

halben LIM-Domäne, wobei es sich um Cystein-reiche Doppelzinkfinger-Domänen handelt, die hochkonservierte Cystein- und Histidinreste aufweisen. Diese sind essentiell für die Zinkionenbindung und damit für die Strukturstabilität und Funktionalität des Proteins (Dawid et al 1998, Kadrmas and Beckerle 2004). Proteine mit LIM-Domänen sind zumeist im Nukleus und im Cytoplasma lokalisiert und zeigen zum einen eine Interaktion mit dem Aktin-Cytoskelett und zum anderen mit der Transkriptionsmaschinerie und der DNA. Dabei fungieren die LIM-Domänen als molekulare Adaptoren, Kompetitoren, Autoinhibitoren und Lokalisatoren (Kadrmas and Beckerle 2004).

Es sind bisher drei verschiedene Isoformen von FHL1 (FHL1A, FHL1B und FHL1C) beschrieben, die durch alternatives Splicing gebildet werden (Brown et al 1999, Ng et al 2001). Sie unterscheiden sich in der C-terminalen Region, wobei die Isoformen B und C neben nukleären Signalsequenzen, eine Bindedomäne für den Transkriptionsaktivator RBPJk aufweisen, der eine wichtige Rolle im Notch-Signalling-Pathway und damit bei der Myogenese spielt (Vasyutina et al 2007). FHL1B besitzt zudem eine Bindestelle für das proapoptotische Protein SIVA-1, das durch die Bindung inhibiert wird und somit das Überleben der Myoblasten verlängert (Cottle et al 2009).

Abbildung 4: LIM-Domänen und Isoformen des Four and a half LIM-Domain Proteins

(A) FHL1 besteht aus vier und einer halben LIM-Domäne, die sich wiederum aus je einem Doppelzinkfinger mit hochkonservierten Zinkionen-bindenden Cystein- und Histidinresten zusammensetzt. (B,C) Durch alternatives Splicing werden aus dem FHL1-Gen mit 8 Exons, wovon Exon 3-8 codierend sind, die Isoformen FHL1A, B und C gebildet. So entsteht durch das Heraussplicen des Exons 7 das Vollängenprotein FHL1A, durch das Zusammensplicen der Exons 1-8 die Isoform FHL1B, die einen alternativen C-Terminus mit 3 NLS- und einer NES-Sequenz sowie einer RBPJκ-Bindedomäne aufweist und durch das Ausgliedern der Exons 6 und 7 die kürzeste Isoform FHL1C, die zusammen mit zwei und einer halben LIM-Domäne nur noch eine C-terminale RBPJκ-Bindedomäne aufweist. (Quelle: Cowling et al. 2011)

Mutationen, die alle drei Isoformen betreffen scheinen einen schwereren Krankheitsverlauf zu verursachen, als Mutationen, die zu Aminosäureveränderungen im C-terminalen Bereich führen, da der funktionelle Verlust hier durch die verbliebenen, unbeeinflussten Isoformen kompensiert zu werden scheint (Cowling et al 2011, Liewluck et al 2007, Schoser et al 2009). FHL1 wird vorwiegend in der Herz- und Skelettmuskulatur exprimiert, zeigt aber auch eine Expression, wenn auch in geringerem Ausmaß, in zahlreichen anderen Geweben, wie Plazenta, glatte Muskulatur des Gefäßsystems, Darm, Gehirn, Lunge, Leber und vielen Weiteren (Greene et al 1999). Das FHL1-Protein übt im Herzen und in der Skelettmuskulatur unterschiedlichste Funktionen aus. Beispielsweise reguliert es im Herzen die Reizweiterleitung durch Bindung an den Kaliumkanal KCNA5, die kardiale Hypertrophie, indem es zum einen den MAPKinase-Signaltransduktionsweg durch die Bindung von Raf1, MEK2 und ERK2 und zum anderen den G-Protein gekoppelten Rezeptor-vermittelten Signalweg, wobei die Stimulation des Rezeptors die Expression von FHL1 erhöht, beeinflusst. Zudem interagiert FHL1 mit der herzspezifischen N2B-Domäne von Titin, die einen biomechanischen Sensor darstellt, der auf die Muskeldehnung mit einer spezifischen Stressantwort reagiert und somit ebenfalls die Hypertrophie reguliert (Sheikh et al 2008).

Abbildung 5: Funktionen von FHL1 im Herzen

Im Herzen bindet FHL1 (1) an den spannungsgesteuerten Kaliumkanal KCNA5 und reguliert damit die kardiale Reizweiterleitung. (2) Durch die Bindung des G-Protein gekoppelten Rezeptors, (3) sowie der Mitglieder des MAPK-Signalwegs (Raf1, ERK2, MEK2) und im Zusammenspiel mit der elastischen Domäne von Titin (mechanischer Dehnungssensor) spielt FHL1 eine wichtige Rolle bei der kardialen Hypertrophie. (Quelle: Cowling et al. 2011)

Auch im Muskel fungiert FHL1 als Regulator der Hypertrophie, indem es NFATc1, ein Mitglied des Calcineurin-Signalweges koaktiviert und somit die Transkription von Genen vorantreibt, die eine Rolle bei der Myoblastenfusion, Skelettmuskelhypertrophie, Erhöhung der Muskelstärke und oxidativem Faser-Shift spielen. Zudem nimmt FHL1 eine entscheidende Rolle bei der Myogenese, der Sarkomerbildung durch die Bindung des Myosin bindenden Proteins C (MYBPC) und bei der Zellregeneration durch die Aktivierung von Satellitenzellen ein.

Abbildung 6: Funktionen von FHL1 im Skelettmuskel

In der Skelettmuskulatur spielt FHL1 eine wichtige Rolle bei (1) der Elongation, Migration und Differenzierung der Myoblasten, (2) reguliert die Sarkomerbildung durch Bindung von MyBP-C und (3) fungiert als Koaktivator der NFATc1-abhängigen Genexpression, durch die die Myoblastenfusion, Skelettmuskel-Hypertrophie und Erhöhung der Muskelkraft sowie der oxidative Faser-Shift induziert werden. (4) Zudem aktiviert FHL1 Satellitenzellen und leistet damit einen wichtigen Beitrag zur Regeneration der Skelettmuskulatur. (5) Die Isoformen FHL1B und C binden das Protein RBPJk und beeinflussen damit den Notch-Signalweg, (6) während FHL1B zudem durch die Bindung von Siva-1 proapoptotische Funktion aufweist. (Quelle: Cowling et al. 2011)

1.4.2 Klinik der FHL1opathien

Mutationen im Four and a half LIM-Domain Protein 1 (FHL1) verursachen unterschiedliche Formen von X-chromosomal vererbten Myopathien. Bisher sind sechs Subgruppen der FHL1opathie bekannt: Reducing Body Myopathie (RBM), X-linked Scapulo-Axio-Peroneal Myopathie (XMPMA), Emery Dreifuss Muscular Dystrophie (EDMD), Scapuloperoneale Myopathie (SPM), der Fall einer einzelnen Familie mit Kontrakturen, versteifter Wirbelsäule und Kardiomyopathie, sowie ein Fall mit Rigid-Spine Syndrom (RSS) (Cowling et al 2011, Gueneau et al 2009, Knoblauch et al 2010, Quinzii et al 2008, Schessl et al 2008, Schessl et al 2009, Schessl et al 2010, Schessl et al 2011, Schoser et al 2009, Shalaby et al 2008, Windpassinger et al 2008).

Die FHL1-assoziierten Myopathien zeigen Überlappungen in Klinik und Histopathologie wie die Ausprägung einer zumeist scapuloperonealen Muskelschwäche, einer Wirbelsäulenversteifung, eine meist kardiale sowie respiratorische Beteiligung und neben myofibrillärer Degeneration, die Bildung intracytoplasmatischer Einschlüsse mit reduzierender Aktivität (Reducing Bodies) (Cowling et al 2011, Schessl et al 2011). Sie unterscheiden sich allerdings in der Verteilung der betroffenen Muskeln, dem Alter, in dem die Patienten die erste Symptomatik zeigen und der Schwere des Krankheitsverlaufs. Die Reducing Body Myopathie (RBM) stellt die größte und schwerwiegendste Gruppe der FHL1opathien dar und präsentiert ein breites phänotypisches Spektrum. Die klinische Symptomatik reicht vom Ausbruch der Erkrankung in früher Kindheit mit schwerem Verlauf bis hin zum milden Verlauf, der erst im Erwachsenenalter beginnt (Liewluck et al 2007, Schessl et al 2008, Schessl et al 2009). Die RBM ist histopathologisch durch intracytoplasmatische Einschlusskörperchen, sogenannte "Reducing Bodies", in den Muskelfasern der Patienten charakterisiert. Diese können aber auch bei den anderen FHL1opatien mit Ausnahme von EDMD beobachtet werden. In diesen Einschlusskörperchen wird Nitroblautetrazolium (NBT) in Verbindung mit Menadion, infolge eines hohen Sulfhydrylgehalts, zu Formazan in einer nicht enzymatischen Reaktion reduziert (Schessl et al 2008, Schessl et al 2009, Schessl et al 2010, Shalaby et al 2008). Zahlreiche Proteine konnten bereits in den Einschlusskörperchen identifiziert werden (Liewluck et al 2007, Schessl et al 2008), wobei mutiertes FHL1 als der Hauptbestandteil charakterisiert wurde (Schessl et al 2008).

RBM wird, wie auch die SPM und das RSS, ausschließlich durch Deletionen und Missense-Mutationen verursacht, die die zweite LIM-Domäne und damit die drei Isoformen von FHL1 betreffen.

Abbildung 7: Bekannte Mutationen im FHL1-Gen

Grafische Darstellung der bekannten FHL1-Mutationen in den LIM-Domänen 2, 3 und 4. Es handelt sich überwiegend um Missense-Mutationen, die zumeist die hochkonservierten Cystein- und Histidinreste der Zinkfinger betreffen, wobei die LIM2-Domäne einen Mutations-Hotspot bildet. Zudem konnten Deletions- und Insertions-Mutationen in der LIM2-Domäne und Missense-Mutationen, die nicht zinkbindende Aminosäuren betreffen (W122S/C und D275N) identifiziert werden. Die unterschiedlichen Mutationen verursachen verschiedene Subtypen der FHL1opathie (rot = RBM; grün = SPM; blau = XMPMA; braun = RSS; pink = EDMD). (Quelle: Cowling et al. 2011)

Die hochkonservierten Histidin- und Cysteinreste in der LIM2-Domäne stellen einen Mutations-Hotspot dar und sind in über 60 % der bekannten FHL1opathien ursächlich für die Erkrankung. Die LIM2-Domäne scheint hier eine zentrale Rolle in der Interaktion mit spezifischen Bindungspartnern zu spielen, die durch Mutationen gestört wird. Beispielsweise wird die Interaktion mit den Kinasen des MAPK-Signalweges (Raf1, MEK2 und ERK2) (Sheikh et al 2008) und dem Myosin-binding Protein C (McGrath et al 2006) über die LIM2-Domäne vermittelt.

Bei der XMPMA handelt es sich um eine moderatere Form der FHL1opathie mit einem späten Ausbruch und langsamen Fortschreiten der Erkrankung. Die Patienten zeigen eine pseudoathletische Erscheinung, scapulo-axio-peroneale Muskelschwäche, Atrophie der posturalen Muskeln und eine skoliotische Wirbelsäule (Cowling et al 2011). Sie wird hauptsächlich durch Mutationen verursacht, die die vierte LIM-Domäne und damit nicht alle Isoformen betreffen (Schoser et al 2009). Auch beim Emery Dreifuss Muscular Dystrophy (EDMD) Typ 6 handelt es sich um eine X-chromosomal vererbte Erkrankung mit milderem Verlauf, verursacht durch Mutationen, die nur in wenigen Fällen alle drei Isoformen betreffen. EDMD geht mit Kontrakturen, einer Muskeldystrophie mit humero-peronealem, proximalem oder diffusem Verteilungsmuster und kardialer Beteiligung einher. Bei diesen beiden FHL1opathien betreffen die Missense- oder trunkierenden Mutationen vorwiegend die C-terminale Region des Proteins und lassen die LIM2-Domäne unbeeinflusst.

1.4.3 Pathogenese

Zum momentanen Stand der Forschung gibt es zwei unterschiedliche Hypothesen, warum die Mutationen im FHL1-Gen die klinische Symptomatik einer Myofibrillären Myopathie verursachen. Zum einen kann gemutmaßt werden, dass die Aggregate per se eine toxische Wirkung auf die betroffenen Zellen ausüben, zum anderen könnte aber auch der Verlust der Proteinfunktion ursächlich sein. Einigen Veröffentlichungen zufolge ist die mutationsbedingte Präsentation von hydrophoben Oberflächen falsch gefalteter Proteine Ursache für die Aggregation, wobei die Aggregate mit dem Fortschreiten der Krankheit vergrößert werden und die Bildung der Aggregate mit dem Zelltod und dem Schweregrad der Erkrankung korreliert. Auch wenn nicht bekannt ist, ob die Akkumulation aus verteidigungsstrategischen Gründen gebildet werden oder pathogen sind, würde dies eher auf einen toxischen Effekt der Akkumulation hinweisen (Chen et al 2010). Die verminderte Expression von FHL1 in den meisten Formen der FHL1opathien dagegen, lässt vermuten, dass das Proteinlevel durch Degradationsmechanismen wie das Ubiquitin-Proteasomsystem und den Autophagie-Lysosom-Signalweg, oder bereits auf mRNA-Ebene durch den Nonsense Mediated mRNA Decay reduziert wird. Damit werden Signalwege wie der MAPK- und GPCR-vermittelte Pathway, nicht mehr korrekt reguliert und FHL1-Bindungspartner nicht ausreichend aktiviert (McGrath et al 2006).

1.5 Myotilin und Myotilinopathien

Myotilin (Myofibrillar Protein with Titin-like Ig Domains) ist ein sarkomerisches, Z-Scheiben-assoziiertes Protein mit einem Molekulargewicht von 57 kDa, das überwiegend in der Skelettmuskulatur, aber auch im Herzen exprimiert wird. N-terminal weist das Protein eine Serin-reiche Domäne, mit einem kurzen hydrophoben Abschnitt und C-terminal zwei Immunglobulin-Domänen, die Sequenzhomologien mit den IG-Domänen von Titin zeigen, auf (Salmikangas et al 1999).

Abbildung 8: Proteinstruktur von Myotilin

Das Myotilin-Gen (MYOT) ist auf dem Chromosom 5q31 lokalisiert und besteht aus zehn Exons, wovon Exon 2 bis 10 codierend sind (Salmikangas et al 1999, van der Ven et al 2000b). Myotilin spielt eine wichtige Rolle in der Sarkomer-Organisation und –Integrität, wobei es in Zusammenarbeit mit alpha-Aktinin und Filamin C als Aktin-Crosslinker und - Stabilisierer fungiert (Salmikangas et al 2003).

Mutationen im Myotilin-Gen verursachen zum einen Limb Girdle Muscular Dystrophy 1A (LGMD1A) (Hauser et al 2000), werden aber auch mit Myofibrillären Myopathien in Verbindung gebracht (Olive et al 2005) und wurden bisher, bis auf einen Fall, nur im Exon 2 identifiziert (Selcen 2008). In den Muskelbiopsien der Myotilinopathie-Patienten werden die für MFMs charakteristischen Proteinaggregate, sowie myofibrilläre Degeneration beobachtet. Der klinische Phänotyp variiert, zeigt jedoch zumeist eine distale oder distal und proximale Muskelschwäche und -atrophie, die im Alter von durchschnittlich etwa 60 Jahren einsetzt. Kardiale oder respiratorische Beteiligung, sowie das Auftreten einer peripheren Neuropathie sind nur in einzelnen Fällen beschrieben (Olive et al 2005).

1.6 Titin und Titin-assoziierte Myopathien

Titin ist das größte muskelspezifische Strukturprotein, das sich innerhalb der Sarkomere, mit einer Länge von über 1 µm, von der Z-Scheibe bis hin zu der M-Linie erstreckt. Strukturell kann Titin in drei Einheiten unterteilt werden: den N-terminalen Z-Scheiben assoziierten Part, die elastische, zentrale I-Banden-Region und die C-terminale A/M-Banden-Region, die Nterminal aus zwei Superrepeat-Typen aufgebaut ist und C-terminal eine Serin/Threonin-Kinase Domäne aufweist.

Grafische Darstellung der Proteinstruktur des Z-Scheibenproteins Myotilin. Das Protein besteht aus einer Nterminalen Serin-reichen Domäne (graues Rechteck), die von Aminosäure 29-124 reicht und einen hydrophoben Abschnitt von AS 57-79 enthält (schwarzes Quadrat). C-terminal besitzt Myotilin zwei Immunglobulindomänen (AS 252-341 und AS 351-441), die über einen zehn Aminosäure langen Linker verbunden sind. (Quelle: Salmikangas et al. 1999)

Überwiegend setzt sich das Protein aus sich wiederholenden Immunglobulin (Ig)- und FibronectinIII (FNIII)-Domänen zusammen, die Bindungsstellen für unterschiedliche Proteine darstellen. Die FibronectinIII Domänen sind ausschließlich im A-Banden-Segment vorzufinden, während die Ig-Domänen in allen Bereichen des Proteins vorliegen (Kontrogianni-Konstantopoulos et al 2009, Labeit et al 1990, Tskhovrebova and Trinick 2010). Das Titin-Gen ist mit 363 Exons auf dem Chromosom 2q31 lokalisiert. Durch alternatives Splicing entstehen unterschiedliche Isoformen (3-3,7 MDa), die in Größe und Struktur der elastischen I-Banden, der Z-Scheiben und M-Linien assoziierten Regionen variieren, wohingegen die A-Banden-Region eine hochkonservierte Sequenz darstellt (Bang et al 2001, Tskhovrebova and Trinick 2010).

(a) Die grafische Darstellung von Titin innerhalb des Sarkomers zeigt, dass sich das Protein von den Z-Scheiben bis zu den M-Linien erstreckt und dabei aus einem elastischen und einem mit den dicken Filamenten verbundenen Part besteht. (b) Der Anteil von Titin, der mit den dicken Filamenten verknüpft ist, besteht aus sechs Sieben-Domänen-Superrepeats, elf Elf-Domänen-Superrepeats sowie einer Kinasedomäne. (Ig-Domäne: graue Ovale; FibronectinIII-Domäne: weiße Ovale) (Quelle: Tskhovrebova 2010)

Titin ist ein multifunktionelles Protein. Es spielt eine wichtige Rolle bei der Bildung und dem Erhalt des kontraktilen Apparates, der Kraftübertragung, der Positionierung von zellulären Membransystemen, reguliert die Genexpression und ist in unterschiedliche myofibrilläre Signaltransduktionswege involviert (Kontrogianni-Konstantopoulos et al 2009).

Mutationen im Titin-Gen verursachen eine langsam fortschreitende, im Erwachsenenalter beginnende distale Myopathie, die erstmals 1993 in finnischen Patienten diagnostiziert wurde (Udd et al 1993). Mutationen im Exon MEX6, das für einen Teil des M-Linien assoziierten Parts des Proteins codiert, wurden in den Patienten als ursächlich identifiziert (Hackman et al 2002). Zudem wurden Mutationen andere Bereiche des Titin-Gens betreffend im Zusammenhang mit Kardiomyopathien beschrieben (Gerull et al 2002, Satoh et al 1999).

2 Laser Mikrodissektion und proteomisches Profiling

2.1 Definition und Anwendung der Laser Mikrodissektion

Emmert-Buck *et al.* entwickelten 1996 am National Cancer Institute ein Laser Capture Mikrodissektion (LCM) System, um ein effektives Tool zu schaffen, DNA, RNA und Proteine aus reinen Zellpopulationen, die eine charakteristische Krankheitsmorphologie aufweisen, spezifisch isolieren und untersuchen zu können (Emmert-Buck et al 1996). Bis zu diesem Zeitpunkt wurden zeitintensive und wenig präzise Mikrodissektionsmethoden genutzt, wie die manuelle Dissektion (Emmert-Buck et al 1994) oder selektive UV-Bestrahlung zur DNA-Inaktivierung in irrelevanten Zellen (SURF) (Shibata et al 1992). Mittlerweile haben sich zwei unterschiedliche Systeme durchgesetzt:

Die originale Laser Capture Mikrodissektion (LCM) mittels Infrarot-Laser, bei der ein thermolabiles Polymer durch den energiearmen IR-Laser angeschmolzen wird und der entstehende Polymer-Zell-Verband eine selektive Isolierung der Zellen aus dem Gewebe ermöglicht (Emmert-Buck et al 1996) und die UV-laserbasierte Separation, bei der die Zellen mittels UV-A-Laser aus dem Gewebe geschnitten und entweder beim Laser Mikrodissektion Pressure Catapulting (LMPC) in das Sammelgefäß katapultiert werden (Zeiss P.A.L.M. Microbeam) oder bei der Laser Mikrodissektion (LMD) mit der Schwerkraft hineinfallen (Leica LMD6000) (Kolble 2000, Micke et al 2005). Allerdings funktionieren beide Systeme nach dem gleichen Prinzip: Die Zellen oder Gewebeareale, die für die Forschung relevant sind, werden mittels Mikroskopie visualisiert und mithilfe von Laserenergie aus dem heterogenen Gewebeverband isoliert (Espina et al 2006).

Abbildung 10: Prinzip des LCM und LMD

(a) LCM: Das thermolabile Polymer am Boden des Deckels, das über die Zellen, die von Interesse sind, platziert wird, wird durch einen Infrarotlaser geschmolzen und es bildet sich ein Polymer-Zellverbund. Durch mechanische Bewegung nach oben können die Zellen somit von dem übrigen Gewebe isoliert werden. (b) LMD: Mithilfe eines UV-Lasers können einzelne Zellen oder Gewebebereiche, die auf einer speziellen PEN-Membran aufgebracht sind aus dem Zellverband geschnitten werden. (Quelle: Espina et al. 2006; modifiziert)

Die Laser Mikrodissektion findet in vielen wissenschaftlichen Bereichen, wie der Tumorbiologie (Cheng et al 2008, Escher et al 2010), Erforschung von Nierenerkrankungen wie den Glomerulonephritiden (Satoskar et al 2012), neurologischen Erkrankungen (Coon et al 2004) bis hin zur Forensik (Vandewoestyne and Deforce 2010) Anwendung. Downstream-Verfahren umfassen Analysen auf Genom-, Transkriptom- und Proteomebene mit Techniken wie LOH (Loss of Heterozygosity) -Analyse, DNA-Methylierungsassay, quantitativer und real-time RT-PCR, Genexpressionsarrays, 2D Gelelektrophorese, Westernblots, Proteinmikroarrays und Massenspektrometrie.

Die Durchführung proteomischer Analysen wird dadurch limitiert, dass anders wie bei der Arbeit mit DNA oder mRNA, Proteine nicht amplifiziert und damit in ausreichenden Mengen für diverse Downstream-Analysen generiert werden können. Beispielsweise werden 500 bis 10.000 Zellen für eine Westernblot-Analyse, 10.000 bis zu 100.000 Zellen für eine 2D Gelelektrophorese und 5.000 bis 100.000 Zellen für massenspektrometrische Analysen benötigt (Espina et al 2006). Somit ist es wichtig, dass die Sensitivität der proteomischen Methoden optimiert wird, um zufriedenstellende Ergebnisse auch mit geringeren Mengen an Zellmaterial zu erhalten.

2.2 LMD in Kombination mit qualitativer und quantitativer Massenspektrometrie

In proteomischen Studien ist die Verwendung von massenspektrometrischen Techniken zur Identifizierung und Charakterisierung von Proteinprofilen unentbehrlich geworden. Die Kombination von Laser Mikrodissektion und sowohl qualitativen als auch quantitativen massenspektrometrischen Downstream-Analysen ermöglicht es bestimmte *in vivo-* und damit physiologisch authentische Zellpopulationen proteomisch zu untersuchen. Damit umgeht der Anwender das Problem der Heterogenität der *in vivo-*Proben, was sonst nur durch die Verwendung von *in vitro-*Zellen, welche erwiesenermaßen gravierende Unterschiede im Proteinprofil zu *in vivo-*Zellen zeigen (Ornstein et al 2000), gewährleistet wird. Zahlreiche Veröffentlichungen zeigen eine gelungene Verknüpfung der beiden Techniken in vielfältigen Bereichen der Wissenschaft (Cheng et al 2008, Nakatani et al 2012, Schad et al 2005).

2.2.1 Massenspektrometrie

Die Massenspektrometrie ist eine Methode zur Analyse der molekularen Masse und Identifikation von Proteinen, aber auch zur Untersuchung struktureller Eigenschaften der Aminosäuresequenz oder unterschiedlicher posttranslationaler Modifikationen (Domon and Aebersold 2006). Ein Massenspektrometer setzt sich generell aus drei verschiedenen Elementen zusammen: Einer Ionenquelle, in der die Moleküle ionisiert werden, einem Ionentrenner (Massenanalysator), in dem die Ionen nach ihrem Masse/Ladungs-Verhältnis (m/z) beschleunigt und abgelenkt werden und einem Detektor, durch den die Ionen detektiert und die relative Menge der Ionenspezies aufgezeichnet wird (Reinders et al 2004).

Die zwei Ionisierungstechniken Elektronensprayionisierung (ESI) und Matrix-unterstützte Laser-Desorption/Ionisation (MALDI) haben sich als die besten Methoden in diesem Bereich durchgesetzt. Auch im Bereich der Massenanalysatoren gibt es unterschiedliche Technologien, die Quadrupole (Q), Ionenfallen (IT), Orbitrap-, FT-ICR- (Fourier transform ion cyclotron resonance) und TOF- (time of flight) Instrumente mit einschließen. Die Optimierung und Weiterentwicklung bringt immer bessere, sensitivere und effektivere Massenspektrometer hervor (Ahmed 2008). Aber auch die Aufbereitung der komplexen Proteingemische spielt eine wichtige Rolle bei der erfolgreichen proteomischen Analyse. Hierbei werden die Proben enzymatisch oder chemisch aufgespalten, damit der Peptidmix

anschließend chromatographisch oder durch Gel-basierte Methoden fraktioniert werden kann (Angel et al 2012). In diesem Zusammenhang hat sich Trypsin, das die Spaltung C-terminal der Arginin- und Lysinreste der Proteine zu kurzen Polypeptidketten katalysiert, besonders bewährt und wird oft in Kombination mit sogenannten "Sequenzierungs-Endoproteasen", wie LysC verwendet (Olsen et al 2004, Wada and Kadoya 2003). Die Massenspektrometrie ermöglicht es u.a. Proteinprofile aus Geweben zu erstellen, Einblicke in die Komplexität des Proteoms zu gewinnen und damit einen Beitrag zur Charakterisierung von komplexen biologischen Systemen und Prozessen zu leisten.

2.2.2 Quantitative Proteomics mittels iTRAQ

Die iTRAQ (isobaric Tags for Relative and Absolute Quantitation)-Analyse ist ein Verfahren zur relativen und absoluten Quantifizierung von Proteinen und Peptiden. Sie bedient sich Amin-reaktiver, isobarer, isotoper Tags, die an die N-termini und Lysin-Seitenketten von Peptiden gebunden werden. Dazu werden die Proteine vor Zugabe der iTRAQ-Reagenzien mit Trypsin verdaut. Jedes der vier verfügbaren isobarischen Tags weist eine Gesamtmasse von 145 Da auf und besteht aus einer Reporter-Gruppe (basierend auf N-Methylpiperazin) mit einer Masse von 114-117 Da, einer Balance-Gruppe (Carbonyl-Gruppe) mit einer Masse von 28-31 Da und einer Peptid-reaktiven Gruppe (NHS) (Ross et al 2004).

Da die intakten Tags isobar sind, sind die derivatisierten Peptide chromatographisch nicht unterscheidbar. Erst durch die Fragmentation der Label, bei der die Balance-Gruppe verloren geht und der damit einhergehenden Entstehung von Reporterionen während der MS/MS-Analyse durch CID (Collision Induced Dissociation), können die Peptide der unterschiedlichen Gemische identifiziert und quantifiziert werden (Ross et al 2004). Dabei generiert jeder Reportertag ein Reportergruppen-Ion mit m/z Werten von 114-117, die bei der Massenspektrometrie als Signale im unteren Massenbereich beobachtet werden können. Vergleicht man die Intensitäten des jeweiligen Reporter-Ions in den verschiedenen Proben erhält man eine Information über die relative Menge der Peptide (Griffin et al 2007).

Abbildung 11: iTRAQ

(A) Das iTRAQ-Molekül besteht aus einer Reporter-Gruppe (N-Methylpiperazin), einer Balance- und einer peptidreaktiven NHS-Gruppe. (B) Die Reportergruppe hat eine Masse von 114-117 Da und die Balance-Gruppe von 28-31 Da, wodurch das Reagenz in der Summe immer eine Masse von 145 Da aufweist. CID bewirkt einen Verlust der Balance-Gruppe, während die Reporter-Gruppe die Ladung behält. (C) Die Peptide werden mit den Tags gelabelt, die Proben vermischt und massenspektrometrisch analysiert, wobei die Tags nach der CID durch die unterschiedliche Masse der Reporterionen differenziert und damit quantifiziert werden können. (Quelle: Ross et al. 2004)

Der entscheidende Vorteil des iTRAQ-Verfahrens liegt in ihrer Multiplex-Fähigkeit. Dies liefert die Möglichkeit mehrere Proben parallel mit einer Referenzprobe quantitativ zu vergleichen, was gegenüber bisher verwendeten Verfahren wie beispielsweise der ICAT-Methode (Gygi et al 1999) eine Zeit- und Kostenersparnis gewährleistet (Griffin et al 2007). Die Verbindung von iTRAQ und Tandem-Massenspektrometrie zur Analyse von mittels Laser Mikrodissektion isolierten Zellpopulationen hat gezeigt, dass es sich hierbei um eine vielversprechende neue proteomische Strategie handelt krankheitsspezifische Proteine und Biomarker zu identifizieren (Nakatani et al 2012, Xiao et al 2010).

C Zielsetzung

Ein charakteristisches und pathomorphologisches Merkmal der Myofibrillären Myopathien stellt die Bildung von Proteinaggregaten in Skelettmuskelzellen dar (Goebel and Muller 2006, Schroder and Schoser 2009, Selcen 2008). Bisher ist wenig über die genaue Zusammensetzung dieser pathologischen Proteinaggregate bekannt. Ursprünglich wurden die Myofibrillären Myopathien als Desmin-verwandte Myopathien betitelt, da Desmin in den Proteinakkumulationen identifiziert werden konnte (Goebel 1995). Neben Desmin wurden mittels immunhistochemischer Untersuchungen auch andere Cytoskelettproteine, wie Filamin C, Myotilin, Plectin, aber auch Chaperone, Proteine des Ubiquitin-Proteasom-Systems, nukleäre Proteine usw. als Bestandteile der Aggregate ermittelt (Ferrer and Olive 2008).

Die detaillierte Bestimmung der Aggregatkomponenten könnte wichtige Hinweise geben, welche Proteine bei der Akkumulation involviert sind und welche potentiellen, biologischen Prozesse beteiligt sind. Mit einem besseren Verständnis bezüglich des Aggregationsprozesses könnten möglicherweise Therapieansätze entwickelt werden, die in den pathologischen Mechanismus eingreifen und damit eine Akkumulation der Proteine verhindern oder zur Auflösung bereits existenter Aggregate beitragen. Zudem können Unterschiede zwischen den verschiedenen Subtypen der Myofibrillären Myopathien herausgearbeitet werden und einen entscheidenden Beitrag zur differentiellen Diagnostik leisten.

Mit der vorliegenden Arbeit wird das Ziel verfolgt eine proteomische Charakterisierung von pathologischen Proteinaggregaten aus Skelettmuskelzellen von Patienten und Mausmodellen mit genetisch klassifizierten und unklassifizierten Myofibrillären Myopathien durchzuführen. Mit der Kombination von Laser Mikrodissektion und Massenspektrometrie wird hier ein neuer Ansatz verfolgt, mit dem das proteomische Spektrum der Aggregate aufgeschlüsselt und damit bestenfalls neue Krankheitsgene in seltenen Muskelerkrankungen mit strukturellen Abnormalitäten im Skelettmuskel identifiziert werden sollen. Die LMD stellt eine präzise und effektive Technologie dar, mit der spezifische Subpopulationen aus heterogenem Gewebe unter direkter mikroskopischer Visualisierung selektiv gesammelt werden können (Emmert-Buck et al 1996, Espina et al 2006, Greenberg et al 2012, von Eggeling et al 2007, Xu et al 2002). Diese Methode verwenden wir, um homogenes Material, Einzelfasern oder Aggregate

selektiv aus dem Muskelgewebe der Patienten für eine anschließende massenspektrometrische Analyse zu gewinnen.

Im Vorfeld soll ein effektives Protokoll zur Proteinkartierung etabliert und standardisiert werden. Dazu wird unter Verwendung mikrodissektierter Kontrollfasern die minimale Menge an benötigtem Probenmaterial für die massenspektrometrische Analyse quantifiziert, eine komparative Untersuchung des Einflusses unterschiedlicher Färbemethoden auf die massenspektrometrischen Analyseergebnisse durchgeführt und ein generelles Proteinprofil von normalen Muskelfasern erstellt. Dabei wird eine Grundlage für die Erforschung pathologischer Veränderungen des Proteinmusters der Skelettmuskulatur etabliert, die bei Muskelerkrankungen, wie Myofibrillären Myopathien beobachtet werden können.

Im Anschluss sollen zunächst spezifische Aggregatkomponenten mithilfe einer qualitativen Analyse unter Verwendung von reinem Plaquematerial, umgebender Muskelfaserregion und morphologisch normalen Muskelfasern der Patienten identifiziert werden. Die Realisierung des Vorhabens soll mithilfe von LC-MS/MS Tandem Massenspektrometrie nach SDS-PAGE basierter Separation und In-Gel-Verdau mittels Trypsin erfolgen.

Ergänzend soll neben der Untersuchung der detaillierten Zusammensetzung der Akkumulate eine relative Quantifizierung der Proteine aus Aggregaten und aggregathaltigen Fasern im Vergleich zu Kontrollzellen durchgeführt werden. Im Detail basiert die technische Strategie hier auf einer Filter-unterstützten Probenaufbereitung der mikrodissektierten Proben, iTRAQlabeling und proteomischer Shotgun-Analyse auf Peptidlevel mittles Nano-LC und MALDI-TOF/TOF Tandem Massenspektrometrie für die Proteinidentifikation und -quantifizierung.

D Material und Methoden

1 Patienten

Patientenmaterial (EDTA-Vollblut, Muskelgewebe, genomische DNA) wurde von verschiedenen Kliniken aus Deutschland zur molekulargenetischen Untersuchung eingesandt. Zusätzlich zu den zu untersuchenden Patienten wurde auch Material (EDTA-Vollblut, genomische DNA) von deren Angehörigen und von Normalkontrollen in die weiteren Untersuchungen einbezogen. Alle durchgeführten Untersuchungen erfolgten mit Zustimmung der Patienten. Ein positives Votum der Ethikkommission der Ludwig-Maximilians-Universität, München liegt vor (Projektnummer: Amendement zum Ethikantrag Nr. 107/01).

2 Chemikalien

Alle benutzten Chemikalien entsprachen höchsten Reinheitsanforderungen. Deren Herkunft (Firma), Katalog-/ bzw. Bestellnummer und genaue Bezeichnung sind im Methodenteil erwähnt.

3 Molekulargenetische Methoden

3.1 DNA-Extraktion

Die Extraktion genomischer DNA erfolgte aus venösem EDTA-Vollblut mittels Promega Wizard Genomic DNA Purification Kit (Promega, # A1120, Mannheim, Deutschland). Die Extraktion erfolgte entsprechend den Angaben des Herstellers.

3.2 Photometrische Bestimmung von Nukleinsäure-Konzentrationen

Mit dem Lösungsmittel der Nukleinsäure-Probe wird der Nullabgleich durchgeführt. Bei den Wellenlängen von 260 und 280 nm (260 nm = Absorptionsmaxima von DNA und RNA; 280 nm = Absorptionsmaxima von Proteinen bzw. der enthaltenen aromatischen Aminosäuren)
werden die Proben vermessen. Einer OD-Einheit entspricht eine DNA-Konzentration von 50 μ g/ml (doppelsträngige DNA). Aus dem Quotienten OD₂₆₀/ OD₂₈₀ lässt sich die Reinheit der Nukleinsäurelösung bestimmen.

3.3 Polymerase-Ketten-Reaktion

3.3.1 Prinzip der Polymerase-Ketten-Reaktion

Bei den zu untersuchenden Genen wurden die gesamten bzw. Teile der kodierenden Regionen und teilweise flankierende intronische Regionen der entsprechenden Gene mittels Polymerase-Ketten-Reaktion (Polymerase Chain Reaktion = PCR) amplifiziert. Das von Mullis entwickelte Verfahren ermöglicht die exponentielle *in vitro* Vermehrung definierter DNA Stücke (Mullis 1990).

3.3.2 PCR-Primer

Die verwendeten Primer wurden entworfen, basierend auf in der Genbank veröffentlichten Sequenzen der zu untersuchenden Gene (www.ncbi.nlm.nih.gov./entrez/query.fcgi) und durch Metabion synthetisiert. Eine Liste der für die Routinesequenzierung verwendeten PCR-Primer befindet sich im Anhang (3. Primersequenzen).

3.3.3 PCR-Reaktionsbedingungen

Standard-PCR-Mix:

Reagenzien	Volumen
Maxima [™] Hot Start Green PCR Master Mix (Fermentas # K1062, St. Leon-Rot, Deutschland)	25 µl
Forward Primer (50 pmol)	1 µl
Reverse Primer (50 pmol)	1 µl
Template DNA	1 μl
Wasser, nuclease-frei (Promega #P1193, Mannheim, Deutschland)	22 µl
Gesamtvolumen	50 µl

Schritt	Temperatur	Zeit	Zyklen
1.Denaturierung der DNA	95 °С	4 min	1
2. Aufschmelzen der DNA-Doppelstränge	95 °С	30 sec	
Anlagern der Primer (Annealing)	65 °C	30 sec	35
Synthese des DNA-Doppelstranges (Extension)	72 °C	5 min	
3.Abschließende Extension	72 °C	7 min	∞

Die PCR wurde in einem Thermocycler (Mastercycler personal, Eppendorf) durchgeführt. PCR-Programm:

3.4 Aufreinigung der PCR-Produkte

Die PCR-Produkte wurden durch Gelelektrophorese auf GelRedTM Nucleic Acid Gel Stain (Biotium #41003, Hayward, Californien, USA) -haltigen, 1 %-igen Agarosegelen mit 120 V aufgetrennt. Die Gel-Bereiche mit den gewünschten PCR-Fragmenten wurden ausgeschnitten und mittels NucleoSpin Extract II (Macherey-Nagel #740609, Düren, Deutschland) entsprechend den Angaben des Herstellers extrahiert.

3.5 Sequenz-Analyse

Die Sequenzierung der PCR-Produkte erfolgte durch die Firma Eurofins MWG Operon (Ebersberg, Deutschland) mit DNA-Sequenziergeräten der Firma Applied Biosystem (Darmstadt, Deutschland) und fluoreszenzmarkierten Didesoxy-Terminatoren. Die Sequenzen wurden anschließend auf potentielle Mutationen untersucht. Der Vergleich mit der entsprechenden Wildtypsequenz erfolgte computergestützt online über den Server des National Center for Biotechnology Information (www.ncbi.nlm.nih.gov./BLAST/).

3.6 Next Generation Sequencing

Die Sequenzierung des gesamten Genoms wurde in Kooperation mit dem Institut für Humangenetik in der Abteilung für medizinische Genetik in Würzburg durchgeführt und unter Einbeziehung von mehreren Familienmitgliedern bioinformatisch ausgewertet. Die Proben wurden mit dem True Seq Exome Enrichment Kit (62 Mb) der Firma Illumina angereichert. Anschließend erfolgt bei der Illumina-Sequenzierungen eine Amplifikation mittels Bridge-PCR. Die Exom-Analyse wurde an einem Illumina HiSeq2000-Sequenziergerät durchgeführt, wobei in diesem Fall sogenannte 100 bp-Paired-End-Reads erzeugt werden. Die Sequenzierung wurde bei der Firma LGC Genomics in Berlin mit dem Illumina-Sequenziergerät durchgeführt. Die Datenanalyse wurde mit der Software Gensearch NGS von Phenosystems durchgeführt.

4 Zellkultur

4.1 Differenzierung/Fusion von Patienten-Myoblasten

4.1.1 Lamininbeschichtung von Coverslips

Je 3 Coverslips (Roth # P231.1, Karlsruhe, Deutschland) wurden in je ein 6-Well (Greiner #657160, Frickenhausen, Deutschland) gegeben und angedrückt. Anschließend wurden je 60 μ l Laminin (Invitrogen GmbH #L2020, Karlsruhe, Deutschland) auf die Coverslips pipettiert und 30 min bei 37 °C bzw. über Nacht bei 4 °C inkubiert. Nachdem die Lamininlösung abgenommen wurde und die Coverslips zweimal mit 1 x PBS (PAA Laboratories GmbH #H15-011, Pasching, Österreich) gewaschen wurden, folgte eine 30-minütige UV-Bestrahlung.

4.1.2 Aussähen der Zellen

Die Patientenmyoblasten wurden mit einer Konfluenz von 30 % auf lamininbeschichtete 6-Well-Platten ausgesäht und bis zu einer 70-80 % - igen Konfluenz bei 37 °C und 5 % CO₂ im Inkubator (Thermo Scientific, Waltham, Massachusetts, USA) inkubiert. Für die Differenzierung der Zellen wurde das Myoblastenmedium (Skeletal Muscle cell growth medium (Provitro #200 0602, Berlin, Deutschland)) supplementiert mit 10 % fetalem Kälberserum (PAA Laboratories GmbH #A15-101, Pasching, Österreich), 10 % SupplementMix (Provitro #2180 0602, Berlin, Deutschland), 50 µg/ml Antibiotics (Provitro, Berlin ,Deutschland) und 2 mM Glutamin (PAA Laboratories GmbH # M11-004, Pasching, Österreich) durch Fusionsmedium (DMEM (PAA Laboratories GmbH # E15-011, Pasching, Österreich) supplementiert mit 10 % Pferdeserum (Sigma-Aldrich # H-1138, Steinheim, Deutschland) und 2 mM Glutamin ersetzt. Die Differenzierung lief mindestens sieben Tage, bis Myotuben beobachtet werden konnten.

4.2 Fixieren und Färben der Myotuben

Die Myotuben wurden für 15 min bei RT mit 3,7 % PFA (Sigma-Aldrich # P6148, Steinheim, Deutschland) in 1 x CSK-Puffer fixiert und anschließend für 10 min bei RT in 1 x CSK-Puffer mit 0,1 % TritonTM X-100 (Sigma-Aldrich #T8787, Steinheim, Deutschland) permeabilisiert. Nach drei aufeinander folgenden 5-minütigen Waschschritten in PBS wurden unspezifische Bindungen durch einen Blockierungsschritt für 1 h bei RT mit 5 % Pferdeserum in 1 x PBS blockiert. Die Zellen wurden mit dem primären Antikörper bzw. bei einem Costaining mit den beiden primären Antikörpern (falls in unterschiedlichen Spezies produziert) in 5 % Pferdeserum in 1 x PBS bei 4 °C über Nacht inkubiert. Falls die Antikörper in derselben Spezies produziert wurden, musste eine serielle Färbung stattfinden. Die Antikörper und verwendete Verdünnungen sind im Anhang (5. Antikörper) aufgelistet.

Anschließend wurden die Zellen mit den sekundären Antikörpern, die mit roten (Alexa Fluor 594) oder grünen (Alexa Fluor 488) Fluorochromen gelabelt sind, in 5 % Pferdeserum in 1 x PBS 1 h bei RT lichtgeschützt inkubiert. Nach drei Waschschritten von je 5 min in 1 x PBS, erfolgte eine Färbung der Zellkerne mittels Hoechst 33258 (Sigma-Aldrich #861405, Steinheim, Deutschland) mit einer Verdünnung von 1:1000 in 1 x PBS. Die Zellen wurden dann erneut dreimal mit 1 x PBS für je 5 min gewaschen und mit Dako® Fluorescent Mounting Medium (Dako #S3023, Glostrop, Denmark) eingedeckt, über Nacht getrocknet und mit Nagellack versiegelt.

5 Histochemie/Immunhistochemie und Mikroskopie

5.1 Hämatoxylin und Eosin (H&E) Färbung

10 µm dicke Schnitte wurden 5 min mit Hämatoxylin (Sigma-Aldrich #HHS16, Steinheim, Deutschland) inkubiert, anschließend kurz in bidestilliertes Wasser getaucht und für 5-7 min in Leitungswasser gebläut. Darauf folgte eine 1-minütige Inkubation in Eosin Y (Sigma-Aldrich #HT110116, Steinheim, Deutschland). Abschließend wurden die Schnitte mit entionisiertem Wasser gewaschen und in 70 %, 80 %, 96 % und 100 % EtOH für je 30 sec entwässert.

5.2 Modifizierte Trichrom Gomori Färbung

10 μm dicke Schnitte wurden 5 min mit Hämatoxylin inkubiert, anschließend kurz in bidestilliertes Wasser getaucht und für 5-7 min in Leitungswasser gebläut. Darauf folgte eine 60-minütige Inkubation in Trichrom (Sigma-Aldrich #HT10316, Steinheim, Deutschland). Abschließend wurden die Schnitte mit 0,2 % Essigsäure (Roth #3738 Karlsruhe, Deutschland) und entionisiertem Wasser gewaschen und in 100 % EtOH für 30 sec entwässert.

5.3 Nitroblau-Tetrazolium (NBT)-Menadion Färbung

10 μ m dicke Schnitte wurden 60 min bei 37 °C in NBT-Menadion-Lösung (50 mM Tris/HCl pH 7,4, 12 μ M Nitroblue tetrazolium (Sigma-Aldrich # N5514, Steinheim, Deutschland), 1,16 μ M Menadion (Sigma-Aldrich # M 5625, Steinheim, Deutschland) (in Aceton gelöst)) inkubiert und anschließend mit 30 %, 60 %, 90 %, 60 % und 30 % Aceton extrahiert. Nach einem abschließenden Waschschritt in Wasser wurden die Schnitte mit Glycerol-Gelatine (Sigma-Aldrich #49927, Steinheim, Deutschland) eingedeckt (Vorwärmen bei 60 °C).

5.4 Immunfluoreszenzfärbung

8 μm dicke gefrorene Muskelgewebsschnitte wurden mit 100 % eisgekühltem Aceton (Roth # 9372, Karlsruhe, Deutschland) für 2 min fixiert und mit 0,1 % Triton-X in 1 x PBS pH 7.3 bei RT für 15 min permeabilisiert. Für die Doppelfärbungen wurden die Schnitte mit den primären Antikörpern, verdünnt in fetalem Kälberserum (FCS), über Nacht bei 4 °C inkubiert. Nach einem Waschschritt mit 0,1 % Triton-X in PBS pH 7.3 wurde der sekundäre Antikörper, der mit dem Fluorophor Alexa 488 bzw. Alexa 594 verknüpft ist, in FCS verdünnt, zugegeben und für 1 h bei Raumtemperatur in der Dunkelkammer inkubiert. Die Antikörper und die verwendete Verdünnung sind im Anhang (5. Antikörper) aufgelistet.

Die Kerne wurden nach drei Waschschritten und einer je 5-minütigen Inkubation der Schnitte in 1 x PBS und anschließend Hoechst 33258 (10 μ g/ml) visualisiert. Abschließend wurden die Schnitte wiederum für 3-5 min in 1 x PBS und kurz in destilliertem Wasser inkubiert, bevor sie mittels Dako® Fluorescent Mounting Medium (Dako #S3023, Glostrop, Denmark) eingedeckt, über Nacht getrocknet und mit Nagellack versiegelt wurden.

5.5 Mikroskopie

Die Schnitte und Zellen wurden zum einen mithilfe des Zeiss Axiovert 200 M Fluoreszenzmikroskops (Carl Zeiss AG, Oberkochen, Deutschland) und einer Zeiss AxioCam HR Photokamera analysiert. Zum anderen wurden die Schnitte und Zellen mit dem Olympus FluoView TM FV1000 Confocal Laser Scanning Biological Microscope (Olympus, Hamburg, Deutschland) analysiert.

6 Laser Mikrodissektion und Massenspektrometrie

Die Muskelgewebeschnitte wurden von Bioptaten von Kontrollpersonen für die Quantifizierung und Standardisierung und von MFM-Patienten, sowie Mausmodellen für die qualitative und quantitative Analyse der Proteinaggregatkomponenten gewonnen. Alle verwendeten Gewebe sind im Anhang zusammengefasst (4. Biopsien für Gewebeschnitte).

6.1 Schnitte herstellen

Es wurden gefrorene, 10 μm dicke Muskelgewebsschnitte unter Verwendung eines Cryostaten (Thermo Scientific, Waltham, Massachusetts.USA) bei -27 °C hergestellt und auf PEN-Membrane-Slides (Leica #110505189, Wetzlar, Deutschland) platziert.

6.2 Auslasern

Die Mikrodissektion erfolgte mithilfe eines UV- Laser-Mikrodissektions-Systems von Leica (Leica LMD6000, Leica Microsystem; Wetzlar). Einzelne Zellen bzw. Aggregate wurden mit folgenden Lasereinstellungen im Software-Programm Leica Laser Microdissection LMD Version 6.7.2.4215 ausgelasert:

Modus	Einstellung
Power	20
Aperture	10
Speed	25
Specimen balance	19

Es wurde mit dem 40x Objektiv gearbeitet.

Abbildung 12: Auslasern mittels Laser Mikrodissektion

Die Zellen werden unter dem Mikroskop visualisiert (links), am Bildschirm markiert (Mitte) und mithilfe des UV-Lasers ausgeschnitten (rechts). Die Zellen fallen mit der Schwerkraft in ein Sammelgefäß (Deckel eines Tubes), wo sie für die weitere Verarbeitung aufbewahrt werden (ganz rechts).

Die Region, die analysiert werden sollte, wurde am Bildschirm mithilfe eines Zeichnungs-Tools (Draw and Cut) durch Umranden markiert und durch die Aktivierung des Lasers ausgeschnitten und damit von der umliegenden Region separiert. Die ausgelaserte Probe fiel in den, unter den Objekttisch eingespannten Deckel eines 0,5 ml Tubes (Peqlab #82-0350-A, Erlangen, Deutschland). Anschließend wurden je 20 µl SDS-Lysis Puffer (125 mM Tris HCl pH 6.8; 4 % SDS; 20 % Glycerol; 0.02 % Bromophenolblau) zu den mikrodissektierten Zellen oder Aggregaten (insgesamt eine Fläche von 600.000 µm²) gegeben und für 30 sec bei 11.000 rpm zentrifugiert. Zur Proteinase-Inaktivierung wurden die Proben für 15 min auf 60 °C erhitzt und anschließend bis zur Verwendung bei -80 °C gelagert.

6.3 Massenspektrometrie

Die Probenvorbereitung und massenspektrometrischen Analysen wurden am Zentrum für Molekulare Medizin Köln (ZMMK) in der Abteilung für Zentrale Bioanalytik der Universität Köln unter Anleitung von Herrn Professor Dr. Hanisch durchgeführt. Als bei den massenspektrometrischen Daten identifiziert galten alle Proteine, die einen Mascot Score von über 30 aufwiesen und mindestens ein spezifisches Peptid identifiziert werden konnte. Bei der quantitativen Analyse wurden alle Proteine, die einen Regulationsfaktor von \geq 1,4 aufwiesen als erhöht, mit einem Regulationsfaktor von \leq 0,75 als vermindert eingestuft. Die Bestimmung der molekularen Funktion und subzellulären Lokalisation der identifizierten Proteine erfolgte computergestützt online über den Server der Universal Protein Resource (UniProt) unter <u>http://www.uniprot.org/</u>. Die Familie der Keratine wurde in der Auswertung vernachlässigt, da es sich um eine Kontamination der Proben handelt.

6.3.1 Qualitative Proteomics (LC-MS/MS)

Die Proteine aus den mikrodissektierten Zellen wurden auf einem Polyacrylamid-Gel gelelektrophoretisch aufgetrennt. Anschließend wurde eine Coomassie- oder Silberfärbung zur Visualisierung der Proteine durchgeführt und ca. 0,7 cm große Stücke herausgeschnitten, um nach einem Reduktions- und Alkylierungsschritt einen in-Gel-Verdau mit Trypsin durchzuführen. Die Massenspektrometrie wurde mit einem HCT ETD II Ion-Trap Mass Spectrometer (Bruker Daltonics, Bremen, Germany), ausgestattet mit einer nano-ESI Quelle, (Bruker Daltonics) durchgeführt. Detaillierte Informationen zur verwendeten Software und gewählten Parametern für die Auswertung wurde publiziert (Feldkirchner et al 2012).

6.3.2 Quantitative Proteomics (iTRAQ-Labeling und MALDI-TOF/TOF)

Die mikrodissektierten Proben wurden mithilfe der speziellen Filtertechnik FASP (Filter Aided Sample Preparation) mit LysC (40 ng/µl) und Trypsin (10 ng/µl) verdaut. Anschließend wurden die so generierten Peptide mit isobarischen Tags für die iTRAQ-Analyse gelabelt (4-plex). Die Auftrennung erfolgte mittels Umkehrphasen-Hochleistungsflüssigchromatographie und die massenspektrometrische Analyse mittels Matrix-unterstützter Laser-Desorptions/Ionisations-Flugzeit-Massenspektrometrie (MALDI-TOF/TOF).

Das detaillierte Protokoll zur Filter-unterstützten Probenaufbereitung, iTRAQ-Labeling, MALDI-Spotting, LC-MALDI-MS/MS-Analyse und Auswertung wurde publiziert (Feldkirchner et al 2012).

7 Biochemische Methoden

7.1 Herstellung von Proteinextrakten aus mittels LMD mikrodissektierten Einzelfasern und Aggregaten

Jeweils 1,5 Mio. µm² an Kontrolleinzelfasern bzw. Aggregatmaterial wurde für die Westernblot-Analyse mittels UV-laserbasierter Laser Mikrodissektion ausgelasert und bei -80 °C gelagert. Es folgte eine Zugabe von 15 µl SDS-Lysispuffer (pH 6,8; 125 mM TrisHCl, 4 % SDS, 0,02% Bromphenolblau, 20 % Glycerol) zu den Proben, die dann bei 70 °C hitzeinaktiviert wurden. Anschließend wurden die Proben 3 min im Ultraschallwasserbad mit Eis inkubiert und für 5 Minuten auf 95 °C erhitzt. Abschließend wurden die Proben für 15 min bei 4 °C mit 14.000 rpm abzentrifugiert und der Überstand in ein neues Tube überführt. Vor dem Auftragen der Proben auf ein SDS-Gel wurden die Proben noch einmal bei 95 °C für 5 min hitzedenaturiert.

7.2 Herstellung von Proteinextrakten aus Muskelgewebs-Schnitten

Für die Gewinnung von Zelllysat aus humanem Muskelgewebe für die Westernblot-Analyse wurden jeweils insgesamt 250 μ m Muskel (25 x 10 μ m dicke Schnitte) von Patienten bzw. einer Kontrollperson in einem mit N₂ abgekühltem 2 ml-Tube gesammelt. Anschließend wurden 75 μ l RIPA-Puffer zu dem Muskelmaterial gegeben, dreimal 5 Minuten lang bei 95

°C erhitzt und jeweils dazwischen homogenisiert. Nach Zentrifugation des Homogenisats (15 min, 14.000 rpm, 4 °C) wurde der Überstand in ein frisches Reaktionsgefäß überführt und der Gesamtproteingehalt der Probe mittels BCA-Assay (Pierce, #23225, Rockford, USA) ermittelt. Die Proben wurden bei -80 °C gelagert.

RIPA-Puffer (in bidestilliertem Wasser gelöst)

% SDS (BioRad #161-0301)
 mM Tris-HCl pH 7,5 (TRIS ultra pur Biomol #08003)
 mM PMSF (Sigma-Aldrich #P-7626)
 mM Benzamidine (Sigma-Aldrich #B-6506)
 mM EGTA (Sigma-Aldrich #E-3889)
 5 μg/ml Leupeptin (Sigma-Aldrich #L-2884)
 mM Pefabloc SC Protease Inhibitor (Roth #A154-1)
 μg/ml Pepstatin (Sigma-Aldrich #P-5318)

7.3 Bestimmung der Proteinkonzentration

Die Proteinbestimmung erfolgte nach dem BCA-Assay Protein Quantification Kit (Pierce) entsprechend den Angaben des Herstellers. Die Methode beruht auf der Reduktion von Cu^{2+} zu Cu^+ durch die Peptidbindungen der Proteine. Das BCA-Reagenz (Bicinchinoninsäure) chelatiert die Cu^+ -Ionen in einem hochspezifischen wasserlöslichen violetten Komplex, der photometrisch bei seinem Absorptionsmaximum von 562 nm gemessen wird. Die Absorption ist der Proteinkonzentration im Bereich 5-20 µg/ml bis 1-2 mg/ml proportional. Nach einer 30-minütigen Inkubation der Proteinproben mit der BCA-Lösung bei 37 °C wurde die Absorption der Proteinlösungen in einem Photometer bei 562 nm gemessen. Mittels der SOFTmax®Pro-Software (Molecular Devices) kann die Standardgerade erstellt und die Konzentrationen bestimmt werden.

7.4 Westernblot-Analyse

7.4.1 SDS-Gel/Westernblot

Die Proben wurden auf ein 4-15 % SDS-PAGE Gel (Mini-PROTEAN®TGXTM Precast Gel; Bio-Rad #456-1083) geladen und die Proteine ca. 10 min bei 80 V, dann bei 120 V elektrophoretisch getrennt. Die Probenvolumina betrugen jeweils 20 µl. Zum Abschätzen der Proteingrößen wurde bei jedem Lauf eine Proteinstandardlösung aufgetragen (Page RulerTM Prestained Protein Ladder bzw. Page RulerTM Plus Prestained Protein Ladder, Fermentas # SM0671 bzw. # SM1811). Nach der Separation wurden die Proteine auf eine PVDF-Membran (ImmobilonTM-P Transfer membrane; 0,45 μ m pore size; Millipore #P-15552) oder Nitrocellulose-Membran (0,45 μ m, Biorad #162-0115) unter Verwendung eines Wet-Blottingsystems transferiert (2 h bei 110 V, 4 °C).

7.4.2 Poceau S-Färbung

Nach dem Blottingverfahren wurde mithilfe des Azofarbstoffs Poceau S (Sigma, #P3504) überprüft, ob der Transfer der Proteine auf die Membran (PVDF oder Nitrocellulose) erfolgreich war. Dazu wurde die Membran für 3 Minuten in der roten Färbelösung (0,1 % Ponceau S (w/v) in 5 % Essigsäure) inkubiert und die Proteine somit reversibel angefärbt. Durch mehrere Waschschritte mit destilliertem Wasser wurden die Banden distinktiv sichtbar. Zum Entfärben wurde die Membran für 30 min in TBST (1M TRIS-HCl pH 7,50, 0,8 % NaCl, 0,1 % Tween20) geschüttelt.

7.4.3 Immunodetektion

Um unspezifische Bindungsstellen auf der Membran zu blockieren wurde diese 2 h bei Raumtemperatur in Blockierungspuffer (TBST (0,1 % Tween), 5 % Milchpulver) geschüttelt. Es folgte eine Inkubation der Membran in mit dem primären Antikörper (siehe Anhang 5. Antikörper) versetzten Blockierungspuffer über Nacht bei 4 °C auf dem Rollator. Anschließend wurde die Membran fünfmal für 10 min in TBST (0,1% Tween) gewaschen und 1 h in der Sekundärantikörperlösung inkubiert. Nach erneuten fünf aufeinanderfolgenden 10-minütigen Waschschritten wurde die Peroxidaseaktivität (HRP) und damit die Proteinsignale mittels Lumigen-Reagenz ECL plus (ECL Advance Western Blotting Detection Kit, Amersham #RPN2135) visualisiert.

7.4.4 Relative Quantifizierung der Immunoblot-Signale

Die Auswertung der Intensität der Immunoblot-Signale erfolgte mittels ImageJ-Software (National Institutes of Health, USA). Für die Quantifizierung von Desmin, p62, FHL1 und MYH7 diente die Bandenintensität von GAPDH als interner Standard zur Normalisierung der aufgetragenen Proteinmenge.

7.4.5 Stripping

Um die an die Nitrocellulose- bzw. PVDF-Membran gebundenen Antikörper zu entfernen wurde die Stripping-Solution Re-blot plus strong 10 x (Millipore #60512) 1:10 in destilliertem Wasser verdünnt und die Membran darin für 15-20 min bei Raumtemperatur inkubiert. Anschließend wurde die Membran zweimal für 10 min mit TBST gewaschen und 1 h mit 5 % Milch-PBS blockiert.

E Ergebnisse

1 Standardisierung

Um die technischen und methodischen Grundlagen für die Untersuchung der pathologischen Proteinaggregate zu etablieren, wurde im Vorfeld zum einen untersucht, welche Menge an Muskelfasermaterial für zufriedenstellende Ergebnisse in der Massenspektrometrie benötigt werden und zum anderen, ob die für die Visualisierung der Proteinaggregate benötigten Färbemethoden mit den massenspektrometrischen Analysen kompatibel sind. Des Weiteren wurde ein standardisiertes Proteinprofil von normalen Muskelfasern erstellt, um eine Basis für die proteomische Forschung zu schaffen und unterschiedliche massenspektrometrische Methoden auf ihre Sensitivität zu untersuchen.

1.1 Quantifizierung des für die MS erforderlichen Zellmaterials

In der Literatur lassen sich unterschiedliche Empfehlungen finden, wieviel Zellmaterial mittels Laser Mikrodissekion für eine anschließende massenspektrometrische Downstream-Analyse generiert werden soll, um zufriedenstellende Ergebnisse zu erhalten. Die Empfehlungen reichen von 2.500 Brustkrebszellen für MALDI-TOF/TOF (Palmer-Toy et al 2000) bis zu 10.000-15.000 Tumorepithelzellen für LC-MS/MS (Baker et al 2005). Um die minimale Menge an Muskelfasermaterial zu etablieren, die für das Protein-Profiling mittels massenspektrometrischer Analyse benötigt wird, wurden ungefärbte Muskelschnitte eines humanen Muskelbioptats ohne pathologischen Befund verwendet. Bei diesem Kontrollmuskel handelt es sich um die Biopsie eines Musculus quadriceps femoris einer gesunden Person (N1, Anhang 4.1). 50, 100, 200 und 500 Einzelfasern wurden mittels Laser Mikrodissektion gesammelt, was einer Gesamtfläche von 150.000 μ m², 300.000 μ m², 600.000 μ m² und 1.500.000 μ m² entspricht und nach gelelektrophoretischer Auftrennung zum einen mittels Coomassie- und Silberfärbung, zum anderen massenspektrometrisch mittels LC-MS/MS analysiert.

Abbildung 13: Coomassie- und Silberfärbung mikrodissektierter Muskelfasern Unterschiedliche Anzahl (50, 100, 200 und 500) von mikrodissektierten, lysierten Fasern aus humanem Kontrollmuskelgewebe (N1). Die Proteine werden gelelektrophoretisch aufgetrennt und mittels Silber- (links) und Coomassie-Färbung (rechts) visualisiert.

Zunächst konnte in einem SDS-Gel mittels Coomassie- bzw. Silber-Färbung nachgewiesen werden, dass Proteine aus den mikrodissektierten, lysierten Fasern löslich vorliegen und die Lyse mittels SDS-Lysispuffer damit erfolgreich war. Auf dem Gel sind zumindest bei einer Anzahl von 500 mikrodissektierten Muskelfasern mindestens 20 Proteine sichtbar. Die weitaus sensitivere Methode der Massenspektrometrie sollte demnach eine höhere Anzahl an Proteinen detektieren können. Der Vergleich der proteomischen Ergebnisse der unterschiedlichen Muskelfaserzahlen zeigt, dass sich aus 200 Einzelfasern der Skelettmuskulatur mittels LC-MS/MS zufriedenstellende Daten generieren lassen, wobei zum Großteil myofibrilläre Proteine identifiziert werden konnten, die bei den Myofibrillären Myopathien eine entscheidende Rolle spielen (siehe Anhang 6.1). Unter Einbeziehung der grundlegenden proteomischen Erfahrung von Professor Dr. Hanisch von der Zentralen Bioanalysik in Köln, wurde eine Menge von 200 Muskelfasern bzw. 600.000 µm² für die Versuchsführung als ausreichend eingestuft und geplante für alle weiteren massenspektrometrischen Untersuchungen als Standard gesetzt.

1.2 Erstellung eines generellen Proteinprofils von normalen Skelettmuskelzellen

Für die Evaluierung eines standardisierten Proteinmusters von Skelettmuskelfasern wurden etwa 200 Einzelfasern (600.000 μ m²) von jedem Kontrollmuskelgewebe (N2-N9 siehe Anhang 4.1) mittels LMD ausgelasert und qualitativ mittels LC-MS/MS analysiert. Hier

wurden unterschiedliche Muskelgruppen miteinander verglichen. Es wurden Proben aus Kontrollperson-Bioptaten des M. gastrocnemius (N2, N3 und N7), M. vastus lateralis (N4 und N8) und M. biceps brachii (N5, N6 und N9) verwendet.

Abbildung 14: Qualitative MS-Analyse unterschiedlicher Muskelgruppen

Grafische Darstellung (großes VEN-Diagramm in der Mitte) der mittels LC-MS/MS durchschnittlich identifizierten Proteine in den drei Muskelgruppen M. gastrocnemius (blau), M. biceps brachii (rot) und M. vastus lateralis (gelb) im Vergleich. Zudem komparative Darstellung (kleine Ven-Diagramme) der Proteinidentifikation innerhalb der Muskelgruppen: M. gastrocnemius: N2, N3 und N7; M. biceps brachii: N5, N6 und N9; M. vastus lateralis: N4 und N8.

Die Vergleichsanalyse zeigt, dass kaum Unterschiede zwischen den Proteomen der charakterisierten Muskelgruppen bestehen. Unter Einbeziehung aller Proteine, die einen Mascot Score über 30 aufweisen, konnten insgesamt 101 Proteine identifiziert werden, wovon 63 in allen drei Muskelgruppen vorliegen (siehe Anhang 6.3). Abbildung 14 zeigt, dass die Proteinprofile der einzelnen Muskelgruppen eine Konvergenz von 82 % und damit eine geringe Variabilität zeigen. Betrachtet man die Identifikationsvariabilität innerhalb der Muskelgruppen, zeigt sich, dass auch hier eine Varianz vorliegt. Im M. gastrocnemius überlappen die detektierten Proteine in den Analysen in 52 %, im M. vastus lateralis in 58 % und im M. biceps brachii in 63 % der Fälle. Damit zeigt sich, dass zwischen den einzelnen Muskelbioptaten größere Unterschiede beobachtet werden können, als zwischen den einzelnen Muskelgruppen.

Abbildung 15: Subzelluläre Lokalisation und Molekulare Funktion (Normalkontrollen) Einordnung der mittels LC-MS/MS identifizierten Proteine aus den acht Normalkontrollen der unterschiedlichen Muskelgruppen (N2-N9) nach deren subzellulärer Lokalisation (links) und molekularen Funktion (rechts).

Wie Abbildung 15 zeigt, gehören die Proteine, aufgeteilt nach ihrer subzellulären Lokalisation, zu 26 % zu den Cytoskelettproteinen und zu 29 % zu den cytoplasmatisch lokalisierten Proteinen. 15 % werden zu den mitochondrialen, 12 % zu den nukleären Proteinen gezählt. Eine Aufteilung der identifizierten Proteine nach ihrer molekularen Funktion ordnet 18 % den Strukturproteinen 14 % den Motorproteinen, 20 % den Transportproteinen, 12 % den Chaperonen bzw. Proteinen der Stressantwort und 21 % den metabolischen Proteinen zu.

1.3 Untersuchung eventuell negativer Einflüsse verschiedener Färbemethoden auf die MS-Analyse

Des Weiteren sollte überprüft werden, ob unterschiedliche, konventionelle Färbemethoden wie Trichrom und HE, die zur Visualisierung der Aggregate bei MFM-Patienten in den Muskelschnitten verwendet werden, im Vergleich zu ungefärbten Proben einen negativen Einfluss auf die Protein-Identifikationsrate bei der massenspektrometrischen Analyse ausüben. Dazu wurden zwei verschiedene Kontrollbioptate (N2 und N3, siehe Anhang 4.1) in je zwei Replikaten verglichen. Es wurden 10 µm dicke Cryoschnitte hergestellt und mit Hämatoxylin und Eosin (HE) sowie Trichrom (modifiziert) gefärbt oder ungefärbt belassen. Anschließend wurden Einzelfasern mit einer Gesamtfläche von 600.000 µm² mittels LMD isoliert und massenspektrometrisch analysiert.

Abbildung 16: Auswertung der qualitativen MS-Analyse von unterschiedlich gefärbten Normalkontrollen (A) VEN-Diagramm zur Darstellung der Korrelation der Proteine, die in den unterschiedlich behandelten Proben mittels MS-Analyse identifiziert wurden. Trichrom-gefärbte Proben: blau; HE-gefärbte Proben: rot; ungefärbte Proben: gelb. (B) Prozentualer Vergleich der identifizierten Proteine aus Hämatoxylin & Eosin (HE), Trichrom Gomori (modifiziert) (TC) gefärbten und ungefärbten (OF) Proben (gemittelte Duplikate).

Der Vergleich der unterschiedlich behandelten Proben ergab, wie in Abbildung 16 dargestellt, dass kein negativer Effekt durch die Färbeprozedur auf die Identifikationsraten der Proteine vorliegt, wenn man die Anzahl der identifizierten Proteine aus HE, TC und ungefärbten Proben vergleicht. So werden von den insgesamt 57 identifizierten Proteinen, 39 in allen Proben nachgewiesen, die untereinander eine Konvergenz von 84 % zeigen. Allerdings kann auch eine gewisse Variabilität zwischen den Replikaten bezüglich einiger Proteine beobachtet werden (Tabelle 1).

	Normalkontrolle 2							N	ormalk	ontrolle	. 3	
Accession	HID		TC	TC	OF	OF			TC	TC	OF	OF
MYH7	4045	4210	4559	2647	4263	4513	2128	2634	3636	3454	3012	2602
MYH1	3151	3455	5351	2877	3590	3956	1733	2542	3379	2902	3177	2318
MYH2	2630	2709	3839	2270	3128	3264	1955	2852	3797	3183	3426	2464
ACTS	1378	1456	1572	1345	1136	990	921	872	1365	1211	1124	1129
ACTN2	1034	915	783	533	851	661	423	551	691	392	323	417
KCRM	740	730	654	151	768	655	0	101	658	493	238	232
TPM2	684	470	922	286	375	401	193	427	558	243	626	523
TPM1	539	450	732	189	269	299	212	402	443	231	508	410
MYG	528	513	345	206	364	297	0	108	373	303	195	188
MYL1	512	413	592	361	396	300	340	367	494	292	570	371
PYGM	412	378	195	0	165	200	0	0	0	0	0	0
ALDOA	398	293	115	96	195	393	0	57	246	240	65	50

 Tabelle 1: Proteinidentifikation verschieden gefärbter Proben mittels LC-MS/MS (Auszug aus der Proteinliste Anhang 6.2)

TPM3	358	357	691	76	0	0	0	299	370	180	0	381
MLRV	348	318	466	0	0	167	0	165	302	0	204	161
G3P	343	281	352	120	182	268	0	178	240	191	152	161
ALBU	337	447	76	0	157	212	0	0	0	0	0	0
MYL3	307	262	518	231	201	134	157	199	339	158	335	300
CAH3	269	320	178	0	172	286	0	0	55	97	0	0
ENOB	229	228	0	0	165	234	0	0	0	0	0	0
ACTN3	225	276	506	215	260	215	0	282	206	0	0	0
HBB	209	215	387	191	98	298	133	352	250	211	316	346
MLRS	188	142	474	122	0	98	75	189	275	109	264	244
DESM	181	0	388	0	0	0	0	0	54	0	45	0
ATPB	145	0	329	0	209	209	103	54	238	132	0	0
FHL1	128	118	152	124	68	129	0	41	109	96	77	90
LDHA	120	120	57	84	130	0	0	0	0	0	0	0
TNNT3	99	139	43	0	95	91	104	77	70	49	193	133
AT2A1	0	198	270	104	180	0	58	168	164	116	237	0
MYPC1	0	190	467	160	288	310	164	0	263	229	211	215
HBA	0	74	100	88	0	86	111	89	164	160	140	105

HE = Hämatoxylin und Eosin; TC = Trichrom Gomori (modifiziert); OF = ohne Färbung

2 Charakterisierung der Zusammensetzung pathologischer Proteinaggregate

Pathologische Proteinaggregate sind das charakteristische Kennzeichen aller Myofibrillären Myopathien, sowie neurodegenerativer und weiterer muskulärer Erkrankungen. Die Kenntnis der detaillierten Zusammensetzung dieser Aggregate könnte entscheidende Hinweise darauf geben, welche Proteine beim Aggregationsprozess beteiligt sind und welche biologischen Prozesse in der Zelle hierbei eine Rolle spielen. Die Technologie der Laser Mikrodissektion ermöglicht hierbei die präzise Separierung des Aggregatmaterials von dem restlichen Zellmaterial. Die so generierten, höchst reinen Aggregatproben können dann, nach einem speziellen Lyseverfahren, massenspektrometrisch analysiert werden und proteomisch mit morphologisch normalen Zellen verglichen werden.

2.1 Qualitative MS-Analyse

In einem Vorversuch wurden Aggregatmaterial und morphologisch normale Muskelfasern von drei Patienten (P1, P3 und P9; siehe Anhang 4.2) mittels Laser Mikrodissektion gesammelt und durch Tandem-MS massenspektrometrisch analysiert. Die Patienten zeigen alle klinische und histopathologische Kennzeichen einer Myofibrillären Myopathie. Da im Vorfeld spekuliert wurde, dass Aggregate sich aus nur wenigen Komponenten zusammensetzen, wurde angenommen, dass eine qualitative Analyse bereits Aufschlüsse über das Protein geben könnte, das mutiert vorliegt.

Abbildung 17: Qualitative Proteomics von Aggregatmaterial Grafische Darstellung (Ven-Diagramme) der mittels LC-MS/MS identifizierten Proteine in den Aggregaten (blau), der umgebenden Zellregion (rot) und den Kontrollzellen (gelb) bei (A) Patient 1, (B) Patient 3 und (C) Patient 9.

Die Analyse ergab allerdings, dass die pathologischen Aggregate aus einer Vielzahl von Proteinen bestehen (siehe Anhang 6.4) und kaum Unterschiede zwischen den Patienten aufweisen, von denen Patient 1 an einer FHL1opathie, Patient 3 an einer Myotilinopathie und Patient 9 an einer genetisch unbekannten Form der MFM leidet. Zudem zeigt ein Großteil der Proteine, die in der Aggregatfraktion, im umliegenden Zellmaterial und in den morphologisch normalen Patientenzellen identifiziert werden konnten weitläufige Überlappungen. Von den bei allen drei Analysen insgesamt 121 identifizierten Proteinen, wurden 57 unterschiedliche Proteine in den Aggregaten gefunden. Die Aggregatproteine überlappen mit den Proteinprofilen der umgebenden Region und der morphologisch normalen Zellen mit durchschnittlich etwa 80 % (Patient 1: 76,3 %, Patient 3: 90,7 %, Patient 9: 75 %).

Accession	Protein	Mascot
Patient 1		
1433Z	14-3-3 protein zeta/delta	71
AT2A2	Sarcoplasmic/endoplasmic reticulum calcium ATPase	144
CLCF1	Cardiotrophin-like cytokine factor 1	40
COF1	Cofilin-1	68
IGHG1	Ig gamma-1 chain C region	104

Tabelle 2: Reine Aggregatproteine (Qualitative MS)

MYOTI	Myotilin	69
PGM52	Putative PGM5-like protein 2	74
SQSTM	Sequestosome-1	168
TBA4A	Tubulin alpha-4A chain	66
TERA	Transitional endoplasmic reticulum ATPase	41
VDAC3	Voltage-dependent anion-selective channel protein 3	51
VIME	Vimentin	334
XIRP2	Xin actin-binding repeat-containing protein 2	238
Patient 3		
PRAF3	PRA1 family protein 3	52
RTN2	Reticulon-2	106
RTN4	Reticulon-4	81
SYPL2	Synaptophysin-like protein 2	43
FLNC	Filamin-C	190
Patient 9		
AATM	Aspartate aminotransferase, mitochondrial	71
ANXA2	Annexin A2	42
AT5F1	ATP synthase subunit b, mitochondrial	124
ATP5L	ATP synthase subunit g, mitochondrial	47
ATPG	ATP synthase subunit gamma, mitochondrial	106
CISY	Citrate synthase, mitochondrial	68
CO6A3	Collagen alpha-3(VI) chain	99
DHSA	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial	69
ECH1	Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial	95
GRP75	Stress-70 protein, mitochondrial	49
GRP75 IDHP	Stress-70 protein, mitochondrial Isocitrate dehydrogenase [NADP], mitochondrial	49 147
GRP75 IDHP M2OM	Stress-70 protein, mitochondrial Isocitrate dehydrogenase [NADP], mitochondrial Mitochondrial 2-oxoglutarate/malate carrier protein	49 147 139
GRP75 IDHP M2OM PHB	Stress-70 protein, mitochondrial Isocitrate dehydrogenase [NADP], mitochondrial Mitochondrial 2-oxoglutarate/malate carrier protein Prohibitin	49 147 139 78
GRP75 IDHP M2OM PHB PHB2	Stress-70 protein, mitochondrial Isocitrate dehydrogenase [NADP], mitochondrial Mitochondrial 2-oxoglutarate/malate carrier protein Prohibitin Prohibitin-2	49 147 139 78 48

In Tabelle 2 sind die Proteine aufgelistet, die in den Patienten 1, 3 und 9 ausschließlich in den Aggregaten identifiziert wurden. Bei diesen Proteinen gibt es bis auf Vimentin in Patient 1 und 9 keine Übereinstimmung zwischen den Patienten. Die identifizierten "Aggregatproteine" geben keinen entscheidenden Hinweis auf die krankheitsverursachenden Gene.

2.2 Quantitative MS-Analyse

Da eine qualitative MS-Analyse keine ausreichenden Informationen über die Zusammensetzung der Proteinaggregate zu geben scheint, wird eine neue Technologie hinzugezogen (Versuchsablauf siehe Abbildung 18).

Abbildung 18: Schema Versuchsablauf

Mittels Laser Mikrodissektion werden morphologisch normale Muskelfasern (links) und Aggregate (rechts) der Patienten ausgelasert. Die Gewebeareale werden lysiert, die Proteine mit Trypsin und LysC zu Peptiden verdaut und anschließend die isobaren Tags zugegeben. Die Proben werden vermischt, die Peptide fraktioniert und anschließend mittels MALDI-TOF/TOF analysiert.

Diese neue Methodik verbindet die Markierung von Peptiden mittels isobarer Tags (iTRAQ-Methode) mit der MALDI-TOF/TOF-Analyse. Zunächst wird dazu in einem Vorversuch überprüft, ob diese MS-Methode eine vergleichbare Sensitivität wie LC-MS/MS aufweist. Dazu wird dissektiertes Zellmaterial der Kontrollbiopsie N1verwendet.

Abbildung 19: MALDI-TOF/TOF Testlauf mit Kontrolle N1

Massenspektrometrische Analyse (MALDI-TOF/TOF) von mikrodissektierten Einzelzellen aus humanem Kontrollgewebe (N1). Für die Analyse wurde 600.000 µm² Zellmaterial mittels LMD gesammelt.

Die Kontrollanalyse mittels MALDI-TOF/TOF zeigt, wie in Abbildung 19 dargestellt, dass 69 Proteine identifiziert werden können, die einen Mascot-Score über 30 vorweisen und mit mindestens einem spezifischen Peptid zugeordnet werden können (siehe auch Anhang 6.5). Somit liefert das Verfahren vergleichbare Ergebnisse und ist für weitere Versuche geeignet.

Im weiteren Verlauf der Arbeit werden nun einzelne Patienten, die klinische und histopathologische Merkmale einer Myofibrillären Myopathie aufweisen, beschrieben. Die pathologischen Aggregate der Patienten wurden mittels quantitativer Massenspektrometrie, Westernblot-Analyse und immunhistochemischen Untersuchungen proteomisch analysiert.

2.3 FHL1opathie

2.3.1 Klinischer Phänotyp der Patienten 1 und 2

Beim Patienten 1 handelt es sich um einen 52-jährigen Mann, der im Alter von 20 Jahren erstmals Symptome wie Rückenschmerzen und eine distale Muskelschwäche registrierte. Im Verlauf der Erkrankung entwickelte der Patient einen scapuloperonealen Phänotyp und verlor seine Gehfähigkeit mit 49 Jahren. Er weist Kontrakturen der Achilles- und Kniesehne, der Ellenbogen, sowie der Nackenmuskulatur auf. Muskelkraftmessungen ergaben Paresen des M. biceps brachii, M. iliopsas, M. gastrocnemius und der Adduktoren, sowie des M. tibialis anterior. Der Schultergürtel sowie die distalen Beinmuskeln zeigen eine starke Muskelatrophie, wobei im MRT sichtbar wird, dass Teile des Delta- und des Sternocleidomastoideus-Muskels ausgespart sind. Die Muskeln der unteren Beine und der Oberschenkel sind atroph mit beinahe komplettem Fettumbau, wobei der M. sartorius ausgespart ist. M. gluteus und M. iliopsoas dagegen sind relativ gut erhalten, wiesen aber Ödeme auf.

Das Kreatinkinase (CK)-Level ist bis zu 7-fach erhöht. Der Patient zeigt keine sensorischen oder mentalen Abnormalitäten. Seit einer schweren Lungenentzündung benötigt der Patient nächtliche Beatmung, allerdings ist keine kardiale Beteiligung vorliegend. Während die Eltern als gesund beschrieben wurden, litt ein Onkel an einer nicht weiter untersuchten Herzschwäche. Seine drei Kinder im Alter von 25, 28 und 30 Jahren sind asymptomatisch, allerdings nicht genetisch getestet.

Der Patient 2 ist der 47-jährige Bruder des Indexpatienten. Im Alter von 41 Jahren traten bei ihm erstmals Schmerzen im unteren Rücken und eine proximale Beinmuskelschwäche, sowie belastungsinduzierte Myalgien in den unteren Extremitäten auf. Zudem versteiften sich zunehmend seine Wirbelsäule und der Nacken, einhergehend mit Kontrakturen der Achillessehne, der Ellenbogen und des Nackens. Er weist eine Muskelatrophie in den glutealen Muskeln und distalen Bein- und Armmuskeln sowie eine Muskelhypertrophie im Schultergürtel mit Ausprägung einer Scapula alata auf.

Das MRT zeigt eine generalisierte Atrophie der Nackenmuskulatur und einen verstärkten lipodystrophen Umbau in den glutealen Muskeln, dem M. tensor fasciae latae, M. semimembranosus, M. semitendinosus, M. longus capitis, M. biceps femoris, M. vastus intermedius und lateralis, sowie in den unteren Beinmuskeln M. soleus and M. gastrocnemius. Die Muskeln der oberen Körperhälfte sind ausgespart, wobei Triceps brachii und Latissimus dorsi einige hyperintense Areale aufweisen. Die untere Körperhälfte zeigt einen hohen Anteil an abnormalem und degenerativem Körperfett. Die Muskelkraftmessung zeigt normale Werte in den oberen Muskeln des Körpers, mit Ausnahme des Armhebers. In den unteren Extremitäten dagegen konnten Paresen des linken M. gluteus maximus und in den Tibialis anterior Muskeln festgestellt werden. Der CK-Wert liegt etwa 9-fach erhöht vor und es wurde keine respiratorische oder kardiale Beteiligung diagnostiziert. Sein Sohn und seine Tochter sind asymptomatisch, wurden aber nicht genetisch getestet.

2.3.2 Histologische Charakterisierung

Bei den Patienten 1 bzw. 2 wurde im Alter von 35 bzw. 42 Jahren eine Muskelbiopsie aus dem M. biceps brachii bzw. M. tibialis anterior entnommen. Die histologischen Schnitte wurden unter Anwendung unterschiedlicher Färbemethoden auf myofibrilläre Besonderheiten untersucht.

(A) HE- (linke Spalte) und Trichrom-Färbung (2.Spalte) sowie NBT-Menadion (3.Spalte) von 10 μ m dicken Cryoschnitten der Muskelbioptate von Patient 1 und 2. Vergrößerung: 40 x, Maßstabsbalken: 100 μ m. (B) EM-Aufnahmen der Ultrastruktur der Muskelbiopsien von Patient 1 (Vergrößerung: 8700 x) und Patient 2 (Vergrößerung: 3300 x bzw. 10500 x). RB = Reducing Bodies; CB = cytoplasmatische Bodies.

Bei beiden Patienten zeigte sich eine degenerative Myopathie mit klassischen morphologischen Kennzeichen einer Myofibrillären Myopathie, wie intracytoplasmatische Einschlüsse, Abrundung und pathologische Größenvariation der Muskelfasern, zentral lokalisierte Myonuklei, Fasersplitterungen und "rimmed vacuoles". Mithilfe der Nitroblautetrazolium-Menadion-Färbung können Einschlusskörperchen mit reduzierender Aktivität bei beiden Patienten beobachtet werden. In der elektronenmikroskopischen Untersuchung des Muskelgewebes beider Patienten zeigen sich die Ablagerung von granulofilamentösem Material an den Z-Scheiben und autophagische Vakuolen. Erst eine intensive ultrastrukturelle Untersuchung des Gewebes konnte Reducing Bodies und bei Patient 2 auch cytoplasmatische Bodies nachweisen. Um erste Hinweise auf die Zusammensetzung der Proteinaggregate zu erhalten wurden immunhistochemische Untersuchungen durchgeführt. Antikörper gegen FHL1 und p62, α -B Crystallin, Desmin oder MYH7 wurden dazu in Co-Stainings verwendet.

Abbildung 21: Immunhistochemie Patient 1

Doppelfärbung von 8 µm dicken Muskelschnitten von Patient 1 und Kontrolle (N1) mit Antikörpern gegen FHL1 (grün) und α -B Crystallin, Desmin und p62 (rot). Als Negativkontrolle wurde ein Antikörper gegen MYH7 verwendet. Zur Visualisierung wurden Fluoreszenz-gelabelte sekundäre Antikörper verwendet (ALEXA-488 = grün; ALEXA-594 = rot) (Vergrößerung: 60 x, Maßstabsbalken: 50 µm bzw. 100 µm bei Kontrolle FHL1/MYH7).

Abbildung 22: Immunhistochemie Patient 2

Doppelfärbung von 8 μ m dicken Muskelschnitten von Patient 2 und Kontrolle (N1) mit Antikörpern gegen FHL1 (grün) und α -B Crystallin, Desmin und p62 (rot). Als Negativkontrolle wurde ein Antikörper gegen

MYH7 (rot) verwendet. Zur Visualisierung wurden Fluoreszenz-gelabelte sekundäre Antikörper verwendet (ALEXA-488 = grün; ALEXA-594 = rot) (Vergrößerung: 60 x, Maßstabsbalken: 50 μ m).

In der Immunhistochemie wird deutlich, dass die Aggregate cytoplasmatische und subsarkolemmale Akkumulation von FHL1-positivem Material zeigen. Diese Aggregate sind ebenfalls positiv für α -B Crystallin, Desmin und p62. Interessanterweise zeigten p62 und FHL1 eine eindeutige Kolokalisation in allen Aggregaten, während α -B Crystallin und Desmin mit FHL1 assoziiert sind, aber nur Randareale mit Kolokalisation aufweisen. Dabei scheint FHL1 eine Art Kernstruktur des Aggregates zu bilden und die assoziierten Proteine sich an diese Kernstruktur anzulagern. MYH7 liegt nicht in den Aggregaten vor, sondern ist diffus in den Zellen verteilt, wobei einige Zellen komplett negativ für Myosin 7 sind.

Um zu überprüfen, ob auch in den Myoblasten oder nach der Differenzierung in den Myotuben des Patienten 1 pathologische Proteinaggregate zu finden sind, wurden die Myoblasten unter Verwendung eines Hungermediums auf Laminin ausdifferenziert und mit Antikörpern gegen Desmin und FHL1 gefärbt.

Abbildung 23: Differenzierte Patientenmyoblasten von Patient 1 (374/01) Doppelfärbung von über 7 Tagen zu Myotuben differenzierten Myoblasten von Patient 1 mit Antikörpern gegen Desmin (rot) und FHL1 (grün). Zur Visualisierung wurden Fluoreszenz-gelabelte sekundäre Antikörper verwendet (ALEXA-488 = grün; ALEXA-594 = rot)

In den Patientenmyoblasten und -myotuben konnten auch nach bis zu 7 Tagen nach Differenzierung zu Myotuben keine FHL1- bzw. Desmin-Aggregate beobachtet werden. Auffällig war, dass die Patientenmyoblasten eine viel langsamere und geringere Teilungs- und Differenzierungsrate aufwiesen, als Myoblasten von Kontrollpersonen.

2.3.3 Proteomische Analyse und Validierung mittels Westernblot-Analyse

2.3.3.1 Quantitative Analyse ganzer aggregathaltiger Zellen

Zunächst wurden komplette, aggregathaltige Muskelfasern des Patienten 1 mittels Laser Mikrodissektion gesammelt, um deren Proteinprofil quantitativ mit zum einen morphologisch normalen Muskelfasern desselben Patienten (NP) und zum anderen mit dissektierten Einzelfasern von zwei Kontrollpersonen (NK1 und NK2) zu vergleichen. Dazu wurden jeweils gleiche Mengen an Fasermaterial (600.000 μ m² Gesamtzellfläche von je 10 μ m dicken Schnitten) generiert und mittels iTRAQ-Labeling und Massenspektrometrie analysiert.

Abbildung 24: iTRAQ-Analyse von kompletten aggregathaltigen Muskelfasern des Patienten 1 (A) Quantitativer Proteinvergleich von aggregathaltigen, mikrodissektierten Einzelfasern des Patienten 1 mit Kontrollfasern aus 2 verschiedenen Kontrollgeweben NK1 und NK2 (N2 und N3), sowie mit morphologisch normalen Muskelfasern des Patienten 1 (NP) mittels iTRAQ-Labeling und anschließender massenspektrometrischer Analyse (MALDI-TOF/TOF). Aufgezeigt sind hier die in den Aggregaten erhöht vorliegenden Proteine. (B) Einteilung der in den aggregathaltigen Fasern erhöhten Proteine. Die Proteine, die in den Aggregaten in den drei Replikatanalysen erhöht vorliegen werden nach ihrer subzellulären Lokalisation (links) und molekularen Funktion (rechts) eingeteilt (www.uniprot.de) und sind prozentual im Tortendiagramm aufgetragen.

Als erhöht wurden Proteine mit einem Regulationsfaktor $\geq 1,4$, als vermindert $\leq 0,75$ eingestuft. Beim Vergleich der kompletten aggregathaltigen Muskelfasern des Patienten mit den Normalkontrollfasern können von den insgesamt 128 identifizierten Proteinen 37 als erhöht und 14 als in den aggregathaltigen Muskelfasern erniedrigt, im Vergleich zu den Kontrollmuskelfasern (NK1, NK2 und NP), eingestuft werden (siehe Anhang 6.6). In Abbildung 24 werden alle Proteine aufgeführt, die zumindest in einer Analyse einen Regulationsfaktor von über 1,4 aufweisen und damit als erhöht in den aggregathaltigen Muskelfasern gelten. Es zeigt sich, dass das zur Familie der kleinen Hitzeschockproteine

gehörende α-B Crystallin in den pathologisch veränderten Zellen mit einer durchschnittlich etwa 3,1-fachen Erhöhung (AG/NK1: 3,15; AG/NK2: 3,66; AG/NP: 2,39), am stärksten vertreten ist. Des Weiteren zeigen Proteine wie Calsequestrin-2 (AG/NK1: 1,93; AG/NK2: 2,31; AG/NP: 1,74), Annexin A2 (AG/NK1: 1,89; AG/NK2: 2,14; AG/NP: 1,81), Tubulin alpha-4A Chain (AG/NK1: 1,81; AG/NK2: 2,07; AG/NP: 1,52), Cysteine and Glycine-rich Protein 3 (AG/NK1: 1,89; AG/NK2: 2,91; AG/NP: 1,09) und Myosin Light Chain 6B (AG/NK1: 2,02; AG/NK2: 2,26; AG/NP: 1,31) mit einer durchschnittlichen über 1,6-fachen Erhöhung eine verstärkte Abundanz in den aggregathaltigen Muskelfasern. Allerdings fällt bei den beiden letzteren Proteinen auf, dass im Vergleich mit den morphologisch normalen Muskelfasern des Patienten kein gesteigerter Regulationsfaktor vorliegt. Auch bei Hitzeschockproteinen wie HspB1, Hsp70 und Hsp7C sowie bei bekannten Aggregatproteine wie Desmin und Filamin C lässt sich eine Erhöhung der relativen Proteinmenge nur im Vergleich zu den Kontrollmuskelfasern der gesunden Versuchspersonen beobachten. FHL1 dagegen liegt nur 1,3-fach und damit redundant vermehrt in den aggregathaltigen Muskelfasern im Vergleich zu morphologisch normalen Patientenmuskelfasern und Kontrollmuskelfasern vor und kann somit nicht als erhöht eingestuft werden. Betrachtet man nun die identifizierten Proteine, wie im Tortendiagramm in Abbildung 24B dargestellt, die eine erhöhte Abundanz in den aggregathaltigen Muskelfasern des Patienten aufweisen, bezüglich der subzellulären Lokalisation fällt auf, dass etwa ein Drittel den cytoplasmatisch lokalisierten Proteinen zugeschrieben werden können. Nur 20 % stellen Proteine des Cytoskeletts dar und je 14 % sind mitochondriale oder nukleäre Proteine. Die Einteilung der Proteine nach ihrer molekularen Funktion klassifiziert 32 % als metabolische Proteine, 14 % als Chaperone und nur 24 % als Struktur- und Motorproteine.

Abbildung 25: iTRAQ-Analyse von kompletten aggregathaltigen Muskelfasern des Patienten 1 (A) Quantitativer Proteinvergleich von aggregathaltigen, mikrodissektierten Einzelfasern des Patienten 1 mit Kontrollfasern aus zwei verschiedenen Kontrollgeweben NK1 und NK2 (N2 und N3), sowie mit morphologisch

normalen Muskelfasern des Patienten 1 (NP) mittels iTRAQ-Labeling und anschließender massenspektrometrischer Analyse (MALDI-TOF/TOF). Aufgezeigt sind hier die in den Aggregaten vermindert vorliegenden Proteine. (B) Einteilung der in den aggregathaltigen Muskelfasern verminderten Proteine. Die Proteine, die in den Aggregaten in den drei Replikatanalysen erhöht vorliegen werden nach ihrer subzellulären Lokalisation (oben) und molekularen Funktion (unten) eingeteilt (www.uniprot.de) und sind prozentual im Tortendiagramm aufgetragen.

In Abbildung 25A werden die Proteine aufgeführt, die zumindest in einer Analyse einen Regulationsfaktor von unter 0,75 aufweisen und damit als vermindert in den aggregathaltigen Muskelfasern gelten. Eine durchschnittliche, relative Proteinmenge von unter 0,75 in den aggregathaltigen Muskelfasern zeigen u.a. Calsequestrin-1 (AG/NK1: 0,67; AG/NK2: 0,62; AG/NP: 0,84) und das Protein FAM133A (AG/NK1: 0,59; AG/NK2: 0,54; AG/NP: 0,77). Allerdings lässt wiederum nur der Vergleich mit den Kontrollfasern NK1 und 2 diese Proteine als vermindert in den aggregathaltigen Muskelfasern einstufen. Wie Abbildung 25B zeigt, handelt es sich bei den Proteinen vorwiegend um cytoplasmatisch lokalisierte Proteine, wovon ein Großteil in metabolische, aber auch Transportprozesse, sowie Signaltransduktions-Pathways involviert ist. Auch die Cytoskelettproteine sind mit 27 % stark vertreten. Dabei handelt es sich zumeist um Proteine des kontraktilen Apparats der Skelettmuskelzellen, wie Mitgliedern der Myosin- und Troponin-Familie.

Um die Ergebnisse der proteomischen Analyse mittels Westernblot-Analyse zu validieren wurde ein Gesamtzelllysat aus fünfundzwanzig 10 µm dicken Schnitten des Muskelbioptats des Patienten 1 und 2 hergestellt, die Proteine elektrophoretisch aufgetrennt und FHL1 mithilfe eines spezifischen Antikörpers detektiert.

Die Immunoblot-Analyse zeigt eine signifikante Reduktion des FHL1-Proteinlevels im Gesamtzelllysat der beiden Patienten im Vergleich zur Kontrolle. Die relative Quantifizierung

der Patientenproben nach Normalisierung mit GAPDH zeigt, dass FHL1 im Patienten 1 nur 28 % und im Patienten 2 43 % der Proteinmenge der Kontrolle aufweist.

2.3.3.2 Quantitative Analyse präzise ausgelaserter Aggregate Patient 1

Um nun eine präzise proteomische Analyse der pathologischen Proteinaggregate des Patienten 1 mit FHL1-Mutation (C224W) durchzuführen, wurden jeweils 600.000 µm² Aggregatmaterial und zum Vergleich dieselbe Menge an morphologisch normalen Muskelfasern des Patienten mittels Laser Mikrodissektion gesammelt. Die Proben wurden anschließend wiederum via iTRAQ-Verfahren gelabelt und mittels MALDI-TOF/TOF Massenspektrometrie analysiert. Es wurden jeweils drei Analysen parallel durchgeführt, um gleichzeitig die Varianz der Methode zu untersuchen.

Abbildung 27: Replikatvergleich präzise ausgelaserter Aggregate des Patienten 1

Vergleich der Anzahl der identifizierten Proteine von drei quantitativen MS-Analysen im Ven-Diagramm. Es wurde jeweils eine Gesamtfläche von 600.000 μ m² präzise ausgelasertem Aggregatmaterial aus Schnitten des Muskelbioptats von Patient 1 generiert und mittels quantitativer Massenspektrometrie analysiert.

Vergleicht man die mittels quantitativer Massenspektrometrie identifizierten insgesamt 148 Proteine der unterschiedlichen Replikate miteinander wird deutlich, dass nur etwa 20 % der Proteine in allen drei Proben identifiziert werden können (siehe Anhang 6.7). Damit zeigt die Analyse einen hohen Varianzanteil. Allerdings scheint Replikat 3 hier allgemein eine schlechtere Proteinidentifikationsrate aufzuweisen. So werden hier nur 43 Proteine nachgewiesen, die allerdings fast zu 100 % mit den in Replikat 1 und 2 identifizierten Proteinen übereinstimmen.

Abbildung 28: Replikatvergleich erhöht vorliegender Proteine bei Patient 1 (A) Die Proteine, die als erhöht in den Aggregaten im Vergleich zu den morphologisch normalen Muskelfasern

identifiziert werden, sind absteigend nach den Regulationsfaktoren von links nach rechts aufgetragen. (B) Die in der quantitativen MS-Analyse identifizierten Proteine bei Patient 1, die in den Aggregaten erhöht vorliegen, werden nach ihrer subzellulären Lokalisation (links) und molekularen Funktion (rechts) eingeteilt (www.uniprot.org) und sind prozentual im Tortendiagramm aufgetragen.

Abbildung 28A stellt grafisch die relative Menge der Proteine dar, die in der iTRAQ-Analyse mit einem Regulationsfaktor $\geq 1,4$ als erhöht eingestuft und mindestens in zwei Replikatanlysen identifiziert wurden. FHL1 ist hier mit Abstand das Protein mit der höchsten Abundanz in den präzise ausgelaserten Aggregaten in allen drei Replikaten. Es weist eine signifikante Erhöhung von maximal 11,68 auf. Weitere Strukturproteine, wie Desmin, Filamin A und C, Myotilin und Aktin, sowie Hitzeschockproteine, wie α -B Crystallin, BAG3, Hsp7C und Hsp71 liegen zumindest in zwei der drei Replikatproben erhöht vor. Die Ven-Diagramme in Abbildung 28B zeigen, dass 50 % der identifizierten Proteine zu den Cytoskelettproteinen zählen, während sich die andere Hälfte aus cytoplasmatisch oder nukleär lokalisierten sowie Zellmembranproteinen zusammensetzt. 42 % der nachgewiesenen Proteine fungieren als Strukturproteine und weitere 25 % als Chaperone.

(A) Die Proteine, die als vermindert in den Aggregaten im Vergleich zu den morphologisch normalen Muskelfasern identifiziert werden, sind absteigend nach dem Regulationsfaktor von links nach rechts aufgetragen. (B) Die in der quantitativen MS-Analyse identifizierten Proteine bei Patient 1, die in den Aggregaten reduziert vorliegen, werden nach ihrer subzellulären Lokalisation (oben) und molekularen Funktion (unten) eingeteilt (www.uniprot.org) und sind prozentual im Tortendiagramm aufgetragen.

Abbildung 29 zeigt, dass in den Aggregaten vorwiegend Motorproteine und Proteine des kontraktilen Apparates (50 %) wie Tropomyosine, Myosine und Troponine in mindestens zwei Replikaten vermindert vorliegen. Alle identifizierten Proteine weisen ursprünglich eine cytoskelettale bzw. sarkoplasmatische Lokalisation in der Muskelfaser auf.

Abbildung 30: iTRAQ-Analyse Patient 1 (Mittelwerte der Replikatanalysen) Proteine mit mittlerem Regulationsfaktor (Aggregatmaterial zu morphologisch normalen Muskelfasern des Patienten 1) der drei Replikatanalysen. Den Proteinen ist im Graph der jeweilige Regulationsfaktor zugeordnet. Als erhöht werden Proteine mit einem Verhältnis (AG/NK) von \leq 1,4, als reduziert \geq 0,75 eingeordnet.

In Abbildung 30 sind alle massenspektrometrischen Ergebnisse im Mittel aufgezeigt. Es ist eindeutig zu erkennen, dass die Aggregate eine herausragend stark erhöhte Menge an FHL1 aufweisen, wobei es sich um eine durchschnittlich 10,03-fache Erhöhung beim Patient 1 handelt. Bekannte Aggregatmarker wie Filamin C (AG/NK: 1,7) Desmin (AG/NK: 1,8) und α -B Crystallin (AG/NK: 1,92) liegen in den Aggregaten ebenfalls erhöht vor, verglichen mit morphologisch normalen Muskelfasern des Patient 1. Es lässt sich eine erhöhte Menge an Aktin (AG/NK: 2,94), Nebulin-related Anchoring Protein (AG/NK: 1,95), an Ubiquitin-60S Ribosomal Protein L40 (AG/NK: 4,94) und an Sequestosom 1, auch bekannt als p62 (AG/NK: 2,41) ermitteln. Zusätzlich zeigen unterschiedliche Hitzeschockproteine wie Hsp7C (AG/NK: 1,56) und Hsp71 (AG/NK: 1,47) im Patienten 1 ein erhöhtes Level in den Aggregaten. Mit Regulationsfaktoren unter 0,6 wurden vorwiegend Myosine, wie MYL1 (AG/NK: 0,58), MLRS (AG/NK: 0,57), MYH2 (AG/NK: 0,55) und MYL3 (AG/NK: 0,52) ermittelt.

In einer Westernblot-Analyse von präzise dissektierten Aggregaten und morphologisch normalen Muskelfasern von Patient 1 und Einzelmuskelfasern einer Kontrollperson wird die relative Proteinmenge von MYH7, Desmin, p62 und FHL1 bestimmt. Dazu werden exakt gleiche Mengen an Probenmaterial (Gesamtfläche jeweils 1,5 Mio. μm²) mittels LMD generiert und im Immunoblot unter Verwendung spezifischer Antikörper analysiert. Eine Bestimmung der Proteinkonzentration ist hier nicht möglich, da die zur Verfügung stehenden Quantifizierungsmethoden (BCA-Assay, Nanodrop) derart geringe Proteinmengen nicht erfassen können.

Abbildung 31: Relative Quantifizierung von MYH7, Desmin, p62 und FHL1 in mikrodissektierten Muskelfaser-Aggregaten von Patient 1

Es wurden jeweils 1,5 Mio. µm² Gesamtfläche (10 µm dicke Cryoschnitte) an Aggregat (Aggregate 374/01)bzw. Muskelfasermaterial von morphologisch normalen Muskelfasern des Patienten (NK 374/01) und einer normalen Kontrollperson (NK 148/07) mittels LMD gesammelt und im SDS-Lysispuffer mittels Ultraschallbehandlung und Erhitzen homogenisiert. Die Proteine wurden gelelektrophoretisch aufgetrennt und mittels Westernblot unter Verwendung eines MYH7-, Desmin-, p62- und FHL1-spezifischen Antikörpers analysiert und mittels GAPDH normalisiert. Eine relative Quantifizierung des Proteingehalts wurde mithilfe des Programmes ImageJ durchgeführt.

Obwohl gleiche Mengen an Probenmaterial in der Westernblot-Analyse eingesetzt wurden, zeigt sich ein geringeres GAPDH-Proteinlevel bei den mikrodissektierten Aggregaten. Dies könnte auf eine geringere Löslichkeit des Aggregatmaterials im Vergleich zu normalen Muskelfasern zurückzuführen sein. Desmin ist ausschließlich in den Aggregaten in einer detektierbaren Menge vorhanden. P62 ist in den morphologisch normalen Muskelfasern des Patienten leicht und in den Aggregaten stärker erhöht, während es in den Muskelfasern der Kontrollperson nicht nachgewiesen werden kann. MYH7 dagegen weist ein stark vermindertes Proteinlevel in den Aggregaten auf. FHL1 zeigt unter Verwendung von zwei verschiedenen Antikörpern im Westernblot zwar keine sichtbare Erhöhung des Proteinlevels in den Aggregaten, allerdings lässt sich nach der Normalisierung der aufgetragenen Proteinmenge mit dem internen Standard GAPDH eine Erhöhung von FHL1 in den Aggregaten im Vergleich zu den beiden Kontrollen erkennen.

2.3.3.3 Quantitative Analyse präzise ausgelaserter Aggregate Patient 2

Um zu überprüfen, ob das Proteinprofil des Patienten 1 mit dem seines Bruders (Patient 2) übereinstimmt, wurden auch in diesem Fall Aggregate und morphologisch normale Muskelfasern von Patient 2 mittels quantitativer Massenspektrometrie verglichen (siehe Anhang 6.8).

Bei dem jüngeren Bruder des Indexpatienten zeigt sich in der quantitativen proteomischen Analyse ebenfalls eine signifikante Erhöhung von FHL1 (4,2-fach) in den Proteinaggregaten. Somit stellt auch bei diesem Patienten demnach FHL1 das Protein mit der höchsten Abundanz dar. Zudem weisen Aktin (3,9-fach), RL40 (2,7-fach), Desmin (1,6-fach) und α -B Crystallin (1,5-fach), Sequestosom 1 (1,46-fach) sowie XIRP1 (1,49-fach) und XIRP2 (1,55-fach) eine Steigerung der relativen Proteinmenge auf. Es lassen sich demnach viele Übereinstimmungen zwischen den Proteinprofilen von Patient 2 und Patient 1 beobachten. Wie in den Ven-Diagrammen von Abbildung 32B zu erkennen ist, handelt es sich bei den hochregulierten Proteinen vorwiegend um Cytoskelettproteine und cytoplasmatisch sowie nukleär lokalisierte Proteine. 38 % der Proteine sind als Strukturproteine zu klassifizieren, während auch Proteine, die in Signaltransduktions- und Transportprozesse involviert sind, vertreten sind.

Abbildung 33: iTRAQ-Analyse vermindert vorliegender Proteine bei Patient 2

(A) Die Proteine, die als vermindert in den Aggregaten im Vergleich zu den morphologisch normalen Muskelfasern identifiziert werden, sind absteigend nach dem Regulationsfaktor von links nach rechts aufgetragen. (B) Die in der quantitativen MS-Analyse identifizierten Proteine bei Patient 2, die in den Aggregaten reduziert vorliegen, werden nach ihrer subzellulären Lokalisation (links) und molekularen Funktion (rechts) eingeteilt (www.uniprot.org) und sind prozentual im Tortendiagramm aufgetragen.

Zu den Proteinen mit verringertem Anteil in den Aggregaten zählen wiederum überwiegend Mitglieder der Aktinin-, Myosin-, Troponin- und Tropomyosin-Familie. Die in den Aggregaten reduzierten Proteine gehören zu einem Großteil zu den Cytoskelett- und cytoplasmatischen Proteinen (80 %) und wiederrum fallen die Motorproteine und Proteine des kontraktilen Apparates mit 31 % ins Gewicht.

2.3.4 Genetische Analyse

Mithilfe einer molekulargenetischen Analyse sollte parallel überprüft werden, ob bei den beiden Patienten 1 und 2 eine Mutation im FHL1-Gen vorliegt. Dazu wurden aus der

genomischen DNA der beiden Patienten die Exons 1 bis 7 des FHL1-Gens amplifiziert und sequenziert.

Abbildung 34: C224W Mutation im FHL1-Gen

(A) Nukleotidsequenz und Aminosäuresequenz des FHL1-Gens (c.656-c.686): Wildtypsequenz (oben) und Sequenz mit Mutation (c.672C>G bzw. p.C224W) (unten). Die Nukleotidposition, an der die Mutation stattfindet, ist mit einem roten Pfeil markiert. (B) Strukturelle Darstellung der Position, an der die Aminosäuresubstitution bei den Patienten 1 und 2 innerhalb des FHL1-Proteins und der LIM4-Domäne liegt. (C) Alignment der LIM4-Domäne des FHL1-Gens von verschiedenen Spezies. Die mutierte Aminosäure (rot hervorgehoben) ist in allen Spezies konserviert. Ebenfalls konservierte Bereiche sind grau unterlegt; hochkonservierte Cystein- und Histidinreste, die für die Zinkionenbindung essentiell sind, sind fett und vergrößert.

Die genetische Analyse hat ergeben, dass bei den beiden Patienten eine Mutation im Exon 6 des FHL1-Gens vorliegt. Es handelt sich um eine Missense-Mutation, bei der ein hochkonserviertes Cystein des ersten Zinkfingers der LIM4-Domäne durch ein Tryptophan substituiert wird. Die hemizygote Mutation wird c.672C>G bzw. p.C224W benannt.

2.4 Myotilinopathie

2.4.1 Klinischer Phänotyp des Patienten 3

Patient 3 ist ein 43-jähriger Mann, der seit 2008 eine progrediente Schwäche der unteren Extremitäten und Faszikulationen im linken Oberschenkel aufweist. Im Verlauf der Erkrankung zeigt er zunehmend Paresen der proximalen Arm- und Beinmuskulatur. Im MRT der Oberschenkel zeigte sich eine Verfettung des M. vastus lateralis und medialis mit einem entzündlichen Ödem. Der M. abductor magnus sowie der M. biceps femoris zeigten eine fettige Degeneration. Der CK-Wert liegt bei 1.143 U/l. Seine Schwester leidet an einer schweren bisher nicht klassifizierten, neuromuskulären Erkrankung.

2.4.2 Histologische Charakterisierung

Bei dem Patienten 3 wurde im Alter von 41 Jahren ein Muskelbioptat aus dem Musculus gastrocnemius caput mediale entnommen und die histologischen Schnitte unter Anwendung unterschiedlicher Färbemethoden (HE und Trichrom) auf myofibrilläre Besonderheiten untersucht.

Die histopathologische Untersuchung der Muskelbiopsie des Patienten 3 zeigt eine ausgeprägte degenerative Myopathie mit vermehrter Bindegewebseinlagerung, erhöhter Faserkalibervariabilität mit zahlreichen hypertrophen und atrophen Fasern, Faserspaltungen und internalisierte Myonuklei. Zudem können zahlreiche subsarkolemmale und cytoplasmatische Proteinaggregate in der HE und Trichromfärbung, sowie einige "rimmed vacuoles" beobachtet werden.

Abbildung 36: Immunhistochemie Patient 3

Doppelfärbung von 8 μ m dicken Muskelschnitten von Patient 3 und Kontrolle (N1) mit Antikörpern gegen Myotilin (rot/grün) und α -B Crystallin, Desmin und p62 (rot). Als Negativkontrolle wurde ein Antikörper gegen MYH7 (rot) verwendet. Zur Visualisierung wurden Fluoreszenz-gelabelte sekundäre Antikörper verwendet (ALEXA-488 = grün; ALEXA-594 = rot) (Vergrößerung: 60 x, Maßstabsbalken: 50 μ m).

Die Immunhistochemische Untersuchung der Muskelbiopsie des Patienten 3 zeigt zahlreiche Myotilin-positive Proteinaggregate, in denen α -B Crystallin, Desmin und p62 eine deutliche Kolokalisation mit Myotilin aufweisen. MYH7 kann in den Aggregaten nicht detektiert werden.

2.4.3 Proteomische Analyse

Um die pathologischen Proteinaggregate des Patienten 3 genauer zu charakterisieren, wurden wiederum drei Replikate von Aggregatproben und morphologisch normalen Muskelfasern mittels LMD gesammelt und quantitativ analysiert.

Abbildung 37: Replikatvergleich präzise ausgelaserter Aggregate des Patienten 3

Vergleich der Anzahl der identifizierten Proteine von drei quantitativen MS-Analysen im Ven-Diagramm. Es wurde jeweils eine Gesamtfläche von 600.000 μ m² präzise ausgelasertem Aggregatmaterial aus Schnitten des Muskelbioptats von Patient 3 generiert und mittels quantitativer Massenspektrometrie analysiert.

Bei der massenspektrometrischen Analyse der drei Replikate konnten insgesamt 162 Proteine identifiziert werden (siehe Anhang 6.9). Etwa 50 % der Proteine können in allen drei Replikaten nachgewiesen werden, wobei die Replikate untereinander jeweils eine Identifikationsüberlappung von ca. 80 %, aufweisen. Damit zeigt die Analyse einen geringeren Varianzanteil als bei Patient 1, ist aber immer noch signifikant.

(A) Die Proteine, die als erhöht in den Aggregaten im Vergleich zu den morphologisch normalen Muskelfasern identifiziert werden, sind absteigend nach den Regulationsfaktoren von links nach rechts aufgetragen. (B) Die in der quantitativen MS-Analyse identifizierten Proteine bei Patient 3, die in den Aggregaten erhöht vorliegen, werden nach ihrer subzellulären Lokalisation (links) und molekularen Funktion (rechts) eingeteilt (www.uniprot.org) und sind prozentual im Tortendiagramm aufgetragen.

33 Proteine können in den Aggregaten des Patienten 3 nach den gesetzten Parametern (Regulationsfaktor \geq 1,4 und in mindestens zwei Replikatanlysen identifiziert) als erhöht eingestuft werden. Abbildung 38A zeigt, dass besonders α -B Crystallin, Myotilin und Desmin in allen drei Replikaten deutlich erhöht vorliegen. Des Weiteren finden sich Strukturproteine wie XIRP1 und XIRP2, Filamin C und einige Hitzeschockproteine (Hsp71, HspB6, HspB1) in allen Analysen erhöht. Andere bekannte Aggregatmarker wie Sequestosom 1, Aktin und Filamin A werden dagegen nur in zwei von drei Analysen identifiziert. Etwa ein Drittel der Proteine mit erhöhter Abundanz in den Aggregaten gehört zu den Strukturproteinen und ist im Cytoskelett lokalisiert, während ein weiteres Drittel zu den cytoplasmatischen und ca. 20 % zu den nukleären Proteinen gehören. Mit 30 % ist der Anteil der Chaperone und Proteine der Stressantwort bei diesem Patienten ebenfalls auffallend gesteigert (Abbildung 38B).

Abbildung 39: Replikatvergleich (iTRAQ) reduziert vorliegender Proteine bei Patient 3 (A) Die Proteine, die als vermindert in den Aggregaten im Vergleich zu den morphologisch normalen Muskelfasern identifiziert werden, sind absteigend nach dem Regulationsfaktor von links nach rechts aufgetragen. (B) Die in der quantitativen MS-Analyse identifizierten Proteine bei Patient 3, die in den Aggregaten reduziert vorliegen, werden nach ihrer subzellulären Lokalisation (links) und molekularen Funktion (rechts) eingeteilt (www.uniprot.org) und sind prozentual im Tortendiagramm aufgetragen.

In Abbildung 39A sind die insgesamt 31 Proteine, die in den Aggregaten vermindert vorliegen aufgetragen. Die Mehrzahl dieser Proteine sind Mitglieder der Myosin-, Troponin-, Tropomyosin- und Myomesin-Familie, aber es sind auch Strukturproteine wie Titin und Nebulin reduziert nachweisbar. Besonders auffällig zeigt sich in den Ven-Diagrammen in Abbildung 39B der mit 60 % sehr hohe Anteil an Motorproteinen bzw. Proteinen des kontraktilen Apparates und der überwiegend cytoskelettalen Lokalisation (65 %).

Abbildung 40: iTRAQ-Analyse Patient 3 (Mittelwerte der Replikatanalysen)

Proteine mit mittlerem Regulationsfaktor (Aggregatmaterial zu morphologisch normalen Muskelfasern des Patienten 3) der drei Replikatanalysen.

Mittelt man die Regulationsfaktoren der drei Vergleichsanalysen von Patient 3 miteinander, zeigt sich, wie in Abbildung 40 dargestellt, dass α -B Crystallin (AG/NK: 2,53), Sequestosom 1 (AG/NK: 2,37), Reticulon-2 (AG/NK: 2,36), Desmin (AG/NK: 2,31), Myotilin (AG/NK: 2,22) und Aktin (AG/NK: 2,11) mit einer mehr als 2-fachen Erhöhung in den Aggregaten vorliegen. Stark vermindert zeigen sich Proteine wie Myosin Light Chain 1/3, (skeletal muscle isoform) (AG/NK: 0,54), Aktinin-1 (AG/NK: 0,52), Myosin-2 (AG/NK: 0,52), Troponin C2 (AG/NK: 0,49) und Myosin Light Chain 3 (AG/NK: 0,48) mit Regulationsfaktoren unter 0,6.

Um auch für den Patienten 3 die Ergebnisse der proteomischen Analyse mittels Westernblot-Analyse zu validieren, wurde ein Gesamtzelllysat aus fünfundzwanzig 10 µm dicken Schnitten des Muskelbioptats des Patienten 3 hergestellt, die Proteine elektrophoretisch aufgetrennt und Myotilin mithilfe eines spezifischen Antikörpers detektiert.

Die Muskelbioptatproben des Patienten 3 sowie einer Kontrolle (N1) wurden mittels Westernblot unter Verwendung eines Myotilin-spezifischen Antikörpers analysiert und mittels GAPDH-Antikörper normalisiert. Es wurden jeweils Gesamtproteinmengen von 10 μ g aufgetragen. Eine relative Quantifizierung des Proteingehalts wurde mithilfe des Programmes ImageJ durchgeführt.

Die Westernblot-Analyse zeigt nach Normalisierung mit GAPDH, dass Myotilin bei Patient 3 leicht erhöht im Vergleich zur Kontrolle vorliegt. Zudem zeigt sich verstärkt das Vorliegen einer Doppelbande bei dem Patienten.

2.4.4 Genetische Analyse (NGS)

Mittels Next Generation Sequencing wurde das gesamte Genom des Patienten sequenziert und mit betroffenen und nicht betroffenen Verwandten verglichen.

Abbildung 42: Mutation im Myotilin-Gen bei Patient 3

(A) Grafische Darstellung der Position der Mutation im Myotilin-Protein. (B) Die Nukleotid- und Proteinsequenz der Normalkontrolle (oben) und des Patienten 3 (unten). Die Mutation ist rot hervorgehoben.

Die Auswertung der Sequenzanalysen ergab, dass der Patient 3 eine Mutation in dem bekannten MFM-Gen Myotilin aufweist. Es handelt sich dabei um eine erstmalig gefundene homozygote Mutation im Exon 2 (c.16C>G bzw. p.Arg6Gly), die den N-terminalen Bereich den Proteins betrifft.

2.5 Titin-assoziierte Myopathie

2.5.1 Klinik und Histopathologie der Patientin 4

Die 29-jährige Patientin registrierte erste Symptome in Form von Paresen des Nackenbeugers und des kleinen Fingers der linken Hand im Alter von 16 Jahren. Mittlerweile zeigt sie leichte Paresen der Gesichtsmuskulatur, des Nackens, der Arm-, Handgelenks- und Fingermuskulatur, sowie des Hüftbeugers, der Beine und bei der Streckung und Beugung der Knie. Es liegt zudem eine Plegie des Fußhebers vor. Weitere Untersuchungen ergaben eine starke respiratorische Beeinträchtigung der Patientin und eine Erhöhung des CK-Wertes auf 1298 U/L. Im EMG deuten polyphasische Signale und Fibrillation auf Schädigungen der Muskulatur hin. Der Vater der Indexpatientin starb im Alter von 40 Jahren. Er zeigte erste, allerdings nicht mehr reproduzierbare Symptome im Alter von 24 Jahren und wies eine Muskelschwäche der Arm- und Beinmuskulatur, sowie Paresen in der Muskulatur der Finger und Füße auf. Auch bei ihm konnte eine erhebliche respiratorische Beeinträchtigung festgestellt werden. Der CK-Wert war allerdings nicht erhöht. Im MRI zeigt die Patientin eine Degeneration der Beinmuskulatur mit Fettumbau. Die unteren Beinmuskeln sind komplett atrophiert, während im Oberschenkel der M. vastus medialis und intermedius sowie der M. rectus femoris beinahe vollständig degeneriert und von Fett infiltriert sind. (Erhebung der klinischen Daten durch Professor Dr. Schröder; DFG-Kooperation FOR1228)

Bei der Patientin 4 wurde im Alter von 20 Jahren eine Muskelbiopsie aus dem Musculus deltoideus entnommen und die histologischen Schnitte unter Anwendung unterschiedlicher Färbemethoden (HE und Trichrom und Immunfärbung mit einem Antikörper gegen Titin) auf myofibrilläre Besonderheiten untersucht.

Abbildung 43: Histochemie Patient 4

HE- und Trichromfärbung von 10 μ m dicken Cryoschnitten der Muskelbiopsien von Patient 4, sowie einer Kontrollperson (N1). Links unten: immunhistochemische Färbung eines 8 μ m dicken Cryoschnitts der Patientin 4 mit einem Antikörper gegen Titin. Vergrößerung: 40 x, Maßstabsbalken: 50 μ m. (HE- und Titinabbildung wurden von Herrn Professor Schröder aus der DFG-Forschergruppe FOR1228 zur Verfügung gestellt).

In der histochemischen Untersuchung findet man ebenfalls zahlreiche Kennzeichen einer Myofibrillären Myopathie. So zeigt sich eine Degeneration des Muskels mit zahlreichen Fasersplitterungen und internalisierten Myonuklei. Zudem können granuläre und cytoplasmatische Ablagerungen sowie zahlreiche autophagische Vakuolen in der Trichromund Hämatoxylin & Eosin-Färbung beobachtet werden. In der Immunhistochemie, die von unserem DFG-Kooperationspartner Prof. Schröder (DFG-Forschergruppe FOR1228) durchgeführt wurde, zeigt sich keine Anhäufung von Titin in den Aggregaten und konnte demnach nicht als akkumuliert nachgewiesen werden.

2.5.2 Proteomische Analyse

Zur Durchführung der qualitativen Analyse der pathologischen Proteinaggregate der Patientin 4 wurden uns Schnitte in Kooperation zugesandt. Nach der Färbung der Schnitte mit modifizierter Trichromfärbung nach Gomori wurden die Aggregate und Kontrollmuskelfasern der Patientin mikrodissektiert und in einer quantitativen, massenspektrometrischen Analyse verglichen.

(A) Die Proteine, die als erhöht bzw. vermindert in den Aggregaten im Vergleich zu den morphologisch normalen Muskelfasern identifiziert werden, sind absteigend nach dem Regulationsfaktor von links nach rechts aufgetragen. Die bei Patientin 4 in der quantitativen MS-Analyse identifizierten Proteine, die in den Aggregaten erhöht (links) bzw. vermindert (rechts) vorliegen, werden nach ihrer (B) subzellulären Lokalisation und (C) molekularen Funktion eingeteilt (www.uniprot.org) und sind prozentual im Tortendiagramm aufgetragen.

Bei der Analyse konnten 85 Proteine identifiziert werden (siehe Anhang 6.10). Die stärkste relative Erhöhung zeigt XIRP2 (2,36). NRAP (1,91), Desmin (1,81), Myotilin (1,74),

Ubiquitin (1,70), Bin 1 (1,67) und Filamin C (1,55) weisen ebenfalls Regulationsfaktoren über 1,5 auf, womit vorwiegend Proteine des Cytoskeletts (63 %) bzw. Strukturproteine und Proteine der Stressantwort, wie in den VEN-Diagrammen Abbildung 44B und C dargestellt, vertreten sind. Reduziert finden sich in den Aggregaten hauptsächlich Motorproteine wie unterschiedliche Isoformen der Myosin Light Chain 2 (MRLV: 0,75-fach; MRLS: 0,69-fach) und mit dem kontraktilen Apparat assoziierte Proteine (83 %), die Bestandteile des Cytoskeletts darstellen.

2.5.3 Genetische Analyse

Bei der Patientin 4 wurde die Kandidatenregion des Titin-Gens mittels Sanger-Sequenzierung direkt sequenziert.

Abbildung 45: Mutation im Titin-Gen bei Patient 4

Grafische Darstellung der A-Bandregion des Titin-Gens, die sich aus sechs Sieben-Domänen Superrepeats (Ig-(FN-III)₂-Ig-(FN-III)₃) (schwarz umrandet) und elf Elf-Domänen Superrepeats (Ig-(FN-III)₂-Ig-(FN-III)₃-Ig-(FN-III)₃) (grau umrandet) zusammensetzt. Der rote Pfeil markiert die FibronectinIII-Domäne 119, in der die Mutation p.W30088R vorliegt.

Es konnte eine c.274426T>C, p.W30088R Mutation in der hochkonservierten A-Bandregion des Titin-Gens identifiziert werden. Die Mutation befindet sich in der 119. FibronectinIII-Domäne der A-Bande (A149-150).

2.6 Unklassifizierte MFMs

Bei den Patienten 5 bis 8 handelt es sich um Personen, bei denen im Rahmen dieser Arbeit das ursächliche Gen nicht identifiziert werden konnte. Zudem erfolgte noch keine weiterführende Exome-Analyse. Die Patienten wurden alle nach klinischen und histopathologischen Gesichtspunkten den Myofibrillären Myopathien zugeordnet. Die Patienten wurden in allen bekannten MFM-Genen getestet, wobei nur die Wildtypsequenz identifiziert werden konnte. Die Muskebioptate wurden aus unterschiedlichen Muskeln entnommen (siehe Anhang 4.2). Es wurden Aggregate und morphologisch normale Muskelfasern gesammelt und proteomisch quantitativ verglichen. Als erhöht werden auch im weiteren Verlauf die Proteine mit einem Regulationsfaktor \geq 1,4, als erniedrigt diejenigen mit einem Regulationsfaktor \leq 0,7, eingestuft.

2.6.1 Quantitative Analyse Patient 5

Abbildung 46: iTRAQ-Analyse Patient 5

(A) Die Proteine, die als erhöht in den Aggregaten im Vergleich zu den morphologisch normalen Muskelfasern identifiziert werden, sind absteigend nach dem Regulationsfaktor von links nach rechts aufgetragen. (B) Die in der quantitativen MS-Analyse identifizierten Proteine bei Patient 5, die in den Aggregaten erhöht vorliegen, werden nach ihrer subzellulären Lokalisation (links) und molekularen Funktion (rechts) eingeteilt (www.uniprot.org) und sind prozentual im Tortendiagramm aufgetragen.

Bei dem Patienten 5, der an einer genetisch unklassifizierten Myofibrillären Myopathie leidet, können mittels iTRAQ-Analyse 77 Proteine identifiziert werden (siehe Anhang 6.11). Sequestosom 1 zeigt im Vergleich mit anderen Proteinen deutlich die stärkste Erhöhung in den Aggregaten (AG/NK: 7,35). Des Weiteren werden für Myotilin (2,76), α -B Crystallin (2,58) und Desmin (2,18) Regulationsfaktoren über 2,0 nachgewiesen. Bei Patient 5 konnten keine Proteine mit verminderter Präsenz in den Plaques detektiert werden (Abbildung 46A). Die Aufteilung der identifizierten Proteine nach ihrer subzellulären Verteilung zeigt, dass Cytoskelettproteine, cytoplasmatische, nukleäre und mitochondriale Proteine mit je ca. 20 % gleichmäßig vertreten sind. Die Aufteilung nach der molekularen Funktion ordnet die Proteine überwiegend den Transportproteinen zu. Die Strukturproteine sind mit einem Anteil von ca. 19 % vergleichsweise nur gering vertreten (Abbildung 46B).

2.6.2 Quantitative Analyse Patient 6

Abbildung 47: iTRAQ-Analyse Patient 6

(A) Die Proteine, die als erhöht in den Aggregaten im Vergleich zu den morphologisch normalen Muskelfasern identifiziert werden, sind absteigend nach dem Regulationsfaktor von links nach rechts aufgetragen. (B) Die in der quantitativen MS-Analyse identifizierten Proteine bei Patient 6, die in den Aggregaten erhöht vorliegen, werden nach ihrer subzellulären Lokalisation (links) und molekularen Funktion (rechts) eingeteilt (www.uniprot.org) und sind prozentual im Tortendiagramm aufgetragen.

Beim Patienten 6 konnten insgesamt 67 Proteine identifiziert werden (siehe Anhang 6.12). Abbildung 47 zeigt, dass in den Aggregaten des Patienten α-B Crystallin mit dem höchsten Regulationsfaktor von 3,16 vertreten ist, gefolgt von Aggregatproteinen wie Xin Related Protein 2 (2,94), Filamin C (2,09), Desmin (2,08) und Myotilin (2,05), die allesamt mehr als 2-fach erhöht vorliegen. Unter den Proteinen befinden sich bei diesem Patienten allerdings auch zahlreiche Vertreter der Myosin-Familie (MYL6B, MLE1, MYL3, MYH2, MYH7, MLRV, MYH1), was den hohen Anteil an Motorproteine mit 20 % erklärt. Einen Großteil machen jedoch die Strukturproteine mit 40 % aus. 55 % der identifizierten Proteine zählen zu den Cytoskelettproteinen, während 28 % ursprünglich im Cytoplasma vertreten sind. Auch bei diesem Patienten konnten keine verminderten Proteine identifiziert werden.

2.6.3 Quantitative Analyse Patient 7

Abbildung 48: iTRAQ-Analyse Patient 7

(A) Die Proteine, die als erhöht in den Aggregaten im Vergleich zu den morphologisch normalen Muskelfasern identifiziert werden, sind absteigend nach dem Regulationsfaktor von links nach rechts aufgetragen. (B) Die in der quantitativen MS-Analyse identifizierten Proteine bei Patient 7, die in den Aggregaten erhöht vorliegen, werden nach ihrer subzellulären Lokalisation (oben) und molekularen Funktion (unten) eingeteilt (www.uniprot.org) und sind prozentual im Tortendiagramm aufgetragen.

Bei Patient 7 liegen von den insgesamt 69 identifizierten Proteinen nur sechs vermehrt in den Aggregaten vor (siehe Anhang 6.13). Die Regulationsfaktoren der erhöhten Proteine rangieren dabei zwischen 1,61 und 1,42. Bei diesen Proteinen handelt es sich nur bei Desmin um ein bekanntes Aggregatprotein. Das Hitzeschockprotein HspB6 ist hier mit 1,61-facher Erhöhung das herausragende Protein. Die Proteine können zu jeweils 50 % den Struktur- und zu jeweils einem Drittel der verbleibenden Hälfte den Transportproteinen sowie den Proteinen der Stressantwort zugerechnet werden (Abbildung 48). Nur Myozenin 1, ein sowohl am Cytoskelett als auch im Nukleus lokalisiertes Protein, das vermutlich an der Myofibrillogenese beteiligt ist, liegt reduziert in den Aggregaten vor und weist einen Regulationsfaktor von 0,72 auf (siehe Anhang 6.13).

2.6.4 Quantitative Analyse Patient 8

(A) Die Proteine, die als erhöht bzw. erniedrigt in den Aggregaten im Vergleich zu den morphologisch normalen Muskelfasern identifiziert werden, sind absteigend nach dem Regulationsfaktor von links nach rechts aufgetragen. Die in der quantitativen MS-Analyse identifizierten Proteine bei Patient 8, die in den Aggregaten erhöht (links) bzw. reduziert (rechts) vorliegen, werden nach ihrer (B) subzellulären Lokalisation und (C) molekularen Funktion eingeteilt (www.uniprot.org) und sind prozentual im Tortendiagramm aufgetragen.

Beim Patienten 8 konnten insgesamt 128 Proteine identifiziert werden (siehe Anhang 6.14). Dabei konnten, wie in Abbildung 49 dargestellt, in der quantitativen Analyse viele Vertreter der Myosin-Familie, allen voran Myosin Light Chain 6B (2,52), aber auch α -B Crystallin (1,7) und Desmin als erhöht eingestuft werden. Insgesamt ist der Anteil an Cytoskelett-, cytoplasmatischen und nukleären/mitochondrialen Proteinen in etwa gleich verteilt. 18 % zählen zu den Motorproteinen oder dem kontraktilen Apparat zugehörigen Proteinen, während Transportproteine zusammen mit den metabolischen Enzymen den Hauptteil mit 58 % ausmachen. Vermindert liegen in den Aggregaten fünf Proteine vor. Die Proteine des kontraktilen Apparates Troponin C1 und C2, sowie die metabolischen Enzyme PGK1 und GSMT1 sind im Cytoplasma lokalisiert, wohingegen das Strukturprotein Myozenin 1 am Cytoskelett und im Nukleus vorliegt.

2.7 Analyse von Aggregatmaterial aus Mausmodellen

Die Zusammensetzung der Proteinaggregate sollte zusätzlich im Mausmodell mit klassifizierter Myofibrillärer Myopathie untersucht werden, da im Gegensatz zu den Patientenproben unbegrenzte Mengen an Bioptatmaterial vorliegt. Dazu wurde in einem Vorversuch zunächst der komplette Soleus der Mausproben ausgelasert, um einen Vergleich der proteomischen Profile des Soleus von Mutanten- und Wildtyp-Mäusen zu machen. Da hier nur geringe Mengen an Proteinen in der massenspektrometrischen Analyse ermittelt werden konnten, wurden die Aggregate im Anschluss separat ausgelasert und mit den dissektierten Einzelmuskelfasern der Wildtyp-Mäuse verglichen.

2.7.1 Plectin-KO Maus

Die Unterschenkel von 12 Wochen alten, männlichen Plectin-KO-Mäusen (472, 1780 und 1781), sowie Wildtyp-Mäusen (471, 1782, 1783) wurden in Kooperation (DFG-Forschergruppe FOR1228, Professor Wiche, Universität Wien) entnommen, in Tissue Tec eingebettet und zur Bearbeitung an uns versandt. Mittels LMD wurden für die quantitative Analyse 1,5 Mio. µm² Aggregatmaterial aus dem Soleus gesammelt und mit gleichen Mengen an Zellmaterial aus dem Soleus von Wildtyp-Mäusen verglichen (siehe Anhang 6.15).

Abbildung 50: Vergleich der Proteinidentifikationsraten der Plectin-KO-Mäuse

Vergleich der Anzahl der identifizierten Proteine von drei quantitativen MS-Analysen unterschiedlicher Mausproben im Ven-Diagramm. Es wurde jeweils eine Gesamtfläche von 1,5 Mio. μ m² präzise ausgelasertem Aggregatmaterial aus dem Soleus der Plectin-KO-Mäuse (472, 1780, 1781) mit morphologisch normalen Zellen aus dem Soleus von Wildtyp-Mäusen (471, 1782, 1783) verglichen.

Von insgesamt 166 identifizierten Proteinen können nur 19 Kandidaten bei allen drei Analysen nachgewiesen werden und zeigen eine Identifikationsüberlappung von 57 %. Allerdings unterscheiden sich die Identifikationsraten bei den unterschiedlichen Probeläufen enorm. So werden bei der Analyse, bei der das Aggregatmaterial von Maus 472 (Plectin) mit Kontrollzellen der Maus 473 (WT) verglichen wird, nur insgesamt 26 Proteine identifiziert. Bei der Analyse 1780/1782 dagegen werden 142, bei der Analyse 1781/1783 werden 111 Proteine identifiziert.

Abbildung 51: Analysevergleich (iTRAQ) erhöht vorliegender Proteine bei drei Plectin-KO-Mäusen (A) Die Proteine, die als erhöht in den Aggregaten der Plectin-KO-Mäuse (1780, 1781,472) im Vergleich zu den Wildtyp-Muskelfasern (1782, 1783,471) identifiziert werden, sind absteigend nach dem Regulationsfaktor von links nach rechts aufgetragen. (B) Die in der quantitativen MS-Analyse identifizierten Proteine bei den Plectin-Mäusen, die in den Aggregaten erhöht vorliegen, werden nach ihrer subzellulären Lokalisation (links) und molekularen Funktion (rechts) eingeteilt (www.uniprot.org) und sind prozentual im Tortendiagramm aufgetragen.

Unter Berücksichtigung aller Proteine, die in mindestens zwei Analysen identifiziert werden konnten und zumindest bei einer Analyse einen Regulationsfaktor über 1,4 vorweisen, konnten 37 Proteine als in den Aggregaten erhöht eingestuft werden (Abbildung 51A). Nur fünf Proteine liegen in allen drei Vergleichsanalysen und davon nur MPCP (472/473: 1,80; 1780/1782: 1,78; 1781/1783: 1,49) und KCRS (472/473: 1,50; 1780/1782: 1,47; 1781/1783: 1,65) durchweg erhöht vor. Aus den Ven-Diagrammen zur subzellulären Lokalisation und molekularen Funktion der identifizierten Proteine in Abbildung 51B geht klar hervor, dass ein Großteil der Proteine einen mitochondrialen Ursprung aufweist (81 %) und 65 % Mitglieder der Atmungskette darstellen, in der sie als Transportproteine fungieren. Auch metabolische (18 %) und Proteine der Stressantwort (9 %) sind unter den Aggregatproteinen vertreten.

Abbildung 52: Analysevergleich (iTRAQ) vermindert vorliegender Proteine bei drei Plectin-KO-Mäusen (A) Die Proteine, die als erniedrigt in den Aggregaten der Plectin-KO-Mäuse im Vergleich zu den Wildtyp-Muskelfasern identifiziert werden, sind absteigend nach dem Regulationsfaktor von links nach rechts aufgetragen. (B) Die in der quantitativen MS-Analyse identifizierten Proteine bei den Plectin-Mäusen, die in den Aggregaten erniedrigt vorliegen, werden nach ihrer subzellulären Lokalisation (oben) und molekularen Funktion (unten) eingeteilt (www.uniprot.org) und sind prozentual im Tortendiagramm aufgetragen

Vermindert liegen in den Proteinen vorwiegend Cytoskelettproteine (83 %) vor. Struktur- und Motorproteine bzw. Proteine des kontraktilen Apparats sind mit jeweils 50 % vertreten. Nur ACTS (Aktin, alpha skeletal muscle) zeigt in allen drei Analysen einen verminderten Regulationsfaktor (472/473: 0,60; 1780/1782: 0,64; 1781/1783: 0,67).

Abbildung 53: iTRAQ-Analyse Plectin-KO-Mäuse (Mittelwerte der Analysen) Proteine mit mittlerem Regulationsfaktor (Aggregatmaterial zu Kontrollmuskelfasern) der drei Analysen. Den Proteinen ist im Graph der jeweilige Regulationsfaktor zugeordnet. Als erhöht werden Proteine mit einem Verhältnis (AG/NK) von ≤ 1.4 , als reduziert ≥ 0.75 eingeordnet.

Im Mittel kann der höchste Regulationsfaktor bei dem Protein ADP/ATP Translocase 1 (1,81) nachgewiesen werden. Auch bei Cytochrom b-c1 Complex C Subunit 7 (1,74), Calciumbinding Mitochondrial Carrier Protein Aralar1 (1,68), Voltage-dependent Anion-selective Channel Protein 1 (1,67) und NADH Dehydrogenase [Ubiquinone] Flavoprotein 2 (mitochondrial) (1,63) kann eine über 1,6-fache Erhöhung beobachtet werden. Das bekannte Aggregatprotein Desmin (1,28) beispielsweise ist dagegen in den Aggregaten nicht erhöht. Vermindert liegen u.a. die Myosine MYH7 (0,75) und MYL3 (0,64), sowie die Aktine ACTS (0,64) und ACTB (0,72) vor (Abbildung 53).

2.7.2 R350P-Desmin-Knockin-Maus

Aus einer DFG-Kooperation (DFG-Forschergruppe 1228) wurden von Professor Schröder von der Universität Erlangen Unterschenkel von ca. 3 Monate alten, männlichen und weiblichen R350P-Desmin-Knockin-Mäusen (0302, 0303), sowie Wildtyp-Mäusen (0286,0284) zur Bearbeitung an uns versandt. Mittels LMD wurden für die quantitative Analyse 1,5 Mio. μm² Aggregatmaterial aus dem Soleus gesammelt und mit gleichen Mengen an Muskelfasermaterial aus dem Soleus von Wildtyp-Mäusen verglichen (siehe Anhang 6.16).

Abbildung 54: Vergleich der Proteinidentifikationsraten der R350P-Desmin-Mäuse

Vergleich der Anzahl der identifizierten Proteine von zwei quantitativen Replikatanalysen im Ven-Diagramm. Es wurde jeweils eine Gesamtfläche von 1,5 Mio. μ m² präzise ausgelasertem Aggregatmaterial aus dem Soleus der R350P-Desmin-Mäuse (0303, 0302) mit morphologisch normalen Muskelfasern aus dem Soleus von Wildtyp-Mäusen (0284,0286) verglichen.

Bei der ersten Replikatanalyse konnten trotz der im Vergleich zu humanen Proben erhöhten Materialmenge nur 22 Proteine identifiziert werden, bei der zweiten Replikatanalyse nur noch 10 Proteine. In der Identifikationsrate verhalten sich die Proben der männlichen und weiblichen Tiere gleich.

Abbildung 55: Replikatvergleich (iTRAQ) erhöht vorliegender Proteine bei R350P-Desmin-Mäusen (A) Die Proteine, die als erhöht in den Aggregaten der R350P-Mäuse im Vergleich zu den Wildtyp-Muskelfasern identifiziert werden, sind absteigend nach dem Regulationsfaktor von links nach rechts aufgetragen. Es wurden jeweils zwei Replikate von je einer männlichen (0302) und weiblichen (0303) Mutante analysiert und mit einer männlichen (0284) und weiblichen (0286) Wildtyp-Maus verglichen. (B) Die in der quantitativen MS-Analyse identifizierten Proteine bei den R350P-Desmin-Mäusen, die in den Aggregaten erhöht vorliegen, werden nach ihrer subzellulären Lokalisation (links) und molekularen Funktion (rechts) eingeteilt (www.uniprot.org) und sind prozentual im Tortendiagramm aufgetragen.

Es fällt vor allem auf, dass eine Vielzahl von Myosinen (MYL3, MYH1, MYH7, MLRV usw.) in den Aggregaten der R350P-Desmin-Knockin-Mäuse erhöht ist. Des Weiteren finden sich Aktin, ribosomale und mitochondriale Proteine und u.a. FHL1 vermehrt akkumuliert. Somit können 46 % der identifizierten Proteine den Strukturproteinen, und jeweils 17 % den mitochondrialen und cytosomalen Proteinen zugewiesen werden. 38 % können den Motorproteinen und Proteinen des kontraktilen Apparates zugeordnet werden, 29 % gehören zu den Transportproteinen. Die meisten detektierten Proteine zeigen sich bei den männlichen Tieren stärker erhöht als bei den Weibchen. So sind in der ersten Replikatanalyse 20 von 22 Proteinen bei den Männchen deutlich stärker hochreguliert, allerdings zeigt sich dieses Bild bei der zweiten Replikatanalyse nur noch bei 6 von 10 Proteinen.

F Diskussion

1 Charakterisierung pathologischer Proteinaggregate

Proteinaggregate sind ein Kennzeichen für neurodegenerative Erkrankungen (Hashimoto et al 2003) und Myofibrilläre Myopathien (Goebel and Muller 2006). Bisher ist wenig bekannt, welche Faktoren oder biophysikalischen Bedingungen die Aggregationsprozessierung auslösen. Bei den Myofibrillären Myopathien geht man davon aus, dass Mutationen in kausalen Genen zu einer Falschfaltung der Proteine führt, was wiederrum die Aggregation dieser und möglicher Interaktionspartner verursacht. Der Abbau falsch gefalteter bzw. aggregierter Proteine durch das Ubiquitin-Proteasom-System oder die Autophagie scheint mit der Zeit an Effizienz einzubüßen, wodurch Proteine irreversibel akkumulieren (Cowling et al 2011, Snyder et al 2003). Eine Überlastung des Proteasoms führt zur Ausbildung sogenannter Aggresome, wie für die Reducing Body Myopathy beschrieben, um die Zellen vor toxischen Einflüssen der abnormal gefalteten oder akkumulierenden Proteine zu schützen (Arrasate et al 2004, Schessl et al 2008).

Bisher wurden immunhistochemische Methoden angewendet, um die Zusammensetzung der Proteinaggregate zu charakterisieren (Claeys et al 2009, De Bleecker et al 1996, Olive et al 2005). Diese Methode macht es allerdings nur möglich die Anwesenheit bestimmter Proteine zu bestätigen oder auszuschließen. Mithilfe massenspektrometrischer Ansätze lassen sich komplette Proteinprofile der Aggregate erstellen und somit auch Kandidaten identifizieren, die bisher mit Myofibrillären Myopathien noch nicht in Verbindung gebracht wurden.

Die Kombination von Laser Mikrodissektion und massenspektrometrischer Analyse hat sich in den vergangenen Jahren als wertvolle Methode erwiesen. Zahlreichen Gruppen ist es beispielsweise gelungen Biomarker für verschiedene Krebszellen und -arten zu identifizieren (Cazares et al 2002, Guo et al 2005, Xu et al 2002).

Die Kombination von LMD mit massenspektrometrischen Methoden bietet uns in dieser Arbeit die Möglichkeit die Zusammensetzung der pathologischen Proteinaggregate in Myofibrillären Myopathien zu untersuchen. Die präzise Isolierung der Aggregate aus dem Zellverband gewährleistet eine erhöhte Sensitivität und Spezifität bei der Analyse der Proteinprofile. Die Kenntnis über eine genaue Zusammensetzung der Proteinaggregate liefert Hinweise auf Aggregationsursache und -ablauf und unterstützt somit langfristig die Entwicklung therapeutischer Ansätze für diese progressiven Erkrankungen.

Um ein optimales Protokoll für die Analysen zu etablieren, wurde in einem ersten Schritt die Menge an Muskelfasermaterial für die MS-Analyse erarbeitet. Es konnte gezeigt werden, dass 600.000 µm² eine reproduzierbare Analyse möglich macht. Weiterhin konnte ausgeschlossen werden, dass unterschiedliche Färbemethoden einen negativen Einfluss auf die Ergebnisse ausüben. Ebenso konnte nachgewiesen werden, dass sich unterschiedliche Muskelgruppen in ihrem Proteinprofil nicht maßgeblich unterscheiden. Schließlich wurde ein standardisiertes Proteinprofil von normalen Muskelfasern erstellt.

2 Qualitative Proteomics

Die Triplikat-Analysen unter Verwendung von LC-MS/MS wurden durchgeführt, um Proteine zu identifizieren, die ausschließlich in den Aggregaten vorliegen und damit spezifisch als Aggregatproteine bezeichnet werden können. Es zeigte sich allerdings, dass der qualitative proteomische Ansatz eine derartige Abgrenzung nicht zulässt. Die Proteine, die in den Aggregaten identifiziert wurden, überlappen mit den Proteinprofilen der umgebenden Region und der morphologisch normalen Zellen mit durchschnittlich 80 %. Kandidaten, die ausschließlich in den Aggregaten gefunden wurden, variierten zwischen den Patienten und können weitestgehend nicht als charakteristische myofibrilläre Proteine eingeordnet werden. Nur drei Proteine in Patient 1 (MYTI, SQSTM1, XIRP2) und vier Proteine in Patient 3 (FLNC, PRAF3, RTN2, RTN4) stellen offensichtlich echte Aggregatkomponenten dar. Vimentin, ein Klasse III intermediäres Filament, das in Prozesse wie die Zellbewegung, den Erhalt der Zellstruktur und den Schutz vor mechanischem Stress involviert ist (Goldman et al 2012, Pekny and Lane 2007), ist der einzige Aggregatbestandteil, der sowohl in Patient 1, als auch Patient 9 nachgewiesen werden kann. Bei Myotilin, XIRP2, Filamin C und Sequestosom 1 handelt es sich bereits bei unterschiedlichen **MFMs** charakterisierte um Aggregatkomponenten (Claevs et al 2009, Ferrer and Olive 2008, Kley et al 2012, Olive et al 2008). Dagegen wurden die Proteine PRAF3, Reticulon 2 und 4 (RTN2 und 4) bisher nicht mit Myofibrillären Myopathien in Verbindung gebracht. RTN2 und 4 sowie PRAF3 sind Transmembranproteine des ER, deren Funktion weitestgehend unbekannt ist. Reticulon 2 spielt allerdings zusammen mit Hitzeschockproteinen eine Rolle bei der ER-Morphogenese (Montenegro et al 2012), Reticulon 4 ist u.a. für seine proapoptotische Funktion durch Bindung von Bcl2 und BclXL bekannt (Tagami et al 2000) und PRAF3 soll einer Studie zufolge eine proapoptotische Tumorsupressorfunktion aufweisen (Shi et al 2012). Diese Bestandteile geben allerdings keinerlei Aufschluss darüber, um welche Mutation es sich bei den einzelnen Patienten handelt. So kann FHL1 beim Patienten 1 sowohl in den Aggregaten, als auch in der umliegenden Zellregion und den morphologisch normalen Zellen identifiziert werden. Myotilin ist dagegen beim Patienten 3, der eine Myotilinopathie aufweist, mit dieser Methodik überhaupt nicht nachweisbar.

Schessl et al. identifizierten FHL1 erstmals 2008 mittels qualitativer Massenspektrometrie als Komponente der Reducing Bodies bei Patienten mit Mutation im FHL1-Gen, nicht aber in den Kontrollfasern und der Aggregat-umgebenden Region. Demnach war es ihnen trotz Verwendung des gleichen Ansatzes wie in diesem Projekt möglich FHL1 als Aggregatkomponente zu charakterisieren (Schessl et al 2008). Möglicherweise konnten die Ergebnisse in dieser Arbeit nicht reproduziert werden, da eine andere FHL1-Mutation untersucht wurde oder alle mittels HE bzw. Trichrom angefärbten Aggregate, statt der Reducing Bodies für die Analyse gesammelt wurden. Zudem spielen sicher auch die Unterschiede in der Menge, die an Aggregatmaterial für die Analyse verwendet wurden eine entscheidende Rolle. Somit scheint die qualitative Analyse, die nur Auskunft über das Vorhandensein bzw. die Abwesenheit von Proteinen in den Aggregaten und aggregatfreien Bereichen gibt, nicht generell die geeignete Methode darzustellen, um Aggregatkomponenten eindeutig zu identifizieren. Demzufolge wurde im weiteren Verlauf der Arbeit ein quantitativer, proteomischer Ansatz hinzugezogen, der Hinweise auf den relativen Anteil von Proteinen gibt, die in den Aggregaten akkumulieren.

3 Quantitative Proteomics

3.1 Mutation im FHL1-Gen

Im Falle von zwei Brüdern (P1 und P2), die an einer schweren XMPMA (Schoser et al 2009, Windpassinger et al 2008) leiden, konnte mittels Sanger-Sequenzierung eine hemizygote C224W (p.672C>G) Mutation im Exon 6 des FHL1-Gens identifiziert werden. Die Mutation verursacht die Substitution eines hochkonservierten Cysteins durch ein Tryptophan im ersten Zinkfinger der vierten LIM-Domäne. Die beiden Patienten weisen mit einem pseudoathletischen Erscheinungsbild, scapuloperonealem Syndrom mit posturaler Muskelatrophie, Paresen der proximalen Muskeln und Kontrakturen von u.a. der Achillessehne und des Nackens einen für XMPMA-Patienten typischen klinischen Phänotyp auf (Schoser et al 2009). Allerdings lässt sich bei den Geschwistern eine intrafamiliäre Variabilität beobachten, wobei der ältere Bruder einen deutlich schwerwiegenderen Verlauf mit früherem Krankheitsbeginn zeigt. Diese phänotypische Variabilität könnte auf unterschiedliche Umwelteinflüsse oder epigenetische Faktoren zurückzuführen zu sein (Beggs et al 1991).

Beide Patienten weisen histopathologisch eine myofibrilläre Degeneration, Proteinaggregate in der HE- und Trichromfärbung und, erstmals für eine XMPMA beschrieben, Reducing Bodies in der NBT-Menadionfärbung auf. Diese Einschlusskörperchen mit reduzierender Aktivität werden normalerweise mit Mutationen in der zweiten LIM-Domäne in Zusammenhang gebracht, die schwerer verlaufende Subtypen der FHL1opathie verursachen (Brown et al 1999, Cowling et al 2011, Ng et al 2001, Schessl et al 2009).

3.1.1 Quantitative Analyse aggregathaltiger Zellen

In der quantitativen Analyse, in der aggregathaltige, ganze Muskelfasern mit morphologisch normalen Muskelfasern des Patienten 1, unter Verwendung von iTRAQ-Markierung in Kombination mit MALDI-TOF/TOF Massenspektrometrie, verglichen wurden, zeigt sich eine nur schwache Variation der Proteinmengen. Wohingegen der proteomische Vergleich der Aggregat-Zellen mit Kontrollfasern aus Bioptaten von zwei gesunden Personen größere Unterschiede erkennen lässt. So können im ersten Fall nur 13 Proteine, dagegen in Relation zu den Normalkontrollen 37 Proteine als hochreguliert klassifiziert werden. Dies lässt vermuten, dass bereits in morphologisch normalen Zellen des Patienten biologische Prozesse verändert ablaufen und/oder Anreicherungen von bestimmten Proteinen vorliegen, die mit konventionellen Färbemethoden noch nicht visualisierbar sind. Es besteht nach den erarbeiteten Daten ein Gradient zwischen normaler Muskelfaser und Aggregatfaser. Besonders Chaperone, wie die zur Gruppe der Small Heatshock Proteins gehörenden HspB1 und HspB6, sowie Hsp70 und Hsp7C sind in den aggregathaltigen Muskelfasern erhöht. α -B Crystallin dagegen zeigt sich auch im Vergleich zu den normalen Patientenmuskelfasern signifikant erhöht. Hitzeschockproteine fungieren als molekulare Chaperone und unterstützen zum einen die korrekte Faltung von Proteinen und zum anderen den Abbau falsch gefalteter Proteine durch das Ubiquitin-Proteasom-System, wodurch eine Aggregation vermieden wird (Goldberg 2003). Unterschiedliche Arten von Stress induzieren eine Hochregulierung der HSPs in der Zelle (Garrido et al 2001). Einige Hitzeschockproteine, wie HSPB1 und HSP70 weisen antiapoptotische Funktionen auf (Garrido et al 2006). So unterdrückt HSPB1 die Bildung der Apoptosomen durch die Interaktion mit Cytochrom c (Bruey et al 2000) und u.a. die Aktivierung unterschiedlicher Caspasen (Garrido et al 1999) oder induziert antiapoptotische Faktoren (Rane et al 2003). Zusätzlich scheinen sHsps (CRYAB, HSPB1 und HSPB6) stressinduziert durch direkte oder indirekte Interaktion mit F-Akin eine protektive Funktion auf das Cytoskelett auszuüben, indem diese die Mikrofilamente binden, stabilisieren und damit vor Zerstörung schützen (Mounier and Arrigo 2002). Demnach scheint die Hochregulierung der Chaperone in den "gestressten" Zellen eine Überlebensstrategie darzustellen (Bartolini and Andrisano 2010, Fink 1999). Im Falle der Myofibrillären Myopathien stellt möglicherweise die Anhäufung falsch gefalteter Proteine einen derartigen Stressfaktor dar, der zur Überexpression der Chaperone führt.

Bekannte Aggregatproteine wie Desmin und Filamin C zeigen sich ebenfalls nur im Vergleich zu den Normalkontrollen erhöht. Dies weist ebenfalls auf bereits vorliegende Veränderungen in den Patientenzellen hin, die durch unterschiedliche Färbemethoden noch nicht sichtbar gemacht werden können. FHL1 dagegen ist in den aggregathaltigen Muskelfasern weder im Vergleich den morphologisch normalen Patientenfasern, noch den zu zu Normalkontrollmuskelfasern erhöht. Somit liegt FHL1 in beiden Patienten 1 und 2 nicht überexprimiert vor. Dies würde mit bisherigen Veröffentlichungen korrelieren, die darstellen, dass in Westernblot-Analysen FHL1 nicht erhöht bzw. sogar erniedrigt in den Patienten im Vergleich zu Kontrollpersonen vorliegt (Quinzii et al 2008, Schoser et al 2009, Schreckenbach et al 2012, Windpassinger et al 2008).

Einerseits ist also nicht zwingend gegeben, dass die aggregierten Proteine auch überexprimiert und damit erhöht in den Muskelfasern im Vergleich zu morphologisch normalen Muskelfasern vorliegen. Diese können gegebenermaßen auch nur lokal in den Muskelfasern akkumulieren. Andererseits könnte die beobachtete, schwache Variation der Proteinmengen zwischen morphologisch normalen und aggregathaltigen Muskelfasern auch auf methodisch-technische Gründe zurückzuführen sein. Die Limitierung der MALDI-MS, die generell einen breiteren Massenbereich an Vorläufer-Ionen auswählt, könnte dabei eine wichtige Rolle spielen. Zum einen wird dadurch die Protein-Identifikationsrate beeinflusst, zum anderen die relative Menge an iTRAQ-Reporterionen unregulierter Proteine. Aufgrund

dessen wurde das Experiment mit präzise dissektierten Aggregaten und morphologisch normalen Muskelfasern des Patienten 1 wiederholt.

3.1.2 Quantitative Analyse präzise ausgelaserter Aggregate

Um nun die pathologischen Proteinaggregate zu charakterisieren und deren detaillierte Zusammensetzung zu ermitteln, wurden diese mittels LMD präzise ausgelasert, proteomisch analysiert und mit Patientenzellen ohne morphologische Veränderungen verglichen. Die quantitative, proteomische Analyse der Aggregate hat im Vergleich mit morphologisch normalen Muskelfasern, eine Reihe von erhöhten Proteinen identifiziert. Etwa 20 von 150 Proteinen zeigten sich signifikant hochreguliert. Hierbei handelt es sich schwerpunktmäßig um myofibrilläre Proteine, intermediäre Filamente, Proteine des Cytoskeletts und des Ubiquitin-Proteasomsystems sowie Chaperone, die offensichtlich akkumulieren und damit an der Ausbildung der Proteinaggregate beteiligt sind.

FHL1 konnte unter Verwendung der iTRAQ-Methode in Kombination mit der MALDI-TOF/TOF-Analyse als Protein identifiziert werden, das die stärkste, relative Erhöhung in den Aggregaten aufweist. In Relation mit Muskelfasern ohne pathologische Veränderungen des Patienten ist FHL1 in den Aggregaten demnach bis zu 10-fach erhöht. Damit konnte nachgewiesen werden. dass das Protein, dessen kodierendes Gen bei der molekulargenetischen Analyse als mutiert identifiziert wurde, in den Aggregaten akkumuliert, was wiederum maßgeblich für die Ausbildung des MFM-Phänotyps zu sein scheint. Obwohl ein milderer Phänotyp bei Patient 2 beobachtet wurde, der zudem eine deutlich geringere Anzahl an Aggregaten in der Muskelbiopsie aufweist, ist auch bei ihm FHL1 deutlich als erhöht einzustufen. Schon in früheren Veröffentlichungen wurde beschrieben, dass die Akkumulation von FHL1 in unterschiedlichen Formen der FHL1opathie und bei der Bildung von Reducing Bodies eine wichtige Rolle spielt (Schessl et al 2008, Schessl et al 2009). Mutationen, die die zinkbindenden, hochkonservierten Cysteine oder Histidine, wie hier in der vierten LIM-Domäne beinträchtigen und damit die Struktur des Proteins destabilisieren, scheinen den Aggregationsprozess der falsch gefalteten bzw. ungefalteten Proteinen zu begünstigen. So geht man davon aus, dass Proteine, die nicht korrekt gefaltet werden können, hydrophobe Reste auf ihrer Oberfläche präsentieren, die die Akkumulation untereinander und mit anderen Proteinen verursachen (Glabe 2001).

Ubiquitin 60S Ribosomal Protein L40, auch bekannt als CEP52, wurde ebenfalls mit einer signifikanten Erhöhung (5-fach) in den Aggregaten identifiziert. Es handelt sich hierbei um eine Komponente der 60S Untereinheit des Ribosoms, die als Ubiquitin-Fusionsprotein (UBL40) vorliegt, wobei Ubiquitin als Chaperon dient und die Bildung des Holoribosoms unterstützt (Finley et al 1989). Möglicherweise dient RL40 als Transportprotein, das Ubiquitin an seinen Bestimmungsort befördert (Han et al 2012).

Proteine, die mit dem Aktincytoskelett und dessen Regulation und Membraninteraktion in Verbindung stehen wurden mit über 2-facher (ACTA, FLNA) oder bis zu 2-facher (NRAP, XIRP1 und XIRP2) Erhöhung in den Aggregaten identifiziert. Filamin A unterstützt die Vernetzung der Aktinfilamente und verbindet Aktin mit Glycoproteinen der Membran. Es verankert verschiedene Transmembranproteine mit dem Aktincytoskelett und dient als Gerüst für zahlreiche cytoplasmatische Signalproteine (Hartwig and Stossel 1975, Popowicz et al 2006, Stossel et al 2001). Unterschiedliche Studien zeigen, dass das Nebulin-related Anchoring Protein (NRAP) möglicherweise in die Verankerung der terminalen Aktinfilamente in den Myofibrillen, mit der Membran und in die Spannungsweiterleitung von Myofibrillen zur extrazellulären Matrix involviert ist (Luo et al 1997, Luo et al 1999)

Bei den Xin Actin-binding Repeat-containing Proteins 1 und 2 (XIRP1 und 2) handelt es sich um aktinbindende Proteine die eine Rolle bei der Stabilisierung und Organisation des Cytoskeletts spielen (Otten et al 2012, Pacholsky et al 2004). XIRP 2 wurde zudem erst kürzlich als Interaktionspartner von Filamin C identifiziert (Kley et al 2012). Auch Proteine, die eine Rolle bei der Stressantwort spielen, wie SQSTM und CRYAB zeigen eine signifikante Erhöhung in den Proteinaggregaten. α -B Crystallin gehört zur Familie der kleinen Hitzeschockproteine und fungiert als molekulares Chaperon, das ungefaltete oder falsch gefaltete Proteine bindet und damit deren Aggregation verhindert (Jakob et al 1993, Klemenz et al 1991, Wang et al 2003). Zudem wird α -B Crystallin als antiapoptotischer Faktor beschrieben (Kamradt et al 2002) und interagiert mit Titin in protektiver Funktion (Bullard et al 2004). Sequestosom 1, auch bekannt als p62, bindet Ubiquitin über die UBA-Domäne und spielt eine wichtige Rolle beim Proteinabbau, indem es die Degradation polyubiquitinierter Proteine durch das Proteasomsystem oder phosphorilierungs-induziert auch über den Autophagie-Pathway vermittelt, ist aber auch in Titin-Signalwege in Muskelzellen (Lange et al 2005) und apoptotische Prozesse (Jin et al 2009, Sanz et al 2000) involviert. Andere Proteine, die ebenfalls echte Aggregatproteine darstellen könnten (FLNC, BAG3, mit DESM. KBTBD10. MYBPH), zeigen eine geringere Akkumulationsrate Regulationsfaktoren zwischen 1,4 und 2,0. Unter diesen fungiert Filamin C als ein großer Aktin-Crosslinker, der die Reorganisation des Aktin-Cytoskeletts beeinflusst und strukturelle Eigenschaften in den Z-Scheiben hat (Popowicz et al 2006, van der Ven et al 2000a). BAG3, das zur Gruppe der Bcl2 assoziierten Anthanogene gehört, interagiert als Co-Chaperon mit Hitzeschockproteinen (inhibiert Hsp70 und Hsc70) und bindet Bcl2 (Takayama et al 1999). BAG3 ist in unterschiedliche zelluläre Prozesse, wie Apoptose (Lee et al 1999), Autophagie (Arndt et al 2010, Carra et al 2008) und Cytoskelettorganisation (Fontanella et al 2010) involviert. Desmin, ein bekannter Aggregatmarker in Myofibrillären Myopathien, zählt zu den intermediären Filamenten und bildet ein dreidimensionales Netzwerk aus, das die Myofibrillen miteinander und den kontraktilen Apparat mit der Plasmamembran, den Nuklei und weiteren Zellorganellen verbindet und hat demzufolge eine vorwiegend strukturelle Funktion (Fuchs and Weber 1994, Lazarides and Hubbard 1976). KBTBD10 (Kelch-repeat and BTB-containing Protein 10) vermittelt als substratspezifischer Adapter des E3 Ubiquitin Protein Ligasekomplexes die Ubiquitinierung von Proteinen für den proteosomalen Abbau (Zhang et al 2005). Zudem konnte das myosinbindende Protein MYBPH (Vaughan et al 1993) in den Aggregaten identifiziert werden.

Es zeigt sich nun zum einen, dass bestimmte Proteine, die im vorherigen Durchlauf, in dem die Proteinprofile von aggregathaltigen Muskelfasern mit normalen Patientenfasern verglichen wurden nicht als hochreguliert identifiziert werden konnten, nun deutlich vermehrt im reinen Aggregatmaterial vorliegen. Demnach liefert die quantitative Analyse präzise isolierter Aggregate eindeutigere Ergebnisse und erweist sich als vorteilhaft für die differentielle Analyse. Zudem wird deutlich, dass Proteine, die mit dem Aktincytoskelett assoziiert sind, sowie Chaperone und Komponenten, die mit dem proteosomalen Abbau in Verbindung stehen, einen Großteil der Aggregatkomponenten ausmachen. Dies weist darauf hin, dass durch krankheitsbedingte Veränderungen in den Zellen stressinduzierte Faktoren hochreguliert werden, die den Abbau falsch gefalteter Proteine oder Proteinaggregate unterstützen oder vermitteln. Diese Stressreaktion könnte durch die Anhäufung falsch gefalteter Proteine, in diesem Fall FHL1, in der Zelle ausgelöst werden. Dabei scheint das mutiert vorliegende Protein, das durch die Falschfaltung eine höhere Affinität zur Aggregation aufweist (Schiaffino 2012), auch die Akkumulation von Strukturproteinen, vorwiegend des Aktincytoskeletts, zu verursachen. Offensichtlich bewältigen die zellulären

Qualitätskontrollmechanismen den Abbau der Aggregate nur bis zu einem gewissen Grad. Mit der Alterung der Zelle und des Muskels scheint diese Fähigkeit der effektiven Proteindegradation abzunehmen, da diverse Abbauwege bereits nicht mehr effizient genug arbeiten. So ist bekannt, dass falsch gefaltete Proteine in jungen, gesunden Zellen noch effektiv durch das Qualitätskontrollsystem abgebaut werden können. Es hat den Anschein, dass im Falle einer Erkrankung, in der die Zellen ständig mit mutierten Proteinen konfrontiert werden, diese Fähigkeit mit der Zeit abnimmt und Akkumulation stattfindet (Soti and Csermely 2000). Beispielsweise ist in einer proteosomalen Studie zur Muskelerkrankung OPMD beschrieben, dass die Expression von Mitgliedern des Ubiquitin-Proteasom-Systems mit der Muskelalterung abnimmt, was den späten Beginn der Erkrankung und die Ausbildung der Aggregate des veränderten Proteins begründet (Anvar et al 2011). Auch bei den beiden FHL1-Patienten beginnt die Erkrankung erst in der dritten bzw. vierten Dekade ihres Lebens. Somit wäre es denkbar, dass die möglicherweise toxische Aggregation in den Zellen und die Abnahme der Effektivität der Degradationsmechanismen die krankheitsauslösende Ursache der FHL1opathie darstellen.

Eine andere Hypothese wäre, dass durch die Mutation im FHL1-Gen ein Verlust der Proteinfunktion bedingt wird, was den Krankheitsphänotyp ausprägt. So wurde FHL1 beispielsweise als Regulator der Skelettmuskelmasse durch Bindung und Aktivierung von NFATc1 identifiziert. Im Falle einer FHL1-Mutation kommt es zu einer Aggregation des Transkriptionsfaktors mit FHL1 und damit zu einem Verlust der Proteinfunktion, was eine Abnahme der Muskelmasse im Patienten erklären würde. Allerdings ist nicht bekannt, ob auch die LIM4-Domäne in diesen Prozess verwickelt ist (Cowling et al 2008). Eine weitere Funktion von FHL ist der Sarkomeraufbau durch Regulation von MYBPC1. FHL1-Knockdown-Experimente in C2C12-Zellen zeigten, dass durch die Herrunterregulierung des FHL1-Levels Myosin und MYBC1 nicht korrekt in die Sarkomere eingebaut werden (McGrath et al 2006). Im Falle einer Mutation im FHL1-Gen und damit einhergehendem Verlust dieser Funktion, könnte es demnach ebenfalls zu einer Missbildung der Sarkomere und damit zu einer degenerativen Myopathie im Patienten kommen. Wahrscheinlich ist, dass durch die FHL1-Mutation das Zusammenspiel beider beschriebenen Phänomene (toxische Aggregation und Funktionsverlust) die Pathogenese verursacht.

3.2 Mutation im Myotilin-Gen

Bei Patient 3 konnte mittels Next Generation Sequencing eine homozygote Mutation im Myotilin-Gen (R6G) als Ursache für die Ausprägung des MFM-Phänotyps diagnostiziert werden. Es handelt sich um eine erstmalig beschriebene homozygote Missense-Mutation, die den N-Terminus des Proteins beeinflusst. Patient 3 zeigt typische klinische und histopathologische Merkmale, wie zunächst eine distale Schwäche der Beinmuskulatur, die im Laufe der Erkrankung zunehmend auch proximale Muskeln betrifft, kennzeichnend für eine Myotilinopathie (Olive et al 2005). Zudem kann man die Ausbildung von Proteinaggregaten in der Skelettmuskulatur sowie eine degenerative Myopathie beobachten.

In der quantitativen Analyse der dissektierten Aggregatproben des Patienten 3 wurden insgesamt 150 Proteine identifiziert, von denen 14 Proteine in zumindest zwei Replikaten mit Regulationsfaktoren über 1,4 in den Aggregaten signifikant hochreguliert vorliegen. Am stärksten erhöht zeigen sich das zu den kleinen Hitzeschockproteinen gehörende a-B Crystallin (2,53-fach) und SQSTM 1 (2,37-fach), auch bezeichnet als p62. So haben Olive et al. bereits beschrieben, dass p62 in Myotilinopathien mit Myotilin in den Aggregaten kolokalisiert (Olive et al 2008). P62 bindet polyubiquitinierte Proteine und spielt damit eine entscheidende Rolle in der Aggregatbildung und Vermittlung des proteasomalen Abbaus (Seibenhener et al 2004). Weitere Proteine, die unabhängig von der patientenspezifischen Mutation zu akkumulieren scheinen und auch bei den beiden FHL1-Patienten (Patient 1 und 2) gefunden wurden, sind Desmin, Filamin A und Xin-related Protein 1 und 2. Bei PRAF3 und RTN2 scheint es sich allerdings um mutationsspezifische Aggregatkomponenten zu handeln, da diese nicht in anderen Patienten gefunden werden. Da diese Proteine offensichtlich am Aggregationsprozess in Muskeln beteiligt sind, sollten neben ihrer Rolle in der Apoptose und Morphogenese (Montenegro et al 2012, Shi et al 2012, Tagami et al 2000) weitere Funktionen in Betracht gezogen werden.

Myotilin, das Protein, das mutiert bei Patient 3 vorliegt, wird mit einer 2,22–fachen Erhöhung in den Aggregaten gemessen und rangiert somit nur auf Platz 5 der hochregulierten Proteine. Demnach kann es mithilfe der angewendeten Methode nicht, wie bei den Patienten 1 und 2, eindeutig als mutiertes Protein identifiziert werden. Myotilin ist eine Komponente eines Aktin-Crosslinker-Proteinkomplexes und am Myofibrillenaufbau und der Stabilität der Z-Scheiben beteiligt (Salmikangas et al 2003).

Die identifizierte Mutation am N-Terminus des Myotilins scheint demnach auch in diesem Fall die Falschfaltung und schließlich die Aggregation des Proteins zu bedingen. Von Nadelstadh *et al.* fanden heraus, dass mutiertes Myotilin weniger effektiv durch das Ubiquitin-Proteasom-System abgebaut wird und sich somit leichter Aggregate bilden können (von Nandelstadh et al 2011). Des Weiteren wird angenommen, dass ein Zusammenhang zwischen oxidativem Stress, der die Effektivität der proteolytischen Systeme negativ beeinflusst, und der Proteinaggregation besteht (Janue et al 2007). Zudem ist denkbar, dass der Verlust der Myotilinfunktion in den Zellen eine destabilisierende Wirkung auf das Aktincytoskelett ausübt. So wurde gezeigt, dass mutiertes Myotilin im Mausmodell Aggregate ausbildet, in denen Myotilin und Z-Scheiben-assoziierte Proteine kolokalisieren und eine myofibrilläre Disorganisation beobachtet werden kann (Keduka et al 2012).

3.3 Mutation im Titin-Gen

Bei Patientin 4 konnte mithilfe einer Sanger-Sequenzierung eine Mutation im Titin-Gen identifiziert werden. Es handelt sich um eine homozygote Mutation an Aminosäureposition 30088 im Titin-Gen, durch die in der A-Bandenregion (A149-150) in der FnIII-Domäne 119 ein Tryptophan durch ein Arginin ersetzt wird.

Bisher wurde Titin nicht zu den kausalen Genen für die Ausprägung einer Myofibrillären Myopathie gezählt. Titinmutationen wurden mit TMD (Tibial Muscular Dystrophy) (Hackman et al 2002) und LGMD2J (Limb Girdle Muscular Dystrophy 2J) (Udd et al 2005), sowie dilatierter Kardiomyopathie (Herman et al 2012) in Verbindung gebracht.

Bei der quantitativen proteomischen Analyse hat sich gezeigt, dass Titin, das im Muskel eine wichtige Rolle bei der Sarkomerorganisation und Signaltransduktion spielt und einen wichtigen Beitrag zur Elastizität der Zelle leistet (Kruger and Linke 2011, Miller et al 2003, Trombitas and Pollack 1993), in Aggregaten nicht erhöht (1,16-fach) nachweisbar ist. Damit scheint Titin durch die Mutation nicht zu aggregieren. Es finden sich dagegen zahlreiche mutationsunspezifische Aggregatkomponenten, wie Desmin, XIRP2, Myotilin, Filamin C, α -B Crystallin uvm. in den Aggregaten erhöht. Das könnte einen Hinweis darauf geben, dass eine Mutation im Gen nicht unbedingt eine Aggregation des betroffenen Proteins auslöst, sondern dass zumindest in diesem Fall die Mutation im Titin-Gen eine Aggregation anderer Proteine verursacht.

Die A-Bandregion von Titin ist für seine Interaktion mit zum einen sarkomerischen Myosin (Houmeida et al 1995) und dem Myosin Binding Protein C (MYBPC) bekannt (Labeit et al 1992). Die vorliegende Mutation könnte demnach die Bindung mit den beiden Interaktionspartnern beeinflussen. Ohlsson *et al.* haben 2012 bereits beschrieben, dass Mutationen in der myosinbindenden A-Bandregion von Titin ursächlich für eine hereditäre Myopathie mit respiratorischer Beteiligung sind. Zudem beschreiben sie histopathologische Merkmale, wie eosinophile Einschlüsse und Ablagerungen, Faserkalibervariation und - splitterung sowie internalisierte Myonuklei und Fettinfiltrierung (Ohlsson et al 2012). Diese myodegenerativen Merkmale sind typisch für Myofibrilläre Myopathien und wurden auch bei Patientin 4 gefunden.

Ubiquitin, das mit dieser proteomischen Methode bisher in unfusionierter Form nicht bei anderen Patienten als erhöht eingestuft wurde, konnte 1,7–fach erhöht in den Aggregaten nachgewiesen werden. Ubiquitin ist ein Signalmolekül, das in vielen biologischen Prozessen eine wichtige Rolle spielt. So markieren beispielsweise Polyubiquitinketten, die über das Lysin48 an Zielproteine gebunden werden, diese für den proteosomalen Abbau und die über das Lysin63 verknüpft werden für den Abbau mittels Autophagie (Pickart and Eddins 2004). Olive stellt in ihrem Review "Extralysosomal protein degradation in myofibrillar myopathies" dar, dass in Myotilinopathien Ubiquitin mit Desmin, α -B Crystallin und Komponenten des Proteasoms in Aggregaten kolokalisieren (Olive 2009), wodurch wiederrum die Annahme gefestigt wird, dass dieses Qualitätskontrollsystem auch bei der Titinopathie eine entscheidende Rolle spielt.

3.4 Unklassifizierte MFMs

Bei den unklassifizierten Myopathien wird klar, dass auch die quantitative Analyse nicht immer eindeutige Hinweise auf die zugrundeliegende Mutation geben kann. Bei diesen Patienten zeigen sich klinische und histopathologische Merkmale, die sie als Myofibrilläre Myopathien klassifizieren. Allerdings wurde eine Mutation in allen bisher bekannten MFM-Genen ausgeschlossen. Bei Patient 5 zeigt sich p62 (7,35-fach) am stärksten in den Aggregaten erhöht. Die molekulare Diagnostik mittels Sanger-Sequenzierung zeigte jedoch, dass eine Mutation in diesem Gen ebenfalls ausgeschlossen werden kann. Die zuvor beschriebenen Beispiele der klassifizierten Myopathien deuten allerdings auch eindeutig darauf hin, dass das mutierte Protein in den Aggregaten nicht am stärksten erhöht oder überhaupt erhöht sein muss. Daneben liegen bei diesem Patienten auch eine Vielzahl von mutationsunspezifischen Aggregatkomponenten, wie Desmin, Filamin C, Myotilin uvm. erhöht vor. Zudem kann U17L3 (Ubiquitin Carboxyl-terminal Hydrolase 17-like Protein 3), ein Protein, das Ubiquitin-Fusionsproteine spaltet und in die Apoptose involviert ist (Shin et al 2006), als möglicher mutationsspezifischer Aggregatbestandteil identifiziert werden. Auch Cofilin, ein F-Aktin-bindendes Protein und wichtiger Organisator des Aktincytoskeletts (Bamburg and Wiggan 2002), konnte bisher in anderen Patienten nicht nachgewiesen werden.

Bei Patient 6 fällt auf, dass neben mutationsunspezifischen Aggregatkomponenten auch eine Vielzahl von Kandidaten des kontraktilen Apparates wie Myosine (schwere und leichte Ketten), Tropomyosine und Troponin signifikant erhöht in den Aggregaten vorliegen. Damit unterscheidet sich das Proteinprofil entscheidend von dem anderer Patienten, in denen man v.a. Myosine zumeist verringert findet. In Verbindung mit Myofibrillären Myopathien wurden diverse Myosinketten als Aggregatbestandteile bisher nicht beschrieben. Eine Akkumulation der Motorproteine wird jedoch bei einer anderen Art der Proteinaggregations-Erkrankungen beobachtet, der Myosinopathie. Diese wird durch Mutationen in Genen, die für die schweren Myosin-Ketten (MYH7 und MYH2) kodieren, verursacht und geht zumeist mit einem muskulären und kardialen Phänotyp einher (Oldfors 2007). In den Aggregaten wurden vorwiegend schwere Myosinketten und teilweise auch Proteine wie α-B Crystallin und Desmin beobachtet (Bohlega et al 2003). Zudem weisen Kurapati et al. darauf hin, dass Myosin-Gene als MFM-assoziierte Kandidaten miteinbezogen werden sollten. Sie haben gezeigt, dass eine Mutation in MYH4 in der Maus (humanes Homolog: MYH1) zur Bildung von Aggregaten führt, in denen zahlreiche MFM-assoziierte Proteine wie ZASP, Filamin C und α-B Crystallin, sowie Ubiquitin und unterschiedliche Hitzeschockproteine identifiziert werden können (Kurapati et al 2012). Zudem findet sich bei diesem Patienten das LIM-Domain-binding Protein 3 (ZASP) akkumuliert, das α-Aktinin bindet und vermutlich eine wichtige Rolle bei der Stabilisierung und dem Erhalt des kontraktilen Apparates in den Muskelzellen spielt (Pomies et al 1999). Mutationen in diesem Gen verursachen eine Subform der Myofibrillären Myopathie, die Zaspopathie (Selcen and Engel 2005), die aber bei diesem Patienten durch Sanger-Sequenzierung ausgeschlossen wurde.

Bei Patient 7 finden sich nur Desmin und HspB6, ein Chaperon, das zur Familie der kleinen Hitzeschockproteine gehört, als bekannte Aggregatkomponenten, aber auch das in diesem Zusammenhang noch bei keinem Patienten erhöht identifizierte PDLI3. Das PDZ and LIM Domain Protein 3 scheint, ähnlich wie ZASP, α -Aktinin zu binden, organisiert vermutlich die Aktinfilamente und stabilisiert die Z-Scheiben (Klaavuniemi et al 2004, Xia et al 1997). Mutationen in PDLI3 bzw. inkorrekte Splicing-Prozesse stehen im Zusammenhang mit hypertropher Kardiomyopathie bzw. myotoner Dystrophie (Bagnall et al 2010, Ohsawa et al 2011). Möglicherweise könnte dieser Kandidat ein neues MFM-assoziiertes Krankheitsgen darstellen, ist aber bei diesem Patienten als kausales Gen mittels Sanger-Sequenzierung ausgeschlossen worden.

Patient 8 weist neben α-B Crystallin, Desmin und HspB6, eine über 2-fache Erhöhung in den leichten regulatorischen Myosinketten MYL6B und MLE3 auf. Möglicherweise könnten demnach auch Mutationen in Genen, die für leichte Myosinketten kodieren, eine Proteinaggregation in den Zellen auslösen, wobei hierzu nichts in der Literatur beschrieben ist. Außerdem finden sich mitochondriale Proteine in den Aggregaten erhöht, wie das Phosphate Carrier Protein (MPCP), sowie Peroxiredoxin-6, ein Enzym, das zur Verteidigung gegen oxidativem Stress in der Zelle exprimiert wird (Chen et al 2000).

Die quantitativen Analysen erweitern somit das Spektrum an potentiellen Krankheitsgenen, liefern aber keinen eindeutigen Hinweis auf das mutierte Gen. Nur die Sequenzierung der Kandidaten bzw. ein Whole Genome Sequencing könnte hier Aufschluss geben.

4 Gemeinsamkeiten und Unterschiede der Proteinprofile der Myofibrillären Myopathien

Betrachtet man die Aggregatproteinprofile der unterschiedlichen klassifizierten und unklassifizierten Myopathien miteinander, fällt auf. dass einige Proteine mutationsunspezifisch in einem Großteil der Patienten vorkommen (Tabelle 3). Neben bereits beschriebenen Aggregatkomponenten, wie Desmin, Filamin C, XIRP2, Myotilin, Sequestosom, Aktin, α -B Crystallin sowie weiteren Hitzeschockproteinen (Claevs et al 2008, Ferrer and Olive 2008, Olive et al 2008) findet man vier weitere Kandidaten, die in diesem Zusammenhang noch nicht bekannt sind. BIN1, KBTBA, MYL6B und NRAP können in jeweils drei bis vier Patienten als hochreguliert identifiziert werden. BIN1, auch bekannt als Amphiphysin 2 gehört zur Familie der BAR-Proteinfamilie (Peter et al 2004). Nur Isoform 8 wird muskelspezifisch exprimiert und spielt eine Rolle in der Biogenese der T-Tubuli (Lee et al 2002). Mutationen im BIN1-Gen verursachen die Centronukleäre Myopathie (CNM) (Nicot et al 2007). KBTBA spielt eine Rolle bei der Vermittlung der Ubiquitinierung der Zielproteine für den proteosomalen Abbau (Zhang et al 2005) und wurde zudem als Interaktionspartner von NRAP, das eine Verbindung zwischen Aktin und den Myofibrillen herstellt, identifiziert. Damit scheint es zudem eine wichtige Rolle bei der Myofibrillogenese einzunehmen (Lu et al 2003, Luo et al 1999). Zu den Funktionen von MYL6B, einer der leichten essentiellen Myosinketten, ist nur wenig bekannt. Diese Isoform (MLC1sa) soll u.a. in die Muskelentwicklung involviert sein (Hailstones and Gunning 1990)

	Bekannte Mutation			Unklassifiziert			
Accession	Myotilin	FHL1	Titin	Patient 5	Patient 6	Patient 7	Patient 8
ACTC/ACTA	х	Х	Х	x	х		
BIN1	х		х	х			
CRYAB	х	Х	х	х	х		х
DESM	х	Х	х	х	х	х	х
FLNC	х	х	х	х	х		
KBTBA	х	х	х		х		
MYOTI	х	х	х	х	х		
MYL6B				х	х		х
NRAP		х	х		х		
SQSTM	х	х		х			
XIRP2	х	х	х		х		
sHSPs	х				х	х	х
HSPs		Х		х	х		

Tabelle 3: Übersicht mutationsunspezifischer Aggregatkomponenten in MFMs

Diese mutationsunspezifischen Proteine, die in Tabelle 3 zusammengefasst sind, stellen somit interessante Kandidaten dar, deren Funktionen und Rolle im Hinblick auf Myofibrilläre Myopathien von großem Interesse sind und als potentiell neue Krankheitsgene bei bisher noch unklassifizierten MFMs gehandelt werden sollten. Es gibt allerdings auch Proteine, die jeweils nur speziell in bestimmten MFMs vorliegen und damit einen diagnostischen Mehrwert aufweisen. Diese sind in Tabelle 4 zusammengefasst. Möglicherweise handelt es sich hierbei um spezifische Interaktionspartner der Proteine, die im Patienten mutiert vorliegen und somit an der Akkumulation beteiligt werden. Die mutationsspezifischen Aggregatkomponenten könnten damit die Möglichkeit eröffnen die Subtypen der Myofibrillären Myopathien zu differenzieren.

	Protein	Lokalisation	Funktion
Myotilinopathie	PRAF3	Cytoplasma/ ER	Apoptose
	RNT2	ER	ER-Morphogenese
FHL1opathie	BAG3	Cytoplasma	Chaperon
	MYBPH	A-Bande (Myosinbindung)	Strukturprotein
Titinopathie	UbiQ	Nukleus/Cytoplasma	Abbausignal
Patient 5	U17L3	Nukleus	Apoptose/ UBQ-Konjugationspathway
	COF 1	Cytoskelett/ Nukleus/ Cytoplasma	Regulation der Cytosklettorganisation
Patient 6	MYH1/2/7	kontraktiler Apparat	Motorprotein
	MLE1/3	kontraktiler Apparat	Motorprotein
	MLRS/V	kontraktiler Apparat	Motorprotein
	TPM1/2	Cytoplasma/Cytoskelett	Strukturprotein
Patient 7	PDLI3	Z-Scheiben	Aktinfilamentorganisation
Patient 8	MPCP	Mitochondrien	Phosphattransport
	PRDX6	Cytoplasma/Lysosomen	Schutz vor oxidativem Stress

Tabelle 4: Übersicht mutationsspezifischer Aggregatkomponenten in MFMs

Zusammenfassend zeigt diese Arbeit, dass zumeist Proteine der Z-Scheiben und des Aktincytoskeletts bzw. assoziierte Proteine verstärkt in den Proteinaggregaten vorliegen, wohingegen Motorproteine und Proteine, die mit dem kontraktilen Apparat in Verbindung stehen, vermindert nachgewiesen werden. Dies lässt vermuten, dass nur bestimmte Kompartimente in den Aggregationsprozess involviert sind. Allerdings bilden hier zwei unklassifizierte Patienten eine Ausnahme, die neben den mutationsunspezifischen Proteinen auch eine Anhäufung von Isoformen der schweren und leichten Myosinketten zeigen. Dies weist wiederum darauf hin, dass sich die Zusammensetzung der Aggregate dahingehend unterscheidet, welche Proteine betroffen sind. Zudem zeigt sich eine verstärkte Präsenz von Proteinen der Stressantwort und von Beteiligten verschiedener Proteindegradationssyteme, sowie antiapoptotischer Faktoren. Das lässt darauf schließen, dass unterschiedliche Strategien verfolgt werden, die das Überleben der Zelle gewährleisten sollen.

Die Tatsache, dass bei Titinopathien, im Gegensatz zu FHL1opathien und Myotilinopathien, das mutierte Protein nicht in den Aggregaten akkumuliert, spricht zudem dafür, dass die Aggregation nicht zwingend durch eine vorrausgegangene Akkumulation des betroffenen Proteins ausgelöst wird. Möglicherweise liegt dieser Erkrankung und der Aggregatbildung ein funktionaler Verlust zugrunde.

5 Validierung der proteomischen Daten mittels Immunhistochemie

Einige, von den in der proteomischen Analyse als Aggregatkomponenten identifizierten Proteinen, wurden ausgewählt, um eine Validierung mittels Immunhistochemie bei Patient1-3 mit c.672C>G / p.C224W Mutation im FHL1-Gen bzw. mit c.16C>G / p.R6G Mutation im Myotilin-Gen durchzuführen. Es wurde eine Doppelimmunfärbung von den Proteinen FHL1 bzw. Myotilin, Sequestosom 1 (p62), Desmin und α -B Crystallin durchgeführt, die alle einen Akkumulationsfaktor von über 1,5 in der proteomischen Analyse gezeigt hatten und damit als erhöht eingestuft werden konnten.

Bei den beiden Brüdern, die eine FHL1opathie aufweisen sowie bei dem Myotilinopathie-Patienten zeigt sich in der Immunhistochemie, dass die in der Skelettmuskulatur beobachteten cytoplasmatischen und subsarcolemmalen Aggregate positiv für FHL1 bzw. Myotilin, p62, Desmin und α-B Crystallin sind und damit typisch für MFMs (Selcen 2011). MYH7, das keine Akkumulation in den Aggregaten zeigte, wurde als Negativkontrolle eingesetzt und konnte erwartungsgemäß auch nicht in den Aggregaten identifiziert werden. Bei den FHL1opathie-Patienten war eine inhomogene Verteilung von FHL1, CRYAB und Desmin innerhalb der Aggregate zu beobachten. FHL1 scheint dabei eine Art Kernstruktur zu bilden, an die die anderen Aggregatkomponenten angelagert sind, während p62 eine klare Kolokalisation mit FHL1 zeigt. Diese Verteilung könnte wiederum die Hypothese stützen, die eine Aggregation ausgehend von der Akkumulation des mutierten Proteins vermutet. Bei Patient 3 dagegen zeigt Myotilin eine Kolokalisation mit p62, CRYAB und Desmin. Zudem zeigt eine Immunfärbung mit einem Antikörper gegen Titin bei der Patientin 4, die eine Mutation in der A-Bandregion des Titins aufweist, keine Titin-positiven Aggregate im Bioptat. Diese Beobachtung bestätigt das Ergebnis der quantitativen, proteomischen Analyse.

Andere getestete Antikörper, die als Negativkontrolle eingesetzt werden sollten ergaben falsch positive Färbungen (α -Tubulin Antibody (rabbit polyclonal), Cell Signalling #2144; α -Sarcoplasmic or Endoplamic reticulum Ca²⁺ ATPase 1 (mouse monoclonal), Novocastra #NCL-SERCA1). Deshalb sollte eine zweite Validierungsmethode, die dabei hilft akkumulierte Aggregatkomponenten zu identifizieren, angewendet werden.

6 Validierung der proteomischen Daten mittels Westernblot-Analyse

Mittels Westernblot-Analyse sollten wiederum Proteine auf ihre Akkumulation in den Aggregaten untersucht werden. Verwendet man Lysate aus Schnitten des gesamten Bioptats zeigt sich FHL1 deutlich reduziert gegenüber den Kontrollen. Da schon im proteomischen Vergleich der aggregathaltigen Muskelfasern mit morphologisch normalen Muskelfasern keine Erhöhung von FHL1 festzustellen war, war kaum zu erwarten eine Erhöhung im Westernblot unter Verwendung ganzer Schnitte zu beobachten. Das sogar reduzierte FHL1-Level bei den Patienten könnte zudem mit der geringeren Löslichkeit der Aggregate in Verbindung stehen. Keduka *et al.* zeigten mittels Löslichkeits-Assay, dass mutiertes Myotilin eine erhöhte Unlöslichkeit unter Verwendung unterschiedlicher Detergentien im Muskel aufweist (Keduka et al 2012). Auch in anderen Forschungsfeldern konnte dargestellt werden, dass Proteine mutationsbedingt trotz Detergentieneinsatz oftmals zusammen mit diversen Interaktionspartnern in der unlöslichen Fraktion verbleiben (Higashi et al 2010, Yuan et al 2006).

Allerdings zeigt sich bei der Westernblot-Analyse des Myotilinpatienten, dass das Myotilin-Level minimal erhöht gegenüber der Kontrolle ist. So scheint Myotilin durch den Einsatz des RIPA-Puffers besser in Lösung zu gehen als FHL1. Die Doppelbande weist darauf hin, dass durch die N-terminale Mutation, bei der ein basisches, polares Arginin zu einem neutralen, unpolarem Glycin substituiert wird, und möglicherweise damit einhergehender Strukturänderung, die Angriffsstellen für Proteasen freigelegt werden. Damit würde die Bande unterhalb der erwarteten Myotilinbande ein Abbauprodukt von Myotilin darstellen. Eine andere Hypothese wäre, dass durch die Mutation bestimmte translationale Modifikationen nicht mehr durchgeführt werden können und damit das mutierte Proteine ein anderes Laufverhalten im Gel aufweist. Allerdings sind bisher vor allem posttranslationale Modifikationen in der C-terminalen Region beschrieben (Hojlund et al 2009).

Auch bei der Westernblot-Analyse präzise ausgelaserter Aggregate und morphologisch normaler Muskelfasern, sowie Kontrollfasern wird man mit Problemen konfrontiert. Die Methode zeigt eine geringe Sensitivität, da trotz Erhöhung der Probenmenge (1,5 Mio. μ m² dissektiertes Material) im Vergleich zum massenspektrometrischen Ansatz, geringe Signale erzielt werden konnten. Zudem zeigt sich FHL1 nicht offensichtlich erhöht im Aggregatmaterial, was aber wiederum auf die geringere Löslichkeit der zentralen Aggregatkomponente zurückzuführen sein könnte. Durch die Normalisierung mit dem internen Standard GAPDH wird jedoch deutlich, dass eine Erhöhung von FHL1 vorliegt. Die getesteten Proteine Desmin und p62 zeigen wie erwartet eine signifikante Akkumulation, MYH7 eine Reduktion in den Aggregaten im Vergleich zu morphologisch normalen Muskelfasern des Patienten und Einzelmuskelfasern einer Kontrollperson. Möglicherweise bleiben Proteine, die im Kern der Aggregate lokalisiert sind, im SDS-Puffer teilweise unlöslich, werden aber durch den Protease-Verdau mit Trypsin und LysC zugänglich für die massenspektrometrische Analyse.

7 Anwendbarkeit der Methodik in der Diagnostik

Die Charakterisierung des Proteoms gewährt uns Einblicke in dynamische, temporäre, biologische Systeme. Insbesondere in der Krebsforschung, aber auch zunehmend in anderen Bereichen werden proteomische Studien genutzt, um diagnostische Biomarker für die Früherkennung zu identifizieren, aber auch um Pathomechanismen zu verstehen, wodurch neue therapeutische Strategien entwickelt werden können. Die Charakterisierung des Proteoms mithilfe MS-basierter Techniken rückt dabei immer mehr in den Vordergrund. Der enorme technische Fortschritt und die damit einhergehende Optimierung der Sensitivität und Effektivität der Methoden in diesem Bereich machen nun auch Einzelzellanalysen möglich. Somit können homogene Zellpopulationen untersucht und damit individuelle Proteome differenziert charakterisiert werden (Angel et al 2012).

Die quantitative Analyse von pathologischen Proteinaggregaten in dieser Arbeit gibt uns Hinweise auf deren Zusammensetzung und den relativen Anteil der Proteine, die an der Akkumulation beteiligt sind. Damit können potentielle Interaktionspartner der mutierten Proteine, Beteiligte am Aggregationsprozess und putative Kandidatengene für Myofibrilläre Myopathien identifiziert werden. Allerdings lassen sich aus dem Proteinprofil zumeist keine eindeutigen Schlüsse ziehen, welche Gene in diesem Zusammenhang mutiert vorliegen und damit kausale Krankheitsgene darstellen. Nur bei der FHL1opathie scheint das mutierte Gen auch den Hauptbestandteil der Aggregate zu bilden. Dennoch kann durch den Einsatz von quantitativer Massenspektrometrie und der damit verbundenen Identifikation von mutationsspezifischen Aggregatkomponenten eine Möglichkeit geschaffen werden MFM-Subtypen unabhängig von der genetischen Diagnostik voneinander zu unterscheiden. Dies
bedarf allerdings einer Fortsetzung der Erstellung von Proteinprofilen der unterschiedlichen Formen der Myofibrillären Myopathien. Die Anwendbarkeit der Methode in der Diagnostik wird allerdings durch die hohen Anschaffungs- und Materialkosten und den enormen Zeitaufwand im Gegensatz zur molekulargenetischen Diagnostik insbesondere der zunehmend günstigeren Exome-Sequencing-Technik limitiert.

8 Fazit und Ausblick

Entgegen der Erwartungen stellt die qualitative proteomische Analyse präzise ausgelaserter Aggregate im direkten Vergleich mit morphologisch normalen Muskelfasern nur eine bedingt erfolgreiche Strategie zur Identifizierung eindeutiger Aggregatkomponenten in MFM-Proben dar. Um die Bestandteile der Aggregate eindeutig zu identifizieren, wurde eine quantitative, proteomische Methode etabliert, die auf iTRAQ-Markierung von Peptiden kombiniert mit MALDI-TOF/TOF-Analyse basiert. Somit konnte die Anzahl der Kandidatenproteine eingeengt werden, die spezifische Aggregatkomponenten der Myofibrillären Myopathien darstellen. Durch die Untersuchung des reinen Aggregatmaterials können zudem mutationsspezifische Komponenten identifiziert werden, die eine Unterscheidung der MFM-Subtypen ermöglichen. Die Validierung der Proteinidentifikation in den Aggregaten mittels Immunfluoreszenz und Westernblot-Analyse bestätigten die massenspektrometrischen Ergebnisse, zeigen aber Limitierungen bezüglich der Sensitivität und Löslichkeit auf. Die proteomischen Daten, die von den Mausmodellen generiert wurden sind bisher noch zu wenig aussagekräftig und bedürfen einer weiteren Validierung.

Die untersuchten Fälle weisen darauf hin, dass der Aggregationsprozess je nach betroffenem Gen unterschiedlich abzulaufen scheint bzw. unterschiedliche Proteine beteiligt sind. So liegt bei FHL1opathien und Myotilinopathien der Verdacht nahe, dass die Falschfaltung der mutierten Proteine die Akkumulation auslöst, wohingegen bei der Titinopathie ein Verlust der Proteinfunktion die Aggregatbildung von anderen Proteinen zu verursachen scheint.

Die Identifizierung von Proteinen, die in das Ubiquitin-Proteasom-System und den Autophagie-Pathway involviert sind, bestärkt jedoch die Hypothese, dass eine verminderte Effizienz im Proteinabbau einen wichtigen Einfluss in allen Formen der Myofibrillären Myopathien ausübt. Diese Erkenntnis könnte die Entwicklung neuer therapeutischer Strategien ermöglichen. Die Unterstützung der Qualitätskontroll-Mechanismen durch Überexpression von Chaperonen könnte eine Anti- oder De-Aggregationsstrategie darstellen. Im Bereich der neurodegenerativen Erkrankungen findet man eine Reihe von therapeutischen Ansätzen, deren Anwendung beim Patienten allerdings noch weit entfernt liegen. Es wurden unterschiedliche Substanzen, u.a. Arimiclomol getestet, die Hsp70 in den Zellen hochregulieren, Proteinaggregate reduzieren und das Überleben der Zelle verlängern (Kalmar et al 2008). Weitere Möglichkeiten das Chaperon-Level in den Zellen zu erhöhen stellt der virale Gentransfer (Dong et al 2005) oder die Verwendung sogenannter Cell Penetrating Peptides (CPPs) dar, die den Transport von Chaperonen in die Zelle ermöglichen (Nagel et al 2008). Auch der Einsatz von chemischen und pharmakologischen Chaperonen wird in der Literatur als neue Therapiemöglichkeit beschrieben. Beispielsweise zeigt der Einsatz des chemischen Chaperons Geranyl-Geranyl-Aceton im transgenen α -B Crystallinopathie-Mausmodell eine Reduktion der Aggregate im Muskel und eine erhöhte Überlebensrate der Tiere (Sanbe et al 2009).

Auch die Induzierung des Autophagie-Pathways, ein zum UPS alternatives Proteindegradations-System, könnte therapeutische Erfolge bei MFM-Patienten erzielen. In neurodegenerativen Erkrankungen hat der Einsatz von Rapamycin, durch das der Autophagieregulator mTOR inhibiert und die Autophagie somit induziert wird, eine Reduktion von aggregierten Proteinen und toxischen Intermediaten im Maus- und Drosophila-HD-Modell gezeigt (Ravikumar et al 2004).

Die proteomische Einzelfaser-Analyse wird wichtige, weitere Einblicke in die Pathomechanismen der Myofibrillären Myopathien liefern, um in therapeutischer Hinsicht gezielt und "personalisiert" in diese Prozesse eingreifen zu können, ohne unvorhersehbare Nebeneffekte zu generieren.

G Literaturverzeichnis

Aguzzi A, O'Connor T (2010). Protein aggregation diseases: pathogenicity and therapeutic perspectives. *Nat Rev Drug Discov* **9:** 237-248.

Ahmed FE (2008). Utility of mass spectrometry for proteome analysis: part I. Conceptual and experimental approaches. *Expert Rev Proteomics* **5**: 841-864.

Ando Y, Nyhlin N, Suhr O, Holmgren G, Uchida K, el Sahly M *et al* (1997). Oxidative stress is found in amyloid deposits in systemic amyloidosis. *Biochem Biophys Res Commun* **232**: 497-502.

Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT, Robinson EW *et al* (2012). Mass spectrometry-based proteomics: existing capabilities and future directions. *Chem Soc Rev* **41**: 3912-3928.

Anvar SY, t Hoen PA, Venema A, van der Sluijs B, van Engelen B, Snoeck M *et al* (2011). Deregulation of the ubiquitin-proteasome system is the predominant molecular pathology in OPMD animal models and patients. *Skelet Muscle* **1:** 15.

Arbustini E, Morbini P, Grasso M, Fasani R, Verga L, Bellini O *et al* (1998). Restrictive cardiomyopathy, atrioventricular block and mild to subclinical myopathy in patients with desmin-immunoreactive material deposits. *J Am Coll Cardiol* **31**: 645-653.

Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M *et al* (2010). Chaperone-assisted selective autophagy is essential for muscle maintenance. *Curr Biol* **20**: 143-148.

Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004). Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. *Nature* **431**: 805-810.

Askanas V, Engel WK (2006). Inclusion-body myositis: a myodegenerative conformational disorder associated with Abeta, protein misfolding, and proteasome inhibition. *Neurology* **66:** S39-48.

Bagnall RD, Yeates L, Semsarian C (2010). Analysis of the Z-disc genes PDLIM3 and MYPN in patients with hypertrophic cardiomyopathy. *Int J Cardiol* **145:** 601-602.

Baker H, Patel V, Molinolo AA, Shillitoe EJ, Ensley JF, Yoo GH *et al* (2005). Proteome-wide analysis of head and neck squamous cell carcinomas using laser-capture microdissection and tandem mass spectrometry. *Oral Oncol* **41**: 183-199.

Bamburg JR, Wiggan OP (2002). ADF/cofilin and actin dynamics in disease. Trends Cell Biol 12: 598-605.

Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M *et al* (2001). The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. *Circ Res* **89:** 1065-1072.

Bar H, Strelkov SV, Sjoberg G, Aebi U, Herrmann H (2004). The biology of desmin filaments: how do mutations affect their structure, assembly, and organisation? *J Struct Biol* **148**: 137-152.

Bartolini M, Andrisano V (2010). Strategies for the inhibition of protein aggregation in human diseases. *Chembiochem* **11**: 1018-1035.

Beggs AH, Hoffman EP, Snyder JR, Arahata K, Specht L, Shapiro F *et al* (1991). Exploring the molecular basis for variability among patients with Becker muscular dystrophy: dystrophin gene and protein studies. *Am J Hum Genet* **49:** 54-67.

Berciano J, Gallardo E, Dominguez-Perles R, Garcia A, Garcia-Barredo R, Combarros O *et al* (2008). Autosomal-dominant distal myopathy with a myotilin S55F mutation: sorting out the phenotype. *J Neurol Neurosurg Psychiatry* **79**: 205-208.

Bohlega S, Lach B, Meyer BF, Al Said Y, Kambouris M, Al Homsi M *et al* (2003). Autosomal dominant hyaline body myopathy: clinical variability and pathologic findings. *Neurology* **61**: 1519-1523.

Bretteville A, Planel E (2008). Tau aggregates: toxic, inert, or protective species? J Alzheimers Dis 14: 431-436.

Brown S, McGrath MJ, Ooms LM, Gurung R, Maimone MM, Mitchell CA (1999). Characterization of two isoforms of the skeletal muscle LIM protein 1, SLIM1. Localization of SLIM1 at focal adhesions and the isoform slimmer in the nucleus of myoblasts and cytoplasm of myotubes suggests distinct roles in the cytoskeleton and in nuclear-cytoplasmic communication. *J Biol Chem* **274**: 27083-27091.

Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C *et al* (2000). Hsp27 negatively regulates cell death by interacting with cytochrome c. *Nat Cell Biol* **2:** 645-652.

Bullard B, Ferguson C, Minajeva A, Leake MC, Gautel M, Labeit D *et al* (2004). Association of the chaperone alphaB-crystallin with titin in heart muscle. *J Biol Chem* **279**: 7917-7924.

Carra S, Seguin SJ, Landry J (2008). HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy. *Autophagy* **4**: 237-239.

Cazares LH, Adam BL, Ward MD, Nasim S, Schellhammer PF, Semmes OJ *et al* (2002). Normal, benign, preneoplastic, and malignant prostate cells have distinct protein expression profiles resolved by surface enhanced laser desorption/ionization mass spectrometry. *Clin Cancer Res* **8**: 2541-2552.

Chen DH, Raskind WH, Parson WW, Sonnen JA, Vu T, Zheng Y *et al* (2010). A novel mutation in FHL1 in a family with X-linked scapuloperoneal myopathy: phenotypic spectrum and structural study of FHL1 mutations. *J Neurol Sci* **296**: 22-29.

Chen JW, Dodia C, Feinstein SI, Jain MK, Fisher AB (2000). 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. *J Biol Chem* **275**: 28421-28427.

Cheng AL, Huang WG, Chen ZC, Peng F, Zhang PF, Li MY *et al* (2008). Identification of novel nasopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis. *Clin Cancer Res* **14**: 435-445.

Claeys KG, Fardeau M, Schroder R, Suominen T, Tolksdorf K, Behin A *et al* (2008). Electron microscopy in myofibrillar myopathies reveals clues to the mutated gene. *Neuromuscul Disord* **18**: 656-666.

Claeys KG, van der Ven PF, Behin A, Stojkovic T, Eymard B, Dubourg O *et al* (2009). Differential involvement of sarcomeric proteins in myofibrillar myopathies: a morphological and immunohistochemical study. *Acta Neuropathol* **117**: 293-307.

Coon KD, Dunckley T, Stephan DA (2004). Biomarker identification in neurologic diseases: improving diagnostics and therapeutics. *Expert Rev Mol Diagn* **4:** 361-375.

Cottle DL, McGrath MJ, Wilding BR, Cowling BS, Kane JM, D'Arcy CE *et al* (2009). SLIMMER (FHL1B/KyoT3) interacts with the proapoptotic protein Siva-1 (CD27BP) and delays skeletal myoblast apoptosis. *J Biol Chem* **284**: 26964-26977.

Cowling BS, McGrath MJ, Nguyen MA, Cottle DL, Kee AJ, Brown S *et al* (2008). Identification of FHL1 as a regulator of skeletal muscle mass: implications for human myopathy. *J Cell Biol* **183**: 1033-1048.

Cowling BS, Cottle DL, Wilding BR, D'Arcy CE, Mitchell CA, McGrath MJ (2011). Four and a half LIM protein 1 gene mutations cause four distinct human myopathies: a comprehensive review of the clinical, histological and pathological features. *Neuromuscul Disord* **21**: 237-251.

Cyr DM, Hohfeld J, Patterson C (2002). Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. *Trends Biochem Sci* **27:** 368-375.

Dawid IB, Breen JJ, Toyama R (1998). LIM domains: multiple roles as adapters and functional modifiers in protein interactions. *Trends Genet* 14: 156-162.

De Bleecker JL, Engel AG, Ertl BB (1996). Myofibrillar myopathy with abnormal foci of desmin positivity. II. Immunocytochemical analysis reveals accumulation of multiple other proteins. *J Neuropathol Exp Neurol* **55**: 563-577.

Domon B, Aebersold R (2006). Mass spectrometry and protein analysis. Science 312: 212-217.

Dong Z, Wolfer DP, Lipp HP, Bueler H (2005). Hsp70 gene transfer by adeno-associated virus inhibits MPTPinduced nigrostriatal degeneration in the mouse model of Parkinson disease. *Mol Ther* **11**: 80-88.

Douglas PM, Dillin A (2010). Protein homeostasis and aging in neurodegeneration. J Cell Biol 190: 719-729.

El Menyar AA, Bener A, Al Suwaidi J (2004). Cardiovascular manifestations of myofibrillar myopathy. *Anadolu Kardiyol Derg* **4:** 336-338.

Emmert-Buck MR, Roth MJ, Zhuang Z, Campo E, Rozhin J, Sloane BF *et al* (1994). Increased gelatinase A (MMP-2) and cathepsin B activity in invasive tumor regions of human colon cancer samples. *Am J Pathol* **145**: 1285-1290.

Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR *et al* (1996). Laser capture microdissection. *Science* 274: 998-1001.

Escher N, Ernst G, Melle C, Berndt A, Clement JH, Junker K *et al* (2010). Comparative proteomic analysis of normal and tumor stromal cells by tissue on chip based mass spectrometry (toc-MS). *Diagn Pathol* **5**: 10.

Espina V, Milia J, Wu G, Cowherd S, Liotta LA (2006). Laser capture microdissection. *Methods Mol Biol* **319**: 213-229.

Feldkirchner S, Schessl J, Muller S, Schoser B, Hanisch FG (2012). Patient-specific protein aggregates in myofibrillar myopathies: Laser microdissection and differential proteomics for identification of plaque components. *Proteomics*.

Ferrer I, Olive M (2008). Molecular pathology of myofibrillar myopathies. Expert Rev Mol Med 10: e25.

Fink AL (1999). Chaperone-mediated protein folding. Physiol Rev 79: 425-449.

Finley D, Bartel B, Varshavsky A (1989). The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. *Nature* **338**: 394-401.

Fontanella B, Birolo L, Infusini G, Cirulli C, Marzullo L, Pucci P *et al* (2010). The co-chaperone BAG3 interacts with the cytosolic chaperonin CCT: new hints for actin folding. *Int J Biochem Cell Biol* **42**: 641-650.

Foroud T, Pankratz N, Batchman AP, Pauciulo MW, Vidal R, Miravalle L *et al* (2005). A mutation in myotilin causes spheroid body myopathy. *Neurology* **65:** 1936-1940.

Fuchs E, Weber K (1994). Intermediate filaments: structure, dynamics, function, and disease. *Annu Rev Biochem* **63**: 345-382.

Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E (1999). HSP27 inhibits cytochrome c-dependent activation of procaspase-9. *FASEB J* **13**: 2061-2070.

Garrido C, Gurbuxani S, Ravagnan L, Kroemer G (2001). Heat shock proteins: endogenous modulators of apoptotic cell death. *Biochem Biophys Res Commun* **286**: 433-442.

Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006). Heat shock proteins 27 and 70: antiapoptotic proteins with tumorigenic properties. *Cell Cycle* **5**: 2592-2601.

Gerull B, Gramlich M, Atherton J, McNabb M, Trombitas K, Sasse-Klaassen S *et al* (2002). Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. *Nat Genet* **30**: 201-204.

Glabe C (2001). Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer's disease. *J Mol Neurosci* **17:** 137-145.

Glabe CG (2006). Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. *Neurobiol Aging* **27:** 570-575.

Goebel HH, Muller J, Gillen HW, Merritt AD (1978). Autosomal dominant "spheroid body myopathy". *Muscle Nerve* 1: 14-26.

Goebel HH (1995). Desmin-related neuromuscular disorders. Muscle Nerve 18: 1306-1320.

Goebel HH (1997). Desmin-related myopathies. Curr Opin Neurol 10: 426-429.

Goebel HH, Muller HD (2006). Protein aggregate myopathies. Semin Pediatr Neurol 13: 96-103.

Goldberg AL (2003). Protein degradation and protection against misfolded or damaged proteins. *Nature* **426**: 895-899.

Goldfarb LG, Park KY, Cervenakova L, Gorokhova S, Lee HS, Vasconcelos O *et al* (1998). Missense mutations in desmin associated with familial cardiac and skeletal myopathy. *Nat Genet* **19**: 402-403.

Goldman RD, Cleland MM, Murthy SN, Mahammad S, Kuczmarski ER (2012). Inroads into the structure and function of intermediate filament networks. *J Struct Biol* **177**: 14-23.

Greenberg SA, Salajegheh M, Judge DP, Feldman MW, Kuncl RW, Waldon Z *et al* (2012). Etiology of limb girdle muscular dystrophy 1D/1E determined by laser capture microdissection proteomics. *Ann Neurol* **71**: 141-145.

Greene WK, Baker E, Rabbitts TH, Kees UR (1999). Genomic structure, tissue expression and chromosomal location of the LIM-only gene, SLIM1. *Gene* **232**: 203-207.

Griffin TJ, Seth G, Xie H, Bandhakavi S, Hu WS (2007). Advancing mammalian cell culture engineering using genome-scale technologies. *Trends Biotechnol* **25:** 401-408.

Griggs R, Vihola A, Hackman P, Talvinen K, Haravuori H, Faulkner G *et al* (2007). Zaspopathy in a large classic late-onset distal myopathy family. *Brain* **130**: 1477-1484.

Gueneau L, Bertrand AT, Jais JP, Salih MA, Stojkovic T, Wehnert M *et al* (2009). Mutations of the FHL1 gene cause Emery-Dreifuss muscular dystrophy. *Am J Hum Genet* **85:** 338-353.

Guo J, Colgan TJ, DeSouza LV, Rodrigues MJ, Romaschin AD, Siu KW (2005). Direct analysis of laser capture microdissected endometrial carcinoma and epithelium by matrix-assisted laser desorption/ionization mass spectrometry. *Rapid Commun Mass Spectrom* **19**: 2762-2766.

Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. *Nat Biotechnol* **17:** 994-999.

Hackman P, Vihola A, Haravuori H, Marchand S, Sarparanta J, De Seze J *et al* (2002). Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. *Am J Hum Genet* **71**: 492-500.

Hailstones DL, Gunning PW (1990). Characterization of human myosin light chains 1sa and 3nm: implications for isoform evolution and function. *Mol Cell Biol* **10**: 1095-1104.

Han XJ, Lee MJ, Yu GR, Lee ZW, Bae JY, Bae YC *et al* (2012). Altered dynamics of ubiquitin hybrid proteins during tumor cell apoptosis. *Cell Death Dis* **3**: e255.

Hartwig JH, Stossel TP (1975). Isolation and properties of actin, myosin, and a new actinbinding protein in rabbit alveolar macrophages. *J Biol Chem* **250**: 5696-5705.

Hashimoto M, Rockenstein E, Crews L, Masliah E (2003). Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer's and Parkinson's diseases. *Neuromolecular Med* **4**: 21-36.

Hauser MA, Horrigan SK, Salmikangas P, Torian UM, Viles KD, Dancel R *et al* (2000). Myotilin is mutated in limb girdle muscular dystrophy 1A. *Hum Mol Genet* **9:** 2141-2147.

Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D *et al* (2012). Truncations of titin causing dilated cardiomyopathy. *N Engl J Med* **366**: 619-628.

Higashi S, Tsuchiya Y, Araki T, Wada K, Kabuta T (2010). TDP-43 physically interacts with amyotrophic lateral sclerosis-linked mutant CuZn superoxide dismutase. *Neurochem Int* **57**: 906-913.

Hojlund K, Bowen BP, Hwang H, Flynn CR, Madireddy L, Geetha T *et al* (2009). In vivo phosphoproteome of human skeletal muscle revealed by phosphopeptide enrichment and HPLC-ESI-MS/MS. *J Proteome Res* 8: 4954-4965.

Horowitz SH, Schmalbruch H (1994). Autosomal dominant distal myopathy with desmin storage: a clinicopathologic and electrophysiologic study of a large kinship. *Muscle Nerve* **17:** 151-160.

Houmeida A, Holt J, Tskhovrebova L, Trinick J (1995). Studies of the interaction between titin and myosin. *J Cell Biol* **131:** 1471-1481.

Jakob U, Gaestel M, Engel K, Buchner J (1993). Small heat shock proteins are molecular chaperones. *J Biol Chem* **268**: 1517-1520.

Janue A, Olive M, Ferrer I (2007). Oxidative stress in desminopathies and myotilinopathies: a link between oxidative damage and abnormal protein aggregation. *Brain Pathol* **17**: 377-388.

Jeong H, Then F, Melia TJ, Jr., Mazzulli JR, Cui L, Savas JN *et al* (2009). Acetylation targets mutant huntingtin to autophagosomes for degradation. *Cell* **137**: 60-72.

Jin Z, Li Y, Pitti R, Lawrence D, Pham VC, Lill JR *et al* (2009). Cullin3-based polyubiquitination and p62dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. *Cell* **137**: 721-735.

Kadrmas JL, Beckerle MC (2004). The LIM domain: from the cytoskeleton to the nucleus. *Nat Rev Mol Cell Biol* **5**: 920-931.

Kalmar B, Novoselov S, Gray A, Cheetham ME, Margulis B, Greensmith L (2008). Late stage treatment with arimoclomol delays disease progression and prevents protein aggregation in the SOD1 mouse model of ALS. *J Neurochem* **107**: 339-350.

Kamradt MC, Chen F, Sam S, Cryns VL (2002). The small heat shock protein alpha B-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation. *J Biol Chem* **277**: 38731-38736.

Keduka E, Hayashi YK, Shalaby S, Mitsuhashi H, Noguchi S, Nonaka I *et al* (2012). In vivo characterization of mutant myotilins. *Am J Pathol* **180:** 1570-1580.

Klaavuniemi T, Kelloniemi A, Ylanne J (2004). The ZASP-like motif in actinin-associated LIM protein is required for interaction with the alpha-actinin rod and for targeting to the muscle Z-line. *J Biol Chem* **279**: 26402-26410.

Klemenz R, Frohli E, Steiger RH, Schafer R, Aoyama A (1991). Alpha B-crystallin is a small heat shock protein. *Proc Natl Acad Sci U S A* **88:** 3652-3656.

Kley RA, Hellenbroich Y, van der Ven PF, Furst DO, Huebner A, Bruchertseifer V *et al* (2007). Clinical and morphological phenotype of the filamin myopathy: a study of 31 German patients. *Brain* **130**: 3250-3264.

Kley RA, Maerkens A, Leber Y, Theiss V, Schreiner A, van der Ven PF *et al* (2012). A combined laser microdissection and mass spectrometry approach reveals new disease relevant proteins accumulating in aggregates of filaminopathy patients. *Mol Cell Proteomics*.

Knaevelsrud H, Simonsen A (2010). Fighting disease by selective autophagy of aggregate-prone proteins. *FEBS Lett* **584**: 2635-2645.

Knoblauch H, Geier C, Adams S, Budde B, Rudolph A, Zacharias U *et al* (2010). Contractures and hypertrophic cardiomyopathy in a novel FHL1 mutation. *Ann Neurol* **67:** 136-140.

Kolble K (2000). The LEICA microdissection system: design and applications. J Mol Med (Berl) 78: B24-25.

Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL, Yap SV, Bloch RJ (2009). Muscle giants: molecular scaffolds in sarcomerogenesis. *Physiol Rev* **89:** 1217-1267.

Kopito RR (2000). Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10: 524-530.

Kruger M, Linke WA (2011). The giant protein titin: a regulatory node that integrates myocyte signaling pathways. *J Biol Chem* **286**: 9905-9912.

Kumamoto T, Ueyama H, Tsumura H, Toyoshima I, Tsuda T (2004). Expression of lysosome-related proteins and genes in the skeletal muscles of inclusion body myositis. *Acta Neuropathol* **107:** 59-65.

Kurapati R, McKenna C, Lindqvist J, Williams D, Simon M, LeProust E *et al* (2012). Myofibrillar myopathy caused by a mutation in the motor domain of mouse MyHC IIb. *Hum Mol Genet* **21**: 1706-1724.

Labeit S, Barlow DP, Gautel M, Gibson T, Holt J, Hsieh CL *et al* (1990). A regular pattern of two types of 100-residue motif in the sequence of titin. *Nature* **345**: 273-276.

Labeit S, Gautel M, Lakey A, Trinick J (1992). Towards a molecular understanding of titin. *EMBO J* **11:** 1711-1716.

Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E *et al* (2005). The kinase domain of titin controls muscle gene expression and protein turnover. *Science* **308**: 1599-1603.

Lazarides E, Hubbard BD (1976). Immunological characterization of the subunit of the 100 A filaments from muscle cells. *Proc Natl Acad Sci USA* **73:** 4344-4348.

Lee E, Marcucci M, Daniell L, Pypaert M, Weisz OA, Ochoa GC *et al* (2002). Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. *Science* **297:** 1193-1196.

Lee JH, Takahashi T, Yasuhara N, Inazawa J, Kamada S, Tsujimoto Y (1999). Bis, a Bcl-2-binding protein that synergizes with Bcl-2 in preventing cell death. *Oncogene* **18**: 6183-6190.

Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A *et al* (2006). A specific amyloid-beta protein assembly in the brain impairs memory. *Nature* **440**: 352-357.

Liewluck T, Hayashi YK, Ohsawa M, Kurokawa R, Fujita M, Noguchi S *et al* (2007). Unfolded protein response and aggresome formation in hereditary reducing-body myopathy. *Muscle Nerve* **35**: 322-326.

Lu S, Carroll SL, Herrera AH, Ozanne B, Horowits R (2003). New N-RAP-binding partners alpha-actinin, filamin and Krp1 detected by yeast two-hybrid screening: implications for myofibril assembly. *J Cell Sci* **116**: 2169-2178.

Luan X, Hong D, Zhang W, Wang Z, Yuan Y (2010). A novel heterozygous deletion-insertion mutation (2695-2712 del/GTTTGT ins) in exon 18 of the filamin C gene causes filaminopathy in a large Chinese family. *Neuromuscul Disord* **20**: 390-396.

Luo G, Zhang JQ, Nguyen TP, Herrera AH, Paterson B, Horowits R (1997). Complete cDNA sequence and tissue localization of N-RAP, a novel nebulin-related protein of striated muscle. *Cell Motil Cytoskeleton* **38**: 75-90.

Luo G, Herrera AH, Horowits R (1999). Molecular interactions of N-RAP, a nebulin-related protein of striated muscle myotendon junctions and intercalated disks. *Biochemistry* **38**: 6135-6143.

McGrath MJ, Cottle DL, Nguyen MA, Dyson JM, Coghill ID, Robinson PA *et al* (2006). Four and a half LIM protein 1 binds myosin-binding protein C and regulates myosin filament formation and sarcomere assembly. *J Biol Chem* **281**: 7666-7683.

Micke P, Ostman A, Lundeberg J, Ponten F (2005). Laser-assisted cell microdissection using the PALM system. *Methods Mol Biol* **293:** 151-166.

Miller G, Musa H, Gautel M, Peckham M (2003). A targeted deletion of the C-terminal end of titin, including the titin kinase domain, impairs myofibrillogenesis. *J Cell Sci* **116**: 4811-4819.

Montenegro G, Rebelo AP, Connell J, Allison R, Babalini C, D'Aloia M *et al* (2012). Mutations in the ERshaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12. *J Clin Invest* **122**: 538-544.

Morimoto RI (2008). Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. *Genes Dev* 22: 1427-1438.

Mounier N, Arrigo AP (2002). Actin cytoskeleton and small heat shock proteins: how do they interact? *Cell Stress Chaperones* **7:** 167-176.

Mullis KB (1990). Target amplification for DNA analysis by the polymerase chain reaction. *Ann Biol Clin* (*Paris*) **48:** 579-582.

Nagel F, Falkenburger BH, Tonges L, Kowsky S, Poppelmeyer C, Schulz JB *et al* (2008). Tat-Hsp70 protects dopaminergic neurons in midbrain cultures and in the substantia nigra in models of Parkinson's disease. *J Neurochem* **105**: 853-864.

Nakano S, Engel AG, Waclawik AJ, Emslie-Smith AM, Busis NA (1996). Myofibrillar myopathy with abnormal foci of desmin positivity. I. Light and electron microscopy analysis of 10 cases. *J Neuropathol Exp Neurol* **55**: 549-562.

Nakatani S, Wei M, Ishimura E, Kakehashi A, Mori K, Nishizawa Y *et al* (2012). Proteome analysis of laser microdissected glomeruli from formalin-fixed paraffin-embedded kidneys of autopsies of diabetic patients: nephronectin is associated with the development of diabetic glomerulosclerosis. *Nephrol Dial Transplant* **27**: 1889-1897.

Ng EK, Lee SM, Li HY, Ngai SM, Tsui SK, Waye MM *et al* (2001). Characterization of tissue-specific LIM domain protein (FHL1C) which is an alternatively spliced isoform of a human LIM-only protein (FHL1). *J Cell Biochem* **82:** 1-10.

Nicot AS, Toussaint A, Tosch V, Kretz C, Wallgren-Pettersson C, Iwarsson E *et al* (2007). Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. *Nat Genet* **39**: 1134-1139.

Ohlsson M, Hedberg C, Bradvik B, Lindberg C, Tajsharghi H, Danielsson O *et al* (2012). Hereditary myopathy with early respiratory failure associated with a mutation in A-band titin. *Brain* **135**: 1682-1694.

Ohsawa N, Koebis M, Suo S, Nishino I, Ishiura S (2011). Alternative splicing of PDLIM3/ALP, for alphaactinin-associated LIM protein 3, is aberrant in persons with myotonic dystrophy. *Biochem Biophys Res Commun* **409**: 64-69.

Oldfors A (2007). Hereditary myosin myopathies. Neuromuscul Disord 17: 355-367.

Olive M, Goldfarb LG, Shatunov A, Fischer D, Ferrer I (2005). Myotilinopathy: refining the clinical and myopathological phenotype. *Brain* **128**: 2315-2326.

Olive M, van Leeuwen FW, Janue A, Moreno D, Torrejon-Escribano B, Ferrer I (2008). Expression of mutant ubiquitin (UBB+1) and p62 in myotilinopathies and desminopathies. *Neuropathol Appl Neurobiol* **34:** 76-87.

Olive M (2009). Extralysosomal protein degradation in myofibrillar myopathies. Brain Pathol 19: 507-515.

Olive M, Janue A, Moreno D, Gamez J, Torrejon-Escribano B, Ferrer I (2009). TAR DNA-Binding protein 43 accumulation in protein aggregate myopathies. *J Neuropathol Exp Neurol* **68**: 262-273.

Olsen JV, Ong SE, Mann M (2004). Trypsin cleaves exclusively C-terminal to arginine and lysine residues. *Mol Cell Proteomics* **3**: 608-614.

Ornstein DK, Englert C, Gillespie JW, Paweletz CP, Linehan WM, Emmert-Buck MR *et al* (2000). Characterization of intracellular prostate-specific antigen from laser capture microdissected benign and malignant prostatic epithelium. *Clin Cancer Res* **6**: 353-356.

Otten C, van der Ven PF, Lewrenz I, Paul S, Steinhagen A, Busch-Nentwich E *et al* (2012). Xirp proteins mark injured skeletal muscle in zebrafish. *PLoS One* 7: e31041.

Pacholsky D, Vakeel P, Himmel M, Lowe T, Stradal T, Rottner K *et al* (2004). Xin repeats define a novel actinbinding motif. *J Cell Sci* **117:** 5257-5268.

Palmer-Toy DE, Sarracino DA, Sgroi D, LeVangie R, Leopold PE (2000). Direct acquisition of matrix-assisted laser Desorption/Ionization time-of-flight mass spectra from laser capture microdissected tissues. *Clin Chem* **46**: 1513-1516.

Pekny M, Lane EB (2007). Intermediate filaments and stress. Exp Cell Res 313: 2244-2254.

Penisson-Besnier I, Talvinen K, Dumez C, Vihola A, Dubas F, Fardeau M *et al* (2006). Myotilinopathy in a family with late onset myopathy. *Neuromuscul Disord* **16**: 427-431.

Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR *et al* (2004). BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. *Science* **303**: 495-499.

Pickart CM, Eddins MJ (2004). Ubiquitin: structures, functions, mechanisms. *Biochim Biophys Acta* 1695: 55-72.

Pinol-Ripoll G, Shatunov A, Cabello A, Larrode P, de la Puerta I, Pelegrin J *et al* (2009). Severe infantile-onset cardiomyopathy associated with a homozygous deletion in desmin. *Neuromuscul Disord* **19**: 418-422.

Pomies P, Macalma T, Beckerle MC (1999). Purification and characterization of an alpha-actinin-binding PDZ-LIM protein that is up-regulated during muscle differentiation. *J Biol Chem* **274**: 29242-29250.

Popowicz GM, Schleicher M, Noegel AA, Holak TA (2006). Filamins: promiscuous organizers of the cytoskeleton. *Trends Biochem Sci* **31**: 411-419.

Pulkkinen L, Smith FJ, Shimizu H, Murata S, Yaoita H, Hachisuka H *et al* (1996). Homozygous deletion mutations in the plectin gene (PLEC1) in patients with epidermolysis bullosa simplex associated with late-onset muscular dystrophy. *Hum Mol Genet* **5**: 1539-1546.

Quinzii CM, Vu TH, Min KC, Tanji K, Barral S, Grewal RP *et al* (2008). X-linked dominant scapuloperoneal myopathy is due to a mutation in the gene encoding four-and-a-half-LIM protein 1. *Am J Hum Genet* **82**: 208-213.

Rane MJ, Pan Y, Singh S, Powell DW, Wu R, Cummins T *et al* (2003). Heat shock protein 27 controls apoptosis by regulating Akt activation. *J Biol Chem* **278**: 27828-27835.

Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG *et al* (2004). Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. *Nat Genet* **36**: 585-595.

Reilich P, Schoser B, Schramm N, Krause S, Schessl J, Kress W *et al* (2010). The p.G154S mutation of the alpha-B crystallin gene (CRYAB) causes late-onset distal myopathy. *Neuromuscul Disord* **20**: 255-259.

Reimann J, Kunz WS, Vielhaber S, Kappes-Horn K, Schroder R (2003). Mitochondrial dysfunction in myofibrillar myopathy. *Neuropathol Appl Neurobiol* **29:** 45-51.

Reinders J, Lewandrowski U, Moebius J, Wagner Y, Sickmann A (2004). Challenges in mass spectrometrybased proteomics. *Proteomics* **4**: 3686-3703.

Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S *et al* (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. *Mol Cell Proteomics* **3**: 1154-1169.

Salmikangas P, Mykkanen OM, Gronholm M, Heiska L, Kere J, Carpen O (1999). Myotilin, a novel sarcomeric protein with two Ig-like domains, is encoded by a candidate gene for limb-girdle muscular dystrophy. *Hum Mol Genet* **8**: 1329-1336.

Salmikangas P, van der Ven PF, Lalowski M, Taivainen A, Zhao F, Suila H *et al* (2003). Myotilin, the limbgirdle muscular dystrophy 1A (LGMD1A) protein, cross-links actin filaments and controls sarcomere assembly. *Hum Mol Genet* **12**: 189-203.

Sanbe A, Daicho T, Mizutani R, Endo T, Miyauchi N, Yamauchi J *et al* (2009). Protective effect of geranylgeranylacetone via enhancement of HSPB8 induction in desmin-related cardiomyopathy. *PLoS One* **4**: e5351.

Sanz L, Diaz-Meco MT, Nakano H, Moscat J (2000). The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. *EMBO J* **19**: 1576-1586.

Satoh M, Takahashi M, Sakamoto T, Hiroe M, Marumo F, Kimura A (1999). Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene. *Biochem Biophys Res Commun* **262**: 411-417.

Satoskar AA, Shapiro JP, Bott CN, Song H, Nadasdy GM, Brodsky SV *et al* (2012). Characterization of glomerular diseases using proteomic analysis of laser capture microdissected glomeruli. *Mod Pathol* **25**: 709-721.

Schad M, Lipton MS, Giavalisco P, Smith RD, Kehr J (2005). Evaluation of two-dimensional electrophoresis and liquid chromatography--tandem mass spectrometry for tissue-specific protein profiling of lasermicrodissected plant samples. *Electrophoresis* **26**: 2729-2738.

Schessl J, Zou Y, McGrath MJ, Cowling BS, Maiti B, Chin SS *et al* (2008). Proteomic identification of FHL1 as the protein mutated in human reducing body myopathy. *J Clin Invest* **118**: 904-912.

Schessl J, Taratuto AL, Sewry C, Battini R, Chin SS, Maiti B *et al* (2009). Clinical, histological and genetic characterization of reducing body myopathy caused by mutations in FHL1. *Brain* **132**: 452-464.

Schessl J, Columbus A, Hu Y, Zou Y, Voit T, Goebel HH *et al* (2010). Familial reducing body myopathy with cytoplasmic bodies and rigid spine revisited: identification of a second LIM domain mutation in FHL1. *Neuropediatrics* **41**: 43-46.

Schessl J, Feldkirchner S, Kubny C, Schoser B (2011). Reducing body myopathy and other FHL1-related muscular disorders. *Semin Pediatr Neurol* **18**: 257-263.

Schiaffino S (2012). Tubular aggregates in skeletal muscle: just a special type of protein aggregates? *Neuromuscul Disord* **22**: 199-207.

Schoser B, Goebel HH, Janisch I, Quasthoff S, Rother J, Bergmann M *et al* (2009). Consequences of mutations within the C terminus of the FHL1 gene. *Neurology* **73:** 543-551.

Schreckenbach T, Henn W, Kress W, Roos A, Maschke M, Feiden W *et al* (2012). Novel FHL1 mutation in a family with reducing body myopathy. *Muscle Nerve*.

Schroder R, Schoser B (2009). Myofibrillar myopathies: a clinical and myopathological guide. *Brain Pathol* **19**: 483-492.

Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000). Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. *Nature* **404**: 770-774.

Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW (2004). Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. *Mol Cell Biol* **24**: 8055-8068.

Selcen D, Engel AG (2003). Myofibrillar myopathy caused by novel dominant negative alpha B-crystallin mutations. *Ann Neurol* **54:** 804-810.

Selcen D, Engel AG (2004). Mutations in myotilin cause myofibrillar myopathy. Neurology 62: 1363-1371.

Selcen D, Ohno K, Engel AG (2004). Myofibrillar myopathy: clinical, morphological and genetic studies in 63 patients. *Brain* **127**: 439-451.

Selcen D, Engel AG (2005). Mutations in ZASP define a novel form of muscular dystrophy in humans. *Ann Neurol* **57**: 269-276.

Selcen D (2008). Myofibrillar myopathies. Curr Opin Neurol 21: 585-589.

Selcen D, Muntoni F, Burton BK, Pegoraro E, Sewry C, Bite AV *et al* (2009). Mutation in BAG3 causes severe dominant childhood muscular dystrophy. *Ann Neurol* **65**: 83-89.

Selcen D (2010). Myofibrillar myopathies. Curr Opin Neurol 23: 477-481.

Selcen D (2011). Myofibrillar myopathies. Neuromuscul Disord 21: 161-171.

Shalaby S, Hayashi YK, Goto K, Ogawa M, Nonaka I, Noguchi S *et al* (2008). Rigid spine syndrome caused by a novel mutation in four-and-a-half LIM domain 1 gene (FHL1). *Neuromuscul Disord* **18**: 959-961.

Shatunov A, Olive M, Odgerel Z, Stadelmann-Nessler C, Irlbacher K, van Landeghem F *et al* (2009). In-frame deletion in the seventh immunoglobulin-like repeat of filamin C in a family with myofibrillar myopathy. *Eur J Hum Genet* **17**: 656-663.

Sheikh F, Raskin A, Chu PH, Lange S, Domenighetti AA, Zheng M *et al* (2008). An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice. *J Clin Invest* **118:** 3870-3880.

Shi GZ, Yuan Y, Jiang GJ, Ge ZJ, Zhou J, Gong DJ *et al* (2012). PRAF3 induces apoptosis and inhibits migration and invasion in human esophageal squamous cell carcinoma. *BMC Cancer* **12**: 97.

Shibata D, Hawes D, Li ZH, Hernandez AM, Spruck CH, Nichols PW (1992). Specific genetic analysis of microscopic tissue after selective ultraviolet radiation fractionation and the polymerase chain reaction. *Am J Pathol* **141**: 539-543.

Shin JM, Yoo KJ, Kim MS, Kim D, Baek KH (2006). Hyaluronan- and RNA-binding deubiquitinating enzymes of USP17 family members associated with cell viability. *BMC Genomics* **7:** 292.

Snyder H, Mensah K, Theisler C, Lee J, Matouschek A, Wolozin B (2003). Aggregated and monomeric alphasynuclein bind to the S6' proteasomal protein and inhibit proteasomal function. *J Biol Chem* **278**: 11753-11759.

Soti C, Csermely P (2000). Molecular chaperones and the aging process. Biogerontology 1: 225-233.

Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M *et al* (2001). Filamins as integrators of cell mechanics and signalling. *Nat Rev Mol Cell Biol* **2**: 138-145.

Tagami S, Eguchi Y, Kinoshita M, Takeda M, Tsujimoto Y (2000). A novel protein, RTN-XS, interacts with both Bcl-XL and Bcl-2 on endoplasmic reticulum and reduces their anti-apoptotic activity. *Oncogene* **19**: 5736-5746.

Takayama S, Xie Z, Reed JC (1999). An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. *J Biol Chem* **274**: 781-786.

Tan JM, Wong ES, Kirkpatrick DS, Pletnikova O, Ko HS, Tay SP *et al* (2008). Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. *Hum Mol Genet* **17**: 431-439.

Thompson LM, Aiken CT, Kaltenbach LS, Agrawal N, Illes K, Khoshnan A *et al* (2009). IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. *J Cell Biol* **187**: 1083-1099.

Trombitas K, Pollack GH (1993). Elastic properties of the titin filament in the Z-line region of vertebrate striated muscle. *J Muscle Res Cell Motil* **14:** 416-422.

Tskhovrebova L, Trinick J (2010). Roles of titin in the structure and elasticity of the sarcomere. *J Biomed Biotechnol* **2010**: 612482.

Udd B, Partanen J, Halonen P, Falck B, Hakamies L, Heikkila H *et al* (1993). Tibial muscular dystrophy. Late adult-onset distal myopathy in 66 Finnish patients. *Arch Neurol* **50**: 604-608.

Udd B, Vihola A, Sarparanta J, Richard I, Hackman P (2005). Titinopathies and extension of the M-line mutation phenotype beyond distal myopathy and LGMD2J. *Neurology* **64:** 636-642.

van der Ven PF, Obermann WM, Lemke B, Gautel M, Weber K, Furst DO (2000a). Characterization of muscle filamin isoforms suggests a possible role of gamma-filamin/ABP-L in sarcomeric Z-disc formation. *Cell Motil Cytoskeleton* **45**: 149-162.

van der Ven PF, Wiesner S, Salmikangas P, Auerbach D, Himmel M, Kempa S *et al* (2000b). Indications for a novel muscular dystrophy pathway. gamma-filamin, the muscle-specific filamin isoform, interacts with myotilin. *J Cell Biol* **151**: 235-248.

Vandewoestyne M, Deforce D (2010). Laser capture microdissection in forensic research: a review. *Int J Legal Med* **124:** 513-521.

Vasyutina E, Lenhard DC, Wende H, Erdmann B, Epstein JA, Birchmeier C (2007). RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells. *Proc Natl Acad Sci U S A* **104**: 4443-4448.

Vaughan KT, Weber FE, Ried T, Ward DC, Reinach FC, Fischman DA (1993). Human myosin-binding protein H (MyBP-H): complete primary sequence, genomic organization, and chromosomal localization. *Genomics* **16**: 34-40.

Vicart P, Caron A, Guicheney P, Li Z, Prevost MC, Faure A *et al* (1998). A missense mutation in the alphaBcrystallin chaperone gene causes a desmin-related myopathy. *Nat Genet* **20**: 92-95.

von Eggeling F, Melle C, Ernst G (2007). Microdissecting the proteome. Proteomics 7: 2729-2737.

von Nandelstadh P, Soliymani R, Baumann M, Carpen O (2011). Analysis of myotilin turnover provides mechanistic insight into the role of myotilinopathy-causing mutations. *Biochem J* **436**: 113-121.

Vorgerd M, van der Ven PF, Bruchertseifer V, Lowe T, Kley RA, Schroder R *et al* (2005). A mutation in the dimerization domain of filamin c causes a novel type of autosomal dominant myofibrillar myopathy. *Am J Hum Genet* **77**: 297-304.

Wada Y, Kadoya M (2003). In-gel digestion with endoproteinase LysC. J Mass Spectrom 38: 117-118.

Wang X, Klevitsky R, Huang W, Glasford J, Li F, Robbins J (2003). AlphaB-crystallin modulates protein aggregation of abnormal desmin. *Circ Res* **93**: 998-1005.

Windpassinger C, Schoser B, Straub V, Hochmeister S, Noor A, Lohberger B *et al* (2008). An X-linked myopathy with postural muscle atrophy and generalized hypertrophy, termed XMPMA, is caused by mutations in FHL1. *Am J Hum Genet* **82:** 88-99.

Xia H, Winokur ST, Kuo WL, Altherr MR, Bredt DS (1997). Actinin-associated LIM protein: identification of a domain interaction between PDZ and spectrin-like repeat motifs. *J Cell Biol* **139**: 507-515.

Xiao Z, Li G, Chen Y, Li M, Peng F, Li C *et al* (2010). Quantitative proteomic analysis of formalin-fixed and paraffin-embedded nasopharyngeal carcinoma using iTRAQ labeling, two-dimensional liquid chromatography, and tandem mass spectrometry. *J Histochem Cytochem* **58:** 517-527.

Xu BJ, Caprioli RM, Sanders ME, Jensen RA (2002). Direct analysis of laser capture microdissected cells by MALDI mass spectrometry. *J Am Soc Mass Spectrom* **13**: 1292-1297.

Yuan J, Xiao X, McGeehan J, Dong Z, Cali I, Fujioka H *et al* (2006). Insoluble aggregates and protease-resistant conformers of prion protein in uninfected human brains. *J Biol Chem* **281**: 34848-34858.

Zhang DD, Lo SC, Sun Z, Habib GM, Lieberman MW, Hannink M (2005). Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway. *J Biol Chem* **280**: 30091-30099.

H Anhang

1 Verzeichnis der verwendeten Abkürzungen

Abb.	Abbildung
BAG3	Bcl-2 Associated Athanogene 3
BCA	Bicinchinoninsäure
bp	Basenpaar/e
bzw.	beziehungsweise
°C	Grad Celsius
CID	Collision Induced Dissociation
СК	Creatin-Kinase
COX	Cytochrom C Oxidase
CSK	Cytoskeleton Puffer
Cu ^{+/2+}	Kupferion
DAPI	4',6-Diamidin-2-phenylindol
DMEM	Dulbecco's Modified Eagle Medium
DNA	Desoxyribonuclic acid (Desoxyribonukleinsäure)
dNTP	Desoxynukleosid-Triphosphat
DTT	Dithiothreitol
ECL	Enhanced Chemiluminescene
EDMD	Emery Dreifuss Muskeldystrophie
EDTA	Ethylendiamin-Tetraacetat
EGTA	Ethylene Glycol Tetraacetic Acid
EM	Elektronenmikroskopie
EMG	Elektromyographie
ESI	Elektrospray-Ionisation
EtOH	Ethanol
FASP	Filter Assisted Sample Preparation
FCS	Fetal Calf Serum
FHL1	Four and a half LIM Domain Protein 1
FN	Fibronectin
FT-ICR	Fouriertransformations-Ionenzyklotronresonanz

GAPDH	Glycerinaldehyd-3-Phosphat-Dehydrogenase
GPCR	G Protein Coupled Receptor
HD	Huntington Disease
HE	Hämatoxylin & Eosin
HRP	Horseradish Peroxidase
ICAT	Isotope Coded Affinity Tag
ICPL	Isotope Coded Protein Label
IgG	Immunoglobulin G
IR	Infrarot
IT	Ion Trap
iTRAQ	Isobaric Tags for Relative and Absolute Quantitation
kb	Kilobasen
kDa	Kilo-Dalton
КО	Knockout
LC	Liquid Chromatographie
LCM	Laser Capture Mikrodissektion
LGMD	Limb Girdle Muscular Dystrophy
LMD	Laser Mikrodissektion
LMPC	Laser Microdissection Pressure Catapulting
LMU	Ludwig-Maximilians-Universität
LOH	Loss of Heterozygosity
MALDI	Matrix-assisted Laser Desorption/Ionization
МАРК	Mitogen-activated Protein Kinase
Mb	Megabasen
MFM	Myofibrilläre Myopathie
Mg^{2+}	Magnesiumkationen
min	Minuten
mM	Milli Mol
mRNA	Boten (messenger)- Ribonukleinsäure
MRT	Magnetresonanztomographie
MS	Massenspektrometrie
MYH7	Myosin Heavy chain 7
m/z	Masse-Ladungsverhältnis
N ₂	Stickstoff

NADH	Nicotinamid-Adenin-Dinukleotid (oxidierte Form)
NBT	Nitroblau-Tetrazolium
NES	Nuclear Export Signal
NFATc1	Nuclear Factor of Activated T-cells, cytoplasmic 1
NGS	Next Generation Sequencing
NHS	N-Hydroxysuccinimid
NK	Negativkontrolle
NLS	Nuclear Localization Signal
nm	Nanometer
NRAP	Nebulin Related Protein
OD	Optische Dichte
OPMD	Oculopharyngeal Muscular Dystrophy
PAGE	Polyacrylamidgelelektrophorese
PALM	Positioning and Ablation with Laser Microbeams
PBS	Phosphate-buffered saline
PCR	Polymerase chain reaction (Polymerase-Ketten-Reaktion)
PEN	Polyethylen Napthalat
PFA	Paraformaldehyd
PMSF	Phenylmethylsulfonylfluorid
PRAF3	Prenylated Rab acceptor 1 domain family member 3
PVDF	Polyvinylidenfluorid
Q	Quadrupol
RBM	Reducing Body Myopathie
RIPA	Radioimmunoprecipitation assay
RNA	Ribonuklein acid (Ribonukleinsäure)
rpm	Rotations per minute
RSS	Rigid Spine Syndrome
RT	Raumtemperatur
SDH	Succinat-Dehydrogenase
SDS	Sodium dodecyl sulfate
SNP	Single Nucleotide exchange Polymorphism
	(Einzelbasenaustausch-Polymorphismus/en)
SURF	Selective Ultraviolet Radiation Fractionation
Tab.	Tabelle

Taq-Polymerase	Thermus Aquaticus Polymerase
TBST	Tris buffered saline with Tween
TC	Trichrom
TE-Puffer	Tris-EDTA-Puffer
TOF	Time of Flight
Tris	Tris-(hydroxymethyl)-aminomethan
U/l	Units/Liter
UPS	Ubiquitin-Proteasom-System
UV	Ultaviolett
WB	Westernblot
XIRP	Xin-related Protein
XMPMA	X-linked Myopathy with Postural Muscle Atrophy
ZASP	Z-band Alternatively Spliced PDZ-motif Protein
z.B.	zum Beispiel
z.T.	zum Teil

2 Abbildungsverzeichnis

Abbildung 1: Myofibrilläre Myopathien	6
Abbildung 2: Histopathologische Veränderungen bei Myofibrillären Myopathien	8
Abbildung 3: Abbau von Proteinaggregaten	10
Abbildung 4: LIM-Domänen und Isoformen des Four and a half LIM-Domain Proteins	12
Abbildung 5: Funktionen von FHL1 im Herzen	13
Abbildung 6: Funktionen von FHL1 im Skelettmuskel	14
Abbildung 7: Bekannte Mutationen im FHL1-Gen	16
Abbildung 8: Proteinstruktur von Myotilin	18
Abbildung 9: Proteinstruktur und Lokalisation von Titin	19
Abbildung 10: Prinzip des LCM und LMD	21
Abbildung 11: iTRAQ	24
Abbildung 12: Auslasern mittels Laser Mikrodissektion	33
Abbildung 13: Coomassie- und Silberfärbung mikrodissektierter Muskelfasern	40
Abbildung 14: Qualitative MS-Analyse unterschiedlicher Muskelgruppen	41
Abbildung 15: Subzelluläre Lokalisation und Molekulare Funktion (Normalkontrollen)	42
Abbildung 16: Auswertung der qualitativen MS-Analyse von unterschiedlich gefär	rbten
Normalkontrollen	43
Abbildung 17: Qualitative Proteomics von Aggregatmaterial	45
Abbildung 18: Schema Versuchsablauf	47
Abbildung 19: MALDI-TOF/TOF Testlauf mit Kontrolle N1	48
Abbildung 20: Histochemie Patient 1 und 2	50
Abbildung 21: Immunhistochemie Patient 1	51
Abbildung 22: Immunhistochemie Patient 2	51
Abbildung 23: Differenzierte Patientenmyoblasten von Patient 1 (374/01)	52
Abbildung 24: iTRAQ-Analyse von kompletten aggregathaltigen Muskelfasern des Patie	enten
1	53
Abbildung 25: iTRAQ-Analyse von kompletten aggregathaltigen Muskelfasern des Patie	enten
1	54
Abbildung 26: Relative Quantifizierung von FHL1 im Gesamtzelllysat von Patient 1 und	2.55
Abbildung 27: Replikatvergleich präzise ausgelaserter Aggregate des Patienten 1	56
Abbildung 27: Replikatvergleich präzise ausgelaserter Aggregate des Patienten 1 Abbildung 28: Replikatvergleich erhöht vorliegender Proteine bei Patient 1	56 57

Abbildung 30: iTRAQ-Analyse Patient 1 (Mittelwerte der Replikatanalysen)	. 58
Abbildung 31: Relative Quantifizierung von MYH7, Desmin, p62 und FHL1	in
mikrodissektierten Muskelfaser-Aggregaten von Patient 1	. 59
Abbildung 32: iTRAQ-Analyse erhöht vorliegender Proteine bei Patient 2	. 60
Abbildung 33: iTRAQ-Analyse vermindert vorliegender Proteine bei Patient 2	. 61
Abbildung 34: C224W Mutation im FHL1-Gen	. 62
Abbildung 35: Histochemie Patient 3	. 63
Abbildung 36: Immunhistochemie Patient 3	. 64
Abbildung 37: Replikatvergleich präzise ausgelaserter Aggregate des Patienten 3	. 65
Abbildung 38: Replikatvergleich erhöht vorliegender Proteine bei Patient 3	. 65
Abbildung 39: Replikatvergleich (iTRAQ) reduziert vorliegender Proteine bei Patient 3	. 66
Abbildung 40: iTRAQ-Analyse Patient 3 (Mittelwerte der Replikatanalysen)	. 67
Abbildung 41: Relative Quantifizierung von Myotilin im Gesamtzelllysat von Patient 3	. 67
Abbildung 42: Mutation im Myotilin-Gen bei Patient 3	. 68
Abbildung 43: Histochemie Patient 4	. 69
Abbildung 44: iTRAQ-Analyse Patient 4	. 70
Abbildung 45: Mutation im Titin-Gen bei Patient 4	. 71
Abbildung 46: iTRAQ-Analyse Patient 5	. 72
Abbildung 47: iTRAQ-Analyse Patient 6	. 73
Abbildung 48: iTRAQ-Analyse Patient 7	. 74
Abbildung 49: iTRAQ-Analyse Patient 8	. 75
Abbildung 50: Vergleich der Proteinidentifikationsraten der Plectin-KO-Mäuse	. 76
Abbildung 51: Analysevergleich (iTRAQ) erhöht vorliegender Proteine bei drei Plectin-K	-02
Mäusen	. 77
Abbildung 52: Analysevergleich (iTRAQ) vermindert vorliegender Proteine bei drei Plect	tin-
KO-Mäusen	. 78
Abbildung 53: iTRAQ-Analyse Plectin-KO-Mäuse (Mittelwerte der Analysen)	. 78
Abbildung 54: Vergleich der Proteinidentifikations-raten der R350P-Desmin-Mäuse	. 79
Abbildung 55: Replikatvergleich (iTRAQ) erhöht vorliegender Proteine bei R350P-Desm	1in-
Mäusen	. 80

3 Primersequenzen

FHL1-Primer (genomisch) für die Routinesequenzierung.

Name	Sequenz
FHL1_1s	5'- CTC TTT CAT ATC TTT CAG GGT TCA G
FHL1_1as	5'- CAA CAA AGA CAG CCA AGT GAG G
FHL1_2s	5'- TGG AGA AGT ATG CAG AAC ATC TTG
FHL1_2as	5'- CAC AAC TTA GAA GGT TGG AGA TCA G
FHL1_3s	5'- GAA GTA TCT GTT GTC TTG GTG CC
FHL1_3as	5'- CAC TGA GAT GAC ACA GTC CCT TAC
FHL1_4s	5'- GTG TCA TCT CAG TGG TCA GCT C
FHL1_4as	5'- GCT AAG ATC TCA AAG CAG CTC AG
FHL1_5s	5'- GTA GGT TAG TTG GAG GTG TGA GGC
FHL1_5as	5'- ATG GGA TAG TGT GTG TGG AGG TG
FHL1_6s	5'- GGC TGT GTA ACC TCA CAT AGG G
FHL1_6as	5'- TGT TAG TCA ACA GTC AGG AAG TGT TC
FHL1_7s	5'- TCC TCA CCT GTA TTC ATT CAG C
FHL1_7as	5'- TGC TAA ATG CTA ATA TGA TCA CTG TG

Gen	genom. Sequenz	mRNA-Sequenz
FHL1	NC_000023	NM_001449.3

4 Bioptate für Gewebeschnitte

4.1 Normalkontrollen

Es wurden Bioptate von Personen verwendet, die morphologisch normale Muskelfasern aufwiesen und keine pathologischen Auffälligkeiten in den Schnitten zeigten.

Proben nr.	Biopsie nr.	Geschlecht	Geburtsdatum	Entnahme	Muskel
N1	148/07	männlich	28.01.1939	10.04.2007	Musculus quadriceps femoris rechts
N2	384/07	männlich	16.01.1966	unbekannt	Musculus gastrocnemius links
N3	363/07	männlich	16.06.1986	16.08.2007	Musculus gastrocnemius links
N4	325/07	männlich	22.05.1960	31.07.2007	Musculus vastus lateralis links
N5	251/07	männlich	20.04.1937	12.06.2007	Musculus biceps brachii links
N6	246/07	weiblich	24.09.1954	06.06.2007	Musculus biceps brachii links
N7	199/07	männlich	20.01.1978	15.05.2007	Musculus gastrocnemius links
N8	163/07	männlich	30.10.1972	18.04.2007	Musculus vastus lateralis. rechts
N9	158/07	männlich	03.05.1968	unbekannt	Musculus biceps brachii links

4.2 Patientenproben

Es wurden Bioptate von Patienten verwendet, die für Myofibrilläre Myopathien klassische klinische und histopathologische Merkmale aufwiesen.

Proben nr.	Biopsie nr.	Geschle	Geburtsdatum	Muskel	Mutation
		cht			
P1	374/01	männlich	30.06.59	Musculus biceps brachii links	FHL1 (C224W)
P2	29/06	männlich	22.07.1964	Musculus tibialis anterior links	FHL1 (C224W)
P3	30/10	männlich	12.05.1969	Musculus gastrocnemius caput	Myotilin
				mediale rechts	(R6G)
P4	Patientin Prof.	weiblich	1988	Musculus deltoideus rechts	Titin
	Schröder. (DFG-				
	FOR1228)				
Р5	395/11	männlich	01.06.1942	Musculus biceps brachii links	unbekannt
P6	514/07	männlich	25.8.1933	Musculus gastrocnemius rechts	unbekannt
P7	501/08	weiblich	28.09.1938	Musculus gastrocnemius caput	unbekannt
				mediale links	
P8	548/08	weiblich	28.07.1948	Musculus tibialis anterior links	unbekannt
Р9	277/09	männlich	26.03.1946	Unterarmflexoren	unbekannt

4.3 Tiermodellproben

Es wurden 2 verschiedene Mausmodelle im Alter von jeweils ca. 3 Monaten verwendet: Plectin-KO-Mäuse und Wildtyp (nur männliche Tiere), sowie R350P-Desmin-Kockin-Mäuse und Wildtyp (männliche und weibliche Tiere).

Proben nr.	Geschlecht	Geburtsdatum	Alter	Muskel	Mutation	Zur Verfügung gestellt
						von
#1780	männlich	13.02.2011	12 Wochen	Soleus	Plectin-KO	
#1781	männlich	13.02.2011	12 Wochen	Soleus	Plectin-KO	Prof Dr. Wiche (Wien)
#1782	männlich	13.02.2011	12 Wochen	Soleus	WT	DFG-Forschergruppe
#1783	männlich	13.02.2011	12 Wochen	Soleus	WT	FOR128
#471	männlich	13.02.2011	12 Wochen	Soleus	WT	
#472	männlich	13.02.2011	12 Wochen	Soleus	Plectin-KO	
DKI 0284	männlich	09.03.2011	3 Monate	Soleus	WT/WT	Prof. Dr. Schröder
DKI 0286	weiblich	09.03.2011	3 Monate	Soleus	WT/WT	(Erlangen)
DKI 0302	männlich	12.04.2011	3 Monate	Soleus	R349P/R349P	DFG-Forschergruppe
DKI 303	weiblich	12.04.2011	3 Monate	Soleus	349P/R349P	FOR128

5 Antikörper

Antigen	Produktbezeichnung	Wirtsspezies	Klon	Produktnr.	Hersteller	Verdünnung				
	Primäre Antikörper									
αBCrystallin	Anti-Alpha B Crystallin	Maus	monoclonal	ab13496	Abcam	IHC 1:200				
	antibody									
Desmin	Monoclonal Mouse Anti-	Maus	monoclonal	M 0760	DAKO	WB 1: 200				
	Human					IF/IHC 1:20				
	Desmin									
Desmin	Desmin Antibody	Hase	polyclonal	4024	Cell	WB 1:100				
					Signalling					
FHL1	Anti-FHL1 antibody	Hase	polyclonal	ab49241	abcam	WB 1:1000				
						IF/IHC 1:100				
FHL1	Monoclonal Anti-	Maus	monoclonal	WH0002273	Sigma-	WB 1:7000				
	FHL1 antibody produced			M1	Aldrich	IF/IHC 1:700				
	in mouse									
GAPDH	Anti-Glyceraldehyde-3-	Maus	monoclonal	MAB374	Millipore	WB 1:500				
	Phosphate Dehydrogenase									
	Antibody									
MYH7	MYH7 mouse-mono-	Maus	monoclonal	805502-L001	Alexis	WB 1:1000				
	myosin ß slow myosin				Biochemicals	IHC 1:50				
	heavy chain									
Myotilin	MYOTILIN (N-15)	Ziege	polyclonal	Sc-15235	Santa Cruz	IHC 1:50				
					Biotechnology					
P62	Anti-p62/SQSTM1	Hase	polyclonal	P0067	Sigma-Aldrich	WB 1:1000				
	antibody produced in					IHC 1:100				
	rabbit									
		Sekundá	äre Antikörpe	r		·				
Maus	anti-mouse HRP	Ziege	polyklonal	115-035-146	dianova	WB 1:15000				
Maus	Rabbit Anti-Mouse	Hase	polyclonal	P0260	Dako	WB 1:10000				
IgG/M/A	Immunoglobulins/HRP									
Hase	Anti-rabbit IgG, HRP-	Ziege	polyclonal	7074	Cell	WB 1:5000				
	linked Antibody				Signalling					
Maus IgG	Alexa Fluor® 488 F(ab')2	Ziege		A-11017	Invitrogen	IF/IHC 1:200				
	Fragment of Goat Anti-									
	Mouse IgG (H+L)									
Hase IgG	Alexa Fluor® 488 Goat	Ziege		A-11008	Invitrogen	IF/IHC 1:200				
	Anti-Rabbit IgG (H+L)									
Maus IgG	Alexa Fluor® 594 Goat	Ziege		A-11032	Invitrogen	IF/IHC 1:200				
	Anti-Mouse IgG (H+L),									

	highly cross-adsorbed				
Hase IgG	Alexa Fluor® 594 Goat	Ziege	A-11012	Invitrogen	IF/IHC 1:200
	Anti-Rabbit IgG (H+L)				

6 Proteomische Analysen

6.1 Quantifizierung des Muskelfasermaterials

	PROTEIN										
Accession	Name	Score	#Pep	SC [%]							
	500 Zellen										
MYH7_HUMAN	Myosin-7	1355.1	26	14.9							
MYH2_HUMAN	Myosin-2	1145.1	12	15.1							
MYH1_HUMAN	Myosin-1	1030.1	2	12.4							
ACTS_HUMAN	Actin, alpha skeletal muscle	683.4	16	33.7							
ACTN2_HUMAN	Alpha-actinin-2	457.5	10	11.1							
TPM1_HUMAN	Tropomyosin alpha-1 chain	447.3	8	34.9							
TPM3_HUMAN	Tropomyosin alpha-3 chain	410.0	3	35.9							
TPM2_HUMAN	Tropomyosin beta chain	408.2	3	26.1							
MYL1_HUMAN	Myosin light chain 1/3 skeletal muscle isoform	359.1	8	36.1							
KCRM_HUMAN	Creatine kinase M-type	276.4	7	14.2							
HBB_HUMAN	Hemoglobin subunit beta	263.2	4	34.7							
MLRV_HUMAN	Myosin regulatory light chain 2 ventricular/cardiac muscle isoform	178.4	5	27.1							
MYPC1_HUMAN	Myosin-binding protein C, slow-type	176.9	3	4.0							
MYG_HUMAN	Myoglobin	121.1	3	32.5							
MYL3_HUMAN	Myosin light chain 3	118.9	2	20.5							
TNNT3_HUMAN	Troponin T, fast skeletal muscle	109.7	2	13.4							
MLRS_HUMAN	Myosin regulatory light chain 2	103.4	1	13.6							
TLN2_HUMAN	Talin-2	87.7	1	0.9							
G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	80.2	2	6.9							
ATPA_HUMAN	ATP synthase subunit alpha, mitochondrial precursor	76.8	2	4.5							
HBA_HUMAN	Hemoglobin subunit alpha	74.6	2	16.9							
TNNC1_HUMAN	Troponin C, slow skeletal and cardiac muscles	72.9	2	15.5							
LDB3_HUMAN	LIM domain-binding protein 3	70.6	2	3.9							
DESM_HUMAN	Desmin	64.0	1	2.1							
SHRM3_HUMAN	Protein Shroom3	41.0	1	0.5							
DCD_HUMAN	Dermeidin	39.5	1	10.0							
LDHA_HUMAN	L-lactate dehydrogenase A chain	38.5	1	2.7							
FHL1_HUMAN	Four and a half LIM domains protein 1	38.2	1	3.7							
NMD3A_HUMAN	Glutamate [NMDA] receptor subunit 3A	37.3	1	0.6							
CLCF1_HUMAN	Cardiotrophin-like cytokine factor 1	36.7	1	3.6							
ALBU_HUMAN	Serum albumin precursor	36.7	1	1.8							
LYSC_HUMAN	Lysozyme C	32.9	1	8.1							
KPYM_HUMAN	Pyruvate kinase isozymes M1/M2	31.7	1	2.1							

TDRD5_HUMAN	Tudor domain-containing protein 5	30.9	1	0.6
CAH3_HUMAN	Carbonic anhydrase 3	30.8	1	3.5
	200 Zellen			
MYH7_HUMAN	Myosin-7	1722.4	43	21.6
MYH2_HUMAN	Myosin-2	1248.9	11	14.6
ACTA_HUMAN	Actin, aortic smooth muscle	566.2	12	31.0
TPM2_HUMAN	Tropomyosin beta chain	264.9	8	33.1
MYL3_HUMAN	Myosin light chain 3	254.5	5	31.3
MYL1_HUMAN	Myosin light chain 1/3, skeletal muscle isoform	220.2	4	33.5
MLRS_HUMAN	Myosin regulatory light chain 2	161.9	4	33.1
MLRV_HUMAN	Myosin regulatory light chain 2, ventricular/cardiac muscle isoform	139.7	4	25.9
ACTN2_HUMAN	Alpha-actinin-2	105.8	2	4.9
TNNI1_HUMAN	Troponin I, slow skeletal muscle	105.0	3	15.5
ALDOA_HUMAN	Fructose-bisphosphate aldolase A	101.0	3	7.1
HBB_HUMAN	Hemoglobin subunit beta	55.9	1	14.3
K1C9_HUMAN	Keratin, type I cytoskeletal 9	46.6	1	2.6
G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	34.2	1	2.4
	100 Zellen			
ACTB_HUMAN	Actin, cytoplasmic 1	37.4	1	2.7
	50 Zellen			
	keine Ergebnisse			

SC=sequence coverage; Pep = Peptide

6.2 Vergleichsanalyse Färbungen

6.2.1 Kontrolle N2

	PROTEIN								I	DENTII	FIKATI	ON							
Accession	Name			Sc	ore					# Pe	epide					SC	[%]		
				N	12					Ν	12					N	12		
		HE 1	HE 2	OF 1	OF 2	TC 1	TC 2	HE 1	HE 2	OF 1	OF 2	TC 1	TC 2	HE 1	HE 2	OF 1	OF 2	TC 1	TC 2
ACTN2_HUMAN	Alpha-actinin-2	1034	915	851	661	783	533	19	20	15	13	14	12	20	23	17	17	19	15
ACTN3_HUMAN	Alpha-actinin-3	225	276	260	215	506	215	6	3	3	4	8	4	5	4	4	5	11	5
ACTS_HUMAN	Actin, alpha skeletal muscle	1378	1456	1136	990	1572	1345	87	91	46	42	73	56	55	55	46	45	55	46
ADT1_HUMAN	ADP/ATP translocase 1	69	0	0	0	332	127	0	3	0	0	8	4	0	7	0	0	23	12
ALBU_HUMAN	Serum albumin precursor	337	447	157	212	76	0	10	10	6	9	2	0	18	14	8	9	4	0
ALDOA_HUMAN	Fructose-bisphosphate aldolase A	398	293	195	393	115	96	14	16	4	11	3	2	27	27	18	33	12	6
AT2A1_HUMAN	Sarcoplasmic/endoplasmic reticulum calcium ATPase 1	0	198	180	0	270	104	5	0	4	0	5	2	7	0	5	0	7	2
ATPA_HUMAN	ATP synthase subunit alpha, mitochondrial precursor	0	0	0	65	0	44	0	0	0	2	0	1	0	0	0	5	0	3
ATPB_HUMAN	ATP synthase subunit beta, mitochondrial	145	0	209	209	329	0	0	4	5	5	7	0	0	8	13	13	17	0
CAH3_HUMAN	Carbonic anhydrase 3	269	320	172	286	178	0	12	11	6	8	6	0	37	28	25	36	25	0
CASQ1_HUMAN	Calsequestrin-1	64	97	53	0	108	0	3	1	1	0	2	0	9	3	3	0	6	0
DESM_HUMAN	Desmin	181	0	0	0	388	0	0	4	0	0	12	0	0	9	0	0	25	0
EIF2A_HUMAN	Eukaryotic translation initiation factor 2A	0	0	0	0	0	41	0	0	0	0	0	2	0	0	0	0	0	2
ENOB_HUMAN	Beta-enolase	229	228	165	234	0	0	6	7	4	5	0	0	24	24	15	20	0	0
FHL1_HUMAN	Four and a half LIM domains protein 1	128	118	68	129	152	124	2	3	1	2	6	5	7	7	4	7	11	11
FLNC_HUMAN	Filamin-C	71	76	106	79	0	0	12	10	12	13	0	0	1	1	2	1	0	0
G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	343	281	182	268	352	120	11	15	6	7	9	3	21	28	13	17	24	11
G6PI_HUMAN	Glucose-6-phosphate isomerase	0	0	67	0	0	0	0	0	2	0	0	0	0	0	6	0	0	0
HBA_HUMAN	Hemoglobin subunit alpha	0	74	0	86	100	88	3	0	0	4	3	3	17	0	0	17	17	17

HBB_HUMAN	Hemoglobin subunit beta	209	215	98	298	387	191	11	9	2	10	10	4	30	40	16	62	69	30
K1C10_HUMAN	Keratin, type I cytoskeletal 10	658	512	731	496	724	328	20	26	31	17	22	6	15	18	22	19	22	12
K1C14_HUMAN	Keratin, type I cytoskeletal 14	418	182	483	0	0	0	8	13	15	0	0	0	7	16	15	0	0	0
K1C16_HUMAN	Keratin, type I cytoskeletal 16	0	0	512	0	0	0	0	0	16	0	0	0	0	0	19	0	0	0
K1C9_HUMAN	Keratin, type I cytoskeletal 9	745	538	711	334	477	267	18	32	31	12	17	6	19	26	25	11	19	10
K22E_HUMAN	Keratin, type II cytoskeletal 2 epidermal	818	471	641	328	685	223	17	29	28	11	23	6	15	33	16	9	23	11
K2C1_HUMAN	Keratin, type II cytoskeletal 1	1022	939	1112	816	1178	411	36	44	51	29	42	10	28	31	34	32	36	12
K2C5_HUMAN	Keratin, type II cytoskeletal 5	0	0	352	0	0	0	0	0	13	0	0	0	0	0	12	0	0	0
K2C6B_HUMAN	Keratin, type II cytoskeletal 6B	0	217	556	0	0	0	7	0	18	0	0	0	6	0	17	0	0	0
KAD1_HUMAN	Adenylate kinase isoenzyme 1	0	44	50	0	53	0	1	0	1	0	1	0	6	0	6	0	6	0
KCRM_HUMAN	Creatine kinase M-type	740	730	768	655	654	151	33	36	21	17	13	5	36	41	42	37	33	17
KCRS_HUMAN	Creatine kinase, sarcomeric mitochondrial	0	0	0	0	45	0	0	0	0	0	1	0	0	0	0	0	3	0
KPYM_HUMAN	Pyruvate kinase isozymes M1/M2	75	115	43	68	71	0	4	3	1	1	2	0	5	4	2	2	5	0
LDHA_HUMAN	L-lactate dehydrogenase A chain	120	120	130	0	57	84	2	3	4	0	1	2	6	9	11	0	3	6
M2OM_HUMAN	Mitochondrial 2-oxoglutarate/ malate carrier protein	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MDHM_HUMAN	Malate dehydrogenase, mitochondrial	0	0	90	45	0	0	0	0	2	1	0	0	0	0	7	6	0	0
MLRS_HUMAN	Myosin regulatory light chain 2, skeletal muscle isoform	188	142	0	98	474	122	5	6	0	3	13	5	23	30	0	19	59	23
MLRV_HUMAN	Myosin regulatory light chain 2, ventricular/cardiac muscle isoform	348	318	0	167	466	0	9	11	0	4	12	0	45	45	0	19	51	0
MYG_HUMAN	Myoglobin	528	513	364	297	345	206	25	30	12	10	11	7	49	49	42	42	41	32
MYH1_HUMAN	Myosin-1	3151	3455	3590	3956	5351	2877	135	115	97	103	136	71	36	30	36	38	50	28
MYH2_HUMAN	Myosin-2	2630	2709	3128	3264	3839	2270	104	94	84	85	96	57	27	26	32	32	36	23
MYH4_HUMAN	Myosin-4	0	0	0	0	2628	0	0	0	0	0	68	0	0	0	0	0	25	0
MYH7_HUMAN	Myosin-7	4045	4210	4263	4513	4559	2647	153	155	123	118	124	64	39	40	41	41	43	27
MYL1_HUMAN	Myosin light chain 1/3, skeletal muscle isoform	512	413	396	300	592	361	17	17	9	7	14	11	39	39	43	37	50	42
MYL3_HUMAN	Myosin light chain 3	307	262	201	134	518	231	12	11	5	4	13	7	31	31	27	18	46	25
MYOM2_HUMAN	Myomesin-2	0	0	0	0	0	73	0	0	0	0	0	1	0	0	0	0	0	1
MYOZ1_HUMAN	Myozenin-1	0	0	0	0	85	0	0	0	0	0	2	0	0	0	0	0	4	0
MYPC1_HUMAN	Myosin-binding protein C, slow-type	0	190	288	310	467	160	4	0	6	7	9	3	4	0	7	6	10	3
1		•						I						l i					

Sarah Feldkirchner

MYPC2_HUMAN	Myosin-binding protein C, fast-type	0	0	145	106	153	0	0	0	2	3	3	0	0	0	2	2	2	0
NEBU_HUMAN	Nebulin	0	56	0	0	150	50	2	0	0	0	4	1	0	0	0	0	1	0
PGK1_HUMAN	Phosphoglycerate kinase 1	0	47	69	0	0	0	1	0	2	0	0	0	2	0	7	0	0	0
PLCH1_HUMAN	1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase eta-1	0	0	0	0	42	0	0	0	0	0	1	0	0	0	0	0	0	0
PYGM_HUMAN	Glycogen phosphorylase, muscle form	412	378	165	200	195	0	11	14	4	6	7	0	12	15	5	7	8	0
TENX_HUMAN	Tenascin-X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TITIN_HUMAN	Titin	0	146	0	0	499	0	5	0	0	0	19	0	0	0	0	0	1	0
TNNC1_HUMAN	Troponin C, slow skeletal and cardiac muscles	46	0	0	0	94	0	0	2	0	0	2	0	0	9	0	0	16	0
TNNC2_HUMAN	Troponin C, skeletal muscle	0	0	0	43	273	0	0	0	0	1	6	0	0	0	0	10	46	0
TNNI1_HUMAN	Troponin I, slow skeletal muscle	41	0	0	0	201	0	0	2	0	0	6	0	0	4	0	0	22	0
TNNT1_HUMAN	Troponin T, slow skeletal muscle	46	41	42	0	44	0	1	2	1	0	1	0	3	3	3	0	3	0
TNNT3_HUMAN	Troponin T, fast skeletal muscle	99	139	95	91	43	0	3	1	2	1	1	0	14	6	12	6	6	0
TPIS_HUMAN	Triosephosphate isomerase	89	94	0	59	0	0	4	3	0	1	0	0	12	12	0	6	0	0
TPM1_HUMAN	Tropomyosin alpha-1 chain	539	450	269	299	732	189	13	18	8	7	19	6	34	37	26	24	49	19
TPM2_HUMAN	Tropomyosin beta chain	684	470	375	401	922	286	16	21	8	11	23	8	37	48	26	29	50	23
TPM3_HUMAN	Tropomyosin alpha-3 chain	358	357	0	0	691	76	13	13	0	0	19	2	31	33	0	0	45	10
VDAC1_HUMAN	Voltage-dependent anion-selective channel protein 1	0	0	0	0	87	0	0	0	0	0	3	0	0	0	0	0	7	0
VDAC3_HUMAN	Voltage-dependent anion-selective channel protein 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SC=sequence coverage; N=Normalkontrolle; HE = Hämatoxylin & Eosin; TC = Trichrom Gomori (modifiziert); OF = ohne Färbung

6.2.2 Kontrolle N3

	PROTEIN	IDENTIFIKATION																	
Accession	Name			Sc	ore					# Pe	epide					SC	[%]		
				Ν	13					Ν	N3					Ň	3		
		HE 1	HE 2	OF 1	OF 2	TC 1	TC 2	HE 1	HE 2	OF 1	OF 2	TC 1	TC 2	HE 1	HE 2	OF 1	OF 2	TC 1	TC 2
ACTN2_HUMAN	Alpha-actinin-2	423	551	323	417	691	392	12	12	6	8	13	9	13	15	7	11	19	12
ACTN3_HUMAN	Alpha-actinin-3	0	282	0	0	206	0	0	6	0	0	4	0	0	7	0	0	6	0
ACTS_HUMAN	Actin, alpha skeletal muscle	921	872	1124	1129	1365	1211	49	44	41	45	72	46	41	49	43	46	48	45
ADT1_HUMAN	ADP/ATP translocase 1	0	112	140	103	133	0	0	4	4	3	4	0	0	11	13	10	13	0
ALBU_HUMAN	Serum albumin precursor	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALDOA_HUMAN	Fructose-bisphosphate aldolase A	0	57	65	50	246	240	0	1	1	1	6	5	0	4	4	4	25	18
AT2A1_HUMAN	Sarcoplasmic/endoplasmic reticulum calcium ATPase 1	58	168	237	0	164	116	1	5	6	0	3	3	1	5	7	0	4	4
ATPA_HUMAN	ATP synthase subunit alpha, mitochondrial precursor	0	0	44	48	58	0	0	0	1	1	1	0	0	0	3	3	3	0
ATPB_HUMAN	ATP synthase subunit beta, mitochondrial	103	54	0	0	238	132	3	1	0	0	5	3	8	2	0	0	11	5
CAH3_HUMAN	Carbonic anhydrase 3	0	0	0	0	55	97	0	0	0	0	1	3	0	0	0	0	4	13
CASQ1_HUMAN	Calsequestrin-1	57	84	69	51	0	0	1	2	1	1	0	0	3	5	3	3	0	0
DESM_HUMAN	Desmin	0	0	45	0	54	0	0	0	1	0	1	0	0	0	3	0	3	0
EIF2A_HUMAN	Eukaryotic translation initiation factor 2A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ENOB_HUMAN	Beta-enolase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FHL1_HUMAN	Four and a half LIM domains protein 1	0	41	77	90	109	96	0	1	1	2	2	3	0	4	4	7	7	7
FLNC_HUMAN	Filamin-C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	0	178	152	161	240	191	0	4	4	6	6	4	0	15	13	15	18	15
G6PI_HUMAN	Glucose-6-phosphate isomerase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HBA_HUMAN	Hemoglobin subunit alpha	111	89	140	105	164	160	5	3	4	4	7	5	25	25	17	25	31	25
HBB_HUMAN	Hemoglobin subunit beta	133	352	316	346	250	211	8	17	9	11	8	5	22	59	59	59	45	35
K1C10_HUMAN	Keratin, type I cytoskeletal 10	184	530	360	282	318	372	5	18	15	9	7	11	8	16	15	10	11	14

Anhang

K1C14_HUMAN	Keratin, type I cytoskeletal 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
K1C16_HUMAN	Keratin, type I cytoskeletal 16	0	190	141	0	118	0	0	7	6	0	3	0	0	7	7	0	5	0
K1C9_HUMAN	Keratin, type I cytoskeletal 9	68	454	348	0	227	203	2	15	11	0	8	9	5	21	14	0	11	7
K22E_HUMAN	Keratin, type II cytoskeletal 2 epidermal	177	342	352	248	286	363	5	13	15	7	9	7	7	10	9	7	9	10
K2C1_HUMAN	Keratin, type II cytoskeletal 1	248	750	718	375	758	631	8	31	28	14	18	21	8	27	22	10	18	21
K2C5_HUMAN	Keratin, type II cytoskeletal 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
K2C6B_HUMAN	Keratin, type II cytoskeletal 6B	0	253	0	0	0	0	0	8	0	0	0	0	0	8	0	0	0	0
KAD1_HUMAN	Adenylate kinase isoenzyme 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KCRM_HUMAN	Creatine kinase M-type	0	101	238	232	658	493	0	2	6	6	19	12	0	6	18	18	34	28
KCRS_HUMAN	Creatine kinase, sarcomeric mitochondrial	0	0	0	49	69	0	0	0	0	1	1	0	0	0	0	3	3	0
KPYM_HUMAN	Pyruvate kinase isozymes M1/M2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LDHA_HUMAN	L-lactate dehydrogenase A chain	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M2OM_HUMAN	Mitochondrial 2-oxoglutarate/ malate carrier protein	0	0	0	0	0	43	0	0	0	0	0	1	0	0	0	0	0	3
MDHM_HUMAN	Malate dehydrogenase, mitochondrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MLRS_HUMAN	Myosin regulatory light chain 2, skeletal muscle isoform	75	189	264	244	275	109	4	8	7	8	11	5	14	21	33	26	33	15
MLRV_HUMAN	Myosin regulatory light chain 2, ventricular/cardiac muscle isoform	0	165	204	161	302	0	0	7	6	4	11	0	0	23	23	19	47	0
MYG_HUMAN	Myoglobin	0	108	195	188	373	303	0	3	6	5	11	9	0	27	31	31	42	39
MYH1_HUMAN	Myosin-1	1733	2542	3177	2318	3379	2902	59	83	87	66	94	71	18	23	30	24	32	26
MYH2_HUMAN	Myosin-2	1955	2852	3426	2464	3797	3183	66	92	96	68	106	76	20	28	35	26	36	29
MYH4_HUMAN	Myosin-4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MYH7_HUMAN	Myosin-7	2128	2634	3012	2602	3636	3454	70	83	76	78	90	75	22	27	31	28	33	32
MYL1_HUMAN	Myosin light chain 1/3, skeletal muscle isoform	340	367	570	371	494	292	13	17	13	11	16	8	34	43	46	39	45	26
MYL3_HUMAN	Myosin light chain 3	157	199	335	300	339	158	6	7	10	10	9	5	15	30	31	35	31	14
MYOM2_HUMAN	Myomesin-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MYOZ1_HUMAN	Myozenin-1	0	0	41	0	0	0	0	0	1	0	0	0	0	0	4	0	0	0
MYPC1_HUMAN	Myosin-binding protein C, slow-type	164	0	211	215	263	229	6	0	4	4	4	3	3	0	4	4	5	3
MYPC2_HUMAN	Myosin-binding protein C, fast-type	0	41	79	0	53	70	0	1	2	0	1	2	0	1	2	0	1	2
NEBU_HUMAN	Nebulin	67	0	42	59	95	75	1	0	1	1	3	1	0	0	0	0	0	0

PGK1_HUMAN	Phosphoglycerate kinase 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PLCH1_HUMAN	1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase eta-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PYGM_HUMAN	Glycogen phosphorylase, muscle form	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TENX_HUMAN	Tenascin-X	0	0	41	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
TITIN_HUMAN	Titin	0	0	0	0	232	150	0	0	0	0	9	5	0	0	0	0	0	0
TNNC1_HUMAN	Troponin C, slow skeletal and cardiac muscles	0	0	0	80	0	41	0	0	0	2	0	1	0	0	0	14	0	9
TNNC2_HUMAN	Troponin C, skeletal muscle	0	0	170	156	0	0	0	0	4	3	0	0	0	0	23	18	0	0
TNNI1_HUMAN	Troponin I, slow skeletal muscle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TNNT1_HUMAN	Troponin T, slow skeletal muscle	0	0	40	42	0	41	0	0	1	1	0	1	0	0	3	3	0	3
TNNT3_HUMAN	Troponin T, fast skeletal muscle	104	77	193	133	70	49	2	1	4	2	1	1	6	6	19	11	6	6
TPIS_HUMAN	Triosephosphate isomerase	0	0	0	0	47	0	0	0	0	0	1	0	0	0	0	0	6	0
TPM1_HUMAN	Tropomyosin alpha-1 chain	212	402	508	410	443	231	7	13	12	11	13	6	29	37	39	33	35	21
TPM2_HUMAN	Tropomyosin beta chain	193	427	626	523	558	243	8	15	16	13	14	6	22	35	50	35	38	19
TPM3_HUMAN	Tropomyosin alpha-3 chain	0	299	0	381	370	180	0	10	0	10	10	5	0	29	0	34	27	18
VDAC1_HUMAN	Voltage-dependent anion-selective channel protein 1	0	69	0	0	0	0	0	2	0	0	0	0	0	7	0	0	0	0
VDAC3_HUMAN	Voltage-dependent anion-selective channel protein 3	0	0	0	0	0	64	0	0	0	0	0	1	0	0	0	0	0	4

SC=sequence coverage; N=Normalkontrolle; HE = Hämatoxylin & Eosin; TC = Trichrom Gomori (modifiziert); OF = ohne Färbung
6.3 Vergleichsanalyse Muskelgruppen

6.3.1 Musculus gastrocnemius

	PROTEIN								ID	ENTIF	IKATI	ON							
Accession	Name			Sc	ore					# Pe	pide					SC	[%]		
		N7_2	N7_1	N3_2	N3_1	N2_2	N2_1	N7_2	N7_1	N3_2	N3_1	N2_2	N2_1	N7_2	N7_1	N3_2	N3_1	N2_2	N2_1
ACTN2_HUMAN	Alpha-actinin-2	1312	1930	551	423	915	1034	35	50	12	12	20	19	30	41	15	13	23	20
ACTN3_HUMAN	Alpha-actinin-3	0	0	282	0	276	225	0	0	6	0	3	6	0	0	7	0	4	5
ACTS_HUMAN	Actin, alpha skeletal muscle	1336	1264	872	921	1456	1378	82	70	44	49	91	87	49	47	49	41	55	55
ADT1_HUMAN	ADP/ATP translocase 1	218	278	112	0	0	69	6	9	4	0	3	0	15	18	11	0	7	0
ALBU_HUMAN	Serum albumin precursor	0	443	0	0	447	337	0	10	0	0	10	10	0	18	0	0	14	18
ALDOA_HUMAN	Fructose-bisphosphate aldolase A	450	431	57	0	293	398	14	16	1	0	16	14	33	29	4	0	27	27
AT2A1_HUMAN	Sarcoplasmic/endoplasmic reticulum calcium ATPase 1	216	690	168	58	198	0	4	15	5	1	0	5	5	16	5	1	0	7
AT2A2_HUMAN	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2	0	376	0	0	0	0	0	9	0	0	0	0	0	10	0	0	0	0
ATPA_HUMAN	ATP synthase subunit alpha, mitochondrial precursor	371	270	0	0	0	0	7	4	0	0	0	0	17	9	0	0	0	0
ATPB_HUMAN	ATP synthase subunit beta, mitochondrial	592	666	54	103	0	145	11	11	1	3	4	0	22	28	2	8	8	0
ATPK_HUMAN	ATP synthase subunit f, mitochondrial	87	0	0	0	0	0	2	0	0	0	0	0	26	0	0	0	0	0
ATPO_HUMAN	ATP synthase subunit O, mitochondrial	79	97	0	0	0	0	2	2	0	0	0	0	12	10	0	0	0	0
CAH3_HUMAN	Carbonic anhydrase 3	251	298	0	0	320	269	8	12	0	0	11	12	31	34	0	0	28	37
CASQ1_HUMAN	Calsequestrin-1	113	242	84	57	97	64	2	5	2	1	1	3	6	17	5	3	3	9
COF2_HUMAN	Cofilin-2	53	100	0	0	0	0	2	3	0	0	0	0	12	19	0	0	0	0
COX2_HUMAN	Cytochrome c oxidase subunit 2	138	0	0	0	0	0	4	0	0	0	0	0	20	0	0	0	0	0
CP4AM_HUMAN	Cytochrome P450 4A22	40	0	0	0	0	0	1	0	0	0	0	0	2	0	0	0	0	0
CRYAB_HUMAN	Alpha-crystallin B chain	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CSRP3_HUMAN	Cysteine and glycine-rich protein 3	0	61	0	0	0	0	0	1	0	0	0	0	0	9	0	0	0	0
DESM_HUMAN	Desmin	449	738	0	0	0	181	9	14	0	0	4	0	18	27	0	0	9	0
DICER_HUMAN	Endoribonuclease Dicer	41	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
EF1A1_HUMAN	Elongation factor 1-alpha 1	0	42	0	0	0	0	0	1	0	0	0	0	0	2	0	0	0	0
CASQ1_HUMAN COF2_HUMAN COX2_HUMAN CP4AM_HUMAN CRYAB_HUMAN CSRP3_HUMAN DESM_HUMAN DICER_HUMAN EF1A1_HUMAN	Calsequestrin-1 Cofilin-2 Cytochrome c oxidase subunit 2 Cytochrome P450 4A22 Alpha-crystallin B chain Cysteine and glycine-rich protein 3 Desmin Endoribonuclease Dicer Elongation factor 1-alpha 1	113 53 138 40 0 0 449 41 0	242 100 0 0 61 738 0 42	84 0 0 0 0 0 0 0 0	57 0 0 0 0 0 0 0 0 0	97 0 0 0 0 0 0 0 0 0	64 0 0 0 0 181 0 0	2 2 4 1 0 0 9 1 0	5 3 0 0 1 14 0 1	2 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0	1 0 0 0 0 4 0 0	3 0 0 0 0 0 0 0 0 0	6 12 20 2 0 0 18 0 0	17 19 0 0 9 27 0 2	5 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 9 0 0	9 0 0 0 0 0 0 0 0 0

ENOB_HUMAN	Beta-enolase	138	302	0	0	228	229	4	7	0	0	7	6	10	18	0	0	24	24
FHL1_HUMAN	Four and a half LIM domains protein 1	209	236	41	0	118	128	6	10	1	0	3	2	12	16	4	0	7	7
FLNC_HUMAN	Filamin-C	0	0	0	0	76	71	0	0	0	0	10	12	0	0	0	0	1	1
G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	433	361	178	0	281	343	17	22	4	0	15	11	30	33	15	0	28	21
G6PI_HUMAN	Glucose-6-phosphate isomerase	0	90	0	0	0	0	0	2	0	0	0	0	0	5	0	0	0	0
GPNMB_HUMAN	Transmembrane glycoprotein NMB	51	43	0	0	0	0	4	4	0	0	0	0	2	2	0	0	0	0
HBA_HUMAN	Hemoglobin subunit alpha	129	160	89	111	74	0	2	4	3	5	0	3	17	28	25	25	0	17
HBB_HUMAN	Hemoglobin subunit beta	270	367	352	133	215	209	8	13	17	8	9	11	30	57	59	22	40	30
HSP77_HUMAN	Putative heat shock 70 kDa protein 7	0	137	0	0	0	0	0	2	0	0	0	0	0	7	0	0	0	0
HSP7C_HUMAN	Heat shock cognate 71 kDa protein	133	0	0	0	0	0	3	0	0	0	0	0	6	0	0	0	0	0
HSPB1_HUMAN	Heat shock protein beta-1	137	121	0	0	0	0	4	2	0	0	0	0	21	13	0	0	0	0
IDHP_HUMAN	Isocitrate dehydrogenase [NADP], mitochondrial	0	50	0	0	0	0	0	1	0	0	0	0	0	3	0	0	0	0
K1C10_HUMAN	Keratin, type I cytoskeletal 10	382	422	530	184	512	658	10	11	18	5	26	20	11	15	16	8	18	15
K1C14_HUMAN	Keratin, type I cytoskeletal 14	0	0	0	0	182	418	0	0	0	0	13	8	0	0	0	0	16	7
K1C16_HUMAN	Keratin, type I cytoskeletal 16	0	109	190	0	0	0	0	3	7	0	0	0	0	4	7	0	0	0
K1C9_HUMAN	Keratin, type I cytoskeletal 9	470	515	454	68	538	745	15	14	15	2	32	18	22	22	21	5	26	19
K22E_HUMAN	Keratin, type II cytoskeletal 2 epidermal	463	384	342	177	471	818	12	9	13	5	29	17	12	13	10	7	33	15
K2C1_HUMAN	Keratin, type II cytoskeletal 1	1020	1004	750	248	939	1022	27	22	31	8	44	36	29	27	27	8	31	28
K2C6B_HUMAN	Keratin, type II cytoskeletal 6B	0	0	253	0	217	0	0	0	8	0	0	7	0	0	8	0	0	6
KAD1_HUMAN	Adenylate kinase isoenzyme 1	84	0	0	0	44	0	2	0	0	0	0	1	10	0	0	0	0	6
KBTBA_HUMAN	Kelch repeat and BTB domain-containing protein 10	53	163	0	0	0	0	1	4	0	0	0	0	3	7	0	0	0	0
KCRM_HUMAN	Creatine kinase M-type	790	965	101	0	730	740	37	44	2	0	36	33	36	38	6	0	41	36
KPYM_HUMAN	Pyruvate kinase isozymes M1/M2	284	362	0	0	115	75	9	9	0	0	3	4	14	17	0	0	4	5
LDB3_HUMAN	LIM domain-binding protein 3	194	183	0	0	0	0	4	5	0	0	0	0	10	8	0	0	0	0
LDHA_HUMAN	L-lactate dehydrogenase A chain	352	341	0	0	120	120	5	6	0	0	3	2	17	22	0	0	9	6
MDHC_HUMAN	Malate dehydrogenase, cytoplasmic	0	91	0	0	0	0	0	2	0	0	0	0	0	8	0	0	0	0
MDHM_HUMAN	Malate dehydrogenase, mitochondrial	0	70	0	0	0	0	0	1	0	0	0	0	0	6	0	0	0	0
MLRS_HUMAN	Myosin regulatory light chain 2, skeletal muscle isoform	381	328	189	75	142	188	13	13	8	4	6	5	36	43	21	14	30	23
MLRV_HUMAN	Myosin regulatory light chain 2, ventricular/cardiac muscle isoform	609	547	165	0	318	348	19	20	7	0	11	9	58	57	23	0	45	45

MYG_HUMAN	Myoglobin	477	533	108	0	513	528	23	23	3	0	30	25	42	52	27	0	49	49
MYH1_HUMAN	Myosin-1	0	3688	2542	1733	3455	3151	0	91	83	59	115	135	0	31	23	18	30	36
MYH2_HUMAN	Myosin-2	5163	5799	2852	1955	2709	2630	125	137	92	66	94	104	44	46	28	20	26	27
MYH7_HUMAN	Myosin-7	3722	5224	2634	2128	4210	4045	100	132	83	70	155	153	36	50	27	22	40	39
MYL1_HUMAN	Myosin light chain 1/3, skeletal muscle isoform	913	811	367	340	413	512	32	30	17	13	17	17	62	46	43	34	39	39
MYL3_HUMAN	Myosin light chain 3	735	690	199	157	262	307	20	21	7	6	11	12	54	54	30	15	31	31
MYL6_HUMAN	Myosin light polypeptide 6	298	263	0	0	0	0	9	8	0	0	0	0	25	25	0	0	0	0
MYL6B_HUMAN	Myosin light chain 6B	155	168	0	0	0	0	3	2	0	0	0	0	17	13	0	0	0	0
MYOM1_HUMAN	Myomesin-1	77	107	0	0	0	0	2	3	0	0	0	0	1	2	0	0	0	0
MYOM2_HUMAN	Myomesin-2	0	51	0	0	0	0	0	2	0	0	0	0	0	1	0	0	0	0
MYOTI_HUMAN	Myotilin	49	146	0	0	0	0	1	3	0	0	0	0	2	7	0	0	0	0
MYOZ1_HUMAN	Myozenin-1	316	224	0	0	0	0	6	4	0	0	0	0	19	16	0	0	0	0
MYPC1_HUMAN	Myosin-binding protein C, slow-type	478	643	0	164	190	0	10	15	0	6	0	4	9	12	0	3	0	4
MYPC2_HUMAN	Myosin-binding protein C, fast-type	0	85	41	0	0	0	0	2	1	0	0	0	0	2	1	0	0	0
NDUA4_HUMAN	NADH dehydrogenase [ubiquinone] 1	40	0	0	0	0	0	1	0	0	0	0	0	12	0	0	0	0	0
NEBU_HUMAN	Nebulin	0	156	0	67	56	0	0	4	0	1	0	2	0	1	0	0	0	0
NUP54_HUMAN	Nucleoporin p54	41	41	0	0	0	0	2	2	0	0	0	0	1	1	0	0	0	0
PDLI3_HUMAN	PDZ and LIM domain protein 3	77	122	0	0	0	0	3	3	0	0	0	0	9	13	0	0	0	0
PEBP1_HUMAN	Phosphatidylethanolamine-binding protein 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PGAM2_HUMAN	Phosphoglycerate mutase 2	0	102	0	0	0	0	0	5	0	0	0	0	0	17	0	0	0	0
PGK1_HUMAN	Phosphoglycerate kinase 1	0	0	0	0	47	0	0	0	0	0	0	1	0	0	0	0	0	2
PGM1_HUMAN	Phosphoglucomutase-1	0	146	0	0	0	0	0	3	0	0	0	0	0	7	0	0	0	0
PRDX2_HUMAN	Peroxiredoxin-2	0	48	0	0	0	0	0	1	0	0	0	0	0	6	0	0	0	0
PYGM_HUMAN	Glycogen phosphorylase, muscle form	899	1196	0	0	378	412	25	31	0	0	14	11	25	34	0	0	15	12
QCR2_HUMAN	Cytochrome b-c1 complex subunit 2,	0	97	0	0	0	0	0	2	0	0	0	0	0	6	0	0	0	0
SF3B1 HUMAN	mitochondrial Splicing factor 3B subunit 1	0	43	0	0	0	0	0	2	0	0	0	0	0	1	0	0	0	0
- SRCA_HUMAN	Sarcalumenin	97	61	0	0	0	0	3	-	0	0	0	0	3	1	0	0	0	0
	Nesprin-3	72	0	0	0	0	ů 0	4	0	0 0	0	0 0	0 0	2	0	0	0	0	0
TENX_HUMAN	Tenascin-X	0	43	0	0	0	0 0	0	2	õ	0	Õ	0 0	0	0	Ŭ 0	Ũ	Ũ	0
—		Ŭ		0	0	0	Ŭ	0	-	v	0	0	v	0	v	0	0	0	0

TITIN_HUMAN	Titin	0	1086	0	0	146	0	0	29	0	0	0	5	0	1	0	0	0	0
TNNC1_HUMAN	Troponin C, slow skeletal and cardiac muscles	390	346	0	0	0	46	8	6	0	0	2	0	31	30	0	0	9	0
TNNC2_HUMAN	Troponin C, skeletal muscle	487	540	0	0	0	0	12	12	0	0	0	0	44	54	0	0	0	0
TNNI1_HUMAN	Troponin I, slow skeletal muscle	0	0	0	0	0	41	0	0	0	0	2	0	0	0	0	0	4	0
TNNI2_HUMAN	Troponin I, fast skeletal muscle	49	43	0	0	0	0	1	3	0	0	0	0	8	8	0	0	0	0
TNNT1_HUMAN	Troponin T, slow skeletal muscle	41	80	0	0	41	46	2	5	0	0	2	1	3	8	0	0	3	3
TNNT3_HUMAN	Troponin T, fast skeletal muscle	226	290	77	104	139	99	6	8	1	2	1	3	20	20	6	6	6	14
TPIS_HUMAN	Triosephosphate isomerase	0	58	0	0	94	89	0	1	0	0	3	4	0	6	0	0	12	12
TPM1_HUMAN	Tropomyosin alpha-1 chain	738	844	402	212	450	539	23	27	13	7	18	13	36	45	37	29	37	34
TPM2_HUMAN	Tropomyosin beta chain	941	973	427	193	470	684	33	35	15	8	21	16	45	43	35	22	48	37
TPM3_HUMAN	Tropomyosin alpha-3 chain	514	802	299	0	357	358	15	22	10	0	13	13	27	42	29	0	33	31
TRY1_HUMAN	Trypsin-1	80	0	0	0	0	0	7	0	0	0	0	0	4	0	0	0	0	0
TRY3_HUMAN	Trypsin-3	95	94	0	0	0	0	9	9	0	0	0	0	4	4	0	0	0	0
TSC2_HUMAN	Tuberin	44	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0
VDAC1_HUMAN	Voltage-dependent anion-selective channel protein 1	116	133	69	0	0	0	2	2	2	0	0	0	7	8	7	0	0	0
YH010_HUMAN	IQ motif and ankyrin repeat domain-containing protein LOC642574	0	41	0	0	0	0	0	2	0	0	0	0	0	2	0	0	0	0

SC=sequence coverage; N=Normalkontrolle

6.3.2 Musculus vastus lateralis

	PROTEIN					ID	ENTIF	IKATI	ON				
Accession	Name		Sc	ore			# Pe	pide			SC	[%]	
		N8_2	N8_1	N4_2	N4_1	N8_2	N8_1	N4_2	N4_1	N8_2	N8_1	N4_2	N4_1
AATM_HUMAN	Aspartate aminotransferase, mitochondrial	63	0	0	0	1	0	0	0	2	0	0	0
ABEC2_HUMAN	Probable C->U-editing enzyme APOBEC-2	0	41	0	0	0	1	0	0	0	7	0	0
ACTN2_HUMAN	Alpha-actinin-2	1082	1140	877	835	25	27	17	20	21	28	19	19
ACTN3_HUMAN	Alpha-actinin-3	726	488	314	0	12	11	4	0	13	11	6	0
ACTS_HUMAN	Actin, alpha skeletal muscle	1309	1284	967	897	81	73	70	55	63	49	46	44
ADT1_HUMAN	ADP/ATP translocase 1	0	0	0	146	0	0	0	4	0	0	0	11

ALBU_HUMAN	Serum albumin precursor	488	453	0	0	10	11	0	0	16	16	0	0
ALDOA_HUMAN	Fructose-bisphosphate aldolase A	627	552	164	266	28	24	7	10	35	35	13	20
AT2A1_HUMAN	Sarcoplasmic/endoplasmic reticulum calcium ATPase 1	748	910	399	352	16	16	11	7	15	17	10	9
AT2A2_HUMAN	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2	509	0	237	318	12	0	9	6	11	0	7	8
ATLA3_HUMAN	Atlastin-3	42	0	0	0	1	0	0	0	2	0	0	0
ATPA_HUMAN	ATP synthase subunit alpha, mitochondrial precursor	211	132	166	160	5	2	4	3	12	5	10	7
ATPB_HUMAN	ATP synthase subunit beta, mitochondrial	436	487	349	389	8	10	5	7	19	26	14	17
ATPO_HUMAN	ATP synthase subunit O, mitochondrial	0	0	0	79	0	0	0	2	0	0	0	12
CAH3_HUMAN	Carbonic anhydrase 3	269	208	206	137	11	9	6	6	33	22	23	11
CASQ1_HUMAN	Calsequestrin-1	174	188	55	41	4	4	1	1	9	9	3	3
COF2_HUMAN	Cofilin-2	58	0	0	0	1	0	0	0	12	0	0	0
COX2_HUMAN	Cytochrome c oxidase subunit 2	53	0	0	103	1	0	0	2	7	0	0	11
COX5A_HUMAN	Cytochrome c oxidase subunit 5A, mitochondrial	0	0	0	60	0	0	0	1	0	0	0	6
CRYAB_HUMAN	Alpha-crystallin B chain	0	63	0	0	0	2	0	0	0	11	0	0
CX7A1_HUMAN	Cytochrome c oxidase subunit 7A1, mitochondrial	0	0	0	60	0	0	0	1	0	0	0	16
DESM_HUMAN	Desmin	431	522	346	280	8	9	7	5	21	21	16	13
ENOB_HUMAN	Beta-enolase	427	395	137	46	16	15	3	2	25	23	14	4
F16P2_HUMAN	Fructose-1,6-bisphosphatase isozyme 2	0	44	0	0	0	1	0	0	0	4	0	0
FHL1_HUMAN	Four and a half LIM domains protein 1	221	246	159	119	7	9	6	5	12	16	11	8
FLNC_HUMAN	Filamin-C	143	49	0	0	3	1	0	0	1	0	0	0
G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	516	555	273	381	20	20	9	14	35	35	15	27
G6PI_HUMAN	Glucose-6-phosphate isomerase	84	94	0	0	3	2	0	0	5	5	0	0
GPNMB_HUMAN	Transmembrane glycoprotein NMB	44	46	41	42	4	4	4	5	2	2	2	2
HBA_HUMAN	Hemoglobin subunit alpha	201	190	296	188	5	8	10	7	35	35	42	35
HBB_HUMAN	Hemoglobin subunit beta	355	365	293	296	11	14	10	10	49	57	30	30
HSP72_HUMAN	Heat shock-related 70 kDa protein 2	154	0	0	0	3	0	0	0	5	0	0	0
HSP7C_HUMAN	Heat shock cognate 71 kDa protein	0	178	0	0	0	3	0	0	0	6	0	0
HSPB1_HUMAN	Heat shock protein beta-1	105	70	65	141	2	1	1	3	10	5	5	18
IDHP_HUMAN	Isocitrate dehydrogenase [NADP], mitochondrial	46	0	0	0	1	0	0	0	3	0	0	0
K1C10_HUMAN	Keratin, type I cytoskeletal 10	431	313	733	315	10	8	23	13	12	10	30	13

K1C16_HUMAN	Keratin, type I cytoskeletal 16	0	0	302	0	0	0	10	0	0	0	13	0
K1C9_HUMAN	Keratin, type I cytoskeletal 9	473	123	459	296	15	3	19	14	26	5	20	24
K22E_HUMAN	Keratin, type II cytoskeletal 2 epidermal	379	400	497	619	9	7	15	14	13	13	15	15
K2C1_HUMAN	Keratin, type II cytoskeletal 1	855	529	872	569	25	14	29	20	26	13	23	19
K2C5_HUMAN	Keratin, type II cytoskeletal 5	0	0	293	0	0	0	7	0	0	0	11	0
K2C6B_HUMAN	Keratin, type II cytoskeletal 6B	0	0	341	0	0	0	10	0	0	0	9	0
KAD1_HUMAN	Adenylate kinase isoenzyme 1	141	81	43	0	4	2	1	0	18	10	6	0
KBTBA_HUMAN	Kelch repeat and BTB domain-containing protein 10	156	0	0	0	3	0	0	0	7	0	0	0
KCRM_HUMAN	Creatine kinase M-type	932	866	766	772	47	41	36	33	44	36	34	34
KCRS_HUMAN	Creatine kinase, sarcomeric mitochondrial	75	57	61	86	1	1	1	1	3	3	3	3
KPYM_HUMAN	Pyruvate kinase isozymes M1/M2	448	500	0	119	10	13	0	3	20	21	0	7
LDB3_HUMAN	LIM domain-binding protein 3	82	194	0	0	2	6	0	0	5	13	0	0
LDHA_HUMAN	L-lactate dehydrogenase A chain	472	350	0	0	9	7	0	0	23	22	0	0
MDHC_HUMAN	Malate dehydrogenase, cytoplasmic	84	70	0	71	2	2	0	3	8	8	0	8
MLRS_HUMAN	Myosin regulatory light chain 2, skeletal muscle isoform	350	342	210	261	8	13	6	6	43	36	25	25
MLRV_HUMAN	Myosin regulatory light chain 2,	528	376	556	433	15	9	17	13	58	51	58	52
MYG HUMAN	ventricular/cardiac muscle isoform Myoglobin	191	471	524	457	17	22	15	13	52	52	42	42
– MYH1 HUMAN	Myosin-1	5374	49/1	3201	2345	140	134	84	64	46	32 14	30	25
– MYH2 HUMAN	Myosin-2	5226	5305	3521	2343	128	134	07	65	40	44	33	25
– MYH7 HUMAN	Myosin-7	4861	3066	3310	2405	115	05	112	84	44	38	31	25
– MYL1 HUMAN	Myosin light chain 1/3, skeletal muscle isoform	800	783	629	659	25	29	112	18	59	59	36	18
MYL3 HUMAN	Myosin light chain 3	656	574	584	591	14	15	16	13	54	45	41	40
 MYOM1_HUMAN	Myomesin-1	101	0	65	0	2	0	2	0	1	0	2	0
MYOM2_HUMAN	Myomesin-2	101	0	0	0	2	0	0	0	2	0	0	0
MYOTI_HUMAN	Myotilin	0	0	0	0	0	0	0	0	0	0	0	0
MYOZ1_HUMAN	Myozenin-1	156	236	61	169	3	6	1	3	16	19	4	15
MYPC1_HUMAN	Myosin-binding protein C, slow-type	607	584	446	432	16	15	13	13	12	12	8	9
MYPC2_HUMAN	Myosin-binding protein C, fast-type	202	74	0	0	4	1	0	0	4	1	0	0
NDUA4_HUMAN	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4	0	0	0	62	0	0	0	1	0	0	0	12

NEBU_HUMAN

PADI2_HUMAN

Nebulin

Protein-arginine deiminase type-2

0	95	165	0	0	2	4	0	0	0	1	0
45	46	0	0	1	1	0	0	2	2	0	0
134	134	0	0	4	3	0	0	13	13	0	0
77	0	0	0	1	0	0	0	11	0	0	0
0	44	0	0	0	1	0	0	0	4	0	0
468	386	0	0	8	5	0	0	17	12	0	0
1139	963	712	719	36	30	18	15	31	25	17	19
0	0	69	41	0	0	1	1	0	0	4	4
58	0	0	0	1	0	0	0	13	0	0	0

PDLI3_HUMAN	PDZ and LIM domain protein 3	134	134	0	0	4	3	0	0	13	13	0	0
PEBP1_HUMAN	Phosphatidylethanolamine-binding protein 1	77	0	0	0	1	0	0	0	11	0	0	0
PGK1_HUMAN	Phosphoglycerate kinase 1	0	44	0	0	0	1	0	0	0	4	0	0
PGM1_HUMAN	Phosphoglucomutase-1	468	386	0	0	8	5	0	0	17	12	0	0
PYGM_HUMAN	Glycogen phosphorylase, muscle form	1139	963	712	719	36	30	18	15	31	25	17	19
QCR2_HUMAN	Cytochrome b-c1 complex subunit 2, mitochondrial	0	0	69	41	0	0	1	1	0	0	4	4
RL40_HUMAN	Ubiquitin-60S ribosomal protein L40	58	0	0	0	1	0	0	0	13	0	0	0
RN149_HUMAN	E3 ubiquitin-protein ligase RNF149	48	42	0	0	2	2	0	0	3	3	0	0
S10A9_HUMAN	Protein S100-A9	0	0	48	0	0	0	1	0	0	0	13	0
SF3B1_HUMAN	Splicing factor 3B subunit 1	0	0	0	0	0	0	0	0	0	0	0	0
SRCA_HUMAN	Sarcalumenin	0	58	0	0	0	1	0	0	0	1	0	0
TENX_HUMAN	Tenascin-X	0	0	46	43	0	0	3	3	0	0	0	0
TITIN_HUMAN	Titin	348	239	903	0	13	11	29	0	0	0	1	0
TNNC1_HUMAN	Troponin C, slow skeletal and cardiac muscles	280	209	137	232	5	4	4	6	24	24	17	24
TNNC2_HUMAN	Troponin C, skeletal muscle	422	377	111	128	10	11	2	4	47	36	18	23
TNNI2_HUMAN	Troponin I, fast skeletal muscle	49	41	0	0	1	2	0	0	8	8	0	0
TNNT1_HUMAN	Troponin T, slow skeletal muscle	44	71	0	66	2	2	0	4	3	9	0	9
TNNT3_HUMAN	Troponin T, fast skeletal muscle	237	293	0	0	6	7	0	0	20	20	0	0
TPIS_HUMAN	Triosephosphate isomerase	385	264	0	51	8	6	0	1	29	23	0	5
TPM1_HUMAN	Tropomyosin alpha-1 chain	732	783	551	499	22	24	12	13	39	45	31	24
TPM2_HUMAN	Tropomyosin beta chain	1017	907	743	857	25	29	16	21	45	45	36	42
TPM3_HUMAN	Tropomyosin alpha-3 chain	628	447	481	443	15	13	12	12	36	28	23	20
TRY1_HUMAN	Trypsin-1	0	0	84	41	0	0	4	3	0	0	4	4
TRY3_HUMAN	Trypsin-3	95	95	98	99	7	8	6	7	4	4	4	4
<u></u>													

SC=sequence coverage; N=Normalkontrolle

6.3.3 Musculus biceps brachii

	PROTEIN								ID	ENTIF	IKATI	ON							
Accession	Name			Sc	ore					# Pe	pide					SC	[%]		
		N9_2	N9_1	N6_2	N6_1	N5_2	N5_1	N9_2	N9_1	N6_2	N6_1	N5_2	N5_1	N9_2	N9_1	N6_2	N6_1	N5_2	N5_1
AATM_HUMAN	Aspartate aminotransferase, mitochondrial	0	85	0	0	0	0	0	2	0	0	0	0	0	5	0	0	0	0
ABEC2_HUMAN	Probable C->U-editing enzyme APOBEC-2	0	0	40	0	0	0	0	0	1	0	0	0	0	0	3	0	0	0
ACTH_HUMAN	Actin, gamma-enteric smooth muscle	0	0	0	0	211	0	0	0	0	0	9	0	0	0	0	0	20	0
ACTN2_HUMAN	Alpha-actinin-2	1115	1464	1232	1034	0	998	26	27	22	22	0	16	26	33	25	23	0	21
ACTN3_HUMAN	Alpha-actinin-3	586	890	0	0	0	429	11	15	0	0	0	8	12	18	0	0	0	9
ACTS_HUMAN	Actin, alpha skeletal muscle	1279	1180	1180	865	0	1068	81	75	66	54	0	66	55	48	49	44	0	47
ADT1_HUMAN	ADP/ATP translocase 1	0	0	195	137	0	0	0	0	5	3	0	0	0	0	13	11	0	0
ALBU_HUMAN	Serum albumin precursor	529	358	245	119	0	79	12	10	6	2	0	3	18	15	11	4	0	4
ALDOA_HUMAN	Fructose-bisphosphate aldolase A	502	614	249	194	0	233	18	24	9	6	0	9	35	33	23	18	0	23
AT2A1_HUMAN	Sarcoplasmic/endoplasmic reticulum calcium ATPase 1	799	758	292	377	0	693	15	15	9	9	0	16	16	15	7	8	0	14
AT2A2_HUMAN	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2	443	285	231	173	0	0	9	6	8	6	0	0	10	8	7	5	0	0
ATPA_HUMAN	ATP synthase subunit alpha, mitochondrial precursor	215	276	0	0	0	83	4	5	0	0	0	2	9	11	0	0	0	5
ATPB_HUMAN	ATP synthase subunit beta, mitochondrial	525	439	311	0	0	91	9	8	5	0	0	2	21	18	14	0	0	6
CAH3_HUMAN	Carbonic anhydrase 3	353	336	256	160	0	247	16	15	7	6	0	8	38	40	27	11	0	21
CASQ1_HUMAN	Calsequestrin-1	187	143	60	56	0	112	5	3	1	1	0	2	9	8	3	3	0	7
COF2_HUMAN	Cofilin-2	105	74	0	0	0	0	2	1	0	0	0	0	19	12	0	0	0	0
COX2_HUMAN	Cytochrome c oxidase subunit 2	0	0	68	0	0	0	0	0	1	0	0	0	0	0	7	0	0	0
COX5A_HUMAN	Cytochrome c oxidase subunit 5A, mitochondrial	0	42	0	0	0	0	0	1	0	0	0	0	0	6	0	0	0	0
CRYAB_HUMAN	Alpha-crystallin B chain	0	71	0	0	0	40	0	2	0	0	0	1	0	11	0	0	0	5
CSRP3_HUMAN	Cysteine and glycine-rich protein 3	0	0	63	0	0	0	0	0	1	0	0	0	0	0	9	0	0	0
CT072_HUMAN	Uncharacterized protein C20orf72	0	0	0	41	0	0	0	0	0	2	0	0	0	0	0	2	0	0
DESM_HUMAN	Desmin	354	552	195	323	0	330	8	11	4	6	0	7	18	26	11	15	0	15
ENOB_HUMAN	Beta-enolase	380	405	149	47	0	83	13	11	3	1	0	4	23	24	14	4	0	10
FABPH_HUMAN	Fatty acid-binding protein, heart	0	0	88	43	0	0	0	0	2	1	0	0	0	0	14	8	0	0

FANCB_HUMAN	Fanconi anemia group B protein	0	0	0	47	0	0	0	0	0	4	0	0	0	0	0	1	0	0
FHL1_HUMAN	Four and a half LIM domains protein 1	204	211	143	135	83	206	7	8	7	7	5	5	12	12	8	8	14	12
FLNC_HUMAN	Filamin-C	0	120	0	0	0	0	0	3	0	0	0	0	0	2	0	0	0	0
G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	420	460	395	264	0	390	20	22	14	9	0	10	23	37	23	15	0	19
G6PI_HUMAN	Glucose-6-phosphate isomerase	55	41	0	0	0	0	1	1	0	0	0	0	3	3	0	0	0	0
GPNMB_HUMAN	Transmembrane glycoprotein NMB	47	0	49	0	0	0	4	0	4	0	0	0	2	0	2	0	0	0
HBA_HUMAN	Hemoglobin subunit alpha	302	235	293	217	0	90	12	9	10	5	0	3	43	35	42	23	0	17
HBB_HUMAN	Hemoglobin subunit beta	397	461	288	291	0	234	21	20	9	8	0	6	57	68	30	30	0	30
HSP72_HUMAN	Heat shock-related 70 kDa protein 2	0	148	0	0	0	0	0	3	0	0	0	0	0	6	0	0	0	0
HSP7C_HUMAN	Heat shock cognate 71 kDa protein	200	0	0	0	0	0	4	0	0	0	0	0	8	0	0	0	0	0
HSPB1_HUMAN	Heat shock protein beta-1	71	65	77	105	0	75	1	1	1	2	0	1	5	5	5	13	0	5
IDHP_HUMAN	Isocitrate dehydrogenase [NADP], mitochondrial	0	55	0	0	0	0	0	1	0	0	0	0	0	3	0	0	0	0
K1C10_HUMAN	Keratin, type I cytoskeletal 10	295	270	455	469	159	893	9	7	15	15	6	30	8	14	18	18	10	33
K1C16_HUMAN	Keratin, type I cytoskeletal 16	0	0	0	139	0	0	0	0	0	4	0	0	0	0	0	5	0	0
K1C19_HUMAN	Keratin, type I cytoskeletal 19	0	0	0	0	166	0	0	0	0	0	4	0	0	0	0	0	6	0
K1C9_HUMAN	Keratin, type I cytoskeletal 9	477	331	266	544	251	294	12	13	11	19	13	13	24	17	19	25	27	17
K22E_HUMAN	Keratin, type II cytoskeletal 2 epidermal	227	0	435	387	141	872	6	0	11	13	6	25	5	0	13	14	14	24
K2C1_HUMAN	Keratin, type II cytoskeletal 1	827	730	701	716	313	861	23	19	21	26	11	26	25	24	21	21	13	23
K2C5_HUMAN	Keratin, type II cytoskeletal 5	0	0	0	0	0	245	0	0	0	0	0	6	0	0	0	0	0	7
KAD1_HUMAN	Adenylate kinase isoenzyme 1	190	230	0	0	0	0	4	4	0	0	0	0	24	24	0	0	0	0
KBTBA_HUMAN	Kelch repeat and BTB domain-containing protein 10	193	87	50	0	0	0	4	3	1	0	0	0	7	5	3	0	0	0
KCRM_HUMAN	Creatine kinase M-type	962	889	697	692	0	452	47	47	33	25	0	16	46	48	34	31	0	23
KCRS_HUMAN	Creatine kinase, sarcomeric mitochondrial	0	94	52	0	0	0	0	3	1	0	0	0	0	7	3	0	0	0
KPYM_HUMAN	Pyruvate kinase isozymes M1/M2	352	354	95	149	0	186	7	9	1	4	0	3	15	14	3	10	0	9
LDB3_HUMAN	LIM domain-binding protein 3	155	68	0	0	0	0	4	2	0	0	0	0	5	4	0	0	0	0
LDHA_HUMAN	L-lactate dehydrogenase A chain	565	521	251	0	0	144	13	13	7	0	0	4	27	28	16	0	0	11
MDHC_HUMAN	Malate dehydrogenase, cytoplasmic	0	0	0	75	0	0	0	0	0	2	0	0	0	0	0	8	0	0
MDHM_HUMAN	Malate dehydrogenase, mitochondrial	0	78	0	0	0	0	0	1	0	0	0	0	0	6	0	0	0	0
MDM2_HUMAN	E3 ubiquitin-protein ligase Mdm2	0	41	0	0	0	0	0	1	0	0	0	0	0	2	0	0	0	0
MED24_HUMAN	Mediator of RNA polymerase II transcription subunit 24	44	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0
1																			

MLRS_HUMAN	Myosin regulatory light chain 2, skeletal muscle isoform	381	433	258	210	0	218	12	13	6	8	0	6	43	49	34	25	0	37
MLRV_HUMAN	Myosin regulatory light chain 2,	379	566	458	384	0	224	11	19	15	11	0	7	53	57	52	44	0	37
MYG_HUMAN	Myoglobin	531	569	451	466	0	432	24	24	15	16	0	15	59	63	42	42	0	42
MYH1_HUMAN	Myosin-1	5475	4921	3161	0	1023	3938	137	121	110	0	71	129	48	44	28	0	35	34
MYH2_HUMAN	Myosin-2	5607	5718	4348	3746	1327	4600	137	129	150	119	75	147	48	44	39	36	37	39
MYH7_HUMAN	Myosin-7	4130	4644	3879	2701	502	2197	105	112	128	84	42	64	42	44	39	28	24	24
MYL1_HUMAN	Myosin light chain 1/3, skeletal muscle isoform	816	861	675	712	84	584	27	30	15	16	1	16	62	62	55	42	6	32
MYL3_HUMAN	Myosin light chain 3	600	645	646	540	0	436	17	20	14	12	0	11	54	41	49	41	0	45
MYL6_HUMAN	Myosin light polypeptide 6	214	266	176	0	0	0	6	9	4	0	0	0	25	25	19	0	0	0
MYL6B_HUMAN	Myosin light chain 6B	128	183	0	0	0	0	2	4	0	0	0	0	13	17	0	0	0	0
MYOM1_HUMAN	Myomesin-1	0	61	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0
MYOM2_HUMAN	Myomesin-2	117	154	253	175	0	0	3	3	5	3	0	0	3	3	5	3	0	0
MYOTI_HUMAN	Myotilin	113	0	0	0	0	0	2	0	0	0	0	0	4	0	0	0	0	0
MYOZ1_HUMAN	Myozenin-1	225	65	142	152	0	197	4	2	2	3	0	4	16	8	9	9	0	15
MYPC1_HUMAN	Myosin-binding protein C, slow-type	421	474	625	582	0	499	9	13	15	14	0	16	8	11	11	11	0	10
MYPC2_HUMAN	Myosin-binding protein C, fast-type	105	57	0	0	0	50	1	1	0	0	0	1	1	1	0	0	0	1
NEBU_HUMAN	Nebulin	86	0	87	0	77	208	2	0	2	0	4	5	1	0	0	0	1	1
PDLI3_HUMAN	PDZ and LIM domain protein 3	122	149	110	53	0	46	3	3	3	1	0	1	13	13	9	4	0	4
PEBP1_HUMAN	Phosphatidylethanolamine-binding protein 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PGAM2_HUMAN	Phosphoglycerate mutase 2	139	0	104	0	0	0	7	0	4	0	0	0	28	0	17	0	0	0
PGM1_HUMAN	Phosphoglucomutase-1	279	233	0	0	0	0	5	3	0	0	0	0	12	7	0	0	0	0
PRDX2_HUMAN	Peroxiredoxin-2	48	43	0	0	0	0	1	1	0	0	0	0	6	6	0	0	0	0
PSMD1_HUMAN	26S proteasome non-ATPase regulatory subunit 1	0	114	0	73	0	0	0	6	0	5	0	0	0	2	0	1	0	0
PYGM_HUMAN	Glycogen phosphorylase, muscle form	1022	811	625	654	0	832	34	26	17	13	0	21	30	22	18	17	0	24
QCR2_HUMAN	Cytochrome b-c1 complex subunit 2, mitochondrial	0	91	0	0	0	0	0	1	0	0	0	0	0	4	0	0	0	0
RN149_HUMAN	E3 ubiquitin-protein ligase RNF149	45	42	0	0	48	0	4	2	0	0	1	0	3	3	0	0	3	0
SF3B1_HUMAN	Splicing factor 3B subunit 1	0	43	0	0	0	0	0	3	0	0	0	0	0	1	0	0	0	0
SRCA_HUMAN	Sarcalumenin	114	0	0	0	0	0	3	0	0	0	0	0	4	0	0	0	0	0
SYNE3_HUMAN	Nesprin-3	0	0	0	41	0	0	0	0	0	1	0	0	0	0	0	1	0	0
		•						1						1					

TENX_HUMAN	Tenascin-X	44	48	48	41	0	48	2	3	1	1	0	2	0	0	0	0	0	0
TITIN_HUMAN	Titin	827	670	1062	398	0	1173	24	20	29	16	0	33	1	1	1	1	0	1
TNNC1_HUMAN	Troponin C, slow skeletal and cardiac muscles	203	376	166	240	0	105	4	9	4	5	0	2	24	33	22	30	0	17
TNNC2_HUMAN	Troponin C, skeletal muscle	483	431	244	238	0	372	11	11	5	6	0	8	53	53	33	33	0	39
TNNI1_HUMAN	Troponin I, slow skeletal muscle	0	0	0	0	0	44	0	0	0	0	0	1	0	0	0	0	0	4
TNNI2_HUMAN	Troponin I, fast skeletal muscle	46	0	0	0	0	45	2	0	0	0	0	1	8	0	0	0	0	8
TNNT1_HUMAN	Troponin T, slow skeletal muscle	0	101	68	47	0	0	0	4	2	1	0	0	0	9	9	3	0	0
TNNT3_HUMAN	Troponin T, fast skeletal muscle	301	278	189	171	0	232	8	7	6	4	0	6	23	20	20	14	0	20
TPIS_HUMAN	Triosephosphate isomerase	271	312	0	0	0	0	5	5	0	0	0	0	23	23	0	0	0	0
TPM1_HUMAN	Tropomyosin alpha-1 chain	833	627	614	640	0	576	30	19	13	14	0	14	42	30	27	32	0	32
TPM2_HUMAN	Tropomyosin beta chain	1014	971	828	825	0	892	32	29	20	16	0	22	46	40	43	40	0	44
TPM3_HUMAN	Tropomyosin alpha-3 chain	542	573	403	450	0	282	18	16	10	9	0	7	37	31	23	22	0	14
TRY1_HUMAN	Trypsin-1	81	0	68	0	0	82	6	0	4	0	0	3	4	0	4	0	0	4
TRY3_HUMAN	Trypsin-3	99	95	96	99	0	94	5	5	8	5	0	6	4	4	4	4	0	4
VDAC1_HUMAN	Voltage-dependent anion-selective channel protein 1	0	110	0	0	0	0	0	2	0	0	0	0	0	8	0	0	0	0

SC=sequence coverage; N=Normalkontrolle

6.4 Qualitative Analyse (P1, P3 und P9)

	PROTEIN			IDE	NTIFI	KATIO	N (SCC	ORE)		
]	Patient	1]	Patient	3		Patient	9
Accession	Name	AG	NK	U	AG	NK	U	AG	NK	U
1433G_HUMAN	14-3-3 protein gamma	143	128	70	0	0	94	0	0	75
1433Z_HUMAN	14-3-3 protein zeta/delta	71	0	0	0	0	0	0	0	0
2A5G_HUMAN	Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit gamma isoform	0	0	0	0	41	0	0	0	0
AATM_HUMAN	Aspartate aminotransferase, mitochondrial	0	0	0	0	0	0	71	0	0
ACTC_HUMAN	Actin, alpha cardiac muscle 1	1239	1167	1293	1098	0	1119	0	0	0
ACTN2_HUMAN	Alpha-actinin-2	269	1477	1141	264	1495	1334	297	1121	570
ACTS_HUMAN	Actin, alpha skeletal muscle	1326	1291	1391	1205	1436	1315	1104	1454	1318
ADT1_HUMAN	ADP/ATP translocase 1	0	222	179	0	181	0	393	327	332
ALBU_HUMAN	Serum albumin precursor	515	460	740	366	0	348	836	222	821
ALDOA_HUMAN	Fructose-bisphosphate aldolase A	316	377	425	397	379	360	380	442	476
ANXA2_HUMAN	Annexin A2	0	0	0	0	0	0	42	0	0
AT2A1_HUMAN	Sarcoplasmic/endoplasmic	168	297	176	922	0	339	444	185	603
AT2A2_HUMAN	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2	144	0	0	0	0	0	0	266	0
AT5F1_HUMAN	ATP synthase subunit b, mitochondrial	0	0	0	0	0	0	124	0	0
ATP5L_HUMAN	ATP synthase subunit g, mitochondrial	0	0	0	0	0	0	47	0	0
ATPA_HUMAN	ATP synthase subunit alpha,	0	164	117	206	185	115	680	94	276
ATPB_HUMAN	mitochondrial precursor ATP synthase subunit beta, mitochondrial	0	259	261	288	286	0	790	366	474
ATPG_HUMAN	ATP synthase subunit gamma, mitochondrial	0	0	0	0	0	0	106	0	0
ATPO_HUMAN	ATP synthase subunit O, mitochondrial	0	64	0	0	0	0	0	0	0
B2RP65_HUMAN	Centrosomal protein of 110 kDa	0	0	0	0	41	0	0	0	0
CAH3_HUMAN	Carbonic anhydrase 3	484	786	595	479	546	516	355	552	429
CASQ1_HUMAN	Calsequestrin-1	0	93	0	72	0	79	0	0	126
CISY_HUMAN	Citrate synthase, mitochondrial	0	0	0	0	0	0	68	0	0
CLCF1_HUMAN	Cardiotrophin-like cytokine factor 1	40	0	0	0	0	0	0	0	0
CO6A3_HUMAN	Collagen alpha-3(VI) chain	0	0	0	0	0	0	99	0	0
COF1_HUMAN	Cofilin-1	68	0	0	0	0	0	0	0	0
COF2_HUMAN	Cofilin-2	0	131	109	98	96	113	0	0	68
CRYAB_HUMAN	Alpha-crystallin B chain	288	167	238	280	166	155	0	0	80
CSRP3_HUMAN	Cysteine and glycine-rich protein 3	69	115	70	0	0	0	0	0	0
CT072_HUMAN	Uncharacterized protein C20orf72	0	0	0	0	41	0	0	0	0
CX7A1_HUMAN	Cytochrome c oxidase subunit 7A1, mitochondrial	0	0	0	0	0	0	0	41	0
DESM_HUMAN	Desmin	1339	993	1386	1493	842	1166	1233	518	915
DHSA_HUMAN	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial	0	0	0	0	0	0	69	0	0
ECH1_HUMAN	Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial	0	0	0	0	0	0	95	0	0
EF1A1_HUMAN	Elongation factor 1-alpha 1	89	0	142	0	0	0	0	0	0
EF1A2_HUMAN	Elongation factor 1-alpha 2	0	73	0	0	0	0	0	0	0
ENOB_HUMAN	Beta-enolase	50	257	93	93	193	0	155	181	0
FABPH_HUMAN	Fatty acid-binding protein, heart	0	0	0	0	0	0	0	87	0
FHL1_HUMAN	Four and a half LIM domains protein 1	166	44	105	193	250	181	170	214	234

FLNC_HUMAN	Filamin-C	1328	328	729	190	0	0	0	0	0
G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	325	425	350	329	370	402	323	529	524
G6PI_HUMAN	Glucose-6-phosphate isomerase	0	98	53	0	44	46	0	0	0
GPNMB_HUMAN	Transmembrane glycoprotein NMB	0	0	0	44	44	51	41	0	46
GRP75_HUMAN	Stress-70 protein, mitochondrial	0	0	0	0	0	0	49	0	0
HBA_HUMAN	Hemoglobin subunit alpha	0	79	139	130	0	200	140	88	113
HBB_HUMAN	Hemoglobin subunit beta	131	227	235	242	208	259	267	218	250
HPS6_HUMAN	Hermansky-Pudlak syndrome 6 protein	0	0	0	0	0	42	0	0	0
HSP71_HUMAN	Heat shock 70 kDa protein 1	0	0	92	0	0	0	0	0	0
HSP77_HUMAN	Putative heat shock 70 kDa protein 7	0	0	0	0	0	0	73	67	79
HSP7C_HUMAN	Heat shock cognate 71 kDa protein	155	46	0	0	0	0	0	0	0
HSPB1_HUMAN	Heat shock protein beta-1	277	333	282	184	90	177	131	223	143
IDHP_HUMAN	Isocitrate dehydrogenase [NADP], mitochondrial	0	0	0	0	0	0	147	0	0
IGHG1_HUMAN	Ig gamma-1 chain C region	104	0	0	0	0	0	0	0	0
IGHG2_HUMAN	Ig gamma-2 chain C region	0	44	0	0	0	0	0	0	0
ITPR1_HUMAN	Inositol 1,4,5-trisphosphate receptor type 1	0	41	0	0	46	0	0	0	0
KAD1_HUMAN	Adenylate kinase isoenzyme 1	0	201	93	133	62	42	114	202	237
KBTBA_HUMAN	Kelch repeat and	123	95	154	188	154	80	111	163	73
KCRM HUMAN	B1B domain-containing protein 10 Creatine kinase M-type	656	931	820	758	851	861	886	834	851
– KCRS HUMAN	Creatine kinase, sarcomeric mitochondrial	0.00	0	0	0	0	0	319	0	160
_ KPYM_HUMAN	Pyruvate kinase isozymes M1/M2	0	80	155	75	154	160	301	150	203
LDB3_HUMAN	LIM domain-binding protein 3	0	0	0	0	56	0	0	0	0
LDHA_HUMAN	L-lactate dehydrogenase A chain	349	137	420	550	122	391	372	204	462
M2OM_HUMAN	Mitochondrial 2-oxoglutarate/	0	0	.20	0	0	0	120		0
MA7D1 HIIMAN	malate carrier protein MAP7 domain-containing protein 1	0	0	0	0	0	0	139	0	0
MDHC HUMAN	Malate dehydrogenase, cytoplasmic	0	40	0	0	0	0	0	0	0
MLRS HUMAN	Myosin regulatory light chain 2	/5	80	43	/9	81	72	45	92	0
MLRV HUMAN	skeletal muscle isoform Myosin regulatory light chain 2,	0	425	384	293	346	424	272	316	376
—	ventricular/cardiac muscle isoform	199	646	533	295	535	461	284	555	420
MYG_HUMAN	Myoglobin	105	412	415	374	512	466	398	547	482
MYH1_HUMAN	Myosin-1	0	0	0	0	0	0	2272	2713	3763
MYH2_HUMAN	Myosin-2	1845	5740	5551	2631	2317	2418	2843	3071	4794
MYH3_HUMAN	Myosin-3	0	0	2210	0	0	0	0	0	0
MYH7_HUMAN	Myosin-7	2946	5544	5806	2892	4804	3090	1987	5868	3764
MYL1_HUMAN	Myosin light chain 1/3, skeletal muscle isoform	531	841	755	556	608	673	563	585	795
MYL3_HUMAN	Myosin light chain 3	188	653	456	253	492	475	173	626	462
MYL6_HUMAN	Myosin light polypeptide 6	111	200	174	0	178	196	0	213	0
MYL6B_HUMAN	Myosin light chain 6B	0	161	0	0	176	182	0	121	0
MYOM2_HUMAN	Myomesin-2	0	136	0	0	0	0	0	0	0
MYOTI_HUMAN	Myotilin	69	0	0	0	0	0	0	0	0
MYOZ1_HUMAN	Myozenin-1	0	120	0	0	80	79	0	0	0
MYPC1_HUMAN	Myosin-binding protein C, slow-type	0	398	444	129	244	285	0	486	192
PDLI3_HUMAN	PDZ and LIM domain protein 3	0	85	94	0	0	50	0	0	0
PGAM2_HUMAN	Phosphoglycerate mutase 2	0	108	0	0	0	80	0	0	94
PGM1_HUMAN	Phosphoglucomutase-1	0	0	0	0	0	0	0	69	0
PGM52_HUMAN	Putative PGM5-like protein 2	74	0	0	0	0	0	0	0	0
PHB_HUMAN	Prohibitin	0	0	0	0	0	0	78	0	0

PHB2_HUMAN	Prohibitin-2	0	0	0	0	0	0	48	0	0
PP6R3_HUMAN	Serine/threonine-protein phosphatase 6	0	0	0	0	42	0	0	0	0
PRAF3_HUMAN	PRA1 family protein 3	0	0	0	52	0	0	0	0	0
PRDX1_HUMAN	Peroxiredoxin-1	0	79	0	0	0	0	0	0	0
PRDX3_HUMAN	Thioredoxin-dependent peroxide reductase,	0	47	46	0	0	0	0	0	0
PYGM_HUMAN	Glycogen phosphorylase, muscle form	0	0	0	224	130	0	149	388	169
QRIC2_HUMAN	Glutamine-rich protein 2	0	0	0	0	0	0	0	41	0
RL40_HUMAN	Ubiquitin-60S ribosomal protein L40	181	0	62	51	0	43	0	0	0
RTN2_HUMAN	Reticulon-2	0	47	0	106	0	0	0	0	0
RTN4_HUMAN	Reticulon-4	0	0	0	81	0	0	0	0	0
S10A6_HUMAN	Protein S100-A6	0	0	95	88	104	60	49	0	42
SQSTM_HUMAN	Sequestosome-1	168	0	0	0	0	0	0	0	0
SRCA_HUMAN	Sarcalumenin	0	0	0	0	66	0	0	52	0
SYPL2_HUMAN	Synaptophysin-like protein 2	0	0	0	43	0	0	0	0	0
TBA1C_HUMAN	Tubulin alpha-1C chain	94	0	92	0	0	0	0	0	0
TBA4A_HUMAN	Tubulin alpha-4A chain	66	0	0	0	0	0	0	0	0
TBA4B_HUMAN	Putative tubulin-like protein alpha-4B	0	63	0	0	0	0	0	0	0
TENX_HUMAN	Tenascin-X	0	41	0	0	0	0	0	46	0
TERA_HUMAN	Transitional endoplasmic reticulum ATPase	41	0	0	0	0	0	0	0	0
TITIN_HUMAN	Titin	0	0	370	0	0	0	0	384	0
TNNC1_HUMAN	Troponin C, slow skeletal and cardiac muscles	0	164	121	109	270	230	0	278	0
TNNC2_HUMAN	Troponin C, skeletal muscle	0	366	110	0	0	175	132	0	147
TNNI1_HUMAN	Troponin I, slow skeletal muscle	137	269	179	122	276	160	0	262	0
TNNT1_HUMAN	Troponin T, slow skeletal muscle	46	43	45	45	45	71	0	60	41
TNNT3_HUMAN	Troponin T, fast skeletal muscle	0	121	65	0	0	0	0	0	76
TPIS_HUMAN	Triosephosphate isomerase	42	99	54	45	0	78	80	298	217
TPM1_HUMAN	Tropomyosin alpha-1 chain	0	769	643	454	600	586	347	476	482
TPM2_HUMAN	Tropomyosin beta chain	393	925	923	510	1053	862	549	867	689
TPM3_HUMAN	Tropomyosin alpha-3 chain	202	576	592	321	562	437	0	534	0
VDAC1_HUMAN	Voltage-dependent anion-selective channel	0	0	91	0	0	0	217	97	163
VDAC3_HUMAN	Voltage-dependent anion-selective channel protein 3	51	0	0	0	0	0	0	0	0
VIME_HUMAN	Vimentin	334	0	0	0	0	0	329	0	0
XIRP2_HUMAN	Xin actin-binding repeat-containing protein 2	238	0	0	0	0	0	0	0	0

AG=Aggregate; NK=morphologisch normale Patientenzellen; U=umliegende Zellregion

6.5 Testlauf MALDI-TOF/TOF

	PROTEIN	IDENTIFIKATION	# PEPTIDE
Accession	Protein	Scores	NK
ABEC2_HUMAN	Probable C->U-editing enzyme APOBEC-2	41.9	1
ACTBL_HUMAN	Beta-actin-like protein 2	307.2	1
ACTC_HUMAN	Actin, alpha cardiac muscle 1	784.8	1
ACTN2_HUMAN	Alpha-actinin-2	830.7	17
ACTN3_HUMAN	Alpha-actinin-3	230.0	2
ACTS_HUMAN	Actin, alpha skeletal muscle	851.8	15

ALBU_HUMAN	Serum albumin	208.0	5
ALDOA_HUMAN	Fructose-bisphosphate aldolase A	404.9	7
AT2A1_HUMAN	Sarcoplasmic/endoplasmic reticulum calcium ATPase 1	118.3	4
ATPA_HUMAN	ATP synthase subunit alpha, mitochondrial	122.2	2
ATPB_HUMAN	ATP synthase subunit beta, mitochondrial	209.7	3
ATPD_HUMAN	ATP synthase subunit delta, mitochondrial	31.0	1
CAH3_HUMAN	Carbonic anhydrase 3	327.7	6
CASQ1_HUMAN	Calsequestrin-1	52.9	1
DCD_HUMAN	Dermcidin	54.7	1
DESM_HUMAN	Desmin	96.7	2
ENOB_HUMAN	Beta-enolase	286.2	5
FHL1_HUMAN	Four and a half LIM domains protein 1	127.2	2
FLNC_HUMAN	Filamin-C	466.1	9
G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	623.2	5
GDE_HUMAN	Glycogen debranching enzyme	104.2	2
HBA_HUMAN	Hemoglobin subunit alpha	88.0	2
HBB_HUMAN	Hemoglobin subunit beta	361.4	6
HSP71_HUMAN	Heat shock 70 kDa protein 1A/1B	97.9	2
HSP7C_HUMAN	Heat shock cognate 71 kDa protein	58.3	1
K6PF_HUMAN	6-phosphofructokinase, muscle type	119.7	2
KAD1_HUMAN	Adenylate kinase isoenzyme 1	181.1	3
KBTBA_HUMAN	Kelch repeat and BTB domain-containing protein 10	89.8	1
KCRM_HUMAN	Creatine kinase M-type	615.8	11
KCRS_HUMAN	Creatine kinase S-type, mitochondrial	91.8	2
KPYM_HUMAN	Pyruvate kinase isozymes M1/M2	256.7	4
LDB3_HUMAN	LIM domain-binding protein 3	55.6	1
LDHA_HUMAN	L-lactate dehydrogenase A chain	131.1	1
LMCD1_HUMAN	LIM and cysteine-rich domains protein 1	39.3	1
LRMP_HUMAN	Lymphoid-restricted membrane protein	35.3	1
MDHC_HUMAN	Malate dehydrogenase, cytoplasmic	52.4	1
MED30_HUMAN	Mediator of RNA polymerase II transcription subunit 30	28.0	1
MLRS_HUMAN	Myosin regulatory light chain 2, skeletal muscle isoform	242.4	2
MLRV_HUMAN	Myosin regulatory light chain 2, ventricular/cardiac muscle isoform	280.4	5
MYG_HUMAN	Myoglobin	641.4	9
MYH1_HUMAN	Myosin-1	2073.5	5
MYH2_HUMAN	Myosin-2	2528.4	33
MYH7_HUMAN	Myosin-7	3278.0	51
MYL1_HUMAN	Myosin light chain 1/3, skeletal muscle isoform	531.5	8
MYL3_HUMAN	Myosin light chain 3	344.4	5
MYOM2_HUMAN	Myomesin-2	306.2	5
MYOM3_HUMAN	Myomesin-3	67.9	2
MYOTI_HUMAN	Myotilin	65.0	2
MYOZ1_HUMAN	Myozenin-1	74.1	3
MYPC1_HUMAN	Myosin-binding protein C, slow-type	319.5	5
NEBU_HUMAN	Nebulin	184.4	5
PDLI3_HUMAN	PDZ and LIM domain protein 3	76.0	1
PGAM2_HUMAN	Phosphoglycerate mutase 2	117.3	2
	- 150 -		

PGK1_HUMAN	Phosphoglycerate kinase 1	77.9	1	
PGM1_HUMAN	Phosphoglucomutase-1	136.4	3	
PRDX6_HUMAN	Peroxiredoxin-6	98.6	2	
PYGM_HUMAN	Glycogen phosphorylase, muscle form	277.7	5	
STAT_HUMAN	Statherin	49.9	1	
THIL_HUMAN	Acetyl-CoA acetyltransferase, mitochondrial	105.6	2	
TITIN_HUMAN	Titin	2133.9	45	
TNNC1_HUMAN	Troponin C, slow skeletal and cardiac muscles	119.2	2	
TNNC2_HUMAN	Troponin C, skeletal muscle	39.7	1	
TNNI1_HUMAN	Troponin I, slow skeletal muscle	97.4	2	
TNNT1_HUMAN	Troponin T, slow skeletal muscle	105.8	2	
TNNT3_HUMAN	Troponin T, fast skeletal muscle	75.5	2	
TPIS_HUMAN	Triosephosphate isomerase	178.9	3	
TPM1_HUMAN	Tropomyosin alpha-1 chain	318.9	1	
TPM2_HUMAN	Tropomyosin beta chain	450.1	7	
TPM3_HUMAN	Tropomyosin alpha-3 chain	188.0	2	
-			-	

NK=Normalkontrolle

6.6 Quantitative Analyse Patient 1-Ganze Muskelfasern

	PROTEIN		NTIFIK	ATION	RF	GULATIO	N	ŧ	PEPTIDE		AB	WEICHUN	IG
Accession	Name	Score	#Pep	SC [%]	AG/NK1	AG/NK2	AG/NP	AG/NK1	AG/NK2	AG/NP	AG/NK1	AG/NK2	AG/NP
1433E_HUMAN	14-3-3 protein epsilon	106	3	9	1,14	1,07	1,11	3	3	3	13,07	24,99	13,22
AATC_HUMAN	Aspartate aminotransferase, cytoplasmic	56	2	5	1,25	0,97	0,99	2	2	2	30,72	24,11	9,82
AATM_HUMAN	Aspartate aminotransferase, mitochondrial	93	1	3	0,93	1,14	1,17	1	1	1			
ABEC2_HUMAN	Probable C->U-editing enzyme APOBEC-2	76	2	12	1,17	1,26	1,27	2	2	2	24,38	13,53	18,85
ACADV_HUMAN	Very long-chain specific acyl-CoA dehydrogenase, mitochondrial	50	1	2	1,53	1,42	1,33	1	1	1			
ACON_HUMAN	Aconitate hydratase, mitochondrial	104	2	4	0,98	0,93	0,94	2	2	2	4,16	3,59	1,76
ACTC_HUMAN	Actin, alpha cardiac muscle 1	2668	38	60	0,95	0,74	0,87	34	31	33	41,29	50,62	39,60
ACTN1_HUMAN	Alpha-actinin-1	384	7	7	1,03	1,30	1,06	7	7	7	28,66	36,24	29,07
ACTN2_HUMAN	Alpha-actinin-2	2043	34	38	1,06	1,20	0,97	33	32	33	23,07	31,71	25,30
ACTN3_HUMAN	Alpha-actinin-3	695	12	15	1,01	0,94	1,11	12	12	12	16,68	37,84	22,25
ACTS_HUMAN	Actin, alpha skeletal muscle	3145	53	60	0,87	0,79	0,84	39	38	39	37,02	49,13	35,53
ADT1_HUMAN	ADP/ATP translocase 1	58	2	6	1,00	0,93	0,99	2	2	2	14,04	8,14	12,33
ALBU_HUMAN	Serum albumin precursor	1014	19	35	1,71	1,31	1,15	18	18	18	31,90	45,28	27,55
ALDOA_HUMAN	Fructose-bisphosphate aldolase A	898	16	42	0,87	0,74	1,01	13	12	13	41,78	37,76	29,89
ALDOC_HUMAN	Fructose-bisphosphate aldolase C	79	2	9	0,87	0,76	0,92	2	2	2	25,75	86,02	12,97
AMPD1_HUMAN	AMP deaminase 1	58	1	1	0,95	0,74	0,98	1	1	1			
ANXA2_HUMAN	Annexin A2	71	1	4	1,89	2,14	1,81	1	1	1			
ANXA6_HUMAN	Annexin A6	147	3	6	1,27	1,34	1,22	3	3	3	31,86	31,91	23,14
AT2A1_HUMAN	Sarcoplasmic/endoplasmic reticulum calcium ATPase 1	274	4	5	1,18	1,31	1,33	4	4	4	14,81	20,09	13,08
AT2A2_HUMAN	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2	171	3	2	1,15	1,13	1,07	3	3	3	14,40	6,36	9,10
ATPA_HUMAN	ATP synthase subunit alpha, mitochondrial precursor	124	3	6	1,03	1,05	0,89	3	3	3	29,41	25,91	44,33
ATPB_HUMAN	ATP synthase subunit beta, mitochondrial	372	7	19	1,20	1,27	1,14	7	7	7	19,72	14,83	15,83
BIN1_HUMAN	Myc box-dependent-interacting protein 1	34	1	2	1,96	2,54	2,22	1	1	1			
CAH3_HUMAN	Carbonic anhydrase 3	1174	16	63	1,49	1,28	1,15	16	15	16	32,42	32,22	31,34
CASQ1_HUMAN	Calsequestrin-1	26	1	2	0,67	0,62	0,84	1	1	1			
1													

CASQ2_HUMAN	Calsequestrin-2	143	2	7	1,93	2,31	1,74	2	2	2	20,61	16,78	16,02
CMC1_HUMAN	Calcium-binding mitochondrial carrier protein Aralar1	47	1	3	0,91	1,28	1,29	1	1	1			
CO6A3_HUMAN	Collagen alpha-3(VI) chain	61	2	1	1,32	1,23	1,13	2	2	2	0,08	6,32	5,00
COX2_HUMAN	Cytochrome c oxidase subunit 2	64	2	7	1,09	1,31	1,19	2	2	2	14,82	48,99	12,76
CRYAB_HUMAN	Alpha-crystallin B chain	169	4	15	3,15	3,66	2,39	4	4	4	35,67	27,93	28,20
CSRP3_HUMAN	Cysteine and glycine-rich protein 3	137	1	9	1,89	2,91	1,09	1	1	1			
CX6B1_HUMAN	Cytochrome c oxidase subunit VIb isoform 1	83	2	31	0,90	0,92	1,13	2	2	2	2,93	18,88	7,38
DESM_HUMAN	Desmin	787	13	29	1,45	1,42	1,09	12	12	12	26,25	37,34	27,59
ECHA_HUMAN	Trifunctional enzyme subunit alpha, mitochondrial	39	1	3	1,49	2,06	1,49	1	1	1			
EF1A2_HUMAN	Elongation factor 1-alpha 2	31	1	3	1,22	1,40	1,15	1	1	1			
ENOA_HUMAN	Alpha-enolase	327	5	15	0,99	0,94	1,03	5	5	5	24,79	39,40	15,00
ENOB_HUMAN	Beta-enolase	660	14	28	1,06	0,97	1,07	13	13	13	22,47	39,52	18,11
F133A_HUMAN	Protein FAM133A	24	1	2	0,59	0,54	0,77	1	1	1			
FHL1_HUMAN	Four and a half LIM domains protein 1	557	9	28	0,98	0,83	1,29	9	9	8	37,15	30,87	23,56
FLNC_HUMAN	Filamin-C	1760	30	15	1,64	1,68	1,33	30	28	29	30,55	31,57	28,22
G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	1080	17	42	1,13	0,85	1,04	16	16	16	17,92	36,33	24,03
G6PI_HUMAN	Glucose-6-phosphate isomerase	144	2	6	1,06	1,32	1,09	2	2	2	9,79	7,59	11,24
GDE_HUMAN	Glycogen debranching enzyme	84	2	2	1,24	1,43	1,31	2	2	2	11,58	18,46	9,62
GPDA_HUMAN	Glycerol-3-phosphate dehydrogenase [NAD+], cytoplasmic	54	1	4	1,08	1,26	1,15	1	1	1	-		
GRP75_HUMAN	Stress-70 protein, mitochondrial	29	1	2	1,14	1,04	1,15	1	1	1			
HBA_HUMAN	Hemoglobin subunit alpha	329	5	35	0,71	0,66	0,86	5	4	5	56,48	32,20	51,87
HBB_HUMAN	Hemoglobin subunit beta	682	9	60	0,80	0,99	0,90	9	9	9	32,47	39,21	28,15
HSP71_HUMAN	Heat shock 70 kDa protein 1	169	3	6	1,30	1,18	1,09	3	3	3	24,22	24,41	24,51
HSP76_HUMAN	Heat shock 70 kDa protein 6	191	3	6	1,52	1,45	1,26	3	3	3	1,90	17,02	3,17
HSP7C_HUMAN	Heat shock cognate 71 kDa protein	442	7	14	1,48	1,52	1,23	7	7	7	27,98	35,02	27,18
HSPB1_HUMAN	Heat shock protein beta-1	191	2	13	1,60	1,75	1,00	2	2	2	2,77	6,38	12,95
HSPB6_HUMAN	Heat shock protein beta-6	56	2	11	1,39	0,85	0,77	2	2	2	22,29	11,38	40,48
HSPB7_HUMAN	Heat shock protein beta-7	52	1	8	1,06	1,21	0,87	1	1	1	,		
IDHP_HUMAN	Isocitrate dehydrogenase [NADP], mitochondrial	196	4	10	1,06	1,15	1,22	4	4	4	22,84	34,80	15,15
K6PF_HUMAN	6-phosphofructokinase, muscle type	26	1	1	1,06	0,91	1,17	1	1	1	,	,	, -
		-				/	, ·				I		

<u>Anhang</u>

KAD1_HUMAN	Adenylate kinase isoenzyme 1	228	4	16	1,39	0,87	1,29	4	4	4	18,39	52,27	22,09
KBTB5_HUMAN	Kelch repeat and BTB domain-containing protein 5	66	2	4	1,55	1,51	1,26	2	2	2	14,72	16,98	24,54
KBTBA_HUMAN	Kelch repeat and BTB domain-containing protein 10	196	5	8	1,32	1,27	1,04	5	5	5	17,05	27,72	19,12
KCRM_HUMAN	Creatine kinase M-type	1412	21	48	0,85	0,69	0,96	21	21	21	44,56	56,16	38,09
KCRS_HUMAN	Creatine kinase, sarcomeric mitochondrial	94	2	5	0,92	0,67	0,95	2	2	2	4,31	41,24	11,95
KPYM_HUMAN	Pyruvate kinase isozymes M1/M2	456	7	18	1,06	0,99	1,07	7	7	7	27,38	22,82	25,16
LDB3_HUMAN	LIM domain-binding protein 3	434	7	10	1,16	0,94	1,08	7	7	7	29,92	66,57	18,71
LDHA_HUMAN	L-lactate dehydrogenase A chain	285	5	14	1,07	0,90	0,99	5	5	5	10,16	23,55	15,30
LEG1_HUMAN	Galectin-1	25	1	7	1,29	0,91	1,18	1	1	1	, , , , , , , , , , , , , , , , , , ,		
MDHC_HUMAN	Malate dehydrogenase, cytoplasmic	221	3	10	0,93	0,83	0,89	3	3	3	4,40	13,56	4,86
MDHM_HUMAN	Malate dehydrogenase, mitochondrial	92	2	7	0,97	1,08	1,05	2	2	2	11,33	22,40	23,36
MLRS_HUMAN	Myosin regulatory light chain 2, skeletal muscle isoform	887	12	76	0,70	0,70	0,87	12	11	12	32,88	42,24	37,44
MLRV_HUMAN	Myosin regulatory light chain 2, ventricular/cardiac muscle isoform	821	14	65	1,19	1,24	0,90	13	13	13	27,51	41,89	24,05
MOES_HUMAN	Moesin	41	1	2	1,29	1,29	1,14	1	1	1			
MPCP_HUMAN	Phosphate carrier protein, mitochondrial	36	1	3	1,20	0,99	1,12	1	1	1			
MYG_HUMAN	Myoglobin	585	9	47	0,86	0,59	0,93	9	9	9	38,15	27,39	28,96
MYH1_HUMAN	Myosin-1	6062	88	45	0,83	0,66	0,93	85	84	86	27,78	58,43	26,33
MYH2_HUMAN	Myosin-2	7042	103	51	0,83	0,83	0,92	96	98	97	23,78	49,46	23,14
MYH7_HUMAN	Myosin-7	7998	116	53	1,08	1,03	0,92	109	108	109	25,03	47,74	26,27
MYL1_HUMAN	Myosin light chain 1/3, skeletal muscle isoform	893	13	52	0,97	0,77	1,00	13	12	13	22,34	28,41	26,82
MYL3_HUMAN	Myosin light chain 3	934	16	55	0,86	0,87	0,73	15	14	15	21,99	24,48	26,91
MYL6B_HUMAN	Myosin light chain 6B	73	2	10	2,02	2,26	1,32	2	2	2	17,01	6,18	6,15
MYOM1_HUMAN	Myomesin-1	316	7	6	1,23	1,38	1,14	7	7	7	17,48	22,14	26,61
MYOM2_HUMAN	Myomesin-2	593	13	13	1,06	1,13	1,09	13	13	13	18,18	29,45	18,46
MYOM3_HUMAN	Myomesin-3	52	2	2	1,28	1,46	1,16	2	2	2	0,83	6,41	9,81
MYOTI_HUMAN	Myotilin	212	5	13	1,17	1,13	1,03	5	5	5	11,54	27,05	11,89
MYOZ1_HUMAN	Myozenin-1	283	4	11	1,04	1,08	0,99	4	4	4	24,07	24,65	22,76
MYOZ2_HUMAN	Myozenin-2	75	2	9	1,51	1,52	1,29	2	2	2	13,06	7,32	13,41
MYPC1_HUMAN	Myosin-binding protein C, slow-type	972	17	16	1,02	1,13	1,00	16	16	16	19,51	31,09	20,86
1		1									1 1	· · ·	· · ·

<u>Anhang</u>

MYPC2_HUMAN	Myosin-binding protein C, fast-type	200	3	3	0,87	0,87	0,91	3	3	3	24,11	14,93	28,44
NDK8_HUMAN	Putative nucleoside diphosphate kinase	30	1	7	1,75	1,67	1,67	1	1	1			
NEBU_HUMAN	Nebulin	1083	23	4	1,10	1,12	1,05	22	22	22	14,56	25,48	16,92
ODO1_HUMAN	2-oxoglutarate dehydrogenase E1 component, mitochondrial	27	1	1	1,02	0,76	1,02	1	1	1			
ODPAT_HUMAN	Pyruvate dehydrogenase E1 component subunit alpha, testis-specific form, mitochondrial	28	1	3	1,63	1,70	1,77	1	1	1			
ODPB_HUMAN	Pyruvate dehydrogenase E1 component subunit beta, mitochondrial	26	1	4	1,44	1,47	1,28	1	1	1			
PADI2_HUMAN	Protein-arginine deiminase type-2	62	3	6	1,29	1,45	1,22	2	2	2	17,60	32,52	19,21
PDLI3_HUMAN	PDZ and LIM domain protein 3	215	4	18	1,30	1,62	0,95	4	4	4	34,39	46,56	37,82
PDL15_HUMAN	PDZ and LIM domain protein 5	31	1	2	1,14	1,27	1,50	1	1	1			
PDLI7_HUMAN	PDZ and LIM domain protein 7	33	1	3	0,90	0,81	1,01	1	1	1			
PEBP1_HUMAN	Phosphatidylethanolamine-binding protein 1	70	1	7	0,64	0,97	1,13	1	1	1			
PGAM2_HUMAN	Phosphoglycerate mutase 2	222	4	21	1,15	0,87	1,18	4	4	4	23,58	58,96	26,52
PGK1_HUMAN	Phosphoglycerate kinase 1	245	3	12	1,11	1,11	1,40	3	3	3	16,87	31,61	25,33
PGM1_HUMAN	Phosphoglucomutase-1	99	3	6	0,99	0,80	1,09	3	3	3	5,15	20,75	10,96
PRDX2_HUMAN	Peroxiredoxin-2	114	2	14	0,89	0,85	0,90	2	2	2	17,95	30,41	7,88
PRDX3_HUMAN	Thioredoxin-dependent peroxide reductase, mitochondrial	81	1	5	1,24	1,29	1,31	1	1	1			
PRDX6_HUMAN	Peroxiredoxin-6	82	2	13	1,14	1,19	1,19	2	2	2	7,16	25,01	4,45
PYGM_HUMAN	Glycogen phosphorylase, muscle form	956	18	23	0,78	0,85	1,02	18	18	18	22,22	32,99	19,94
QCR1_HUMAN	Cytochrome b-c1 complex subunit 1, mitochondrial	25	1	2	1,19	1,36	1,10	1	1	1			
QCR2_HUMAN	Cytochrome b-c1 complex subunit 2, mitochondrial	68	2	9	1,17	1,60	1,18	2	2	2	33,80	21,97	24,34
RTN2_HUMAN	Reticulon-2	49	1	1	1,26	1,24	0,98	1	1	1			
S10A1_HUMAN	Protein S100-A1	84	1	16	1,78	1,57	1,54	1	1	1			
SMYD1_HUMAN	SET and MYND domain-containing protein 1	47	1	2	1,43	1,23	1,34	1	1	1			
SODM_HUMAN	Superoxide dismutase [Mn], mitochondrial	65	2	10	1,09	0,97	0,95	2	2	2	7,38	9,02	0,50
SYP2L_HUMAN	Synaptopodin 2-like protein	27	1	1	1,15	1,10	1,05	1	1	1			
SYPL2_HUMAN	Synaptophysin-like protein 2	57	1	5	1,98	1,19	1,40	1	1	1			
TBA4A_HUMAN	Tubulin alpha-4A chain	147	3	10	1,81	2,07	1,52	3	3	3	13,10	16,66	5,44
TBB4_HUMAN	Tubulin beta-4 chain	71	2	4	1,16	1,11	1,09	2	2	2	9,96	8,04	13,55
TELT_HUMAN	Telethonin	76	2	11	1,16	1,20	1,07	2	2	2	1,03	7,27	3,54
1		1						1					

<u>Anhang</u>

TITIN_HUMAN	Titin	8016	171	7	1,13	1,22	1,08	165	166	165	22,99	32,05	23,46
TNNC1_HUMAN	Troponin C, slow skeletal and cardiac muscles	691	8	43	1,48	1,91	1,25	8	8	8	34,86	41,42	30,46
TNNC2_HUMAN	Troponin C, skeletal muscle	468	6	33	0,79	0,76	1,01	6	6	6	28,03	11,15	22,05
TNNI1_HUMAN	Troponin I, slow skeletal muscle	402	6	31	1,25	0,93	1,13	6	6	6	8,63	30,11	16,13
TNNI2_HUMAN	Troponin I, fast skeletal muscle	210	4	21	0,69	0,55	1,07	4	4	4	38,49	39,82	31,82
TNNT1_HUMAN	Troponin T, slow skeletal muscle	315	4	14	1,32	1,42	1,16	4	4	4	37,29	49,39	41,61
TNNT3_HUMAN	Troponin T, fast skeletal muscle	249	4	14	1,01	1,01	1,32	4	4	4	17,53	34,42	23,49
TPIS_HUMAN	Triosephosphate isomerase	597	8	42	0,79	0,69	1,01	7	8	7	34,48	72,55	28,93
TPM1_HUMAN	Tropomyosin alpha-1 chain	556	12	33	1,00	0,77	0,97	11	11	11	21,61	31,95	19,07
TPM2_HUMAN	Tropomyosin beta chain	777	15	42	1,03	0,76	0,93	15	14	15	19,15	18,24	17,47
TPM3_HUMAN	Tropomyosin alpha-3 chain	697	15	44	1,12	0,87	0,96	14	14	14	25,20	31,27	19,67
TRI72_HUMAN	Tripartite motif-containing protein 72	120	2	5	1,33	1,28	1,00	2	2	2	9,12	17,97	9,56
TRY2_HUMAN	Trypsin-2	38	1	8	1,05	1,54	1,05	1	1	1			
UGPA_HUMAN	UTPglucose-1-phosphate uridylyltransferase	32	1	3	1,43	1,00	1,42	1	1	1			
WDR24_HUMAN	WD repeat-containing protein 24	25	1	1	1,30	0,84	1,33	1	1	1			
		1			-	· · ·	· ·						

AG=Aggregate; NK=Normalkontrolle; NP=morphologisch normale Patientenzellen; Pep = Peptide; SC=sequence coverage

6.7 Quantitative Analyse Patient 1-Aggregate

	PROTEIN			IDEN	NIFI	KATI	ON				REG	GULAT	ION	# P	EPTI	DE	ABV	VEICHU	NG
			Score		#	Pepio	le	S	SC [%	6]	1	AG/NK		A	G/N	K		AG/NK	
Accession	Name	А	В	С	А	В	С	А	B	С	А	В	С	А	В	С	А	В	С
1433E_HUMAN	14-3-3 protein epsilon	0	84	0	0	2	0	0	8	0		1,90		0	1	0			
1433G_HUMAN	14-3-3 protein gamma	172	142	0	3	3	0	13	13	0	1,34	1,22		3	3	0	11,23	5,95	
AATM_HUMAN	Aspartate aminotransferase, mitochondrial	52	0	0	1	0	0	3	0	0	0,66			1	0	0			
ACON_HUMAN	Aconitate hydratase, mitochondrial	0	170	0	0	4	0	0	7	0		1,05		0	3	0		11,21	
ACTA_HUMAN	Actin, aortic smooth muscle	2193	2295	0	43	43	0	50	54	0	3,39	2,49		3	3	0	39,64	20,42	
ACTB_HUMAN	Actin, cytoplasmic 1	1184	0	0	24	0	0	38	0	0	1,84			4	0	0	29,00		
ACTC_HUMAN	Actin, alpha cardiac muscle 1	0	0	665	0	0	14	0	0	29			2,09	0	0	1			
ACTG_HUMAN	Actin, cytoplasmic 2	0	1300	0	0	23	0	0	41	0		1,53	,	0	5	0		18,72	

ACTN1_HUMAN	Alpha-actinin-1	96	333	0	3	7	0	3	5	0	0,54	0,67		1	1	0				
ACTN2_HUMAN	Alpha-actinin-2	941	2030	190	19	36	5	20	33	6	0,75	0,64	1,18	16	32	5	51,60	25,12	21,47	
ACTS_HUMAN	Actin, alpha skeletal muscle	2565	2764	849	54	61	24	50	54	29	0,84	0,96	1,15	32	32	13	35,28	37,68	35,64	
ALBU_HUMAN	Serum albumin	824	1152	230	13	20	7	23	29	12	1,95	1,68	1,79	12	19	7	34,75	27,58	37,38	
ALDOA_HUMAN	Fructose-bisphosphate aldolase A	259	560	173	4	11	4	15	21	16	0,64	0,93	0,93	4	8	4	7,11	28,80	39,43	
ALDOC_HUMAN	Fructose-bisphosphate aldolase C	171	180	48	1	1	1	6	6	6	1,16	1,15	1,80	1	1	1				
ANKR2_HUMAN	Ankyrin repeat domain-containing protein 2	0	97	0	0	2	0	0	4	0		1,25		0	2	0		1,59		
ANXA2_HUMAN	Annexin A2	45	0	0	1	0	0	6	0	0	2,50			1	0	0				
ANXA6_HUMAN	Annexin A6	113	113	0	2	2	0	4	4	0	1,16	1,15		2	2	0	12,18	5,36		
AT2A1_HUMAN	Sarcoplasmic/endoplasmic reticulum calcium ATPase 1	111	586	75	2	10	2	2	11	3	1,07	0,91	1,05	2	10	2	15,91	18,48	6,62	
AT2A2_HUMAN	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2	208	524	0	5	9	0	5	10	0	0,84	0,95		5	5	0	36,78	26,45		
AT5F1_HUMAN	ATP synthase subunit b, mitochondrial	0	85	0	0	1	0	0	5	0		1,06		0	1	0				
ATPA_HUMAN	ATP synthase subunit alpha, mitochondrial	164	213	0	4	4	0	9	9	0	0,88	0,92		4	4	0	16,63	14,27		
ATPB_HUMAN	ATP synthase subunit beta, mitochondrial	302	468	0	5	8	0	13	19	0	1,08	1,00		5	8	0	10,71	23,60		
BAG3_HUMAN	BAG family molecular chaperone regulator 3	162	144	0	3	3	0	9	8	0	1,55	1,77		3	3	0	22,99	13,63		
BIN1_HUMAN	Myc box-dependent-interacting protein 1	0	232	0	0	3	0	0	10	0		1,33		0	3	0		26,71		
CAH3_HUMAN	Carbonic anhydrase 3	824	959	168	12	16	5	36	46	21	0,99	0,98	2,00	10	14	5	26,12	21,16	50,08	
CALM_HUMAN	Calmodulin	52	103	0	1	2	0	5	14	0	1,65	1,34		1	2	0		26,29		
CASQ1_HUMAN	Calsequestrin-1	123	221	34	2	4	1	5	12	3	0,58	0,89	1,29	2	4	1	3,45	20,17		
CASQ2_HUMAN	Calsequestrin-2	48	101	0	1	2	0	4	6	0	0,38	0,68		1	2	0		30,85		
CO1A2_HUMAN	Collagen alpha-2(I) chain	95	0	0	1	0	0	2	0	0	1,44			1	0	0				
COF1_HUMAN	Cofilin-1	0	108	0	0	2	0	0	10	0		1,39		0	1	0				
COF2_HUMAN	Cofilin-2	0	279	0	0	4	0	0	30	0		1,04		0	4	0		30,35		
COX2_HUMAN	Cytochrome c oxidase subunit 2	48	0	0	1	0	0	4	0	0	0,90			1	0	0				
COX41_HUMAN	Cytochrome c oxidase subunit 4 isoform 1, mitochondrial	0	95	0	0	2	0	0	14	0		1,18		0	2	0		6,81		
COX6C_HUMAN	Cytochrome c oxidase subunit 6C	0	45	0	0	1	0	0	11	0		0,93		0	1	0				
CRYAB_HUMAN	Alpha-crystallin B chain	362	475	0	8	9	0	28	28	0	1,87	1,97		5	7	0	31,14	36,14		
CSRP3_HUMAN	Cysteine and glycine-rich protein 3	261	351	109	3	5	1	18	27	9	1,20	1,26	1,71	3	5	1	5,24	12,63		
DESM_HUMAN	Desmin	1338	1903	314	23	31	9	45	48	23	1,83	1,56	2,01	21	28	9	29,80	28,48	26,44	
DSC1_HUMAN	Desmocollin-1	105	0	0	2	0	0	3	0	0	1,43			2	0	0	30,70			
		1									I			1					1	

EF1A2_HUMAN	Elongation factor 1-alpha 2	90	173	0	2	4	0	4	8	0	1,37	1,22		2	4	0	18,77	14,42	
ENOA_HUMAN	Alpha-enolase	0	397	0	0	6	0	0	15	0		0,95		0	2	0		17,55	
ENOB_HUMAN	Beta-enolase	334	664	0	7	10	0	14	22	0	0,83	0,81		6	10	0	18,70	11,97	
FABP5_HUMAN	Fatty acid-binding protein, epidermal	60	0	0	1	0	0	8	0	0	2,53			1	0	0			
FHL1_HUMAN	Four and a half LIM domains protein 1	1400	1351	548	23	22	11	40	43	37	10,03	11,68	7,69	17	18	8	83,57	112,97	79,40
FILA2_HUMAN	Filaggrin-2	63	0	0	1	0	0	1	0	0				0	0	0			
FLNA_HUMAN	Filamin-A	252	250	0	6	7	0	2	2	0	2,54	2,91		1	1	0			
FLNC_HUMAN	Filamin-C	3255	5083	702	50	68	20	22	31	9	1,53	1,74	1,82	46	66	19	29,15	26,87	12,04
G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	594	751	171	8	14	2	25	34	10	1,00	1,00	1,00	7	9	2	32,85	11,41	0,47
G6PI_HUMAN	Glucose-6-phosphate isomerase	0	47	0	0	1	0	0	1	0		0,99		0	1	0			
GELS_HUMAN	Gelsolin	0	423	0	0	5	0	0	9	0		1,22		0	5	0		15,93	
GLYG_HUMAN	Glycogenin-1	0	94	0	0	2	0	0	9	0		1,28		0	2	0		1,42	
GRP78_HUMAN	78 kDa glucose-regulated protein	244	0	0	4	0	0	7	0	0	0,93			1	0	0			
HBA_HUMAN	Hemoglobin subunit alpha	162	347	152	2	7	3	11	33	25	0,82	0,78	0,71	2	6	3	90,67	15,66	18,99
HBB_HUMAN	Hemoglobin subunit beta	244	263	222	4	4	5	25	31	38	0,79	0,78	0,97	4	3	5	33,41	7,04	18,26
HINT1_HUMAN	Histidine triad nucleotide-binding protein 1	0	44	0	0	1	0	0	11	0		1,30		0	1	0			
HS90B_HUMAN	Heat shock protein HSP 90-beta	134	272	0	3	6	0	5	9	0	1,08	1,22		2	5	0	18,95	11,09	
HSP71_HUMAN	Heat shock 70 kDa protein 1A/1B	471	690	0	8	11	0	14	21	0	1,54	1,39		5	6	0	17,83	13,85	
HSP72_HUMAN	Heat shock-related 70 kDa protein 2	453	518	0	7	8	0	11	13	0	0,83	0,78		1	2	0		14,34	
HSP7C_HUMAN	Heat shock cognate 71 kDa protein	850	1194	140	13	17	4	25	32	9	1,54	1,44	1,69	10	16	4	21,12	25,17	26,02
HSPB1_HUMAN	Heat shock protein beta-1	357	416	136	4	5	2	27	32	16	1,35	1,48	1,12	4	5	2	15,98	9,31	13,18
HSPB2_HUMAN	Heat shock protein beta-2	160	101	0	2	2	0	19	17	0	1,29	1,42		2	2	0	21,45	18,07	
HSPB6_HUMAN	Heat shock protein beta-6	146	192	0	3	4	0	18	26	0	1,10	1,44		3	3	0	44,04	65,20	
HSPB7_HUMAN	Heat shock protein beta-7	268	260	0	4	3	0	34	27	0	1,27	1,12		4	3	0	3,89	12,74	
HSPB8_HUMAN	Heat shock protein beta-8	0	49	0	0	1	0	0	6	0		1,65		0	1	0			
IDHC_HUMAN	Isocitrate dehydrogenase [NADP] cytoplasmic	46	0	0	1	0	0	4	0	0	0,36			1	0	0			
IDHP_HUMAN	Isocitrate dehydrogenase [NADP], mitochondrial	0	90	0	0	2	0	0	6	0		1,04		0	2	0		1,56	
IGHG1_HUMAN	Ig gamma-1 chain C region	52	425	0	1	6	0	4	24	0	1,59	1,42		1	6	0		31,66	
IGKC_HUMAN	Ig kappa chain C region	71	91	0	1	1	0	16	16	0	1,45	1,84		1	1	0			
K6PF_HUMAN	6-phosphofructokinase, muscle type	0	69	0	0	1	0	0	1	0		0,83		0	1	0			

KAD1_HUMAN	Adenylate kinase isoenzyme 1	132	192	42	3	3	1	14	17	6	0,81	1,16	1,15	3	2	1	13,12	4,32	1
KBTB5_HUMAN	Kelch repeat and BTB domain-containing protein 5	0	266	0	0	6	0	0	11	0		1,25		0	6	0		22,46	
KBTBA_HUMAN	Kelch repeat and BTB domain-containing protein 10	365	1002	194	8	18	6	12	29	10	1,51	1,45	2,21	8	18	6	21,57	22,16	31,37
KCRB_HUMAN	Creatine kinase B-type	97	97	0	2	2	0	5	6	0	1,30	0,93		1	2	0		17,08	
KCRM_HUMAN	Creatine kinase M-type	1146	1183	424	16	22	10	35	45	26	0,76	0,72	1,07	15	19	10	19,36	23,74	24,55
KCRS_HUMAN	Creatine kinase S-type, mitochondrial	57	141	0	1	4	0	4	10	0	1,01	0,95		1	3	0		5,25	
KPYM_HUMAN	Pyruvate kinase isozymes M1/M2	131	376	37	3	7	1	6	16	2	1,20	0,82	1,27	3	7	1	14,69	38,71	
LDB3_HUMAN	LIM domain-binding protein 3	346	543	34	6	8	1	10	15	2	0,95	0,91	1,35	6	7	1	17,78	15,09	
LDHA_HUMAN	L-lactate dehydrogenase A chain	0	186	32	0	3	1	0	9	3		0,89	0,98	0	3	1		2,70	
LDHB_HUMAN	L-lactate dehydrogenase B chain	120	0	0	2	0	0	5	0	0	0,99			2	0	0	25,08		
LEG1_HUMAN	Galectin-1	84	154	0	2	2	0	15	20	0	1,08	1,12		2	2	0	32,31	12,88	
MDHC_HUMAN	Malate dehydrogenase, cytoplasmic	187	218	0	3	4	0	9	12	0	0,92	0,85		3	4	0	14,98	14,92	
MDHM_HUMAN	Malate dehydrogenase, mitochondrial	0	80	0	0	2	0	0	8	0		1,03		0	2	0		1,73	
MLRS_HUMAN	Myosin regulatory light chain 2, skeletal muscle isoform	236	525	87	4	8	2	24	48	15	0,53	0,44	0,73	4	7	2	44,06	33,32	23,45
MLRV_HUMAN	Myosin regulatory light chain 2, ventricular/cardiac muscle isoform	486	763	233	9	13	7	48	66	42	0,61	0,69	0,91	8	12	7	63,72	50,98	37,80
MSTN1_HUMAN	Musculoskeletal embryonic nuclear protein 1	61	82	0	1	1	0	18	18	0	1,24	1,06		1	1	0			
MYBPH_HUMAN	Myosin-binding protein H	56	192	0	1	4	0	2	10	0	1,58	1,75		1	4	0		49,81	
MYG_HUMAN	Myoglobin	374	404	362	4	5	5	24	29	33	0,46	0,65	0,93	4	3	5	27,30	28,82	51,45
MYH14_HUMAN	Myosin-14	0	49	0	0	1	0	0	1	0		2,29		0	1	0			
MYH2_HUMAN	Myosin-2	3033	4879	1564	43	89	33	23	36	21	0,45	0,53	0,68	26	51	22	45,91	44,64	42,13
MYH3_HUMAN	Myosin-3	0	2092	0	0	39	0	0	14	0		1,19		0	4	0		11,06	
MYH7_HUMAN	Myosin-7	4617	5806	1886	58	102	42	28	36	25	0,51	0,61	0,83	55	83	40	42,50	39,54	35,14
MYL1_HUMAN	Myosin light chain 1/3, skeletal muscle isoform	516	483	312	8	10	7	33	30	33	0,42	0,54	0,77	7	8	7	38,19	22,96	47,84
MYL3_HUMAN	Myosin light chain 3	524	656	215	8	11	4	37	42	26	0,32	0,48	0,75	7	10	4	34,03	34,99	23,49
MYL6B_HUMAN	Myosin light chain 6B	306	511	146	6	9	3	27	40	15	0,93	1,04	1,54	5	7	3	10,20	11,28	4,91
MYOM1_HUMAN	Myomesin-1	115	564	0	2	11	0	2	8	0	1,13	0,87		2	10	0	9,39	16,52	
MYOM2_HUMAN	Myomesin-2	170	639	0	3	13	0	3	10	0	1,24	0,79		3	13	0	33,54	23,42	
MYOM3_HUMAN	Myomesin-3	361	826	0	7	16	0	8	16	0	1,45	1,35		7	15	0	40,06	21,87	
MYOTI_HUMAN	Myotilin	348	583	0	7	10	0	17	26	0	1,44	1,41		7	10	0	48,83	43,30	
MYOZ1_HUMAN	Myozenin-1	0	137	39	0	3	1	0	8	7		0,82	0,52	0	3	1		9,65	

MYOZ2_HUMAN	Myozenin-2	48	51	0	1	1	0	4	4	0	0,93	1,08		1	1	0			
MYPC1_HUMAN	Myosin-binding protein C, slow-type	490	1188	85	9	21	3	9	22	3	0,67	0,74	1,02	8	19	3	24,64	17,35	16,68
MYPC2_HUMAN	Myosin-binding protein C, fast-type	44	77	0	1	2	0	1	2	0	1,11	1,11		1	1	0			
NEBU_HUMAN	Nebulin	260	1209	0	7	30	0	1	5	0	0,69	0,93		7	29	0	26,44	17,55	
NEST_HUMAN	Nestin	331	523	0	6	10	0	6	10	0	1,96	1,35		6	10	0	27,99	24,04	
NRAP_HUMAN	Nebulin-related-anchoring protein	746	1081	33	14	21	1	10	14	1	1,96	1,87	2,02	14	21	1	52,15	38,69	
PACN3_HUMAN	Protein kinase C and casein kinase substrate in neurons protein 3	0	73	0	0	2	0	0	7	0		1,20		0	2	0		0,92	
PDIA1_HUMAN	Protein disulfide-isomerase	0	68	0	0	1	0	0	3	0		1,14		0	1	0			
PDLI3_HUMAN	PDZ and LIM domain protein 3	83	124	47	1	2	1	4	9	4	0,93	1,13	1,15	1	2	1		14,43	
PGAM2_HUMAN	Phosphoglycerate mutase 2	188	394	0	3	7	0	15	30	0	0,78	0,76		3	7	0	31,76	38,81	
PGK1_HUMAN	Phosphoglycerate kinase 1	0	166	0	0	3	0	0	8	0		1,03		0	2	0		22,16	
PGM1_HUMAN	Phosphoglucomutase-1	95	158	0	2	3	0	4	7	0	0,75	1,13		2	2	0	4,65	21,15	
PLAK_HUMAN	Junction plakoglobin	51	0	0	1	0	0	2	0	0	1,93			1	0	0			
PLEC_HUMAN	Plectin	0	199	0	0	5	0	0	1	0		1,03		0	5	0		9,08	
PLIN3_HUMAN	Perilipin-3	0	59	0	0	1	0	0	4	0		1,02		0	1	0			
PPIA_HUMAN	Peptidyl-prolyl cis-trans isomerase A	0	122	0	0	3	0	0	18	0		1,16		0	3	0		6,71	
PRDX1_HUMAN	Peroxiredoxin-1	0	110	0	0	3	0	0	16	0		1,01		0	3	0		17,90	
PRDX3_HUMAN	Thioredoxin-dependent peroxide reductase, mitochondrial	44	0	0	1	0	0	6	0	0	0,73			1	0	0			
PRDX6_HUMAN	Peroxiredoxin-6	71	46	0	2	1	0	7	4	0	1,07	1,04		2	1	0	3,57		
PROF2_HUMAN	Profilin-2	54	0	0	1	0	0	10	0	0	1,36			1	0	0			
PYGM_HUMAN	Glycogen phosphorylase, muscle form	205	343	0	4	7	0	5	8	0	0,62	0,72		3	6	0	12,81	25,49	
RL40_HUMAN	Ubiquitin-60S ribosomal protein L40	0	404	194	0	7	4	0	36	29		3,90	5,97	0	6	4		117,05	35,34
ROA2_HUMAN	Heterogeneous nuclear ribonucleoproteins A2/B1	0	41	0	0	1	0	0	4	0		1,21		0	1	0			
S10A6_HUMAN	Protein S100-A6	44	90	0	1	2	0	9	17	0	1,05	1,05		1	2	0		1,29	
S10AA_HUMAN	Protein S100-A10	0	42	0	0	1	0	0	10	0		1,42		0	1	0			
SQSTM_HUMAN	Sequestosome-1	484	565	36	7	8	1	24	24	3	2,83	2,29	2,10	6	8	1	177,59	87,73	
STAC3_HUMAN	SH3 and cysteine-rich domain-containing protein 3	0	71	0	0	2	0	0	7	0		1,37		0	2	0		5,28	
SYP2L_HUMAN	Synaptopodin 2-like protein	0	84	0	0	2	0	0	3	0		1,62		0	2	0		31,98	
TBA1C_HUMAN	Tubulin alpha-1C chain	0	159	0	0	3	0	0	8	0		1,40		0	3	0		4,92	
TBB2C_HUMAN	Tubulin beta-2C chain	0	181	0	0	4	0	0	11	0		1,01		0	1	0			

TBB5_HUMAN	Tubulin beta chain	138	239	0	3	5	0	8	14	0	1,07	1,45		3	4	0	3,62	61,76	
TELT_HUMAN	Telethonin	0	48	0	0	1	0	0	5	0	-	0,88		0	1	0			
TERA_HUMAN	Transitional endoplasmic reticulum ATPase	0	173	0	0	5	0	0	6	0		1,45		0	3	0		11,36	
TITIN_HUMAN	Titin	3866	6048	130	87	134	5	3	5	0	0,90	1,02	1,23	86	129	5	27,32	21,03	12,26
TNNC1_HUMAN	Troponin C, slow skeletal and cardiac muscles	329	321	48	7	4	1	25	22	8	0,62	0,69	0,91	3	3	1	25,48	23,85	
TNNC2_HUMAN	Troponin C, skeletal muscle	218	364	30	3	5	1	15	44	11	0,40	0,55	0,67	3	5	1	21,74	31,12	
TNNI1_HUMAN	Troponin I, slow skeletal muscle	259	306	0	4	5	0	23	30	0	0,77	0,78		4	5	0	28,74	29,73	
TNNT1_HUMAN	Troponin T, slow skeletal muscle	67	156	0	2	3	0	8	10	0	0,96	0,87		2	3	0	4,91	8,48	
TPIS_HUMAN	Triosephosphate isomerase	426	522	122	6	8	2	31	39	9	0,87	0,89	1,42	6	7	2	25,33	17,18	1,13
TPM1_HUMAN	Tropomyosin alpha-1 chain	518	825	121	9	16	4	29	31	18	0,66	0,66	0,94	3	6	4	24,78	12,91	36,08
TPM2_HUMAN	Tropomyosin beta chain	462	749	0	7	14	0	27	30	0	0,56	0,75		3	6	0	20,52	23,09	
TPM3_HUMAN	Tropomyosin alpha-3 chain	524	956	0	10	20	0	30	41	0	0,75	0,67		9	15	0	78,95	23,81	
TRI54_HUMAN	Tripartite motif-containing protein 54	187	90	0	3	2	0	14	7	0	1,09	1,31		2	2	0	26,00	1,12	
TRI72_HUMAN	Tripartite motif-containing protein 72	62	99	0	1	2	0	3	5	0	1,27	1,03		1	2	0		3,59	
TRY2_HUMAN	Trypsin-2	45	45	0	1	1	0	8	8	0	1,49	1,17		1	1	0			
UBB_HUMAN	Polyubiquitin-B	391	0	0	9	0	0	16	0	0	6,01			6	0	0	50,33		
VDAC1_HUMAN	Voltage-dependent anion-selective channel protein 1	0	96	0	0	2	0	0	11	0		0,72		0	1	0			
VIME_HUMAN	Vimentin	214	351	0	5	9	0	13	17	0	1,43	1,51		3	5	0	14,52	33,03	
XIRP1_HUMAN	Xin actin-binding repeat-containing protein 1	677	1095	0	11	15	0	10	14	0	1,96	1,98		11	15	0	57,87	49,90	
XIRP2_HUMAN	Xin actin-binding repeat-containing protein 2	743	1532	0	12	22	0	5	10	0	2,10	2,12		12	21	0	45,60	36,67	

AG=Aggregate; NK=morphologisch normale Patientenzellen; SC=sequence coverage

6.8 Quantitative Analyse Patient 2

	PROTEINE	IDEN	NTIFIKA	ATION	REGULATION	# PEPTIDE	ABWEICHUNG
Accession	Name	Score	#Pep	SC [%]	AG/NK	AG/NK	AG/NK
1433G_HUMAN	14-3-3 protein gamma	78	2	11	0,88	2	4
AATC_HUMAN	Aspartate aminotransferase,	54	1	3	0,84	1	
ACON_HUMAN	Aconitate hydratase, mitochondrial	108	2	4	0.89	2	20
ACTB_HUMAN	Actin, cytoplasmic 1	1249	26	38	1.43	2	24
ACTC_HUMAN	Actin, alpha cardiac muscle 1	2813	53	65	3.89	3	56
ACTN1_HUMAN	Alpha-actinin-1	684	12	12	0,69	1	
ACTN2_HUMAN	Alpha-actinin-2	2462	41	45	0,59	38	23
ACTS_HUMAN	Actin, alpha skeletal muscle	3115	70	65	0,86	37	20
ADT1_HUMAN	ADP/ATP translocase 1	97	2	8	0,63	2	0
AK1C1_HUMAN	Aldo-keto reductase family 1 member C1	42	1	6	1,56	1	
ALBU_HUMAN	Serum albumin	1062	15	31	1,33	14	21
ALDOA_HUMAN	Fructose-bisphosphate aldolase A	387	8	17	0,67	6	27
ALDOC_HUMAN	Fructose-bisphosphate aldolase C	163	2	9	1,03	1	
ANKR2_HUMAN	Ankyrin repeat domain-containing	219	3	8	0,86	3	12
AT2A2_HUMAN	sarcoplasmic/endoplasmic reticulum	600	12	12	0,75	12	23
ATPA_HUMAN	ATP synthase subunit alpha,	409	8	18	0,76	8	17
ATPB_HUMAN	ATP synthase subunit beta,	537	9	20	0,83	9	20
CAH3_HUMAN	Carbonic anhydrase 3	1153	18	54	1,10	17	19
CBR1_HUMAN	Carbonyl reductase [NADPH] 1	55	1	6	0,96	1	
CO1A2_HUMAN	Collagen alpha-2(I) chain	84	1	2	1,53	1	
COF2_HUMAN	Cofilin-2	129	2	18	1,03	2	12
COX2_HUMAN	Cytochrome c oxidase subunit 2	50	1	4	0,54	1	
CRYAB_HUMAN	Alpha-crystallin B chain	375	7	30	1,53	7	52
CSRP3_HUMAN	Cysteine and glycine-rich protein 3	46	1	9	1,07	1	
DESM_HUMAN	Desmin	1548	27	48	1,61	25	37
ECHM_HUMAN	Enoyl-CoA hydratase, mitochondrial	42	1	5	0,92	1	
EF1A2_HUMAN	Elongation factor 1-alpha 2	110	3	6	0,75	3	26
ENOB_HUMAN	Beta-enolase	305	5	14	0,71	5	20
FHL1_HUMAN	Four and a half LIM domains protein 1	1366	23	44	4,20	16	79
FLNC_HUMAN	Filamin-C	2581	45	21	1,14	43	31
G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	981	15	35	1,00	13	20
G6PI_HUMAN	Glucose-6-phosphate isomerase	88	2	6	0,99	2	13
GDIA_HUMAN	Rab GDP dissociation inhibitor alpha	42	1	5	1,37	1	
GPDA_HUMAN	Glycerol-3-phosphate dehydrogenase [NAD+], cytoplasmic	44	1	4	0,98	1	
HBA_HUMAN	Hemoglobin subunit alpha	361	5	35	1,15	5	30
HBB_HUMAN	Hemoglobin subunit beta	670	12	66	0,98	9	19
HINT1_HUMAN	Histidine triad nucleotide-binding protein 1	59	1	11	0,94	1	
HSP/I_HUMAN	Heat shock /0 kDa protein 1A/1B	449	9	21	0,99	6	11
HSP/C_HUMAN	Heat shock cognate / I kDa protein	685	10	21	1,17	10	29
HSPB1_HUMAN	Heat shock protein beta-1	302	4	27	1,23	4	3

HSPB2_HUMAN	Heat shock protein beta-2	120	2	19	1,07	2	21
HSPB6_HUMAN	Heat shock protein beta-6	238	4	26	0,80	4	12
HSPB7_HUMAN	Heat shock protein beta-7	138	3	15	1,12	3	26
IDHP_HUMAN	Isocitrate dehydrogenase [NADP],	70	2	8	0.97	2	10
K6PF_HUMAN	6-phosphofructokinase, muscle type	46	1	2	0,97	1	
KBTBA_HUMAN	Kelch repeat and	835	15	25	1,12	14	22
KCRM_HUMAN	Creatine kinase M-type	1044	16	39	0,83	16	24
KCRS_HUMAN	Creatine kinase S-type, mitochondrial	86	2	5	0,84	1	
KPRP_HUMAN	Keratinocyte proline-rich protein	45	1	4	1,38	1	
KPYM_HUMAN	Pyruvate kinase isozymes M1/M2	244	5	11	0,71	5	19
LDB3_HUMAN	LIM domain-binding protein 3	504	10	18	0,80	10	20
LDHA_HUMAN	L-lactate dehydrogenase A chain	56	1	3	1,06	1	
LMCD1_HUMAN	LIM and cysteine-rich domains protein 1	44	1	4	0,79	1	
MDHC_HUMAN	Malate dehydrogenase, cytoplasmic	229	4	15	0,73	4	27
MLRS_HUMAN	Myosin regulatory light chain 2,	62	1	10	0.64	1	
MLRV_HUMAN	skeletal muscle isoform Myosin regulatory light chain 2, ventricular/cardiac muscle isoform	584	13	53	0,59	11	33
MPCP_HUMAN	Phosphate carrier protein,	52	1	3	0,76	1	
MSTN1_HUMAN	Musculoskeletal embryonic nuclear protein 1	58	1	18	0,95	1	
MYG_HUMAN	Myoglobin	592	9	45	0,59	8	26
MYH2_HUMAN	Myosin-2	2472	42	18	0,48	11	23
MYH7_HUMAN	Myosin-7	8192	126	49	0,59	115	31
MYL1_HUMAN	Myosin light chain 1/3,	683	9	48	0,67	8	11
MYL3_HUMAN	Myosin light chain 3	874	14	56	0,45	13	29
MYL6B_HUMAN	Myosin light chain 6B	624	10	40	0,69	10	20
MYOM1_HUMAN	Myomesin-1	397	8	7	0,76	7	19
MYOM2_HUMAN	Myomesin-2	343	8	8	0,72	7	8
MYOM3_HUMAN	Myomesin-3	365	8	9	0,94	7	13
MYOTI_HUMAN	Myotilin	523	10	25	0,93	9	15
MYOZ1_HUMAN	Myozenin-1	287	4	19	0,58	4	18
MYOZ2_HUMAN	Myozenin-2	43	1	4	0,67	1	
MYPC1_HUMAN	Myosin-binding protein C, slow-type	1279	20	20	0,59	19	21
NEBU_HUMAN	Nebulin	1002	23	5	0,78	23	26
NEST_HUMAN	Nestin	117	3	3	1,02	3	11
NRAP_HUMAN	Nebulin-related-anchoring protein	519	12	9	1,19	11	21
PADI2_HUMAN	Protein-arginine deiminase type-2	126	3	6	0,90	3	16
PDLI3_HUMAN	PDZ and LIM domain protein 3	224	4	17	1,03	4	12
PDLI5_HUMAN	PDZ and LIM domain protein 5	88	1	2	0,75	1	
PGAM2_HUMAN	Phosphoglycerate mutase 2	137	2	12	0,69	1	
PGK1_HUMAN	Phosphoglycerate kinase 1	84	2	8	0,76	2	1
PGM1_HUMAN	Phosphoglucomutase-1	152	4	6	0,69	4	12
PIMT_HUMAN	Protein-L-isoaspartate(D-aspartate)	47	1	8	0.71	1	
PRDX3_HUMAN	O-methyltransferase Thioredoxin-dependent peroxide reductase, mitochondrial	51	1	6	0,90	1	
PRDX6_HUMAN	Peroxiredoxin-6	77	2	13	0,78	2	4
PYGM_HUMAN	Glycogen phosphorylase, muscle form	294	7	9	0,63	7	25
QCR1_HUMAN	Cytochrome b-c1 complex subunit 1,	63	1	4	1,08	1	

	mitochondrial						
RL40_HUMAN	Ubiquitin-60S ribosomal protein L40	157	4	19	2,73	4	91
SQSTM_HUMAN	Sequestosome-1	271	4	19	1,46	3	33
TBA4B_HUMAN	Putative tubulin-like protein alpha-4B	54	1	5	0,90	1	
TBB4_HUMAN	Tubulin beta-4 chain	192	4	11	1,01	4	11
TERA_HUMAN	Transitional endoplasmic reticulum ATPase	51	1	2	1,43	1	
THIL_HUMAN	Acetyl-CoA acetyltransferase, mitochondrial	141	2	7	0,63	2	1
TITIN_HUMAN	Titin	8080	172	8	0,82	163	17
TNNC1_HUMAN	Troponin C, slow skeletal and cardiac muscles	163	2	14	0,66	1	
TNNI1_HUMAN	Troponin I, slow skeletal muscle	515	9	39	0,66	9	27
TNNT1_HUMAN	Troponin T, slow skeletal muscle	333	6	21	0,69	6	19
TPIS_HUMAN	Triosephosphate isomerase	381	5	26	0,76	5	18
TPM2_HUMAN	Tropomyosin beta chain	599	10	27	0,69	4	11
TPM3_HUMAN	Tropomyosin alpha-3 chain	683	13	33	0,64	13	15
TRI72_HUMAN	Tripartite motif-containing protein 72	129	2	5	1,07	2	1
TRY2_HUMAN	Trypsin-2	44	1	8	1,37	1	
VDAC1_HUMAN	Voltage-dependent anion-selective channel protein 1	396	6	29	0,78	6	19
VDAC2_HUMAN	Voltage-dependent anion-selective channel protein 2	61	1	7	1,32	1	
VDAC3_HUMAN	Voltage-dependent anion-selective channel protein 3	110	2	12	1,45	1	
XIRP1_HUMAN	Xin actin-binding repeat-containing protein 1	494	10	7	1,49	9	40
XIRP2_HUMAN	Xin actin-binding repeat-containing protein 2	628	13	6	1,55	10	42

AG=Aggregate; NK=morphologisch normale Patientenzellen; Pep = Peptide; SC=sequence coverage

6.9 Quantitative Analyse Patient 3

	PROTEIN			IDENI	IFIK	ATIC	DN				RE	GULAT	ION	# I	PEPTIE	DE	ABV	VEICHU	JNG
			Score			Pep #	ŧ	S	C [%	6]		AG/NK	Į.	1	AG/NK			AG/NK	
Accession	Name	А	В	С	А	В	С	A	B	С	А	В	С	А	В	С	Α	В	С
1433G_HUMAN	14-3-3 protein gamma	0	119	135	0	3	6	0	14	16		1,28	0,98	0	3	4		10,54	19,76
AATC_HUMAN	Aspartate aminotransferase, cytoplasmic	88	0	0	2	0	0	7	0	0	1,18			2	0	0	33,67		
AATM_HUMAN	Aspartate aminotransferase, mitochondrial	0	0	61	0	0	1	0	0	3			0,82	0	0	1			
ACADV_HUMAN	Very long-chain specific acyl-CoA dehydrogenase, mitochondrial	0	147	74	0	2	4	0	4	4		1,44	0,95	0	2	2		12,06	17,22
ACON_HUMAN	Aconitate hydratase, mitochondrial	104	251	184	3	5	9	5	8	7	1,11	1,38	1,04	3	5	3	15,53	9,51	14,58
ACTA_HUMAN	Actin, aortic smooth muscle	0	0	3135	0	0	236	0	0	56			2,12	0	0	4			35,98
ACTB_HUMAN	Actin, cytoplasmic 1	1111	1305	1404	24	30	120	33	36	40	1,06	1,35	0,91	2	2	4	27,70	11,12	31,18
ACTC_HUMAN	Actin, alpha cardiac muscle 1	2878	2627	0	50	55	0	57	64	0	1,72	2,49		3	3	0	50,52	30,06	
ACTN1_HUMAN	Alpha-actinin-1	0	673	658	0	10	32	0	11	11		0,47	0,57	0	1	1			
ACTN2_HUMAN	Alpha-actinin-2	1920	2871	2943	36	48	141	40	43	44	0,68	0,73	0,51	34	44	42	18,57	24,96	25,53
ACTS_HUMAN	Actin, alpha skeletal muscle	3224	3252	3890	68	80	300	57	64	56	0,75	0,77	0,61	37	40	44	19,86	18,38	19,50
ADCK3_HUMAN	Chaperone activity of bc1 complex-like, mitochondrial	0	86	0	0	2	0	0	5	0		1,58		0	2	0		12,69	
ADT1_HUMAN	ADP/ATP translocase 1	0	93	136	0	2	9	0	8	8		1,47	0,75	0	2	2		23,16	15,49
ALBU_HUMAN	Serum albumin	375	1183	971	7	21	45	16	31	26	1,41	2,21	1,48	7	20	15	20,82	29,14	20,81
ALDOA_HUMAN	Fructose-bisphosphate aldolase A	607	579	512	9	12	29	29	23	27	0,88	1,23	0,80	8	8	8	7,75	19,45	20,85
ALDOC_HUMAN	Fructose-bisphosphate aldolase C	157	171	0	1	1	0	6	6	0	1,15	1,05		1	1	0			
ALDR_HUMAN	Aldose reductase	77	45	0	2	1	0	6	3	0	1,09	1,33		2	1	0	8,34		
ANXA2_HUMAN	Annexin A2	112	0	0	2	0	0	9	0	0	0,82			2	0	0	4,10		
ANXA6_HUMAN	Annexin A6	0	123	187	0	2	6	0	4	5		1,29	1,15	0	2	3		2,81	11,14
AT2A1_HUMAN	Sarcoplasmic/endoplasmic reticulum calcium ATPase 1	610	1346	1038	10	18	38	12	19	18	1,12	1,53	1,06	10	16	10	18,20	13,02	15,19

AT2A2_HUMAN	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2	558	1170	1187	11	18	40	11	18	18	1,24	1,28	0,80	8	10	16	26,03	33,49	23,89
AT5F1_HUMAN	ATP synthase subunit b, mitochondrial	48	0	0	1	0	0	5	0	0	1,22			1	0	0			
ATPA_HUMAN	ATP synthase subunit alpha, mitochondrial	101	306	308	2	6	16	4	11	13	1,09	1,12	0,93	2	6	7	3,16	17,04	20,35
ATPB_HUMAN	ATP synthase subunit beta, mitochondriaL	286	627	533	6	11	23	17	23	28	1,09	1,38	1,00	6	11	11	27,75	15,79	15,05
BIN1_HUMAN	Myc box-dependent-interacting protein 1	112	395	205	2	5	6	5	14	10	1,69	1,75	1,16	2	5	4	15,47	34,33	23,71
CAH3_HUMAN	Carbonic anhydrase 3	1041	1261	1249	20	19	75	57	44	52	1,10	1,12	0,89	15	16	16	12,38	20,55	25,31
CALM_HUMAN	Calmodulin	0	51	91	0	1	5	0	5	10		1,90	1,24	0	1	1			
CASQ1_HUMAN	Calsequestrin-1	171	221	131	3	4	4	11	11	6	1,03	1,30	1,00	3	4	2	19,97	14,38	10,52
CASQ2_HUMAN	Calsequestrin-2	0	106	61	0	2	1	0	6	3		0,70	1,24	0	2	1		65,01	
CCG8_HUMAN	Voltage-dependent calcium channel gamma-8 subunit	40	0	0	1	0	0	4	0	0	0,99			1	0	0			
CISY_HUMAN	Citrate synthase, mitochondrial	44	93	0	1	2	0	2	6	0	1,17	1,30		1	2	0		6,52	
CMC1_HUMAN	Calcium-binding mitochondrial carrier protein Aralar1	45	0	0	1	0	0	3	0	0	1,13			1	0	0			
CO1A1_HUMAN	Collagen alpha-1(I) chain	119	139	116	2	2	5	3	3	3	1,01	2,23	0,71	1	1	2			63,34
CO1A2_HUMAN	Collagen alpha-2(I) chain	0	137	104	0	1	4	0	2	2		4,32	1,39	0	1	1			
CO3A1_HUMAN	Collagen alpha-1(III) chain	0	54	43	0	1	1	0	1	1		2,00	1,20	0	1	1			
CO6A1_HUMAN	Collagen alpha-1(VI) chain	0	179	122	0	3	4	0	4	3		1,95	1,09	0	3	2		22,41	37,18
CO6A3_HUMAN	Collagen alpha-3(VI) chain	0	48	108	0	1	4	0	0	2		2,16	1,19	0	1	3			16,38
COF2_HUMAN	Cofilin-2	0	91	285	0	2	7	0	10	28		1,44	1,07	0	2	3		17,31	17,56
COX2_HUMAN	Cytochrome c oxidase subunit 2	0	50	50	0	1	3	0	4	4		1,01	0,90	0	1	1			
COX5B_HUMAN	Cytochrome c oxidase subunit 5B, mitochondrial	0	131	81	0	3	3	0	29	20		0,74	0,74	0	3	2		64,76	0,39
COX6C_HUMAN	Cytochrome c oxidase subunit 6C	0	0	50	0	0	2	0	0	11			0,78	0	0	1			
CRYAB_HUMAN	Alpha-crystallin B chain	348	549	584	6	11	42	29	30	29	2,23	3,44	1,92	5	8	8	27,45	39,47	45,13
CSRP3_HUMAN	Cysteine and glycine-rich protein 3	96	216	198	2	3	6	18	18	18	1,06	1,10	0,83	2	3	2	3,86	20,41	5,96
DESM_HUMAN	Desmin	1410	1640	1823	26	25	96	52	43	50	1,71	2,95	2,28	23	25	27	33,19	62,11	49,28
ECHA_HUMAN	Trifunctional enzyme subunit alpha, mitochondrial	97	0	0	1	0	0	3	0	0	1,28			1	0	0			

ECHB_HUMAN	Trifunctional enzyme subunit beta, mitochondrial	0	41	64	0	1	1	0	3	3		0,83	0,77	0	1	1			
EF1A2_HUMAN	Elongation factor 1-alpha 2	168	160	144	5	4	7	11	8	6	1,01	1,29	0,84	5	4	3	12,74	12,61	18,51
ENOA_HUMAN	Alpha-enolase	0	353	376	0	5	11	0	14	16		1,08	0,72	0	2	1		22,43	·
ENOB_HUMAN	Beta-enolase	799	521	758	15	9	28	25	21	27	0,94	1,06	0,79	10	9	12	23,70	20,34	21,88
ENOG_HUMAN	Gamma-enolase	0	225	299	0	4	11	0	9	10		0,74	0,65	0	1	1			·
FHL1_HUMAN	Four and a half LIM domains protein 1	1122	1077	1473	16	18	80	32	34	37	1,04	1,10	0,64	14	13	14	23,85	14,79	11,99
FLNA_HUMAN	Filamin-A	0	266	167	0	7	10	0	2	2		2,31	1,56	0	1	1			
FLNC_HUMAN	Filamin-C	2780	3892	4003	44	58	149	22	27	32	1,45	1,86	1,19	42	56	62	21,28	21,20	24,86
G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	868	802	987	16	12	34	32	36	38	1,00	1,00	1,00	10	10	9	11,31	26,62	22,61
G6PI_HUMAN	Glucose-6-phosphate isomerase	0	49	84	0	1	6	0	1	3		1,02	0,82	0	1	2			2,45
GELS_HUMAN	Gelsolin	0	80	169	0	2	3	0	2	6		1,55	1,02	0	2	3		0,68	25,81
GLYG_HUMAN	Glycogenin-1	0	125	0	0	3	0	0	11	0		1,12		0	3	0		14,84	
H2AV_HUMAN	Histone H2A.V	0	41	0	0	1	0	0	7	0		1,70		0	1	0			
H2B1K_HUMAN	Histone H2B type 1-K	0	49	44	0	1	1	0	7	7		1,57	1,58	0	1	1			
HBA_HUMAN	Hemoglobin subunit alpha	317	304	306	5	5	8	35	22	22	1,04	1,78	1,13	5	5	5	7,11	21,82	18,67
HBB_HUMAN	Hemoglobin subunit beta	571	349	486	8	6	18	71	46	59	1,17	1,77	1,14	8	6	7	20,59	51,20	36,85
HINT1_HUMAN	Histidine triad nucleotide-binding protein 1	0	57	49	0	1	1	0	11	11		1,39	1,14	0	1	1			
HS90A_HUMAN	Heat shock protein HSP 90-alpha	0	139	0	0	3	0	0	5	0		1,31		0	2	0		5,47	
HSP71_HUMAN	Heat shock 70 kDa protein 1A/1B	158	460	598	3	8	24	6	17	21	1,54	1,50	1,09	2	6	8	34,55	14,40	16,17
HSP72_HUMAN	Heat shock-related 70 kDa protein 2	0	533	0	0	10	0	0	15	0		1,00		0	2	0		12,65	
HSP7C_HUMAN	Heat shock cognate 71 kDa protein	517	949	1122	10	17	41	13	29	36	1,35	1,38	1,14	8	14	19	13,47	30,52	22,26
HSPB1_HUMAN	Heat shock protein beta-1	223	309	437	3	3	17	21	21	36	1,27	2,05	1,53	3	3	6	6,73	19,62	18,14
HSPB2_HUMAN	Heat shock protein beta-2	123	204	0	2	3	0	19	25	0	1,20	1,36		2	3	0	9,77	13,73	
HSPB6_HUMAN	Heat shock protein beta-6	70	181	223	1	3	12	7	23	26	1,44	1,55	0,94	1	3	4		6,69	8,41
HSPB7_HUMAN	Heat shock protein beta-7	0	240	284	0	4	11	0	24	24		1,77	1,20	0	4	4		15,88	14,88
IDHP_HUMAN	Isocitrate dehydrogenase [NADP], mitochondrial	120	132	166	2	3	6	6	8	11	0,99	1,38	0,94	2	3	3	0,74	24,47	17,51
K6PF_HUMAN	6-phosphofructokinase, muscle type	0	108	63	0	2	1	0	2	1		1,56	1,02	0	2	1		1,88	
KAD1_HUMAN	Adenylate kinase isoenzyme 1	152	219	194	3	4	12	22	20	17	1,08	1,26	0,80	3	3	2	5,55	22,40	2,68

KBTB5_HUMAN	Kelch repeat and BTB domain-containing protein 5	0	161	139	0	4	5	0	8	6		1,46	1,18	0	3	3		17,65	9,32
KBTBA_HUMAN	Kelch repeat and BTB domain-containing protein 10	886	741	964	16	15	47	29	19	26	1,36	1,80	1,14	16	14	16	15,34	14,02	27,65
KCRB_HUMAN	Creatine kinase B-type	248	127	186	5	3	10	16	8	9	0,99	1,29	1,26	4	2	2	15,86	28,40	12,14
KCRM_HUMAN	Creatine kinase M-type	1508	1643	1846	29	28	121	47	44	50	0,90	1,08	0,69	24	24	27	11,78	12,42	19,74
KCRS_HUMAN	Creatine kinase S-type, mitochondrial	149	220	253	4	5	15	10	15	18	0,92	1,18	0,88	3	4	5	15,73	11,57	14,37
KPYM_HUMAN	Pyruvate kinase isozymes M1/M2	294	414	529	6	8	23	14	18	21	0,93	1,08	0,81	6	8	10	5,49	31,88	20,31
LDB3_HUMAN	LIM domain-binding protein 3	315	685	645	7	12	28	15	20	18	0,93	1,01	0,77	6	12	9	12,68	22,34	19,30
LDHA_HUMAN	L-lactate dehydrogenase A chain	197	238	192	4	5	8	12	14	11	0,95	1,24	0,87	4	5	4	12,86	13,65	32,67
LDHB_HUMAN	L-lactate dehydrogenase B chain	0	165	0	0	3	0	0	8	0		1,30		0	1	0			
LEG1_HUMAN	Galectin-1	0	73	124	0	2	5	0	15	26		1,43	0,94	0	2	2		13,72	14,83
MDHC_HUMAN	Malate dehydrogenase, cytoplasmic	161	394	314	3	5	13	11	21	17	1,01	1,31	0,90	3	5	5	12,50	12,96	19,06
MDHM_HUMAN	Malate dehydrogenase, mitochondrial	41	102	124	1	2	8	4	8	13	1,26	1,18	1,20	1	2	3		9,60	42,97
MLRS_HUMAN	Myosin regulatory light chain 2, skeletal muscle isoform	845	933	889	15	15	42	56	68	68	0,57	0,67	0,59	12	14	13	31,09	37,11	21,56
MLRV_HUMAN	Myosin regulatory light chain 2, ventricular/cardiac muscle isoform	850	633	850	17	12	62	68	45	66	0,73	0,70	0,52	14	10	13	18,19	24,84	32,03
MSTN1_HUMAN	Musculoskeletal embryonic nuclear protein 1	0	0	54	0	0	3	0	0	18			1,03	0	0	1			
MYG_HUMAN	Myoglobin	660	618	715	10	8	53	48	44	49	0,99	0,92	0,86	7	6	9	19,63	18,21	25,60
MYH13_HUMAN	Myosin-13	1778	0	0	38	0	0	14	0	0	0,75			1	0	0			
MYH2_HUMAN	Myosin-2	5571	8060	7376	90	122	351	44	42	42	0,51	0,53	0,46	61	76	61	35,41	40,13	28,05
MYH7_HUMAN	Myosin-7	7797	8604	9499	113	137	489	47	41	44	0,71	0,64	0,49	98	113	128	25,07	28,63	33,36
MYL1_HUMAN	Myosin light chain 1/3, skeletal muscle isoform	862	826	720	13	12	36	54	55	55	0,52	0,63	0,48	12	11	9	24,62	27,68	10,17
MYL3_HUMAN	Myosin light chain 3	594	951	1178	10	14	73	44	56	58	0,51	0,51	0,42	9	13	18	11,27	19,13	30,15
MYL6B_HUMAN	Myosin light chain 6B	277	510	553	7	10	32	27	43	46	0,95	1,17	0,66	7	7	9	21,38	7,33	9,17
MYOM1_HUMAN	Myomesin-1	227	550	509	4	11	16	4	8	9	0,77	1,00	0,70	4	11	11	7,02	26,23	19,33
MYOM2_HUMAN	Myomesin-2	354	850	786	8	18	32	7	14	14	0,79	0,89	0,70	8	18	17	7,03	22,90	22,47
MYOM3_HUMAN	Myomesin-3	0	123	330	0	2	8	0	2	6		1,21	0,90	0	2	6		4,00	25,22
MYOTI_HUMAN	Myotilin	803	875	872	14	14	52	33	29	28	2,08	2,78	1,81	12	13	13	28,25	43,60	72,74

MYOZ1_HUMAN	Myozenin-1	250	428	504	2	5	11	13	23	28		1,07	0,77	0	5	6		48,38	24,26
MYOZ2_HUMAN	Myozenin-2	0	0	117	0	0	4	0	0	13			0,65	0	0	3			9,12
MYPC1_HUMAN	Myosin-binding protein C, slow-type	778	1614	1634	18	28	69	12	27	29	0,72	0,74	0,62	13	27	27	22,58	26,34	25,79
MYPC2_HUMAN	Myosin-binding protein C, fast-type	0	140	0	0	3	0	0	3	0		1,13		0	2	0		11,17	
NB5R1_HUMAN	NADH-cytochrome b5 reductase 1	53	85	104	1	2	3	5	8	10	1,18	1,16	1,01	1	2	3		14,59	5,88
NB5R3_HUMAN	NADH-cytochrome b5 reductase 3	43	58	0	1	1	0	4	4	0	1,54	1,62		1	1	0			
NDUA4_HUMAN	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4	0	0	46	0	0	1	0	0	12			0,80	0	0	1			
NDUV1_HUMAN	NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial	0	58	0	0	1	0	0	2	0		1,55		0	1	0			
NEBU_HUMAN	Nebulin	1006	2539	2408	26	56	91	5	10	9	0,83	1,00	0,70	23	53	52	15,72	15,82	23,10
NEST_HUMAN	Nestin	141	218	214	4	5	9	4	5	4	1,38	1,40	1,09	4	5	5	12,44	27,62	28,47
NRAP_HUMAN	Nebulin-related-anchoring protein	210	501	330	6	11	15	4	8	5	1,21	1,83	1,11	6	11	7	18,88	23,53	20,19
OBSCN_HUMAN	Obscurin	0	174	0	0	4	0	0	1	0		1,30		0	4	0		20,81	
PACN3_HUMAN	Protein kinase C and casein kinase substrate in neurons protein 3	0	77	0	0	2	0	0	7	0		1,51		0	2	0		19,22	
PCDH1_HUMAN	Protocadherin-1	0	0	72	0	0	3	0	0	2			0,97	0	0	1			
PDLI3_HUMAN	PDZ and LIM domain protein 3	170	389	444	4	6	16	15	25	28	1,10	1,21	0,94	3	5	6	20,66	12,49	13,04
PDLI5_HUMAN	PDZ and LIM domain protein 5	0	45	42	0	1	1	0	2	2		1,10	0,90	0	1	1			
PGAM2_HUMAN	Phosphoglycerate mutase 2	297	313	531	6	6	22	25	22	35	0,72	0,97	0,76	6	6	10	16,76	36,48	25,15
PGK1_HUMAN	Phosphoglycerate kinase 1	281	302	344	5	5	13	18	13	18	0,95	1,26	0,93	5	4	6	19,38	14,86	15,27
PGM1_HUMAN	Phosphoglucomutase-1	78	282	237	2	5	8	3	11	9	0,88	1,20	0,79	2	5	4	12,56	13,80	34,63
PLEC_HUMAN	Plectin	0	293	239	0	7	9	0	2	2		1,28	0,94	0	7	6		14,54	14,95
PPM1E_HUMAN	Protein phosphatase 1E	0	41	0	0	1	0	0	2	0		1,67		0	1	0			
PRAF3_HUMAN	PRA1 family protein 3	0	49	49	0	1	2	0	6	6		2,16	1,73	0	1	1			
PRDX1_HUMAN	Peroxiredoxin-1	0	83	0	0	2	0	0	11	0		1,35		0	2	0		1,42	
PRDX6_HUMAN	Peroxiredoxin-6	0	79	58	0	2	3	0	7	4		1,50	1,01	0	2	1		1,46	
PROF2_HUMAN	Profilin-2	0	0	46	0	0	1	0	0	10			0,82	0	0	1			
PYGM_HUMAN	Glycogen phosphorylase, muscle form	536	854	802	13	20	35	16	20	19	1,00	1,28	0,89	11	18	17	10,64	7,31	20,67
RS27A_HUMAN	Ubiquitin-40S ribosomal protein S27a	0	0	149	0	0	7	0	0	14			1,95	0	0	2			30,02
RTN2_HUMAN	Reticulon-2	0	45	44	0	1	2	0	2	2		2,67	2,05	0	1	1			

RTN4_HUMAN	Reticulon-4	0	106	63	0	1	2	0	1	1		1,43	1,23	0	1	1			
S10A6_HUMAN	Protein S100-A6	0	46	44	0	1	2	0	9	9		1,22	0,87	0	1	1			
S10A7_HUMAN	Protein S100-A7	0	0	178	0	0	9	0	0	24			2,85	0	0	3			80,86
S10A8_HUMAN	Protein S100-A8	0	0	217	0	0	11	0	0	44			2,08	0	0	4			84,97
SMTL1_HUMAN	Smoothelin-like protein 1	0	0	45	0	0	3	0	0	3			1,11	0	0	1			
SQSTM_HUMAN	Sequestosome-1	42	50	0	1	1	0	6	6	0	2,39	2,34		1	1	0			
SRCA_HUMAN	Sarcalumenin	0	79	87	0	2	4	0	2	2		1,11	0,83	0	2	2		11,80	3,46
SYNP2_HUMAN	Synaptopodin-2	58	0	0	1	0	0	1	0	0	0,90			1	0	0			
SYP2L_HUMAN	Synaptopodin 2-like protein	0	118	0	0	2	0	0	4	0		1,13		0	2	0		0,40	
SYPL2_HUMAN	Synaptophysin-like protein 2	0	42	73	0	1	3	0	3	9		1,86	1,19	0	1	2			2,60
TBA1C_HUMAN	Tubulin alpha-1C chain	56	0	0	1	0	0	3	0	0	1,20			1	0	0			
TBA4A_HUMAN	Tubulin alpha-4A chain	59	174	137	1	3	7	3	9	9	1,17	1,54	1,15	1	3	3		10,32	11,98
TBB2C_HUMAN	Tubulin beta-2C chain	0	217	0	0	4	0	0	12	0		1,77		0	4	0		7,39	
TBB5_HUMAN	Tubulin beta chain	228	0	187	5	0	9	16	0	12	1,17		1,14	5	0	3	21,57		10,01
TELT_HUMAN	Telethonin	0	48	41	0	1	2	0	5	5		1,00	0,85	0	1	1			
THIL_HUMAN	Acetyl-CoA acetyltransferase, mitochondrial	0	118	136	0	2	5	0	7	7		0,99	0,72	0	2	2		40,48	13,91
TITIN_HUMAN	Titin	6884	16901	16895	149	327	671	6	12	13	0,90	1,02	0,68	143	316	333	13,61	19,45	22,27
TNNC1_HUMAN	Troponin C, slow skeletal and cardiac muscles	456	388	394	6	5	25	43	32	32	0,81	0,81	0,62	5	4	4	7,26	13,75	12,91
TNNC2_HUMAN	Troponin C, skeletal muscle	105	405	517	2	5	18	16	34	53	0,41	0,48	0,58	2	5	7	3,33	24,72	39,50
TNNI1_HUMAN	Troponin I, slow skeletal muscle	369	515	477	7	10	27	27	37	37	0,84	0,98	0,65	6	10	7	15,81	20,30	30,51
TNNI2_HUMAN	Troponin I, fast skeletal muscle	91	166	85	2	3	3	15	25	21	0,72	0,68	0,67	2	2	1	24,87	22,86	
TNNT1_HUMAN	Troponin T, slow skeletal muscle	166	259	266	3	6	17	11	19	20	0,82	0,92	0,59	3	6	6	12,95	15,17	16,71
TNNT3_HUMAN	Troponin T, fast skeletal muscle	74	243	112	2	4	5	7	14	7	0,62	0,68	0,55	2	3	1	3,37	9,33	
TPIS_HUMAN	Triosephosphate isomerase	487	540	556	7	7	23	34	34	34	0,90	1,11	0,80	7	7	7	10,81	12,81	18,59
TPM1_HUMAN	Tropomyosin alpha-1 chain	739	1068	939	12	20	51	35	34	31	0,72	0,74	0,67	12	17	3	23,16	28,96	16,18
TPM2_HUMAN	Tropomyosin beta chain	537	898	946	9	16	43	24	29	29	0,80	0,86	0,55	3	4	10	3,65	9,54	22,67
TPM3_HUMAN	Tropomyosin alpha-3 chain	622	969	966	10	21	56	28	42	42	0,94	0,89	0,60	4	7	16	7,06	22,57	30,20
TRAP1_HUMAN	Heat shock protein 75 kDa, mitochondrial	44	0	0	1	0	0	2	0	0	0,91			1	0	0			

TRI72_HUMAN	Tripartite motif-containing protein 72	142	48	53	3	1	1	8	3	3	1,24	1,30	1,10	3	1	1	11,67		
TRY2_HUMAN	Trypsin-2	52	57	40	2	1	2	8	8	8	1,54	1,62	1,58	1	1	1			
VDAC1_HUMAN	Voltage-dependent anion-selective channel protein 1	122	164	220	4	4	9	10	18	23	1,01	1,14	0,85	3	4	6	5,57	13,67	29,44
VDAC2_HUMAN	Voltage-dependent anion-selective channel protein 2	0	0	53	0	0	1	0	0	3			1,08	0	0	1			
VIME_HUMAN	Vimentin	0	0	230	0	0	15	0	0	9			1,20	0	0	1			
XIRP1_HUMAN	Xin actin-binding repeat-containing protein 1	116	407	245	3	8	8	3	8	6	1,26	1,91	1,67	3	8	5	21,85	57,32	66,46
XIRP2_HUMAN	Xin actin-binding repeat-containing protein 2	375	404	647	9	8	25	3	3	6	1,45	2,26	1,42	8	6	12	27,39	49,07	52,06

AG=Aggregate; NK=morphologisch normale Patientenzellen; Pep = Peptide; SC=sequence coverage
6.10 Quantitative Analyse Patient 4

	PROTEIN	IDENTIFIKATION	REGULATION	# PEPTIDE	ABWEICHUNG
Accession	Protein	Score	AG/NK	AG/NK	AG/NK
ACTC_HUMAN	Actin, alpha cardiac muscle 1	1778	1,59	24	18,2
ACTN1_HUMAN	Alpha-actinin-1	353	1,03	6	9,8
ACTN2_HUMAN	Alpha-actinin-2	1344	0,98	24	12,6
ACTS_HUMAN	Actin, alpha skeletal muscle	2060	1,56	27	16,3
ALBU_HUMAN	Serum albumin	516	1,12	8	14,3
ALDOA_HUMAN	Fructose-bisphosphate aldolase A	408	0,86	6	11,7
ALDOC_HUMAN	Fructose-bisphosphate aldolase C	109	1,49	1	
ANKR2_HUMAN	Ankyrin repeat domain-containing protein 2	41	1,51	1	
AT2A1_HUMAN	Sarcoplasmic/endoplasmic reticulum	110	1,14	3	8,5
AT2A2_HUMAN	calcium ATPase 1 Sarcoplasmic/endoplasmic reticulum	140	0,99	2	17,3
ATPB_HUMAN	ATP synthase subunit beta, mitochondrial	281	1,23	5	32,9
BIN1_HUMAN	Myc box-dependent-interacting protein 1	101	1,79	2	2,1
CAH3_HUMAN	Carbonic anhydrase 3	500	1.15	8	14.4
CASQ1_HUMAN	Calsequestrin-1	97	0.78	2	7.1
CO1A1_HUMAN	Collagen alpha-1 chain	111	1.04	1	- 7
CO1A2_HUMAN	Collagen alpha-2 chain	77	1,19	1	
COF2_HUMAN	Cofilin-2	94	1,19	2	0,3
CRYAB_HUMAN	Alpha-crystallin B chain	126	1,52	2	11,5
CSRP3_HUMAN	Cysteine and glycine-rich protein 3	123	1,19	1	
DESM_HUMAN	Desmin	1276	1,94	21	24,9
ENOB_HUMAN	Beta-enolase	525	1,02	8	20,8
FHL1_HUMAN	Four and a half LIM domains protein 1	685	1,17	9	22,9
FLNC_HUMAN	Filamin-C	2713	1,66	41	27,4
G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	471	1,07	8	34,4
G6PI_HUMAN	Glucose-6-phosphate isomerase	49	1,16	1	
HBA_HUMAN	Hemoglobin subunit alpha	460	0,96	7	13,7
HBB_HUMAN	Hemoglobin subunit beta	563	1,16	8	23,2
HBD_HUMAN	Hemoglobin subunit delta	225	1,03	4	22,2
HSP71_HUMAN	Heat shock 70 kDa protein 1	185	1,37	4	8,8
HSP7C_HUMAN	Heat shock cognate 71 kDa protein	192	1,18	3	17,1
HSPB1_HUMAN	Heat shock protein beta-1	241	1,07	2	0,8
HSPB2_HUMAN	Heat shock protein beta-2	156	1,23	3	17,6
IGHG2_HUMAN	Ig gamma-2 chain C region	82	1,19	2	2,2
IGKC_HUMAN	Ig kappa chain C region	90	1,26	2	4,8
KAD1_HUMAN	Adenylate kinase isoenzyme 1	229	1,15	4	15,7
KBTB5_HUMAN	Kelch repeat and BTB domain-containing protein 5	43	1,46	1	
KBTBA_HUMAN	Kelch repeat and BTB domain-containing protein 10	690	1,57	11	19,0
KCRM_HUMAN	Creatine kinase M-type	980	1,05	15	17,4
KPYM_HUMAN	Pyruvate kinase isozymes M1/M2	152	0,96	3	10,2
LDB3_HUMAN	LIM domain-binding protein 3	334	1,16	5	43,3
LDHA_HUMAN	L-lactate dehydrogenase A chain	41	0,94	1	

LDHB_HUMAN	L-lactate dehydrogenase B chain	41	1,25	1	
MDHC_HUMAN	Malate dehydrogenase, cytoplasmic	133	1,00	2	2,4
MLE1_HUMAN	Myosin light chain 1,	652	0.78	8	20.2
MLRS_HUMAN	skeletal muscle isoform Myosin regulatory light chain 2,	604	0.74	7	12.2
MLRV_HUMAN	skeletal muscle isoform Myosin regulatory light chain 2,	615	0.80	9	13.7
MYG_HUMAN	ventricular/cardiac muscle isoform Myoglobin	519	1.04	6	22.4
– MYH2 HUMAN	Myosin-2	5361	0.81	73	22,4
– MYH7 HUMAN	Myosin-7	5284	0.87	70	25,4
- MYL3 HUMAN	Myosin light chain 3	5204	0.74	8	13.6
– MYL6B HUMAN	Myosin light chain 6B	322	0.97	6	18.7
– MYOM1 HUMAN	Myomesin-1	149	1.13	3	9.8
– MYOM2 HUMAN	Myomesin-2	423	0.97	8	9,0 23.6
– MYOTI HUMAN	Myotilin	423	1.86	7	23,0 48.4
– MYPC1 HUMAN	Myosin-binding protein C, slow-type	1005	0.04	19	16.0
– NEBU HUMAN	Nebulin	1005	0,94	10	10,0
NEST HUMAN	Nestin	1036	1,12	25	25.1
NRAP HUMAN	Nebulin-related-anchoring protein	141	2.04	22	55,1
PDLI3 HUMAN	PDZ and LIM domain protein 3	1249	2,04	25	41,0
PGAM2 HUMAN	Phosphoglycerate mutase 2	1/4	1,11	2	10,1
PGK1 HUMAN	Phosphoglycerate kinase 1	208	0,80	2	12,0
PGM1 HUMAN	Phosphoglucomutase-1	208	1,04	3	20,3
PRDX1 HUMAN	Peroxiredoxin-1	47	1,50	1	4.0
PYGM HUMAN	Glycogen phosphorylase muscle form	129	1,06	3	4,9
rndCTDP1_HUMAN	RNA polymerase II subunit A	171	1,00	4	11,4
	C-terminal domain phosphatase	41	1,00	1	
STOAL_HUMAN	Saraalumanin	99	0,96	1	
SKCA_HUMAN	Sarcalumenin	107	0,87	2	7,4
SYNP2_HUMAN		45	1,34	1	
TBAIC_HUMAN	Tubulin alpha-1C chain	59	1,21	1	
TBB2C_HUMAN		62	1,21	1	
TERS_HUMAN		60	1,23	1	
TITIN_HUMAN		6126	1,16	125	17,1
INNCI_HUMAN	cardiac muscles	452	1,12	5	15,9
TNNC2_HUMAN	Troponin C, skeletal muscle	406	0,90	5	13,8
TNNI1_HUMAN	Troponin I, slow skeletal muscle	58	1,50	1	
TNNI2_HUMAN	Troponin I, fast skeletal muscle	110	0,79	1	
TNNT3_HUMAN	Troponin T, fast skeletal muscle	95	1,02	1	
TPIS_HUMAN	Triosephosphate isomerase	309	1,16	5	13,2
TPM1_HUMAN	Tropomyosin alpha-1 chain	343	0,97	6	26,2
TPM2_HUMAN	Tropomyosin beta chain	293	1,01	5	21,0
TPM3_HUMAN	Tropomyosin alpha-3 chain	429	0,97	7	20,3
TRI72_HUMAN	Tripartite motif-containing protein 72	77	1,30	2	5,2
UBIQ_HUMAN	Ubiquitin	169	1,82	4	18,5
UCHL1_HUMAN	Ubiquitin carboxyl-terminal hydrolase isozyme L1	54	1,10	1	
XIRP2_HUMAN	Xin actin-binding repeat-containing protein 2	1576	2,53	24	40,7

AG=Aggregate; NK=morphologisch normale Patientenzellen; SC=sequence coverage

6.11 Quantitative Analyse Patient 5

	PROTEIN	IDE	NTIFIK	KATION	REGULATION	# PEPTIDE	ABWEICHUNG
Accession	Protein	Score	#Pep	SC [%]	AG/NK	AG/NK	AG/NK
ACON_HUMAN	Aconitate hydratase,	71	2	4	1,12	2	13,86
ACTA_HUMAN	Actin, aortic smooth muscle	1369	2	36	1.53	2	5.46
ACTN2_HUMAN	Alpha-actinin-2	990	- 22	18	1,05	22	15.44
ACTS_HUMAN	Actin, alpha skeletal muscle	2208	35	36	1.00	31	23.33
ADT1_HUMAN	ADP/ATP translocase 1	68	2	7	1.57	2	2.13
ALBU_HUMAN	Serum albumin	676	12	19	1,96	12	22,82
ALDOA_HUMAN	Fructose-bisphosphate aldolase A	563	10	25	1,02	9	15,81
ALDOC_HUMAN	Fructose-bisphosphate aldolase C	133	1	6	1,00	1	,
AT2A1_HUMAN	Sarcoplasmic/endoplasmic	222	5	6	1.04	5	14.17
ATPA HUMAN	ATP synthase subunit alpha,	101	2	4	1.69	2	11.77
ATDR HUMAN	mitochondrial	101	3	4	1,68	3	11,//
	mitochondrial	182	4	9	1,56	4	11,34
BIN1_HUMAN	Myc box-dependent-interacting protein 1	61	1	3	1,50	1	
CAH3_HUMAN	Carbonic anhydrase 3	250	5	16	1,03	5	6,86
CO1A2_HUMAN	Collagen alpha-2 chain	60	1	2	2,17	1	
COF1_HUMAN	Cofilin-1	44	1	7	1,43	1	
COX5B_HUMAN	Cytochrome c oxidase subunit 5B, mitochondrial	66	1	14	1,80	1	
CRYAB_HUMAN	Alpha-crystallin B chain	133	3	12	2,58	3	24,59
DESM_HUMAN	Desmin	550	12	23	2,18	12	43,23
EF1A2_HUMAN	Elongation factor 1-alpha 2	117	3	6	1,42	3	2,48
ENOB_HUMAN	Beta-enolase	227	4	11	1,06	4	11,45
FHL1_HUMAN	Four and a half LIM domains protein 1	611	11	19	1,15	10	22,54
FLNC_HUMAN	Filamin-C	1981	35	14	1,43	32	12,54
G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	193	4	13	1,00	4	19,57
HBA_HUMAN	Hemoglobin subunit alpha	246	4	20	1,45	4	17,43
HBB_HUMAN	Hemoglobin subunit beta	378	5	29	1,54	5	28,42
HBD_HUMAN	Hemoglobin subunit delta	87	1	14	0,98	1	
HS902_HUMAN	Putative heat shock protein HSP 90-alpha A2	46	1	3	1,96	1	
HSP71_HUMAN	Heat shock 70 kDa protein 1A/1B	171	2	4	1,30	2	11,31
HSP7C_HUMAN	Heat shock cognate 71 kDa protein	274	4	8	1,51	4	16,62
HSPB6_HUMAN	Heat shock protein beta-6	74	2	15	1,35	2	5,97
IGHA1_HUMAN	Ig alpha-1 chain C region	324	3	20	1,14	3	20,08
IGHA2_HUMAN	Ig alpha-2 chain C region	350	5	22	1,43	5	19,48
IGHG2_HUMAN	Ig gamma-2 chain C region	43	1	4	1,33	1	
IGKC_HUMAN	Ig kappa chain C region	495	6	35	1,66	3	24,13
K6PF_HUMAN	6-phosphofructokinase, muscle type	93	1	3	1,19	1	
KCRM_HUMAN	Creatine kinase M-type	914	18	32	1,04	18	23,37
KPYM_HUMAN	Pyruvate kinase isozymes M1/M2	237	6	12	1,17	6	11,80
LDB3_HUMAN	LIM domain-binding protein 3	219	4	9	1,36	4	23,01
LYSC_HUMAN	Lysozyme C	209	4	24	1,17	4	22,23
MDHC_HUMAN	Malate dehydrogenase, cytoplasmic	85	2	8	1,23	2	5,00
MLRS_HUMAN	Myosin regulatory light chain 2, skeletal muscle isoform	372	7	41	0,82	7	32,26

MLRV_HUMAN	Myosin regulatory light chain 2, ventricular/cardiac muscle isoform	239	4	21	1,06	4	7,85
MYG_HUMAN	Myoglobin	402	5	20	0.94	5	6.74
MYH2_HUMAN	Myosin-2	3453	64	28	0,86	60	21,19
MYH7_HUMAN	Myosin-7	3311	46	26	1,19	40	21,58
MYL1_HUMAN	Myosin light chain 1/3,	562	11	47	0.96	10	19.82
MYL3_HUMAN	skeletal muscle isoform Myosin light chain 3	491	7	45	0.99	7	8 10
MYL6B_HUMAN	Myosin light chain 6B	308	5	23	1.51	5	14.80
MYOM1_HUMAN	Myomesin-1	328	5	4	1.37	5	21.37
MYOM2_HUMAN	Myomesin-2	274	5	4	1,02	5	15,88
MYOTI_HUMAN	Myotilin	574	10	23	2,76	10	92,88
MYOZ1_HUMAN	Myozenin-1	166	4	19	0.98!	2	10,05
MYOZ2_HUMAN	Myozenin-2	91	2	11	1,24	2	23,20
MYPC1_HUMAN	Myosin-binding protein C, slow-type	656	14	13	1,09	12	13,10
NDUA4_HUMAN	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4	43	1	12	1,79	1	
NEBU_HUMAN	Nebulin	559	14	2	1,12	13	11,87
PDLI3_HUMAN	PDZ and LIM domain protein 3	75	2	7	1,39	2	5,29
PGAM2_HUMAN	Phosphoglycerate mutase 2	45	1	4	1,11	1	
PGK1_HUMAN	Phosphoglycerate kinase 1	194	3	7	1,14	3	11,96
PIGR_HUMAN	Polymeric immunoglobulin receptor	110	2	3	2,02	2	57,22
QCR2_HUMAN	Cytochrome b-c1 complex subunit 2,	82	2	7	1,64	2	20,68
RL40_HUMAN	Ubiquitin-60S ribosomal protein L40	161	3	24	1,90	3	8,61
ROA2_HUMAN	Heterogeneous nuclear ribonucleoproteins A2/B1	84	2	7	1,91	2	2,22
SQSTM_HUMAN	Sequestosome-1	76	1	6	7,35	1	
SYPL2_HUMAN	Synaptophysin-like protein 2	67	1	6	1,64	1	
THIL_HUMAN	Acetyl-CoA acetyltransferase, mitochondrial	57	1	4	1,97	1	
TITIN_HUMAN	Titin	5742	115	5	1.16!	108	20,71
TNNC1_HUMAN	Troponin C, slow skeletal and	106	1	14	0,89	1	
TNNI2_HUMAN	Troponin I, fast skeletal muscle	48	1	8	1,23	1	
TNNT3_HUMAN	Troponin T, fast skeletal muscle	46	1	3	0,82	1	
TPIS_HUMAN	Triosephosphate isomerase	74	2	7	1,27	2	0,26
TPM1_HUMAN	Tropomyosin alpha-1 chain	355	3	12	1,06	3	30,48
TPM2_HUMAN	Tropomyosin beta chain	528	10	24	1,03	10	22,63
TPM3_HUMAN	Tropomyosin alpha-3 chain	318	3	15	1,25	3	3,43
TRFL_HUMAN	Lactotransferrin	551	10	15	1,35	8	17,89
U17L3_HUMAN	Ubiquitin carboxyl-terminal hydrolase 17-like protein 3	42	1	1	1,65	1	
USMG5_HUMAN	Up-regulated during skeletal muscle	63	1	26	1,45	1	

 growth protein 5
 00
 20
 4

 AG=Aggregate; NK=morphologisch normale Patientenzellen; Pep = Peptide; SC=sequence coverage

6.12 Quantitative Analyse Patient 6

	PROTEIN	IDENTIFIKATION	REGULATION	# PEPTIDE	ABWEICHUNG
Accession	Protein	Score	AG/NK	AG/NK	AG/NK
ACTA_HUMAN	Actin, aortic smooth muscle	1532	1,85	21	42,3
ACTN2_HUMAN	Alpha-actinin-2	866	1,47	15	24,8

ACTS_HUMAN	Actin, alpha skeletal muscle	1731	1,72	24	43,8
ALBU_HUMAN	Serum albumin	206	1,43	5	14,7
ALDOA_HUMAN	Fructose-bisphosphate aldolase A	466	1,22	7	23,7
ALDOC_HUMAN	Fructose-bisphosphate aldolase C	130	1,01	1	,
ALDR_HUMAN	Aldose reductase	46	1,40	1	
AT2A1_HUMAN	Sarcoplasmic/endoplasmic reticulum	412	1.09	7	18 7
CAH3_HUMAN	calcium ATPase 1 Carbonic anhydrase 3	487	2,27	9	51,6
CO1A1_HUMAN	Collagen alpha-1 chain	99	2.21	1	,
COF2_HUMAN	Cofilin-2	133	1.54	2	11.9
CRYAB_HUMAN	Alpha-crystallin B chain	91	3.16	2	53.8
CSRP3_HUMAN	Cysteine and glycine-rich protein 3	76	1.13	1) -
CYTA_HUMAN	Cystatin-A	127	3.49	2	14.0
DCD_HUMAN	Dermcidin	60	1.09	1	2.5
DESM_HUMAN	Desmin	765	2.08	15	40.1
EF1A2_HUMAN	Elongation factor 1-alpha 2	200	1.85	4	24.4
ENOB_HUMAN	Beta-enolase	206	1.26	4	17.5
FHL1_HUMAN	Four and a half LIM domains protein 1	615	1.71	8	51.2
FLNC_HUMAN	Filamin-C	2570	2.09	44	36.2
G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	266	1.00	5	11.9
GELS_HUMAN	Gelsolin	79	1,00	1	11,9
GSTM5_HUMAN	Glutathione S-transferase Mu 5	42	1,75	1	
HBB_HUMAN	Hemoglobin subunit beta	118	1.81	2	14.1
HSP7C_HUMAN	Heat shock cognate 71 kDa protein	260	1,01	4	24.8
HSPB1_HUMAN	Heat shock protein beta-1	178	1.57	2	11.7
KAD1_HUMAN	Adenylate kinase isoenzyme 1	250	1.14	4	15.3
KBTBA_HUMAN	Kelch repeat and	187	1.64	1	12.3
KCRM HUMAN	BTB domain-containing protein 10 Creatine kinase M-type	624	1,04	11	12,5
KPYM HUMAN	Pyruvate kinase isozymes M1/M2	034	1,67	11 6	19,1
LDB3 HUMAN	LIM domain-binding protein 3	237	1,61	0	27,0
LDHA HUMAN	L-lactate dehvdrogenase A chain	169	1,43	2	20,0
MLE1 HUMAN	Myosin light chain 1.	108	1,54	5	9,4
	skeletal muscle isoform	405	1,82	6	44,3
MLRS_HUMAN	Myosin regulatory light chain 2, skeletal muscle isoform	682	1,55	12	36,4
MLRV_HUMAN	ventricular/cardiac muscle isoform	246	1,45	5	35,6
MYG_HUMAN	Myoglobin	271	1,44	4	26,8
MYH1_HUMAN	Myosin-1	3480	1,41	57	28,6
MYH2_HUMAN	Myosin-2	4006	1,57	64	32,5
MYH7_HUMAN	Myosin-7	1921	1,52	37	30,7
MYL3_HUMAN	Myosin light chain 3	275	1,80	5	10,8
MYL6B_HUMAN	Myosin light chain 6B	148	2,63	2	38,6
MYOM1_HUMAN	Myomesin-1	73	1,22	2	26,4
MYOM2_HUMAN	Myomesin-2	209	1,16	4	12,9
MYOTI_HUMAN	Myotilin	115	2,05	3	29,5
MYOZ1_HUMAN	Myozenin-1	121	1,33	2	11,6
MYPC1_HUMAN	Myosin-binding protein C, slow-type	405	1,37	8	18,7
MYPC2_HUMAN	Myosin-binding protein C, fast-type	251	1,18	5	21,1
NEBU_HUMAN	Nebulin	548	1,36	12	27,7

NRAP_HUMAN	Nebulin-related-anchoring protein	147	1,53	3	22,4
PEBP1_HUMAN	Phosphatidylethanolamine-binding protein 1	45	1,28	1	
PGAM2_HUMAN	Phosphoglycerate mutase 2	89	1,02	2	15,6
PGK1_HUMAN	Phosphoglycerate kinase 1	164	1,34	4	20,2
PGM1_HUMAN	Phosphoglucomutase-1	77	1,94	1	
PRDX2_HUMAN	Peroxiredoxin-2	43	1,28	1	
PYGM_HUMAN	Glycogen phosphorylase, muscle form	184	1,15	4	24,5
rndZC3HF_HUMAN	Zinc finger CCCH domain-containing protein 15	56	1,24	1	
RTN4_HUMAN	Reticulon-4	49	1,28	1	
SYNP2_HUMAN	Synaptopodin-2	136	1,44	2	7,9
SYP2L_HUMAN	Synaptopodin 2-like protein	51	1,40	1	
TBB2A_HUMAN	Tubulin beta-2A chain	60	2,08	1	
TITIN_HUMAN	Titin	3601	1,32	64	21,8
TNNC2_HUMAN	Troponin C, skeletal muscle	344	1,57	5	32,0
TNNT3_HUMAN	Troponin T, fast skeletal muscle	255	1,38	4	51,7
TPIS_HUMAN	Triosephosphate isomerase	229	1,58	4	29,8
TPM1_HUMAN	Tropomyosin alpha-1 chain	296	1,51	6	21,0
TPM2_HUMAN	Tropomyosin beta chain	334	1,79	7	22,0
XIRP2_HUMAN	Xin actin-binding repeat-containing protein 2	197	2,94	3	68,5

 $AG\!\!=\!\!Aggregate; NK\!\!=\!\!morphologisch \ normale \ Patientenzellen$

6.13 Quantitative Analyse Patient 7

	PROTEIN	IDENTIFIKATION	REGULATION	# PEPTIDE	ABWEICHUNG
Accession	Protein	Score	AG/NK	AG/NK	AG/NK
ACADV_HUMAN	Very long-chain specific acyl-CoA	85	1,13	2	15,4
ACON_HUMAN	Aconitate hydratase, mitochondrial	42	1,14	1	
ACTC_HUMAN	Actin, alpha cardiac muscle 1	1568	1,07	20	23,7
ACTN1_HUMAN	Alpha-actinin-1	176	1,08	2	7,9
ACTN2_HUMAN	Alpha-actinin-2	1153	1,05	18	19,6
ACTS_HUMAN	Actin, alpha skeletal muscle	2066	1,03	26	18,9
ALBU_HUMAN	Serum albumin	146	1,59	3	20,5
ALDOA_HUMAN	Fructose-bisphosphate aldolase A	517	0,99	6	25,9
ALDOC_HUMAN	Fructose-bisphosphate aldolase C	72	1,00	1	
ANKR2_HUMAN	Ankyrin repeat domain-containing protein 2	63	1,45	1	
AT2A2_HUMAN	Sarcoplasmic/endoplasmic reticulum	133	1,16	2	27,2
ATPB_HUMAN	ATP synthase subunit beta, mitochondrial	246	1,21	4	8,8
CAH3_HUMAN	Carbonic anhydrase 3	476	1,38	8	17,1
CASQ1_HUMAN	Calsequestrin-1	107	0,96	2	19,3
CASQ2_HUMAN	Calsequestrin-2	50	1,12	1	
CO1A1_HUMAN	Collagen alpha-1 chain	111	1,59	2	51,8
COX41_HUMAN	Cytochrome c oxidase subunit 4 isoform 1, mitochondrial	57	1,16	1	
CSRP3_HUMAN	Cysteine and glycine-rich protein 3	150	0,80	1	
DESM_HUMAN	Desmin	572	1,42	9	17,0
ECHA_HUMAN	Trifunctional enzyme subunit alpha, mitochondrial	46	0,91	1	
ENOB_HUMAN	Beta-enolase	244	1,08	3	12,1

FA86C_HUMAN	Protein FAM86C	42	1.03	1	
FHL1_HUMAN	Four and a half LIM domains protein 1	432	1.37	5	7.5
FLNC_HUMAN	Filamin-C	1260	1.34	21	18.5
G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	382	1.00	5	21.2
HBA_HUMAN	Hemoglobin subunit alpha	403	1.46	6	26.8
HBB_HUMAN	Hemoglobin subunit beta	454	1.53	7	19.2
HSPB1_HUMAN	Heat shock protein beta-1	95	1.29	1	- 3
HSPB6_HUMAN	Heat shock protein beta-6	54	1.61	1	
IDHP_HUMAN	Isocitrate dehydrogenase [NADP],	53	1 38	1	
KAD1_HUMAN	mitochondrial Adenylate kinase isoenzyme 1	163	1,12	3	11,6
KBTBA_HUMAN	Kelch repeat and PTP domain containing protein 10	231	1,20	6	7,3
KCRM_HUMAN	Creatine kinase M-type	937	1,09	14	14,8
KCRS_HUMAN	Creatine kinase, sarcomeric mitochondrial	66	1,32	1	,
KPYM_HUMAN	Pyruvate kinase isozymes M1/M2	159	1,03	3	27,3
LDB3_HUMAN	LIM domain-binding protein 3	329	1.07	4	12.5
LDHA_HUMAN	L-lactate dehydrogenase A chain	135	1.12	3	1.7
MDHC_HUMAN	Malate dehydrogenase, cytoplasmic	102	1.21	2	18.6
MLE3_HUMAN	Myosin light chain 3,	580	1,00	- 7	26.2
MIRS HUMAN	skeletal muscle isoform Myosin regulatory light chain 2	569	1,00	/	20,2
	skeletal muscle isoform	356	0,91	5	16,4
MLRV_HUMAN	Myosin regulatory light chain 2, ventricular/cardiac muscle isoform	998	1,07	13	27,5
MYG_HUMAN	Myoglobin	515	1,12	6	13,5
MYH1_HUMAN	Myosin-1	3188	0,91	41	26,7
MYH2_HUMAN	Myosin-2	4202	0,83	55	26,1
MYH6_HUMAN	Myosin-6	3323	0,97	41	21,8
MYH7_HUMAN	Myosin-7	5908	1,00	71	23,8
MYL3_HUMAN	Myosin light chain 3	824	1,16	13	25,9
MYL6B_HUMAN	Myosin light chain 6B	273	1,16	6	12,8
MYOM1_HUMAN	Myomesin-1	137	1,11	3	15,1
MYOM2_HUMAN	Myomesin-2	286	0,92	6	6,3
MYOTI_HUMAN	Myotilin	121	1,32	3	26,2
MYOZ1_HUMAN	Myozenin-1	88	0,72	1	
MYOZ2_HUMAN	Myozenin-2	50	1,05	1	
MYPC1_HUMAN	Myosin-binding protein C, slow-type	862	1,09	14	15,8
NDUA4_HUMAN	NADH dehydrogenase [ubiquinone] 1	55	1,16	1	
NEBU_HUMAN	Nebulin	329	1.08	6	12.9
PDLI3_HUMAN	PDZ and LIM domain protein 3	53	1,58	1	,>
PGK1_HUMAN	Phosphoglycerate kinase 1	270	1.13	4	13.1
PYGM_HUMAN	Glycogen phosphorylase, muscle form	129	1.09	2	11.8
rndMUC16_HUMAN	Mucin-16	103	1 57	1	,•
TITIN_HUMAN	Titin	3053	1.14	74	14.2
TNNC1_HUMAN	Troponin C, slow skeletal and	506	1.04	6	22.0
TNNC2 HUMAN	cardiac muscles Troponin C, skeletal muscle	246	1,04	6	15 4
TNNI1 HUMAN	Troponin I, slow skeletal muscle	340 40	1,01	0	10,4
TPIS HUMAN	Triosephosphate isomerase	09	1,00		()
TPM1 HUMAN	Tropomyosin alpha-1 chain	100	1,04	2 2	0,2
TPM3 HUMAN	Tropomyosin alpha-3 chain	199	0,92	2 2	2,4
		202	0,89	3	5,0

UBIQ_HUMAN Ubiquitin	73	1,11	1	
VDAC1_HUMAN Voltage-dependent anion-selective channel protein 1	129	1,16	2	9,3

AG=Aggregate; NK=morphologisch normale Patientenzellen

6.14 Quantitative Analyse Patient 8

	PROTEIN	IDENTIFIKATION	REGULATION	# PEPTIDE	ABWEICHUNG
Accession	Protein	Score	AG/NK	AG/NK	AG/NK
ACADV_HUMAN	Very long-chain specific acyl-CoA	112	1.04	3	28.3
ACON_HUMAN	dehydrogenase, mitochondrial Aconitate hydratase, mitochondrial	318	1 14	5	29.7
ACTA_HUMAN	Actin, aortic smooth muscle	1596	1,12	23	91 2
ACTN2_HUMAN	Alpha-actinin-2	1408	1,00	22	30.6
ACTS_HUMAN	Actin, alpha skeletal muscle	1902	0.98	28	89.6
AKCL1_HUMAN	Aldo-keto reductase family 1 member C-like	58	0.84	1	0,,0
AL9A1 HUMAN	protein 1 4-trimethylaminobutyraldehyde dehydrogenase	91	1,17	1	
ALBU HUMAN	Serum albumin	81	1,17	1 0	21.4
ALDOC HUMAN	Fructose-bisphosphate aldolase C	400	1,51	0	51,4
ALDR HUMAN	Aldose reductase	128	0,78	1	
ANKR2 HUMAN	Ankyrin repeat domain-containing protein 2	41	0,82	1	44.4
ANXA6 HUMAN	Annexin A6	108	0,79	2	44,4
AT2A2 HUMAN	Sarconlasmic/endonlasmic reticulum	157	0,88	3	3,1
	calcium ATPase 2	215	0,90	4	20,1
ATSFI_HUMAN	ATP synthase subunit b, mitochondrial	73	1,06	1	
ATP5L_HUMAN	ATP synthase subunit g, mitochondrial	47	1,26	1	
ATPA_HUMAN	ATP synthase subunit alpha, mitochondrial	537	1,18	9	14,4
ATPB_HUMAN	ATP synthase subunit beta, mitochondrial	743	1,25	10	24,5
ATPO_HUMAN	ATP synthase subunit O, mitochondrial	169	1,14	3	29,8
BIN1_HUMAN	Myc box-dependent-interacting protein 1	285	1,02	3	3,9
CAH3_HUMAN	Carbonic anhydrase 3	489	1,33	8	77,7
CASQ1_HUMAN	Calsequestrin-1	98	1,15	2	54,4
CASQ2_HUMAN	Calsequestrin-2	212	1,12	4	24,6
CISY_HUMAN	Citrate synthase, mitochondrial	114	1,13	2	5,4
CO1A1_HUMAN	Collagen alpha-1 chain	83	1,55	1	
COF2_HUMAN	Cofilin-2	241	1,06	3	13,2
CRYAB_HUMAN	Alpha-crystallin B chain	174	1,70	3	16,6
CX7A1_HUMAN	Cytochrome c oxidase polypeptide 7A1,	62	1,04	1	
DESM_HUMAN	Desmin	915	1,40	15	44,8
ECHB_HUMAN	Trifunctional enzyme subunit beta,	107	0,97	2	22,4
ECHM_HUMAN	Enoyl-CoA hydratase, mitochondrial	92	1,07	1	
EF1A1_HUMAN	Elongation factor 1-alpha 1	171	1,18	2	18,9
EF2_HUMAN	Elongation factor 2	77	0.92	2	30.5
ENOB_HUMAN	Beta-enolase	171	1.43	2	0.9
F10A4_HUMAN	Protein FAM10A4	70	1.19	1	- 3-
FHL1_HUMAN	Four and a half LIM domains protein 1	557	0.82	9	55.3
FILA2_HUMAN	Filaggrin-2	67	2.96	1	,-
FLNC_HUMAN	Filamin-C	1512	0.95	23	30.7
G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	533	1.00	25 7	30.4
FLNC_HUMAN G3P_HUMAN	Filamin-C Glyceraldehyde-3-phosphate dehydrogenase	1512 533	0,95 1,00	23 7	30,7 30,4

G6PI_HUMAN	Glucose-6-phosphate isomerase	77	1,00	2	20,5
GELS_HUMAN	Gelsolin	57	1,41	1	,
GPDA_HUMAN	Glycerol-3-phosphate dehydrogenase [NAD+],	64	1.03	1	
GRP75_HUMAN	cytoplasmic Stress-70 protein, mitochondrial	105	1 14	3	16.7
GSTM2_HUMAN	Glutathione S-transferase Mu 2	225	0.73	4	27.6
H2AV_HUMAN	Histone H2A.V	57	1 30	1	27,0
HBA_HUMAN	Hemoglobin subunit alpha	248	0.84	4	34.1
HBB_HUMAN	Hemoglobin subunit beta	340	1.09	5	44.7
HINT1_HUMAN	Histidine triad nucleotide-binding protein 1	71	1.52	1	,,
HS90A_HUMAN	Heat shock protein HSP 90-alpha	110	1,12	2	14,4
HSP71_HUMAN	Heat shock 70 kDa protein 1	292	1,06	4	30,3
HSP7C_HUMAN	Heat shock cognate 71 kDa protein	355	0,97	7	20,6
HSPB1_HUMAN	Heat shock protein beta-1	128	1,33	2	57,8
HSPB2_HUMAN	Heat shock protein beta-2	144	0,86	2	31,2
HSPB6_HUMAN	Heat shock protein beta-6	54	1,39	1	
IDHP_HUMAN	Isocitrate dehydrogenase [NADP], mitochondrial	90	0,96	2	37,4
KAD1_HUMAN	Adenylate kinase isoenzyme 1	56	0,98	1	
KBTBA_HUMAN	Kelch repeat and	271	1,20	5	38,8
KCRB_HUMAN	Creatine kinase B-type	51	1.11	1	
KCRM_HUMAN	Creatine kinase M-type	843	1,34	12	36,0
KCRS_HUMAN	Creatine kinase, sarcomeric mitochondrial	136	1,10	1	,
KPYM_HUMAN	Pyruvate kinase isozymes M1/M2	212	1,12	4	33,0
LDB3_HUMAN	LIM domain-binding protein 3	240	0,88	5	22,4
LDHA_HUMAN	L-lactate dehydrogenase A chain	58	0,93	1	
LDHB_HUMAN	L-lactate dehydrogenase B chain	55	1,57	1	
MDHC_HUMAN	Malate dehydrogenase, cytoplasmic	115	0,94	2	4,8
MDHM_HUMAN	Malate dehydrogenase, mitochondrial	193	0,85	3	17,5
MLE3_HUMAN	Myosin light chain 3, skeletal muscle isoform	525	2,05	7	28,6
MLRS_HUMAN	Myosin regulatory light chain 2,	212	0,79	4	54,6
MLRV_HUMAN	Myosin regulatory light chain 2, ventricular/cardiac muscle isoform	761	1,07	10	49,3
MPCP_HUMAN	Phosphate carrier protein, mitochondrial	68	1,92	1	
MYBPH_HUMAN	Myosin-binding protein H	84	1,19	2	0,4
MYG_HUMAN	Myoglobin	243	2,20	4	69,3
MYH2_HUMAN	Myosin-2	1192	1,05	19	42,2
MYH7_HUMAN	Myosin-7	4282	1,11	62	52,2
MYL3_HUMAN	Myosin light chain 3	523	1,19	8	59,2
MYL6B_HUMAN	Myosin light chain 6B	634	2,52	9	56,1
MYO5A_HUMAN	Myosin-Va	50	2,48	1	
MYOM1_HUMAN	Myomesin-1	313	0,97	7	31,9
MYOM2_HUMAN	Myomesin-2	425	0,86	9	30,3
MYOM3_HUMAN	Myomesin-3	120	1,06	3	6,8
MYOTI_HUMAN	Myotilin	139	1,06	3	18,8
MYOZI_HUMAN	Myozenin-1	82	0,75	1	
MYOZ2_HUMAN	Myozenin-2	160	1,17	2	22,8
MYPCI_HUMAN	Myosin-binding protein C, slow-type	1148	0,90	18	23,4
NB3KI_HUMAN	NADH-cytochrome b5 reductase 1	184	0,95	4	26,5

NB5R3_HUMAN	NADH-cytochrome b5 reductase 3	52	0,89	1	
NDUA4_HUMAN	NADH dehydrogenase [ubiquinone] 1	68	1.45	1	
NDUB3_HUMAN	alpha subcomplex subunit 4 O NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3	57	0,97	1	
NEBU_HUMAN	Nebulin	1335	0,85	27	24,7
NRAP_HUMAN	Nebulin-related-anchoring protein	42	1,31	1	
ODP2_HUMAN	Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial	50	0,97	1	
ODPA_HUMAN	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	46	1,13	1	
PADI2_HUMAN	Protein-arginine deiminase type-2	303	1,13	6	19,7
PDLI3_HUMAN	PDZ and LIM domain protein 3	255	1,07	3	13,4
PEBP1_HUMAN	Phosphatidylethanolamine-binding protein 1	94	1,25	2	0,7
PGAM2_HUMAN	Phosphoglycerate mutase 2	58	0,76	1	
PGK1_HUMAN	Phosphoglycerate kinase 1	192	0,69	2	23,7
PGM1_HUMAN	Phosphoglucomutase-1	98	1,06	2	27,0
PHB_HUMAN	Prohibitin	85	1,12	2	3,4
PIMT_HUMAN	Protein-L-isoaspartate O-methyltransferase	55	0,92	1	
PLEC1_HUMAN	Plectin-1	92	1,12	1	
PRDX5_HUMAN	Peroxiredoxin-5, mitochondrial	64	1,08	1	
PRDX6_HUMAN	Peroxiredoxin-6	164	1.53	4	21.2
PRS6B_HUMAN	26S protease regulatory subunit 6B	48	1.21	1	2
PYGM_HUMAN	Glycogen phosphorylase, muscle form	344	1.51	6	26.1
QCR2_HUMAN	Cytochrome b-c1 complex subunit 2, mitochondrial	95	1,56	2	45.8
RINI_HUMAN	Ribonuclease inhibitor	42	0.79	-	,0
rndDVL3_HUMAN	Segment polarity protein	42	0,97	1	
_ SAP_HUMAN	dishevelled homolog DVL-3 Proactivator polypeptide	42 40	0,86	1	
SAR1A_HUMAN	GTP-binding protein SAR1a	82	1,09	1	
TBA1B_HUMAN	Tubulin alpha-1B chain	163	0.90	3	36.4
TBA4A_HUMAN	Tubulin alpha-4A chain	212	0.89	3	36.8
TBB2C_HUMAN	Tubulin beta-2C chain	136	1.28	2	3.7
TBB5_HUMAN	Tubulin beta chain	122	1.38	2	3.8
TITIN_HUMAN	Titin	14375	0.97	243	26.8
TNNC1_HUMAN	Troponin C, slow skeletal and cardiac muscles	153	0,70	3	46.3
TNNC2_HUMAN	Troponin C, skeletal muscle	65	0.73	1	10,5
TNNI1_HUMAN	Troponin I, slow skeletal muscle	243	1.07	4	33.6
TNNT1 HUMAN	Troponin T, slow skeletal muscle	125	0.79	2	4.6
TPIS HUMAN	Triosephosphate isomerase	291	0.85	3	43.9
TPM2 HUMAN	Tropomyosin beta chain	207	1 31	4	20.4
TPM3 HUMAN	Tropomyosin alpha-3 chain	214	1.35	4	13.2
TRI72 HUMAN	Tripartite motif-containing protein 72	65	0.78	1	15,2
- TRY2 HUMAN	Trypsin-2	48	0,78	1	
UGPA HUMAN	UTPglucose-1-phosphate uridvlvltransferase	40	0,02	1	
USMG5 HUMAN	Up-regulated during skeletal muscle growth protein 5	110	1.79	1	
VDAC1 HUMAN	Voltage-dependent anion-selective channel protein 1	110	1,/8		25.2
VDAC2 HUMAN	Voltage-dependent anion-selective channel protein 2	430	1,45	0	20,0
VDAC3 HUMAN	Voltage-dependent anion-selective channel protein 3	90	1,19	2	20,0
, 5/105_11010/1/10	source dependent amon selective channel protein 5	193	0,86	3	72,9

 $AG\!\!=\!\!Aggregate; NK\!\!=\!\!morphologisch normale Patientenzellen$

	PROTEIN	IDEN	TIFIKA (Score)	TION		REGULATIO	ON		# PEPTIDI			ABWEICHU	NG
Accession	Protein	472	1780	1781	472/471	1780/1782	1781/1783	472/471	1780/1782	1781/1783	472/471	1780/1782	1781/1783
1433G_MOUSE	14-3-3 protein gamma		99			1,51			2			15,56	
AATC_MOUSE	Aspartate aminotransferase, cytoplasmic		194			1,45			5			21,41	
AATM_MOUSE	Aspartate aminotransferase, mitochondrial		98			1,00			1				
ACADL_MOUSE	Long-chain specific acyl-CoA dehydrogenase, mitochondrial		172			1,39			3			9,35	
ACTA_MOUSE	Actin, aortic smooth muscle		2188			0,65			32			35,02	
ACON_MOUSE	Aconitate hydratase, mitochondrial		942	432		1,31	1,19		16	8		19,76	10,09
ACSL5_MOUSE	Long-chain-fatty-acidCoA ligase 5			48			1,38			1			
ACTN1_MOUSE	Alpha-actinin-1		565			0,97			7			24,88	
ACTN2_MOUSE	Alpha-actinin-2	238			1,00			4					
ACTB_MOUSE	Actin, cytoplasmic 1		1147	530		0,77	0,64		19	9		40,57	30,17
ACTN2_MOUSE	Alpha-actinin-2		2294	507		0,90	0,85		34	8		26,91	19,41
ACTS_MOUSE	Actin, alpha skeletal muscle	1007	2863	1241	0,60	0,64	0,67	13	38	16		40,06	30,48
ADCK3_MOUSE	Chaperone activity of bc1 complex-like, mitochondrial		42	49		1,85	0,96		1	1			
ADT1_MOUSE	ADP/ATP translocase 1		405	213		1,74	1,88		7	3		29,89	10,3
ALBU_MOUSE	Serum albumin	89	1130	459	1,31	1,40	1,19	2	15	8		15,32	19,89
ALDOA_MOUSE	Fructose-bisphosphate aldolase A	231	817	577	1,09	0,88	1,07	3	12	8		15,22	14,95
ALDR_MOUSE	Aldose reductase		82		-	1,12			2			2,95	
ANKR2_MOUSE	Ankyrin repeat domain-containing protein 2		117	73		1,10	1,12		2	2		15,72	2,44
ANXA2_MOUSE	Annexin A2		145			1,71			2			0,27	
ANXA5_MOUSE	Annexin A5		41			1,44			1				
ANXA6_MOUSE	Annexin A6		238	154		1,33	1,10		5	2		13,35	12,39
AT1B1_MOUSE	Sodium/potassium-transporting ATPase subunit beta-1		46			2,30			1				ŕ
AT2A1_MOUSE	Sarcoplasmic/endoplasmic reticulum calcium ATPase 1		729	516		1,15	0,96		11	9		12,05	14,37

6.15 Quantitative Analyse Plectin-KO-Mäuse

AT2A2_MOUSE	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2		444			1,18			7			23,93	
AT5F1_MOUSE	ATP synthase subunit b, mitochondrial		51	62		1,56	1,34		1	1			
ATP5H_MOUSE	ATP synthase subunit d, mitochondrial		145	59		1,35	1,37		3	1		5,65	
ATPA_MOUSE	ATP synthase subunit alpha, mitochondrial	103	930	499	1,81	1,54	1,35	3	15	8		11,87	10,57
ATPB_MOUSE	ATP synthase subunit beta, mitochondrial	80	1227	972	1,25	1,48	1,28	1	20	15		28,3	15,57
ATPK_MOUSE	ATP synthase subunit f, mitochondrial			57			1,32			1			
ATPO_MOUSE	ATP synthase subunit O, mitochondrial		149	107		1,74	1,35		3	2		4,56	1,15
BDH_MOUSE	D-beta-hydroxybutyrate dehydrogenase, mitochondrial		69	84		1,19	1,18		1	1			
CAH3_MOUSE	Carbonic anhydrase 3	160	704	304	1,01	0,98	0,74	2	10	4		17,63	5,13
CASQ2_MOUSE	Calsequestrin-2		134			1,35			3			20,73	
CISY_MOUSE	Citrate synthase, mitochondrial		62	76		1,36	1,05		1	1			
CMC1_MOUSE	Calcium-binding mitochondrial carrier protein Aralar1		59	70		1,51	1,85		1	1			
CO1A1_MOUSE	Collagen alpha-1(I) chain			99			1,77			1			
CO6A1_MOUSE	Collagen alpha-1(VI) chain		50	119		1,95	0,98		1	2			16,56
CO6A2_MOUSE	Collagen alpha-2(VI) chain		45	55		1,45	1,27		1	1			
COX2_MOUSE	Cytochrome c oxidase subunit 2		48			1,55			1				
COX41_MOUSE	Cytochrome c oxidase subunit 4 isoform 1, mitochondrial		190	96		1,54	1,33		5	2		27,76	3,9
COX5A_MOUSE	Cytochrome c oxidase subunit 5A, mitochondrial		41	46		1,60	1,17		1	1			
COX6C_MOUSE	Cytochrome c oxidase subunit 6C			40			1,63			1			
CRYAB_MOUSE	Alpha-crystallin B chain		185	47		1,07	0,95		3	1		3,9	
CSRP3_MOUSE	Cysteine and glycine-rich protein 3		75	120		0,75	0,74		1	1			
CX6B1_MOUSE	Cytochrome c oxidase subunit 6B1			67			1,09			1			
CX7A1_MOUSE	Cytochrome c oxidase polypeptide 7A1, mitochondrial		59			1,47			1				
CY1_MOUSE	Cytochrome c1, heme protein, mitochondrial			41			1,36			1			
DESM_MOUSE	Desmin		715	416		1,38	1,17		14	7		24,91	19,42
DHSA_MOUSE	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial			53			1,34			1			
DHSB_MOUSE	Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial		69	73		1,73	1,30		2	2		13,66	13,99
ECHA_MOUSE	Trifunctional enzyme subunit alpha, mitochondrial		160	83		1,62	1,07		4	2		8,25	0,11

<u>Anhang</u>

ECHB_MOUSE	Trifunctional enzyme subunit beta, mitochondrial			78			1,42			1		
ECHM_MOUSE	Enoyl-CoA hydratase, mitochondrial		72	77		1,09	1,40		1	1		
EF1A1_MOUSE	Elongation factor 1-alpha 1		97	54		1,45	1,07		2	1	4,46	
EFTU_MOUSE	Elongation factor Tu, mitochondrial		52			1,17	ŕ		1		,	
ENOA_MOUSE	Alpha-enolase			129			0,88			2		17,96
ENOB_MOUSE	Beta-enolase		600	159		1,36	1,04		7	3	28,78	18,95
ETFB_MOUSE	Electron transfer flavoprotein subunit beta		162	162		1,32	1,04		4	4	9,29	7,89
FBN1_MOUSE	Fibrillin-1		111			2,47			2		4,78	
FHL1_MOUSE	Four and a half LIM domains protein 1	161	996	196	1.68!	0,95	0,71	3	14	3	29,31	11,61
FLNC_MOUSE	Filamin-C		1275	551		1,16	0,96		22	10	23,86	11,36
FRIH_MOUSE	Ferritin heavy chain		44			1,38			1			
G3P_MOUSE	Glyceraldehyde-3-phosphate dehydrogenase	81	1038	575	0,73	1,00	1,00	1	13	9	25,67	15,34
G6PI_MOUSE	Glucose-6-phosphate isomerase		44			1,57			1			
GRP75_MOUSE	Stress-70 protein, mitochondrial		46	163		1,76	1,19		1	3		7,7
GRP78_MOUSE	78 kDa glucose-regulated protein		165			1,31			3		15,84	
H2A1H_MOUSE	Histone H2A type 1-H		78			2,11			2		0,64	
H2AV_MOUSE	Histone H2A.V			46			1,18			1		
H2B1C_MOUSE	Histone H2B type 1-C/E/G		113			2,62			2		17,56	
H4_MOUSE	Histone H4			44			1,56			1		
HBA_MOUSE	Hemoglobin subunit alpha		233			1,02			5		23,76	
HBB1_MOUSE	Hemoglobin subunit beta-1		604			1,17			7		25,65	
HS71A_MOUSE	Heat shock 70 kDa protein 1A		174			1,44			3		4,9	
HS90B_MOUSE	Heat shock protein HSP 90-beta			99			1,06			2		2,5
HSP7C_MOUSE	Heat shock cognate 71 kDa protein		508	309		1,34	1,08		10	5	17,57	9,65
HSPB1_MOUSE	Heat shock protein beta-1		179	161		1,00	0,95		3	3	22,72	22,07
HSPB6_MOUSE	Heat shock protein beta-6		181	78		1,20	0,86		4	2	22,18	19,91
IDHP_MOUSE	Isocitrate dehydrogenase [NADP], mitochondrial	54	245		0,89	1,29		1	4		17,62	
K6PF_MOUSE	6-phosphofructokinase, muscle type		159			1,21			5		18,57	
KAD1_MOUSE	Adenylate kinase isoenzyme 1		179	138		1,54	1,02		3	2	1,81	7,32

KCRM_MOUSE	Creatine kinase M-type	480	1284	551	1,03	1,02	1,05	9	20	8	26,	,06	13,16
KCRS_MOUSE	Creatine kinase, sarcomeric mitochondrial	26	430	441	1,50	1,47	1,65	1	8	7	25,	,56	40,2
KPYM_MOUSE	Pyruvate kinase isozymes M1/M2		581	215		1,24	1,08		9	5	21,	,96	14,62
LDB3_MOUSE	LIM domain-binding protein 3		412	134		1,28	0,82		6	2	4	6	12,96
LDHA_MOUSE	L-lactate dehydrogenase A chain		325			1,18			5		13,	,52	
LDHB_MOUSE	L-lactate dehydrogenase B chain		145	53		1,27	1,09		3	1	8,4	46	
LPLC1_MOUSE	Long palate, lung and nasal epithelium carcinoma-associated protein 1		74			5,06			1				
MDHC_MOUSE	Malate dehydrogenase, cytoplasmic		334			1,16			5		16,	,14	
MDHM_MOUSE	Malate dehydrogenase, mitochondrial		625	60		1,26	1,10		10	1	11,	,43	
MLE3_MOUSE	Myosin light chain 3, skeletal muscle isoform		654			0,78			9		29,	,46	
MLRS_MOUSE	Myosin regulatory light chain 2, skeletal muscle isoform	408	1299	351	0,99	0,85	0,81	4	17	4	52,	,08	27,03
MLRV_MOUSE	Myosin regulatory light chain 2, ventricular/cardiac muscle isoform	28	953	224	3,23	0,64	0,84	1	12	4	44,	,63	19,29
MPCP_MOUSE	Phosphate carrier protein, mitochondrial	41	199	190	1,80	1,78	1,49	1	4	4	22,	,54	12,04
MYG_MOUSE	Myoglobin	313	830	264	0,31	1,10	0,89	3	10	3	40,	,92	51,43
MYH1_MOUSE	Myosin-1	1058	4533	2509	0,84	0,75	0,86	15	64	34	31	,5	21,19
MYH3_MOUSE	Myosin-3	460	2093		0,81	0,75		7	29		28,	,92	
MYH4_MOUSE	Myosin-4		3698	1842		0,73	0,84		51	26	29,	,15	21,74
MYH6_MOUSE	Myosin-6		4815			0,63			59		30,	,41	
MYH7_MOUSE	Myosin-7	1192	7756	1812	0,87	0,64	0,74	17	94	27	37,	,53	23,11
MYH8_MOUSE	Myosin-8		3415	1622		0,78	0,86		48	22	30,	,89	20,25
MYL1_MOUSE	Myosin light chain 1/3, skeletal muscle isoform	160			1,03			2					
MYL3_MOUSE	Myosin light chain 3	359	844	161	0,34	0,72	0,86	4	11	4	42,	,58	14,52
MYL4_MOUSE	Myosin light chain 4			124			0,77			3			6,47
MYL6B_MOUSE	Myosin light chain 6B		365	83		0,92	0,80		5	1	12,	,25	
MYOM1_MOUSE	Myomesin-1		241	45		1,28	1,12		6	1	14,	,49	
MYOTI_MOUSE	Myotilin	30	530	113	0,82	1,08	0,87	1	9	3	22,	,33	19,41
MYOZ2_MOUSE	Myozenin-2		91	54		1,34	0,81		2	1	5,	16	
MYPC2_MOUSE	Myosin-binding protein C, fast-type		43			1,69			1				
					1			1			1		

NDKB_MOUSE	Nucleoside diphosphate kinase B		127	94		1,34	0,89		3	2		1,77	7,08
NDUA4_MOUSE	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4		83	59		1,63	1,54		2	1		16,56	
NDUAC_MOUSE	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12		57	65		1,29	0,89		1	1			
NDUAD_MOUSE	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13		88	78		1,48	1,53		2	2		5,01	12,27
NDUBA_MOUSE	NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10		81	50		1,51	1,47		2	1		9,09	
NDUB4_MOUSE	NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4		42			1,60			1				
NDUC2_MOUSE	NADH dehydrogenase [ubiquinone] 1 subunit C2		42			1,31			1				
NDUF4_MOUSE	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 4	26			2,55			1					
NDUS1_MOUSE	NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial		268	200		1,31	1,30		6	3		26,36	18,39
NDUS3_MOUSE	NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial		79	46		1,34	1,36		2	1		0,54	
NDUV2_MOUSE	NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial		82	67		1,50	1,75		1	1			
ODO1_MOUSE	2-oxoglutarate dehydrogenase E1 component, mitochondrial		101	44		1,62	1,01		3	1		24,17	
ODO2_MOUSE	Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial		47	45		1,72	1,38		1	1			
ODP2_MOUSE	Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial		159	134		1,43	1,16		3	2		8,74	11,88
ODPA_MOUSE	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial		152	144		1,69	1,30		4	4		19,22	4,23
ODPB_MOUSE	Pyruvate dehydrogenase E1 component subunit beta, mitochondrial		229	145		1,58	1,20		3	3		14	16,66
PGAM2_MOUSE	Phosphoglycerate mutase 2		208	142		1,23	0,98		5	3		15,75	8,44
PGM1_MOUSE	Phosphoglucomutase-1		107			1,56			2			2,01	
PGK1_MOUSE	Phosphoglycerate kinase 1		208	186		1,19	1,02		3	3		6,26	1,35
PGS1_MOUSE	Biglycan		50	47		1,54	1,31		1	1			
PHB_MOUSE	Prohibitin		71			1,27			2			8,1	
1					1								

ĺ	PHF8_MOUSE	PHD finger protein 8	33			0,83			1				
	POSTN_MOUSE	Periostin			62			1,27			1		
	PRDX6_MOUSE	Peroxiredoxin-6		82			1,23			2		0,52	
	PRVA_MOUSE	Parvalbumin alpha		210	241		1,47	1,40		3	3	6,62	7,26
	PURA1_MOUSE	Adenylosuccinate synthetase isozyme 1			60			1,21			1		
	PYGM_MOUSE	Glycogen phosphorylase, muscle form		224	88		1,35	1,08		5	1	16,33	
	QCR1_MOUSE	Cytochrome b-c1 complex subunit 1, mitochondrial		156	183		1,53	1,37		3	2	6,63	17,75
	QCR2_MOUSE	Cytochrome b-c1 complex subunit 2, mitochondrial		267	191		1,41	1,10		5	4	11,36	13,51
	QCR7_MOUSE	Cytochrome b-c1 complex subunit 7		56	46		1,89	1,59		1	1		
	rndUBTD1_MOUSE	Ubiquitin domain-containing protein 1		42			0,90	-		1			
	ROA3_MOUSE	Heterogeneous nuclear ribonucleoprotein A3		90			2,68			1			
	SMTL1_MOUSE	Smoothelin-like protein 1			42			1,05			1		
	SMYD1_MOUSE	SET and MYND domain-containing protein 1		67	50		1,64	1,01		2	1	56,19	
	SOLO_MOUSE	Protein SOLO		41			2,69			1			
	SPA3K_MOUSE	Serine protease inhibitor A3K		101			1,24			2		14,06	
	SPB6_MOUSE	Serpin B6		124	43		1,40	0,98		3	1	11,12	
	SPTA1_MOUSE	Spectrin alpha chain, erythrocyte	36			1,07			1				
	SRCA_MOUSE	Sarcalumenin		302	130		1,23	0,81		6	3	16,85	11,59
	SYNP2_MOUSE	Synaptopodin-2		129			1,13			2		9,14	
	TBA1C_MOUSE	Tubulin alpha-1C chain		208	107		1,17	1,16		3	2	14,8	31,22
	TBA4A_MOUSE	Tubulin alpha-4A chain			101			1,12			2		27,72
	TBB4_MOUSE	Tubulin beta-4 chain		198			1,38			3		6,27	
	THIM_MOUSE	3-ketoacyl-CoA thiolase, mitochondrial		147	98		1,42	1,10		3	1	24,15	
	TITIN_MOUSE	Titin		6048	2645		1,19	0,94		125	53	22,04	12,17
	TNNC1_MOUSE	Troponin C, slow skeletal and cardiac muscles		586			0,57			7		25,18	
	TNNC2_MOUSE	Troponin C, skeletal muscle		265	53		0,76	0,95		4	1	18,07	
	TNNI1_MOUSE	Troponin I, slow skeletal muscle		262	201		0,80	0,67		4	3	21,07	15,98
	TNNI2_MOUSE	Troponin I, fast skeletal muscle		114	79		0,92	0,84		2	1	13,38	
	TNNT1_MOUSE	Troponin T, slow skeletal muscle	25			1,48			1				
	TNNT3_MOUSE	Troponin T, fast skeletal muscle			80			0,77			2		2,28
									1				

	I	1		I Company and the second s					
TPIS_MOUSE	Triosephosphate isomerase	185	49	1,43	1,02	3	1	60,32	
TPM1_MOUSE	Tropomyosin alpha-1 chain	655	187	0,97	1,00	11	3	38,99	26,3
TPM2_MOUSE	Tropomyosin beta chain	536		0,92		8		46,18	
TPM3_MOUSE	Tropomyosin alpha-3 chain	552	89	0,92	0,93	9	2	31,81	19,72
TRAP1_MOUSE	Heat shock protein 75 kDa, mitochondrial	83		1,69		1			
UGPA_MOUSE	UTPglucose-1-phosphate uridylyltransferase	78		1,35		2		3,75	
USMG5_MOUSE	Up-regulated during skeletal muscle growth protein 5		97		1,55		1		
VDAC1_MOUSE	Voltage-dependent anion-selective channel protein 1	294	113	1,81	1,52	5	2	43,85	4,72
VDAC2_MOUSE	Voltage-dependent anion-selective channel protein 2	98		1,75		2		24,28	
VIME_MOUSE	Vimentin	168	115	1,48	1,08	4	3	26,72	24,78

Anhang

6.16 Quantitative Analyse R350P-Desmin-Knockin-Mäuse

	PROTEIN	IDENTIF	IKATION	#	REGU	LATIC	DN		# PEF	TIDE		A	BWEIG	CHUNG	N M
Accession	Protein	Replikat 1	Replikat 2	Repl	Replikat 1 Ro		ikat 2	Repl	ikat 1	Rep	likat 2	Repli	ikat 1	Repli	ikat 2
				WT	/MT	WT	/MT	WT	/MT	WI	T/MT	WT	/MT	WT/	/MT
		Score	Score	1	2	1	2	1	2	1	2	1	2	1	2
ACTC_MOUSE	Actin, alpha cardiac muscle 1		489			9,7	9,7			6	6			72,0	56,5
ACTS_MOUSE	Actin, alpha skeletal muscle	1090		10,3	3,7			14	14			109,7	72,8		
ADT1_MOUSE	ADP/ATP translocase 1	47	48	12,7	3,0	16,0	8,0	1	1	1	1				
ALDOA_MOUSE	Fructose-bisphosphate aldolase A	207		7,4	1,8			4	4			32,3	21,6		
ATPA_MOUSE	ATP synthase subunit alpha, mitochondrial	45		3,2	3,9			1	1						
ATPB_MOUSE	ATP synthase subunit beta, mitochondrial	87		4,1	6,3			1	1						
CAH3_MOUSE	Carbonic anhydrase 3	63	49	5,7	3,7	2,5	12,9	1	1	1	1				
COX41_MOUSE	Cytochrome c oxidase subunit 4 isoform 1,mitochondrial	58		21,9	1,9			1	1						
FHL1_MOUSE	Four and a half LIM domains protein 1	131		6,4	3,9			2	3			40,5	15,0		

HBA_MOUSE	Hemoglobin subunit alpha	50		5,2	1,1			1	1						
HBB1_MOUSE	Hemoglobin subunit beta-1	72	63	4,8	2,1	26,4	5,5	1	1	1	1				
KCRM_MOUSE	Creatine kinase M-type	393	253	5,1	2,7	5,0	5,3	7	7	4	4	104,4	84,6	103,0	40,3
MLE3_MOUSE	Myosin light chain 3, skeletal muscle isoform	75		3,9	2,9			2	2			13,3	7,5		
MLRS_MOUSE	Myosin regulatory light chain 2, skeletal muscle isoform	248	71	6,7	3,8	19,8	5,6	3	3	1	1	25,2	9,9		
MLRV_MOUSE	Myosin regulatory light chain 2, ventricular/cardiac muscle isoform		78			10,3	6,1			1	1				
MYG_MOUSE	Myoglobin	397		8,5	3,3			5	5			97,2	97,3		
MYH1_MOUSE	Myosin-1	1241	495	10,0	3,4	9,7	8,2	21	21	8	8	66,0	60,9	56,7	27,0
MYH3_MOUSE	Myosin-3	607		7,5	3,3			13	13			68,6	49,9		
MYH7_MOUSE	Myosin-7	1519	425	7,4	3,8	9,7	9,4	27	26	6	6	86,0	52,7	54,9	42,7
MYH8_MOUSE	Myosin-8	943		8,1	2,5			18	17			69,6	63,8		
MYL3_MOUSE	Myosin light chain 3	369	123	11,2	4,8	3,5	11,8	4	4	2	2	77,8	103,8	236,5	6,3
RL26_MOUSE	60S ribosomal protein L26	56		4,0	0,2			1	1						
RL35_MOUSE	60S ribosomal protein L35	73		5,1	0,6			2	2			10,6	3,5		
TNNT1_MOUSE	Troponin T, slow skeletal muscle	54		9,8	1,0			1	1						

WT1= 0284 (männlich), WT2=0286 (weiblich), MT1=0302 (männlich), MT2=0303 (weiblich)

7 Danksagung

Frau Prof. Dr. Marianne Dieterich möchte ich für die Möglichkeit zur Dissertation und für die hervorragenden Arbeitsbedingungen am Friedrich-Baur-Institut herzlich danken.

Herrn Prof. Dr. Benedikt Schoser möchte ich besonders herzlich für die Möglichkeit bei ihm zu promovieren, seine Unterstützung, seine fachliche Anleitung sowie Diskussionsbereitschaft und die stets sehr gute Betreuung danken.

Des Weiteren möchte ich mich bei Herrn PD Dr. Joachim Schessl, Frau Professor Dr. Maggie Walter und Frau PD Dr. Dr. Sabine Krause für ihre äußerst kompetente Hilfe und für ihre Ideen und Anregungen während meiner gesamten Doktorarbeit bedanken.

Für ihren Einsatz bei der quantitativen und qualitativen Massenspektrometrie und sehr angenehme und produktive Zusammenarbeit möchte ich mich ganz herzlich bei Herrn Professor Dr. Hanisch und Herrn Dr. Müller bedanken.

Besonders danke ich auch Marina Dusl, Cordula Pertl, Irene Kammermeier, Christiana Kubny, Manuela Zitzelsberger, Rolf Stucka, Ursula Klutzny und Maria Schmuck für die Hilfe bei so manchen Fragestellungen und Problemen, die freundschaftliche Atmosphäre und schöne Zusammenarbeit.

Zum Schluss möchte ich die Gelegenheit wahrnehmen, mich ganz herzlich bei denjenigen Menschen zu bedanken, die mich außerhalb des Instituts unterstützt haben – meinem Freund, Markus Limmer, der in dieser Zeit stets für mich da war und ganz besonders meinen Eltern und meiner Familie, die mir meine Ausbildung erst ermöglicht haben.

Workshops und Vorträge

Feldkirchner S, Walter M.C, Müller S, Kubny C, Krause S, Kress W, Hanisch F.-G, Schoser B, Schessl J.Proteomic characterization of aggregate components in an intrafamilial variable FHL1opathy. Kongress der Deutschen Gesellschaft für Neuropathologie und Neuroanatomie e.V (DGNN, September 2012), Erlangen. Vortrag (abstract-ID: 110)

Feldkirchner S. Four and a half LIM protein and FHL1 related myopathies. IV Curso de Patología Neuromuscular en la infancia (April 2012), Barcelona, Spanien. Einladung zum Vortrag

Feldkirchner S, Müller S, Kress W, Hanisch F-G, Schoser B, Schessl J. Evaluation of standardized protein pattern of skeletal muscle fibers via laser microdissection. 18th International Congress of the World Muscle Society (WMS Oktober 2011), Almancil, Portugal. Abstractnummer: P5.51

Feldkirchner S, Müller S, Kress W, Hanisch F-G, Schoser B, Schessl J. Erstellung eines ausführlichen Proteinprofils von Muskelzellen mittels UV-laser-basierter Mikrodissektion Kongress der Deutschen Gesellschaft für Muskelkranke (DGM, März/April 2011), Ulm. Abstractnummer: 13

Ehrenwörtliche Erklärung

Diese Dissertation wurde selbständig und ohne unerlaubte Hilfe angefertigt.

München, den

.....

(Sarah M. Feldkirchner)

Dissertation eingereicht am:.....