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ABSTRACT

The expression of eukaryotic genes is regulated by
cis-regulatory elements such as promoters and
enhancers, which bind sequence-specific DNA-
binding proteins. One of the great challenges in
the gene regulation field is to characterise these
elements. This involves the identification of tran-
scription factor (TF) binding sites within regulatory
elements that are occupied in a defined regulatory
context. Digestion with DNase and the subsequent
analysis of regions protected from cleavage (DNase
footprinting) has for many years been used to
identify specific binding sites occupied by TFs at
individual cis-elements with high resolution. This
methodology has recently been adapted for high-
throughput sequencing (DNase-seq). In this study,
we describe an imbalance in the DNA strand-
specific alignment information of DNase-seq data
surrounding protein–DNA interactions that allows
accurate prediction of occupied TF binding sites.
Our study introduces a novel algorithm,
Wellington, which considers the imbalance in this
strand-specific information to efficiently identify
DNA footprints. This algorithm significantly
enhances specificity by reducing the proportion
of false positives and requires significantly fewer
predictions than previously reported methods to
recapitulate an equal amount of ChIP-seq data. We
also provide an open-source software package,

pyDNase, which implements the Wellington
algorithm to interface with DNase-seq data and
expedite analyses.

INTRODUCTION

The correct tissue-specific and temporal function of the
genome is tightly controlled by transcription factors
(TFs) that recognise specific DNA sequences and
regulate the expression of specific genes. However, they
do not act as single molecules but interact with each
other to form large multi-protein assemblies that act as
platforms for the recruitment of members of the epigenetic
regulatory machinery (1,2). One of the significant chal-
lenges facing gene regulation studies is the identification
of sites where TFs are bound to specific genes in a specific
regulatory context. Although previous studies have shown
a direct link between the sequence as well as tissue speci-
ficity of a number of TFs and gene expression patterns
(3,4), the mechanisms behind how defined DNA sequences
and the assembly of TF complexes translate into global
gene expression patterns remains to be fully understood.
Characterising TF binding sites (TFBSs) across the

entire genome is a monumental task. It is estimated that
the total number of TFs in the human genome number
�1500, where several hundred of these may be active in
a given cell type at any one time (5). Currently, the ‘gold
standard’ for identifying occupied TFBSs in a given
context uses chromatin immunoprecipitation paired with
high-throughput sequencing (ChIP-seq) (6), which
requires either a high-quality antibody or high cell
numbers or alternatively epitope tagging. Although
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ChIP-seq has proven to be extremely powerful, it is not
without limitations: It is only possible to characterise one
TF per experiment, it cannot be used alone to differentiate
between primary and secondary binding (7), and the
protein binding regions of the genome identified by
ChIP-seq are in the order of several hundred base pairs.
Progress has been made in this respect with the advent of
ChIP-exo (8), which increases resolution of ChIP-seq data
to below 50 bp, but this method has yet to see widespread
adoption.
Another widely used approach in gene regulation

studies uses DNase I as a tool to identify DNase I
Hypersensitive Sites (DHSs) within chromatin (1). DHSs
represent open chromatin regions that are normally only
accessible at sites of active regulatory elements such as
transcriptional enhancers. The recent development of
DNase-seq has allowed more comprehensive mapping of
the active chromatin landscape than is possible with ChIP-
seq (9). The specific patterns of DNase I cleavage within
DHSs also provide additional information about regions
of DNA that are bound by proteins and are thereby
protected from DNase I digestion, a feature that has
been exploited for many years to obtain information
about DNA–protein interactions at specific genes
(10,11). However, the genome-wide data gained from
this method are not trivial to analyse. DHSs can occupy
hundreds of base pairs, and the entire complement of such
sites contains an intrinsically high number of different
specific TFBSs (9).
Although analyses of DNase-seq data were originally

confined to identifying DHSs by peak detection, there
have recently been several advances in the analysis of
the raw tag counts that correspond to DNase activity at
base pair resolution. The first of these digital genomic
footprinting (DGF) methods were developed in yeast,
where tag counts were processed with a rank transform-
ation and tested for depletions in reads corresponding to
occupied TFBSs using a binomial test (12). Subsequently,
the first DGF studies in mammalian cells used a machine-
learning approach where the tag counts were truncated,
smoothed and differentiated, followed by the supervised
training of a Hidden Markov Model on the known TFBSs
in the FMR1 promoter. Viterbi decoding was then
performed to provide binary classifications (bound or
unbound) for every base in the genome (13). Although
several sets of footprints for various cell types as well as
the model parameters were published, a software imple-
mentation was not made available. Another machine-
learning approach, CENTIPEDE, trains an unsupervised
Bayesian mixture model on the raw tag counts surround-
ing all genomic occurrences of a specified motif of interest
to predict the binding states of each motif occurrence (14);
however, unlike the previous methods, it cannot make
predictions at arbitrary genomic loci. A software imple-
mentation of the CENTIPEDE algorithm is available
but requires data to be pre-processed by the user into
non-standard formats. The ENCODE project (15) has
produced the most comprehensive set of DGFs in
human cells by performing high-sequencing depth
DNase-seq experiments on a multitude of cell types,
adapting their previous footprinting methodology (12)

to human data through the use of a metric that calculates
the ratio of DNase-seq tags within a binding site to those
directly outside (the Footprint Occupancy Score) (7).

Using publically available DNase-seq data from the
ENCODE project, we describe how the alignment direc-
tion of DNA fragments relative to the reference strand
exhibits a characteristic strand imbalance in the patterns
surrounding known protein–DNA binding sites. We
introduce Wellington, a novel footprinting algorithm
that uses this knowledge to identify protein–DNA inter-
actions in DNase-seq data with increased performance
over previous methods, by reducing the number of false
positives in our predictions. Alongside this, we provide the
pyDNase software package to interface with DNase-seq
data to run the Wellington algorithm and accelerate
development of further analysis methods for these data.
pyDNase and Wellington form a complete tool chain
that can be used to identify protein–DNA interactions
in any DNase-seq experiment performed according to
the ‘double-hit’ protocol (16). Finally, we compared
the performance of the different footprinting methods
on a single data set, which we hope will be useful to the
community in their decision of how to approach DGF
tasks.

MATERIALS AND METHODS

Data

Aligned double-hit DNase-seq data and genomic co-ordin-
ates of DHSs (K562: wgEncodeUwDgfK562, HepG2:
wgEncodeUwDgfHepg2, A549: wgEncodeUwDgfA549,
SkMC: wgEncodeUwDgfSkmcAln) and PhyloP conserva-
tion (Vertebrate phyloP46way) scores were downloaded
from the UCSC genome browser (17). K562 data corres-
ponding to the original single-hit DNase-seq library prep-
aration method (9) were downloaded from the Sequence
Read Archive (accession SRS131306) and aligned to hg19
using bowtie 1.0.0 (18) with the command line parameters
‘-a -best -strata -v 2 -m 1’. ChIP-seq data were downloaded
as peaks from the ENCODE project’s ChIP-seq studies
(19); for track names, see Supplementary Table S1.

The Wellington algorithm

To detect protein–DNA binding sites, we must
characterise the activity of DNase I and define what we
consider to be a footprint. It is known that the activity of
DNase I is lower in regions of inaccessible chromatin
owing to protection of cleavage by histones or protein–
DNA interactions. DNase I activity is therefore higher in
regions of open chromatin without a bound protein.
Protein–DNA binding sites can be detected by searching
for a characteristic depletion of DNase I cuts compared
with a large number of cuts in the surrounding region of
open chromatin that do not harbour bound proteins.

To formalise our hypothesis test, we use the notation
introduced in Figure 1. We will call the region surround-
ing the possible footprint the shoulder region. Let lFP be
the length (in base pairs) of the possible footprint and lSH
be the length (in base pairs) of the shoulder on each side of
the possible footprint. We consider counts of cuts in these
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regions where ‘cuts’ refers to 50 ends of the aligned
sequencing tags. We consider four cut counts: the total
number of cuts on the forward reference strand inside
the possible footprint (FP+), the cut count in the
upstream shoulder region on the forward reference
strand (SH+), the cut count on the backward reference
strand inside the possible footprint (FP�) and the cut
count in the downstream shoulder region on the
backward reference strand (SH�).

We now test the null hypothesis that the number of
reads is proportional to the region length by using
a binomial test. As the number of reads can depend on
the strand, e.g. because the protein structure might be such
that it only inhibits DNase I activity on one strand, we test
both strands separately. We consider these tests to be in-
dependent, as each �200 bp fragment will at most produce
either one forward or one backward read close to the
footprint site under investigation. With F(k, n, p) being
the binomial cumulative distribution function, i.e. the
probability of achieving at least k out of n successes
with the probability of each success being p, we calculate
a p-value using the formula p-value={1-F[FP+,
FP++SH+, lFP/(lFP+lSH)]} � {1-F[FP

�, FP�+SH�, lFP/
(lFP+lSH)]}. This p-value is for a given possible foot-
print of length lFP with surrounding shoulder regions of
length lSH.

We can calculate p-values for different possible foot-
print and shoulder lengths lFP and lSH. We can then
choose which regions we wish to consider footprints by
selecting an appropriate threshold for the p-values and
subsequently using a greedy selection strategy for foot-
print identification. The parameters lFP and lSH are indi-
vidually determined for each footprint using maximum
likelihood estimation. The default values for lFP are
bound between 11 and 26 base pairs, whereas lSH is
fixed at 35 base pairs. Both of these parameters can be
user-settable at run time with either ranges or fixed

values. Further details are provided in the supplementary
material.

Validation of predicted binding sites

We downloaded peaks determined by ENCODE’s peak
calling algorithm (specifically, ENCODE’s ‘optimal’,
high confidence set of peaks) for ChIP-seq experiments
corresponding to a range of TFs. ChIP-seq confirmed
binding sites were defined as motif instances falling
within these peaks for each TF, and unbound motif
locations were defined as motif instances falling outside
ChIP-seq peaks.
To calculate ChIP-seq recapitulation, we used

Wellington to calculate footprint p-values for each base
pair in all DHSs and compared footprints with ChIP-seq
positive motif instances. A ChIP-seq confirmed binding site
is said to be successfully recapitulated by DNase-seq data if
either at least 70% of the footprint is contained within the
binding site or vice versa. This criterion is necessary as
protection from DNase I is not always centred perfectly
on a DNA motif. The same method was used when
analysing Hesselberth et al. (12) footprints, Neph et al.
(7) footprints and DHSs.
Average conservation scores were calculated using

Vertebrate phyloP46way, and motif content was calcu-
lated using the genomic locations of 214 curated ChIP-
seq verified position weight matrices published as part of
the HOMER suite (20). For full details, see supplementary
material.

RESULTS

Strand imbalance information increases the predictive
power of footprinting algorithms

Strand-specific information in the context of DNase-seq
data has been used primarily to describe TF-specific

Figure 1. Wellington: a novel strand sensitive algorithm for the identification of protein–DNA binding sites from DNase-seq data. (A) The
Wellington algorithm calculates p-values for every base pair in all DNase hypersensitive sites in a given DNase-seq data set, where the s-value is
assigned to the base pair at the centre of the footprint. For each base pair, Wellington tests the hypothesis that there are significantly more reads
aligning to the forward reference strand in the upstream shoulder region (SH+) with respect to the+ve strand footprint region (FP+) and significantly
more reads aligning to the reverse reference strand in the downstream shoulder region (SH–) with respect to the �ve strand footprint region (FP–).
(B) Example output of the Wellington algorithm. The corresponding footprint prediction recapitulates the ChIP-seq confirmed CTCF-binding site.
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cleavage patterns in reference to the orientation of a
known DNA motif (13,14). Previous efforts at predicting
DGFs have been strand-agnostic, ignoring alignment
strand information and considering DNase I cleavage
activity as absolute, without regard to the orientation of
the sequenced fragment relative to the cut site. However, if
one considers that the DNA fragments generated by
DNase cutting are likely to originate predominantly
from within DHSs, with a high probability of spanning
occupied binding sites, then the strand to which the
sequence tags align is likely to be highly informative
with regard to the relative position of TFBSs. This is
because the upstream end of a DHS fragment will be
aligned as a+ve strand sequence tag, whereas the down-
stream end will be aligned as a �ve strand sequence tag, as
illustrated in Supplementary Figure S3. Hence, for DNA
fragments that span DHSs, and encompass DNase I foot-
prints, the DNase I cuts identified from+ve strand align-
ments will be concentrated to the left, and those from �ve
strand alignments will be concentrated to the right.
Chromatin structure influences the digestion pattern, as
there is a lower probability of sequencing DNA fragments
that extend away from the DHS. This is caused by the fact
that these fragments will be of lower abundance due to
the lower probability of generating a second DNase I
cleavage within flanking regions occupied by nucleosomes.
Such fragments will thus likely be discarded during the ne-
cessary process of size selection before or during library
preparation.
We tested the aforementioned predictions by consider-

ing the alignment strand when visualising DNase I
cleavage sites in the vicinity of known motifs using pub-
lished DNase-seq data at ChIP-seq verified binding sites
from K562 cells that are available from ENCODE
(Figure 2A and B). Similar to the imbalance of sequencing
reads observed in ChIP-seq and DHS mapping (21), we
noted that DNase-seq data surrounding binding sites
often exhibit an abundance of sequencing reads aligning
to the+ve reference strand upstream of the binding site,
and reads aligning to the �ve reference strand down-
stream of the binding site, consistent with these tags
representing opposite ends of DNA fragments spanning
protected regions. This was particularly evident when
DNase I cuts at binding motifs for specific factors across
the genome were collapsed into a heat map (Figure 2B).
When investigating a diverse set of TFs, we noticed that
the imbalance varies in strength, with some binding sites
having diminished strand imbalance, and others showing
almost none. However, we never observe a ‘reverse’ im-
balance of sequencing reads aligning to the �ve reference
strand upstream of the binding site, and reads aligning to
the +ve reference strand downstream of the binding site
(Supplementary Figure S4). Although this imbalance is
prominent in the data generated using the newer double-
hit protocol used for all recent ENCODE DNase-seq data,
the pattern is less pronounced in older data generated by
the single-hit DNase-seq library preparation protocol (9)
(Supplementary Figure S5).
It is also evident that more DNase I cut sites are

detected immediately adjacent to the DNase I footprints,
perhaps because the non-protected regions of a DHS are

cleaved multiple times, with the smaller fragments being
lost from the analysis. Overall, the number of reads
aligning to the positive and negative strands in each
DHS is roughly equal (Supplementary Figure S1) and so
does not account for this imbalance. For some but not
all motifs, additional information can be gained by re-
orienting the DNase-seq data according to the orientation
of the specific motif (Supplementary Figure S6). In the
case of CTCF, a region of DNase I hypersensitivity
exists on the �ve strand in a region that separates the
major CTCF consensus motif from a secondary CTCF-
binding site reported by others (13,22,23) When the
motifs are aligned in the same orientation, this second
site appears as a separate distinct protected region in
Supplementary Figure S6. Here, we also show that CTCF
motif scores are inversely correlated with Footprint
Occupancy Scores, revealing that poorer motifs are less
likely to generate clear footprints, as they are more suscep-
tible to DNase I cleavage within the binding sites.

To assess whether the consideration of strand imbalance
in DNase-seq data surrounding protein–DNA binding
sites has an equally significant impact on the accuracy of
DGF, we developed Wellington, a novel algorithm that
performs DGF on DNase-seq data without the need for
any prior knowledge, such as position weight matrices for
the motifs that are likely to be annotated as a footprint.
Wellington makes use of the sequence tag strand imbal-
ance and searches DHSs for footprints that have a statis-
tical enrichment of reads aligning to the +ve and �ve
reference strand upstream and downstream of the
binding site, respectively, with a depletion of reads on
both strands in the region of the binding site. Figure 1
shows an example of such a footprint at a binding site
for the TF CTCF containing a CTCF binding motif in
the K562 data. This example demonstrates that
Wellington footprints can accurately recapitulate the
presence of a bound protein at a known TFBS.

To ensure that we were not missing genuine protein–
DNA binding sites by excluding footprints that exhibited
strand imbalance in the opposite direction, we again
applied the Wellington algorithm to the ENCODE K562
DNase-seq data, but simultaneously applied it in a
‘reverse’ mode. This detected features exhibiting strand
imbalance in the opposite direction to that which we
demonstrated in Figure 2, (i.e. reads aligning to the �ve
reference strand upstream of the binding site, and reads
aligning to the +ve reference strand downstream of the
binding site). Using the reverse Wellington method, we
made footprinting predictions and compared them with
those made by Wellington at the same p-value threshold
of 1� 10�30 (Figure 3A). All footprints identified possess
the typical depletion in DNase I signal at the centre of the
footprint (Figure 3B and D). As it is known that sequence
conservation is correlated with the strength of TF binding
(5,7,12–14), we investigated PhyloP (24) conservation
scores surrounding footprints identified by both
Wellington and reverse Wellington. We discovered that
footprints only identified by Wellington showed an enrich-
ment in sequence conservation at the centre of the
footprint. This also held true for the footprints identified
by both algorithms (due to there being sufficient reads on
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both strands for both methods to detect a footprint).
However, ‘reverse footprints’ identified by reverse
Wellington only, did not show any evidence of enrichment
in conservation score (Figure 3C), suggesting they are
artefacts. To exclude the possibility that this result was
only associated with the specific significance threshold
chosen, we ran this analysis over a range of significance
thresholds, but the main outcome of the analysis did not
change (Figure 3E). Another indicator of the quality of
footprint predictions, motif content (7,12–14), was also
investigated. We found that motifs were enriched at the
centre of footprint predictions (Supplementary Figure S7)
and that over a range of significance thresholds, the
pattern in the average motif content was the same as the
average conservation score, with Wellington outperform-
ing reverse Wellington (Figure 3F). Based on the fact that
‘reverse footprints’ with reverse strand imbalance patterns
had very low motif content and very low average conser-
vation scores, we consider these to be largely false posi-
tives. The majority of these are found adjacent to (5041,
54%), or in between (2734, 29%) footprints identified by
Wellington (Supplementary Figure S8), with the minority
(1607, 17%) having no neighbouring footprint within
50 bp. This indicates that these false positives are ‘ghost’
sites identified between or next to the shoulder regions of
true footprints. To a strand-agnostic algorithm, these will

appear to be depletions in DNase I activity associated with
protein–DNA binding events. It is only by considering the
strand information that it becomes possible to identify and
discard them as artefacts in the data.
We next visualised footprints identified by Wellington

at regions with known protein–DNA interactions that
have previously been characterised by manual footprint-
ing approaches, including the FMR1 promoter (25), the
IL-3 gene+4.9 kb CTCF site (26) and the b-globin LCR
HS2 DHS (27). Figure 4 and Supplementary Figure S7
demonstrate the high precision with which Wellington
infers regions of protein–DNA interaction.

Wellington is highly accurate at inferring protein–DNA
interactions from DNase-seq data

To further assess the performance of the Wellington algo-
rithm at identifying protein–DNA interactions compared
with other methods, we used a range of different valid-
ation techniques, again using DNase-seq, footprinting and
ChIP-seq data published by ENCODE. We also con-
sidered an implementation of Wellington that ignores
strand information in the data, ‘Wellington 1D’ (see sup-
plementary material for details), to assess the impact of
the strand information on footprinting performance inde-
pendently of the footprinting method. In the first instance,
we compared our footprinting predictions for the K562

Figure 2. DNase I cleavage patterns surrounding known protein–DNA interactions as identified by ChIP-seq exhibit a strand imbalance, regardless
of the strand where the binding motif is located. (A) Individual representative regions of DNase-seq data flanking NRF1, Sp1 and CTCF binding
sites illustrate large numbers of sequencing fragments aligning to the positive reference strand upstream of the protein–DNA binding site and to the
negative reference strand downstream of the protein–DNA binding site. These patterns exist independent of the direction in which the binding motif
is located. (B) Heat maps show that the DNase-seq strand imbalance surrounding NRF1, Sp1 and CTCF binding sites identified by ChIP-seq exists
on a genomic scale relative to the reference strand, irrespective of motif orientation (heat maps relative to motif orientation are shown in
Supplementary Figure S4). Red indicates an excess of positive strand cuts over negative strand cuts per nucleotide position, and green indicates
an excess of negative strand cuts. Binding sites are sorted from top to bottom in order of decreasing Footprint Occupancy Score (7).
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Figure 3. Strand imbalance information is crucial for the identification of true protein–DNA interactions. (A) The Wellington algorithm was run on
K562 DNase-seq data in parallel with a modified version of the Wellington algorithm (reverse Wellington) designed to identify strand imbalance in
the opposite direction than expected, i.e. reads aligning to the negative reference strand upstream of the binding site, and reads aligning to the
positive reference strand downstream of the binding site. (B, C) Although footprints identified only by reverse Wellington harbour the characteristic
depletion of DNase I cleavage, we find that they do not exhibit the increase of conservation typical of known protein–DNA interactions (7,12–14).
(D) Heat maps of the DNase I signal surrounding the reverse Wellington footprints support the hypothesis that false-positive footprint signals
primarily arise from junctions in between adjacent protein–DNA binding sites. (E) The observation of low conservation scores of footprints detected
by reverse Wellington is maintained when comparing Wellington and reverse Wellington footprints at a range of significance levels. (F) Footprints
detected by reverse Wellington contain fewer TF-binding motifs.
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DNase-seq data with K562 ChIP-seq data for a range
of TFs (ATF3, c-Myc, CTCF, JunD, Max, NFE2,
NRF1, NRSF, PU.1, Sp1 and USF1). We investigated
the ChIP-seq recapitulation performance of our method
by searching for motifs within footprints using a range
of decreasing stringencies for the footprint p-value
(Figure 5A). Over all stringencies, Wellington performed
the best, meaning that the efficiency of Wellington at
recapitulating ChIP-seq data per base pair of prediction
was higher than that of other methods. For example, it
required approximately 60% fewer predictions compared
with Neph et al.’s footprint analysis to recapitulate an
equal amount of ChIP-seq data for these 11 TFs.
Although this analysis clearly showed the increased
coverage gained by Wellington, it did not take the
number of false positives or false negatives made by
these predictions into account. To address this, we
calculated the Average Nucleotide Performance
Coefficients (28) for the 11 ChIP-seq experiments as a
function of total genomic footprint predictions, which
revealed a consistently higher correlation between the
ChIP-seq confirmed binding sites and the Wellington foot-
prints across all sensitivities compared with other methods
(Figure 5B).

A validation method commonly used in classification
experiments, the Receiver Operator Characteristic
(ROC), assesses the performance of a binary classifier

over a range of significance thresholds (see supplemental
material for details). Wellington yielded an area under the
ROC curve higher than 0.80 in the ability to recapitulate
all 11 TFs in K562 cells (Figure 5C), indicating that
Wellington is an excellent predictor of TF binding (29).
ROC analysis was also performed on HepG2 and A549
DNase-seq data (Supplementary Figures S10 and S11),
yielding similar performance. Although this method has
been used in the validation of previous footprinting
methods, it should be noted that due to the relatively
small number of true positives (bound motif instances)
and large number of true negatives (unbound motif
instances) in the genome for most TFs (Supplementary
Table S1), this statistic is skewed towards assessing the
ability of an algorithm to correctly predict unbound
locations.
CENTIPEDE (14) is based on known binding motif

locations and learns one footprint model for each individ-
ual motif. It is therefore capable of using features of foot-
prints that are specific to one or few motifs. In contrast,
Wellington is a generic footprinting method for the detec-
tion of a wide range of binding sites. It does not depend on
previous knowledge of motifs and does not learn models
for individual motifs. We therefore considered the possi-
bility that CENTIPEDE might outperform Wellington.
However, we found that Wellington still outperformed
CENTIPEDE when comparing the Positive Predictive

Figure 4. Wellington footprints recapitulate known protein–DNA interactions at (A) the FMR1 promoter (25), (B) the IL3+4.9 kb insulator (26)
and (C) the b-globin HS2 hypersensitive site (27) and refine previous footprinting predictions at these loci (7).
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Figure 5. Wellington outperforms other methods with respect to ChIP-seq recapitulation performance, sequence conservation and motif content
within footprints. (A) Wellington is able to recapitulate a given amount of ChIP-seq data with approximately half the number of genomic predictions
compared with Neph et al. (7). The horizontal axis shows the total number of base pairs in the genome that are covered by footprints at a given
stringency, the vertical axis shows the average performance of these footprints in recapitulating binding sites found from ChIP-seq data for 11 TFs in
K562 cells. DHSs: using DNase hypersensitive sites to recapitulate ChIP-seq binding sites. (B) The nucleotide performance coefficients for these
predictions (28) take numbers of false positives and false negatives into account and show a consistent finding compared to (A). (C) ROC curves for
Wellington binding site predictions of 11 genomic TFs. The dashed line shows the expected performance of a random classifier. AUC: Area under
curve. (D) Using the NFE2 ChIP-seq data as an example, we illustrate that the positive predictive value (the proportion of binding site predictions
that are correct) of Wellington is either equal to or exceeding other footprinting techniques. (E, F) Wellington footprints have consistently the highest
PhyloP conservation scores and motif content.
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Value (the fraction of predicted binding sites that are con-
firmed in ChIP-seq data, PPV) as a function of the ChIP-
seq coverage (Figure 5D), implying that Wellington can be
specifically used for the purpose of determining in vivo
occupancy of a given motif. The method by Neph et al.
and Wellington performed comparably when the location
of a binding motif was known, but CENTIPEDE’s
Positive Predictive Value was lower at lower sensitivities.
Comparable results were observed for the other 10 TFs
(Supplementary Figure S9). However, it is worth noting
that when performing analyses that require the presence of
a motif in the footprint, a high number of motif-less foot-
prints are masked and unknown motifs are not found.
Moreover, the assumption that a given TF generates
a uniform digestion pattern limits the predictive power
of the algorithm, for example, it has been shown that
multiple clusters of DNase I cleavage patterns exist for
CTCF (13). In addition, the dynamic binding behaviour
of a specific TF can be modulated by interaction with
other factors binding within the DHS (30). The extent of
this has not yet been investigated, and other TFs could
also generate differing DNase I cleavage patterns depend-
ent on differing binding dynamics at individual sites across
the genome.

All of the aforementioned analyses rely on ChIP-seq
data as a gold standard, and therefore false positives in
ChIP-seq analyses can appear as false negatives in foot-
printing assays and vice versa. Other metrics that do not
rely on ChIP-seq data, such as conservation scores and
motif enrichment, which are also highly correlated with
TF binding and regulatory activity (31), can be used to
assess footprinting performance. We therefore calculated
the average PhyloP conservation score and the average
motif content of footprints across a range of thresholds
on footprint p-values. To calculate motif content, we used
a library of 214 ChIP-seq derived DNA motifs. Across all
sensitivities, Wellington footprints yielded higher conser-
vation scores and motif content per base pair (Figure 5E
and F) than other methods, further demonstrating
Wellington’s ability to identify footprints enriched for
regulatory elements with high conservation scores and
protein binding potential. This notion is exemplified in
Supplementary Figure S12, which depicts the DHS at
the FMR1 promoter demonstrating the precise overlap
of regions with high footprinting p-values and high con-
servation scores. The ability for Wellington to outperform
Wellington 1D in these metrics confirms that the consid-
eration of the strand information in DNase-seq data
assists in reducing the number of low conservation
scoring false-positive ‘reverse’ footprints in the genome
without affecting predictive power. When considering
data generated with the original single-hit protocol,
however, we found that Wellington did not improve
over Wellington 1D (Supplementary Figures S14–S16).
This is likely due to the fact that the single-hit data
have less pronounced strand imbalance patterns
(Supplementary Figure S5), which Wellington is specific-
ally designed to detect.

In summary, Wellington efficiently increases the speci-
ficity of footprint detection by avoiding artefacts, which
only become apparent when considering the

alignment strand of DNase I cuts in DNase-seq data
(Supplementary Figure S13). It therefore maintains excel-
lent ChIP-seq recapitulation performance whilst signifi-
cantly reducing the total number of predicted footprints
in the genome.

pyDNase: a Python package for analysing DNase-seq
data

At present, no free open source software package is avail-
able that would allow the analysis of DNase-seq data with
the aim of performing digital footprinting without specify-
ing any prior parameters, such as motif of interest. DGF
presents unique challenges in data handling due to the
large (>500 million) number of reads, and the necessity
to interact directly with raw alignment data to perform
complex analyses. With ChIP-seq, this step is unnecessary
after basic peak calling and generation of extended read
densities. We therefore developed pyDNase as the first
open source DNase-seq analysis software package.
pyDNase complements other common bioinformatics
tools to establish the first functional DNase-seq footprint-
ing pipeline. It is written in Python for higher-level func-
tions and C for lower-level performance-critical functions.
The analysis pipeline using pyDNase is outlined in
Figure 6, whereby pyDNase serves a conduit between
the raw alignment data and DNase-seq analysis algorithms
such as Wellington. The most basic usage, a footprinting
analysis with the default parameters can be performed by
running the wellington_footprints.py script with
the sequencing reads in BAM format, a list of DHSs in
the data set, and an output location for the results (e.g.
$ python Footprint.py reads.bam dhs.bed �/
results/), which will then output the footprint scores
as a wig file, and footprints at various p-value cutoffs.
The behaviour of this script is highly configurable
through command line arguments. pyDNase allows
Wellington footprinting of all DHSs in a 600 million read
DNase-seq experiment in �4 –10h on a desktop computer
with 1Gb of RAM and a 2.3GHz Intel Core i5 processor.
This will simplify and expedite data analyses as well as
method development for future studies. pyDNase and the
Wellington algorithm are available as a Python package,
along with sample data sets, a step-by-step tutorial, and
documentation of every method and class at http://jpiper.
github.com/pyDNase and is freely released under the GNU
GPLv3 open source software license.

DISCUSSION

By designing the Wellington algorithm to identify foot-
prints using the knowledge that strand imbalance
surrounds known protein–DNA interactions, we have
increased our ability to perform DGF by reducing the
number of motif-depleted non-conserved false positives.
Footprints identified by Wellington show consistently
higher average conservation scores, motif content and
ChIP-seq recapitulation per base pair than other methods.
Considering that the ChIP-seq recapitulation performance
was the justification behind the previous claim of 0.4 to 2.3
million genomic footprints (dependent on the cell type) (7),
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Figure 6. The pyDNase Python package forms a complete toolchain for the rapid analysis and footprinting of DNase-seq data. Using mapped
DNase-seq reads as a BAM file, pyDNase not only has scripts to perform common analyses (heat maps, footprinting, average profiles) but also
exposes an API to allow the easy development of further DNase-seq analysis tools.
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the results presented here suggest that much less of the
genome may be involved in protein-binding events than
previously predicted. Wellington required approximately
60% fewer predictions compared with Neph et al.’s foot-
print analysis to recapitulate an equal amount of ChIP-seq
data for 11 TFs. This is due to the large number of motif-
less false positives in the Neph et al. set of predictions that
do not impact on the chosen validation metrics. However, it
remains difficult to determine exactly how many binding
sites there may actually be as human DGF is still limited
by sequencing depth (7) (Supplementary Figure S2).

We hypothesise that the strand imbalance is a natural
consequence of the size selection step of the ‘double-hit’
protocol, which purifies �50–200 base pair DNA frag-
ments produced by DNase I digestion (Supplementary
Figure S3). This is strengthened by the result that consid-
eration of strand information does not contribute any
predictive power to data generated by the single-hit
DNase-seq method, which does not use size selection in
the library preparation (9) and has detectable but less
pronounced strand imbalance patterns (Supplementary
Figures S5, S14–S16). In the double-hit protocol,
eliminating the smallest digestion products and excluding
larger chromatin fragments creates a bias towards
sequencing DNA fragments that actually span the
DNase I footprints where TFs are bound. Because
the +ve and �ve strand sequence tags simply represent
the opposite ends of the same sets of DNA fragments,
this is a straightforward predictor of the location of a
footprint relative to the 50 end of the sequence tag.
Giving due consideration to the introduction of strand
imbalance surrounding sites protected by protein–DNA
interactions in the double-hit DNase-seq data allows the
development of analyses that reduce the number of false
positives in footprint predictions.

This increased footprinting precision as well as the
ability of Wellington to be used on a priori defined
motifs opens the door to higher-order analyses, such as
de novo identification of occupied cis-regulatory modules,
as well as the elucidation of direct or indirect TF inter-
action in a given complex via determination of specific
motif distances. Furthermore, the strand-specific cleavage
patterns surrounding motifs bound by different TF
families seemingly constitute unique, individual signa-
tures, which may permit motif identification based solely
on DNase-seq data.

The identification of TFBSs bound in a cell-type and
cell-stage specific fashion is a key stage in gaining an
understanding of differential gene expression underlying
all cell differentiation processes. Using techniques such as
DNase-seq, ChIP-seq, and algorithms such as Wellington,
we can begin to document the TF-binding events that
confer cell identity, developmental processes or which
underpin aberrant regulation in diseases such as cancer.
By significantly reducing the number of false-positive pre-
dictions, we decrease the need for multiple technical and
biological replicates, which can be difficult to obtain for
primary tissues such as patient samples. This opens up the
possibility of performing analyses on disease-specific tran-
scription regulation mechanisms, which have previously

only been possible using data combined from multiple ex-
periments over large numbers of cell lines (7,13).
It remains to be seen how footprinting algorithms can

be further enhanced. Even though it is known that the
pattern of the DNase-seq signal surrounding protein–
DNA binding events is TF dependent, we found
Wellington to perform well using a single model to
search for all possible TF-binding events in a DNase-seq
data set. The use of more complex mixture models could
yield even better performance, which at some stage may
even allow the incorporation of an analysis of the chro-
matin landscape. The speed at which new computational
analyses of DNase-seq data are being developed is greatly
surpassed by the rate at which new DNase-seq data are
being generated (32). To encourage further investigations,
we have released pyDNase and Wellington as a Python
package for the fast and easy analysis of DNase-seq data.
We hope that accelerates both the analysis of DNase-seq
data and the development of advanced footprinting
algorithms.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online,
including [33].
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